
Unit Capacity Maxflow in Almost O(m4/3) Time

Tarun Kathuria
EECS

University of California Berkeley
Berkeley, USA

tarunkathuria@berkeley.edu

Yang P. Liu
Department of Mathematics

Stanford University
Stanford, USA

yangpliu@stanford.edu

Aaron Sidford
MS&E

Stanford University
Stanford, USA

sidford@stanford.edu

Abstract—We present an algorithm, which given any m-edge
n-vertex directed graph with positive integer capacities at most
U computes a maximum s-t flow for any vertices s and t in
O(m4/3+o(1)U1/3) time. This improves upon the previous best
running times of O(m11/8+o(1)U1/4) [1], Õ(m

√
n logU) [2]

and O(mn) [3] when the graph is not too dense and doesn’t
have large capacities. We build upon advances for sparse
maxflow based on interior point methods [1], [4], [5]. Whereas
these methods increase the energy of local `2-norm minimizing
electrical flows, we instead increase the Bregman divergence
value of flows which minimize the Bregman divergence with
respect to a weighted log barrier. This allows us to trace the
central path with progress depending only on `∞ norm bounds
on the congestion vector as opposed to the `4 norm, which arises
in these prior works. Further, we show that smoothed `2-`p
flows [6], [7] which were used to maximize energy [1] can also
be used to efficiently maximize divergence, thereby yielding our
desired runtimes. We believe our approach towards Bregman
divergences of barriers may be of further interest.

Keywords-Maximum flow, interior point method, bipartite
matching, optimization

This is an extended abstract corresponding to a a merge
of the full paper arxiv.org/abs/2003.08929 [8] and the full
paper arxiv.org/abs/2009.03260 [9].

I. INTRODUCTION

The s-t maximum flow problem and its dual, the s-t
minimum cut on graphs are among the most fundamental
problems in combinatorial optimization and have a wide
range of applications. They serve as a testbed for new
algorithmic concepts which have found uses in other areas of
theoretical computer science and optimization. In the well-
known s-t maximum flow problem we are given a graph
G = (V,E) with m edges and n vertices with positive
integer edge capacities 1 ≤ ue ≤ U , and aim to route
as much flow as possible from s to t while restricting the
magnitude of the flow on each edge to its capacity.

Decades of work in combinatorial algorithms for
this problem led to a large set of results culminating
in the work of Goldberg-Rao [10] which achieves a
Õ(mmin{m1/2, n2/3} logU) time algorithm for directed
maxflow.1 This bound remained unimproved for many years,

1There is a sequence of works resulting in a O(mn) time algorithm for
strongly polynomial time maxflow [3] – we will not address these here.

even in the special case of U = 1, where these runtimes were
obtained much earlier [11], [12].

Continuous Optimization for Maxflow: In a break-
through paper Christiano et al. [13] showed how to
compute ε-approximate maxflows in undirected graphs in
Õ(mn1/3 log(U)poly(1/ε)).2 3 Their new approach used
the result that Laplacian linear systems could be solved
in nearly linear time [18] to “augment” by electric flows,
which minimize the weighted `2 norm of the flow vector
with respect to edge resistances. A straightforward analysis
relating the `2 and `∞ norm of the congestion vector, i.e.,
the vector of ratios of the electrical flow on an edge over a
type of “residual capacity” of the edge, yields an O(

√
m)

iteration algorithm. However, they showed that perturbing
edge weights and leverging a potential function based on the
energy of the electrical flow, i.e. its weighted `2 norm, yields
an O(m1/3) iteration algorithm. This result inspired multiple
advances in solving flow problems (See Section I-C).

In the setting of exact directed maxflow, the only improve-
ments to the O(mmin{m1/2, n2/3}) runtimes of [11], [12]
when U = 1, are based on interior point methods (IPMs)
(with the exception of [19]). IPMs are iterative methods
which reduce linear programming to solving a sequence of
linear systems. In graphs, for standard IPMs (e.g. [20]) these
linear systems are Laplacians and IPMs directly yield an
Õ(m3/2 log(U)) time algorithm for directed maxflow [21].
Building upon [13], Mądry [4] developed a weighted-barrier
based IPM which, when U = 1, could solve maxflow in
Õ(m10/7). Whereas [21] leverages an `2 analysis of a log
barrier, [5] leveraged that it is possible to analyze progress
based on the `4 norm of the congestion vector of the current
electric flow induced by the Laplacian system. Combining
this with the perturbation of weights in the weighted log
barrier, tracking the perturbation of energy of the electrical
flow based of these weight perturbations, and additional

2There were several earlier combinatorial algorithms giving improve-
ments in the case of bounded flow values and ε-approximate maxflow
on undirected graphs [14]–[17], though none achieved a better than n3/2

runtime on all sparse graphs.
3Several algorithms discussed here, including the original algorithm of

[13], are randomized. We will not distinguish randomized versus determin-
istic algorithms in this introduction.

arxiv.org/abs/2003.08929
arxiv.org/abs/2009.03260

insights lead to [4] which was improved by [5] to obtain
an Õ(m10/7U1/7) time maxflow algorithm.

Even more recently, Liu and Sidford [1] improved the
runtime of Mądry [5] and showed that instead of carefully
tuning the weights based on the electrical energy, one can
consider the separate problem of finding a new set of weights
under a budget constraint to maximize the energy. They
showed that a version of this problem reduces to solving `2-
`p norm flow problems and hence can be solved in almost-
linear time using the work of [6], [7]. This leads to a
O(m11/8+o(1)U1/4)-time algorithm for maxflow. However,
this result still relied on the amount of progress one can take
in each iteration being limited to the bounds one can ensure
on the `4 norm of the congestion of an electrical flow vector,
as opposed to the ideal `∞ norm of the congestion vector
which governed [13].4

We remark here that there are IPMs for linear program-
ming which only measure centrality in `∞ norm as opposed
to the `2 or `4 norm. In particular [23], [24] show how
to take a step with respect to a softmax function of the
duality gap and trace the central path only maintaining `∞
norm bounds. However, it is unclear how to leverage these
for faster algorithms for maxflow and this paper takes a
different approach based on measuring progress based on
the `∞ norm of the congestion vector.

A. Our Contributions

Building on the past decade of advances to maxflow,
this paper obtains an O(m4/3+o(1)) maxflow algorithm on
sparse, unit-capacity graphs, thereby closing the longstand-
ing gap between the runtime achieved for approximately
solving maxflow using Laplacian system solvers in [13] and
the best runtime known for solving maxflow on directed
graphs. We also shed light on the energy maximization
framework that underlie all previous O(n3/2−Ω(1)) results
for exact directed maxflow and depart from it to achieve
our bounds. Energy maximization, though straightforward
to analyze, is somewhat mysterious from an optimization
perspective - it is unclear what (if any) standard optimization
technique it corresponds to.5 In this paper, we show that
energy maximization arises naturally when locally optimiz-
ing the second order Taylor approximation of a Bregman
divergence with respect to a logarithmic barrier. We then
show that by optimizing the entire function, instead of its
second order Taylor approximation, we can obtain improved
convergence. We believe this divergence maximization tech-
nique is of intrinsic interest.

4Technically, in [1] and [22], weight changes are computed to reduce the
`∞ norm of congestion of an electric flow vector. However, the centrality
depends on the `4 norm, and we see this as why previous works achieved
worse than O(m4/3) runtime. Since the initial version of this paper [8]
was released, [22] was updated to leverage the techniques of this paper and
achieved a O(m4/3+o(1)) runtime for a broader range of problems.

5The recent, independent paper of [22] gives an alternative perspective
on energy maximization as regularized Newton steps.

Finally, to achieve our result, we show that divergence
maximization can be performed efficiently for graphs.
Whereas [1] showed that energy maximization could be
performed efficiently by solving smoothed `2-`p flows of
[6], [7], here we need to solve problems not immediately
representable this way. Nevertheless, we show previous
solvers can be applied to solve a quadratic extension of
the divergence maximization problem in Lemma V.8, which
suffices for our algorithms. More generally, we open up
the algorithms which underlie `2-`p flow solvers and show
in Theorem 2 that a range of undirected flow optimization
problems, including divergence maximization, can be solved
efficiently. We hope this generalized flow solving routine
may find further use as well.

B. Our Results

The main result of this paper is the following theorem.

Theorem 1 (Maximum Flow). There is an algorithm which
solves maxflow in m-edge, integer capacitated graphs with
maximum capacity U in m4/3+o(1)U1/3 time.

Theorem 1 yields an exact maxflow runtime matching the
Õ(mn1/3ε−11/3) runtime of [13] for (1 − ε)-approximate
undirected maxflow on sparse graphs. Further, this improves
on the recent m11/8+o(1)U1/4 time algorithm of [1] when
U ≤ m1/2−ε for some ε > 0. When U ≥ m1/2, the
algorithms of Theorem 1 and [1], [4], [5] all have runtime
Õ(m3/2), which was known by [10]. Hence, we assume
U ≤

√
m throughout the paper. An immediate corollary of

Theorem 1 is the following result on bipartite matching.

Corollary I.1 (Bipartite Matching). There is an algorithm
which given a bipartite graph with m edges computes a
maximum matching in time m4/3+o(1).

We note that Theorem 1 and Corollary I.1 are determin-
istic. This is achieved by leveraging [26], which recently
showed that algorithms for many flow algorithms, including
Laplacian system solvers [18], smoothed `2-`p flow com-
putation methods [6], [7] and some maxflow IPMs [4], [5],
may be derandomized with a mo(1) runtime increase.

C. Previous work

Approximate undirected maxflow: An extensive line
of work exploiting continuous optimization techniques for
faster maxflow algorithms was inspired by [13]. Lee
et al. [27] also presented a O(n1/3poly(1/ε)) iteration
algorithm for unit-capacity graphs also using electrical flows.
Further, Kelner et al. [28] and Sherman [29] presented
algorithms achieving O(m1+o(1)poly(1/ε)) runtimes for
maxflow and its variants, [30] improved this to nearly linear
time for maximum flow, and [19], [31] further improved the
ε dependence.

IPMs for maxflow: In order to obtain highly accu-
rate solutions and improved runtimes for directed maxflow,
recent work has leveraged IPMs for linear programming
[20], [32]. As discussed, classic IPMs [21] and nearly
linear time Laplacian systems solvers [18] directly yield
an Õ(m3/2 log(U))-time maxflow algorithm. In the case of
bounded U , this was improved by the sequence of works
[1], [4], [5]. Beyond these results, Lee and Sidford [2] also
devised a faster IPM using weighted barriers to achieve
a Õ(m

√
n log(U/ε))-runtime for maximum flow. Further,

[33] achieved a runtime for minimum cost flow matching
the runtimes of [4], [5] and this was recently improved by
[22], leveraging the techniques of this paper. Very recently,
[34] also provided an IPM-based algorithm which yields
an Õ(m + n3/2) time algorithm for bipartite matching and
similar runtimes for related problems.

`p-flows and beyond: Closely related to this paper,
and the preceding lines of research, is recent work on
obtaining high-precision solvers for `p flow problems on
graphs, i.e. sending a specified amount of flow while min-
imizing a weighted `p-norm. These problems interpolate
between electrical flow problems p = 2, undirected max-
imum flow problems p = ∞, and transshipment problems
p = 1. Bubeck et al. [35] note that although standard self-
concordance theory for IPMs cannot improve upon

√
m

iterations for p 6= 2, an alternative homotopy-based method
can solve the problem in Õp(m

1
2−

1
p log(1/ε)) iterations,

where Op hides dependencies on p in the runtime. This lead
to improvements on the runtime for constant values of p.
Next, Adil et al. [36] provided an `p flow algorithm which
reduced the problem to approximately solving a sequence of
smoothed `2-`p flows, i.e. objectives with both `2 resistances
and `p weights, and applied a variant of [13] to solve it. This
lead to a Õp(m

1+ p−2
3p−2 log2(1/ε))-time algorithm, which is

Op(m
4/3 log2(1/ε)) even for large p. Further, Kyng et al. [6]

leveraged the tools from Spielman and Teng [18] for `2-norm
flow problems to show that smoothed `2-`p flows could be
solved for unit `p norm weights and p ∈ [ω(1), o(log n)] in
m1+o(1) time. Although, these results do not immediately
lead to faster directed maxflow algorithm, as naively this
would require p = poly(m), both the maxflow algorithm
of this paper and [1] leverage the almost linear time `2-`p-
solver, for p = O(

√
logm) of [6], [7].

II. PRELIMINARIES

General notation: We let Rm
≥α denote the set of m-

dimensional real vectors which are entrywise at least α. For
v ∈ Rm and real p ≥ 1 we define ‖v‖p, the `p-norm of
v, as ‖v‖p

def
= (

∑m
i=1 |vi|p)

1/p, and ‖v‖∞
def
= maxmi=1 |vi|.

For n × n positive semidefinite matrices M1,M2 we write
M1 ≈r M2 for r ≥ 1 if r−1xTM1x ≤ xTM2x ≤ rxTM1x
for all x ∈ Rn. For a differentiable function f : Rn → R
we define its induced Bregman divergence as Df (x‖y)

def
=

f(x)− f(y)−∇f(y)T (y − x) for all x, y ∈ Rn.

Graphs: Throughout this paper, in the graph problems
we consider, we suppose that there are both upper and lower
capacity bounds on all edges. We let G be a graph with
vertex set V , edge set E, and upper and lower capacities
u+
e ≥ 0 and u−

e ≥ 0 respectively on edge e. We use
U to denote the maximum capacity of any edge, so that
max{u+

e , u
−
e } ≤ U for all edges e. We let n denote the

number of vertices |V |, and let m denote the number of
edges |E|. Further we view undirected graphs as directed
graphs with u+

e = u−
e by arbitrarily orienting its edges.

The Maximum Flow Problem: Given a graph G =
(V,E) we call any assignment of real values to the edges
of E, i.e. f ∈ RE , a flow. For a flow f ∈ RE , we view fe
as the amount of flow on edge e. If fe > 0 we interpret this
as sending fe units in the direction of the edge orientation
and if fe < 0 we interpret this as sending |fe| units in the
direction opposite the edge orientation.

In this paper we consider ab-flows, where a ∈ V is called
the source, and b ∈ V is called the sink. An ab-flow is a
flow which routes t units of flow from a to b for some real
number t ≥ 0. Define the unit demand vector χab = 1b−1a,
a vector with a 1 in position a and −1 in position b. When
a and b are implicit, we write χ = χab. In this way, we also
refer to an ab-flow which routes t units from a to b as a
tχ-flow. The incidence matrix for a graph G is an m × n
matrix B, where the row corresponding to edge e = (u, v)
has a 1 (respectively −1) in the column corresponding to v
(respectively u). Note that f ∈ RE is a tχ-flow if and only
if BT f = tχ. More broadly, we call any d ∈ RV a demand
vector if d ⊥ 1 and we say f ∈ RE routes d if BT f = d.

We say that a tχ-flow f is feasible in G if −u−
e ≤ fe ≤

u+
e for all e ∈ E, so that f satisfies the capacity constraints.

We define the maximum flow problem as the problem of
given a graph G with upper and lower capacities u+ and
u−, and source and sink vertices a and b, to compute a
maximum feasible ab-flow. We denote the maximum value
as t∗. For a real number t ≤ t∗, we let Ft

def
= t∗ − t denote

the remaining amount of flow to be routed.

III. ALGORITHM DERIVATION AND MOTIVATION

In this section we present a principled approach for
deriving our new method and the previous energy-based
methods [1], [4], [5] for maxflow from an IPM setup.

A. Interior Point Method Setup

The starting point for our method is the broad IPM
framework for maxflow of [1], which in turn was broadly
inspired by [5]. We consider the setup described in Section II
and design algorithms that maintain a flow f ∈ RE , a
parameter t ≥ 0, and weights w+, w− ∈ Rm

≥1 such that
BT f = tχ and f is a high accuracy approximation of the
solution f∗

t,w of the following optimization problem:

f∗
t,w

def
= argmin

BT f=tχ

V (f) (1)

where

V (f)
def
= −

∑
e∈E

(
w+

e log(u+
e − fe) + w−

e log(u−
e + fe)

)
Here, V (f) is known as the weighted logarithmic barrier

and penalizes how close f is to violating the capacity
constraints and t is the amount of flow sent from a to b.

Generally, IPMs proceed towards optimal solutions by
iteratively improving the quality, i.e. increasing the param-
eter t, and decreasing the proximity to the constraints, i.e.
decreasing V (f). Previous maxflow IPMs [1], [2], [4], [5] all
follow this template. Specifically, [1], [5] alternate between
Newton step to improve the optimality of f for Eq. (1)
(called centering steps) and computing a new flow and
weights to approximately solve Eq. (1) for a larger value
of t (called progress steps). Applying such an approach,
while using Laplacian system solvers to implement the steps
in nearly linear time, coupled with a preliminary graph
preprocessing step known as preconditioning (Section IV-A)
directly yields to an Õ(m3/2) time algorithm. Recent ad-
vances [1], [2], [4], [5] were achieved by performing further
work to modify the weights and flows used.

B. Progress steps via divergence minimization

To understand (and improve upon) previous maxflow
IPMs, here we explain how to view progress steps in this
framework as computing a divergence minimizing δχ-flow.
Note that, without weight changes, the cumulative result of
a progress and centering step is essentially moving from
f∗
t,w to f∗

t+δ,w for a step size δ. The optimality conditions
of Eq. (1) give that the gradient of V at the optimum f∗

t,w

of Eq. (1) is perpendicular to the kernel of BT , so there is
a vector y with By = ∇V (f∗

t,w). Define

f̂
def
= argmin

BT f=δχ

DV (f
∗
t,w + f‖f∗

t,w)

= argmin
BT f=δχ

V (f∗
t,w + f)− V (f∗

t,w)−∇V (f∗
t,w)

T f,
(2)

i.e. the δχ-flow with smallest divergence from f∗
t,w against

the barrier V . Again, optimality conditions give that there is
a vector z with Bz = ∇DV (f

∗
t,w + f̂‖f∗

t,w) = ∇V (f∗
t,w +

f̂)−∇V (f∗
t,w). Therefore, B(y+z) = ∇V (f∗

t,w+ f̂). Since
f∗
t,w+ f̂ is a (t+ δ)χ-flow, we must have f∗

t,w+ f̂ = f∗
t+δ,w

by optimality conditions, so that adding f̂ to an optimal
point f∗

t,w lands us at the next point f∗
t+δ,w.

Now, a standard progress step in this framework may
be computed by taking a Newton step, i.e. minimizing the
second order Taylor approximation of the divergence. The
second order Taylor expansion of DV (f

∗
t,w + f‖f∗

t,w) is
1
2f

T∇2V (f∗
t,w)f , and the resulting step is

argmin
BT f=δχ

1

2
fT∇2V (f∗

t,w)f (3)

= δ∇2V (f∗
t,w)

−1B(BT∇2V (f∗
t,w)

−1B)†χ . (4)

This can be computed in O(m) time plus the time to solve
a Laplacian system, i.e. Õ(m) [18]. Choosing δ that routes
Ω(m−1/2) fraction of the remaining flow, adding the flow in
Eq. (4) to our current point, and taking further Newton steps
to re-center yields an Õ(m3/2) time maxflow algorithm.

C. Energy-based improvements

Improvements to the above Õ(m3/2) time algorithm [1],
[4], [5] arise by a more careful analysis of the step size δ
of the Newton step that we may take such that recentering
may still be performed in Õ(m) time, and by leveraging
that the flow in Eq. (4) is an electric flow. Precisely, the
size of the step we may take is governed by the congestion
of the flow we wish to add, which is defined edge-wise
as the ratio of flow on an edge to its residual capacity
(see c+e , c

−
e in Section IV-A). In this way, the `∞ norm of

congestion of the χ-electric flow governs the amount of flow
we may add before violating capacity constraints. On the
other hand, because the χ-electric flow was a minimizer to
a second order approximation of the divergence, the `4 norm
of congestion of the χ-electric flow governs the amount of
flow we may add so that centering can still be performed in
Õ(m) time, whereas a bound on the `2 norm of congestion
suffices to achieve the Õ(m3/2) time algorithm.

In this way, it is natural to attempt to compute weight
changes that reduce the `4 norm of congestion induced by
the χ-electric flow. Mądry [4], [5] achieves this by boosting
edges with high congestion in the χ-electric flow and trading
off against a potential function that is the energy of the χ-
electric flow with resistances induced by the Hessian of the
weighted logarithmic barrier at the current point.

To improve on the algorithm of [5], [1] instead views
increasing energy via budgeted weight change as its own
optimization problem. Precisely, the optimization problem
was to maximize the energy of an electric flow in a graph G
that originally had resistances r under a resistance increase
budget. Written algebraically, for a weight budget W :

max
‖r′‖1≤W

min
BT f=δχ

∑
e∈E

(re + r′e)f
2
e . (5)

[1] showed that a smoothed version of this objective was
solvable in m1+o(1) time using smoothed `2-`p flows [6],
and that the combinatorial edge boosting framework of [4],
[5] can essentially be viewed as greedily taking gradient
steps against the objective in Eq. (5).

D. Our new method: beyond electric energy

A disappointing feature of the above discussion is that
while the `∞ norm of congestion governs the amount of
flow we may add and still have a feasible flow, we are
forced to control the `4 norm of congestion of the electric
flow to allow for efficient centering. This is due to the fact
that although the step can be taken without violating ca-
pacity constraints, there is sufficient loss in local optimality

that Õ(1) centering Newton steps cannot recenter it. This
leads to the heart of our improvement – we resolve this
discrepancy between the `∞ and `4 norm of congestion by
directly augmenting via the divergence minimizing flow of
Eq. (2). As a result, it suffices to compute weight changes
to minimize the `∞ norm of congestion of this flow.

The next challenge is to compute this divergence min-
imizing flow, and compute weight changes to reduce the
`∞ norm of its congestion. To approach this, we con-
sider the problem of moving from f∗

t,w to f∗
t+δ,w for

a step size δ, assuming that the residual capacities in-
duced by f∗

t,w and f∗
t+δ,w are within 1.05 multiplicatively.

This implies that ∇2V (f∗
t,w) ≈1.2 ∇2V (f∗

t+δ,w). To solve
this problem, for each piece of the V (f) objective, i.e.
(w+

e log(u+
e − fe) + w−

e log(u−
e + fe)), we replace it with

a quadratic extension, a function that agrees with it on
some interval, and extends quadratically outside. Our new
objective will have a stable Hessian everywhere, hence can
be minimized by Newton’s method. By construction, the
optimum of the quadratically extended problem and original
are the same using convexity (see Observation 1). Further
details are provided in Section IV-B.

Finally, we must compute weights that reduce the `∞
norm of congestion of the divergence minimizing flow. As
the approach of [1] computes weight changes to maximize
the electric energy, we instead compute weight changes
to maximize the divergence of the divergence minimizing
flow. Doing this requires extending the analysis of [5]
and energy maximization framework of [1] to nonlinear
objectives, such as the quadratic extensions described above,
and then generalizing the iterative refinement framework
introduced by [6], [36] to a large family of new objectives.
We hope that both this unified view of energy and divergence
maximization as well as the methods we give for performing
this optimization efficiently may have further utility.

IV. TECHNICAL INGREDIENTS

In this section, we elaborate on several technical aspects
discussed in Section III. We give details for setting up
the IPM in Section IV-A, discuss preconditioning in Sec-
tion IV-A, elaborate on quadratic extensions in Section IV-B,
and discuss iterative refinement in Section IV-C.

A. IPM Details and Preconditioning

In this section, we give a detailed description of our
IPM setup. One can reduce directed maxflow to undirected
maxflow with linear time overhead (see [4], [37] or [1]
Section B.4) and consequently, we assume our graph is
undirected, so that u+

e = u−
e .

Assuming that there is a feasible tχ-flow, optimality
conditions of Eq. (1) give that the gradient of V at the
optimum f∗

t,w of Eq. (1) is perpendicular to the kernel of BT ,
i.e. there is a dual vector y ∈ RV such that By = ∇V (f∗

t,w).
Consequently, for parameter t and weight vectors w+, w−

we say that a flow f is on the weighted central path if and
only if there exists a dual vector y ∈ RV such that

BT f = tχ and (6)

[By]e =[∇V (f)]e =
w+

e

u+
e − fe

− w−
e

u−
e + fe

for all e ∈ E

(7)

For simplicity, we write w = (w+, w−) ∈ R2E
≥1, where we

define R2E
≥α

def
= RE

≥α × RE
≥α. We define residual capacities

c+e
def
= u+

e − fe, c
−
e

def
= u−

e + fe and ce = min(c+e , c
−
e). Note

ce ≥ 0 for all e ∈ E if and only if f is feasible.
We initialize w+

e = w−
e = 1, t = 0, and f = 0, which is

central. Previous IPM based algorithms for maxflow [1], [4],
[5] alternated between progress steps and centering steps.
Progress steps increase the path parameter t at the cost of
centrality, which refers to the distance of f from satisfying
Eq. (7) in the inverse norm of the Hessian of V (f) – see [1]
Definition 4.1. Centering steps improve the centrality of the
current point without increasing the path parameter t. Our
algorithm more directly advances along the central path –
given parameter t, weights w, and central path point f∗

t,w

we compute new weights wnew, advance the path parameter
to t+ δ, and compute f∗

t+δ,wnew .
The goal of the IPM is to reduce the value of the residual

flow Ft = t∗ − t below a threshold, at which point we may
round and use augmenting paths [27]. We assume that the
algorithm knows Ft throughout, as our algorithm succeeds
with any underestimate of the optimal flow value t∗, and we
can binary search for the optimal flow value.

Preconditioning.: To precondition our undirected graph
G, we add m undirected edges of capacity 2U between
source a and sink b. This increases the maximum flow
value by 2mU. Throughout the remainder of the paper, we
say that the graph G is preconditioned if it is undirected
and we have added these edges. Intuitively, preconditioning
guarantees that a constant fraction of the remaining flow in
the residual graph may be routed in its undirectification, i.e.
G with capacities ce. The following lemma was shown in
[1] Section B.5.

Lemma IV.1. Consider a preconditioned graph G. For
parameter t and weights w let ce be the residual capacities
induced by the flow f∗

t,w. Then for every preconditioning
edge e we have that ce ≥ Ft

7‖w‖1
. If ‖w‖1 ≤ 3m then

ce ≥ Ft

21m .

At the start of the algorithm, as we initialized w+ =
w− = 1, we have ‖w‖1 = 2m. To apply Lemma IV.1 we
maintain the stronger invariant that ‖w‖1 ≤ 5m/2 before
each step, but may temporarily increase to ‖w‖1 ≤ 3m
during the step.

B. Advancing along the central path via quadratic smooth-
ing

Let t be a path parameter, and let δ be a step size.
Let c+e , c

−
e be the residual capacities induced by f∗

t,w, and
let (c+e)

′, (c−e)
′ be those induced by f∗

t+δ,w. We sketch an
algorithm that computes f∗

t+δ,w to high accuracy from f∗
t,w

in Õ(m) time given that for all e ∈ E that c+e ≈1.05 (c+e)
′

and c−e ≈1.05 (c−e)
′. Let f̂ = f∗

t+δ,w − f∗
t,w and define the

change in the value of the barrier V when we add f as

B(f) def
= V (f + f∗

t,w)− V (f∗
t,w)

= −
∑
e∈E

(
w+

e log

(
1− fe

u+
e − [f∗

t,w]e

)
(8)

+ w−
e log

(
1 +

fe

u−
e + [f∗

t,w]e

))
, (9)

so that f̂ = argminBT f=δχ B(f). To compute f̂ , we smooth
Eq. (9) by replacing each instance of log(·) with a function
l̃og(·) defined as

l̃ogε(1+x)
def
=


log(1 + x) for |x| ≤ ε

log(1 + ε) + (x−ε)
(1+ε) −

(x−ε)2

2(1+ε)2 for x ≥ ε

log(1− ε) + (x+ε)
(1−ε) +

(x+ε)2

2(1−ε)2 for x ≤ −ε.

Here, we fix ε = 1/10 and write l̃og(1+x)
def
= l̃og1/10(1+x).

Note that l̃ogε(1 + x) is the natural quadratic extension of
log(1 + x) outside the interval |x| ≤ ε. Specifically, the
functions agree for |x| ≤ ε, and we l̃ogε(1+x) is the second
order Taylor expansion of log(1+x) at ε,−ε for x > ε, x <

−ε respectively. In this way, l̃og(1+x) is twice differentiable
everywhere. Define

B̃(f) def
= −

∑
e∈E

(
w+

e l̃og

(
1− fe

u+
e − [f∗

t,w]e

)

+ w−
e l̃og

(
1 +

fe

u−
e + [f∗

t,w]e

))
.

We now claim that f̂ = argminBT f=δχ B̃(f), and that
it can be computed in Õ(m) time. To argue the latter, note
that by construction, all Hessians ∇2B̃(f) are within a mul-
tiplicative factor of 2 of each other, hence we can compute
argminBT f=δχ B̃(f) in Õ(m) time using Newton’s method
and electric flow computations. Because c+e ≈1.05 (c+e)

′

and c−e ≈1.05 (c−e)
′, we know that B and B̃ agree in a

neighborhood of f̂ , so f̂ = argminBT f=δχ B̃(f) by the
following simple observation.

Observation 1. [35] Let χ ⊆ Rn be a convex set,
and let f, g : Rn → R be convex functions. Let x∗ =
argminx∈χ f(x), and assume that f, g agree on a neigh-
borhood of x∗ in Rn. Then g(x∗) = minx∈χ g(x).

We emphasize that we do not directly do the procedure
described here, and instead apply quadratic smoothing in a
different form in Section V. There we smooth the function
D

def
= D− log(1−x)(x‖0), the Bregman divergence of x to 0

with respect to the function − log(1−x), instead of directly
smoothing log(1 + x). The smoothed function D̃ is shown
in Eqs. (11) and (12).

C. Iterative refinement

The idea of iterative refinement was introduced in
[6], [36] to solve p-norm regression problems, such as
minBT f=d ‖f‖pp. Iterative refinement solves such an objec-
tive by reducing it to approximately minimizing objectives
which are combinations of quadratic and `p norm pieces.
Specifically, we can show that for a fixed flow f there is a
gradient vector g such that for any circulation ∆ we have

‖f +∆‖pp − ‖f‖pp = gT∆+Θp

(∑
e∈E

|fe|p−2∆2
e + ‖∆‖pp

)
,

(10)

so that approximately minimizing Eq. (10) over circulations
∆ suffices to make multiplicative progress towards the opti-
mum of minBT f=d ‖f‖pp. We sketch in Section V-A how to
reduce general class of objectives to approximately minimiz-
ing objectives which are combinations of quadratic and `p
norm pieces. Specifically, any convex function h with stable
second derivative admits an expansion for h(x+∆)p−h(x)p
similar to Eq. (10). We then combine this expansion with
the almost linear time smoothed `2-`p solver of [6] to solve
the necessary objectives.

V. EFFICIENT DIVERGENCE MAXIMIZATION

In this section we present our interior point framework
and show Theorem 1. Throughout the section we set η =
logm

(
m1/6−o(1)U1/3

)
, in pursuit of a m3/2−η+o(1) time

algorithm. We assume G is preconditioned Section IV-A and
we maintain the invariant ‖w‖1 ≤ 5m/2 before each step,
and ‖w‖1 ≤ 3m at all times. As our algorithm runs in time
at least m3/2 for U >

√
m we assume U ≤

√
m throughout

this section. We assume that our algorithm knows Ft, as
discussed in Section IV-A, and that Ft ≥ m1/2−η or else
we can round to an integral flow and run augmenting paths.

Notational conventions: We largely adopt the same
notation as used in Section IV-B. We use D to refer to
functions of the logarithmic barrier, and for a function h,
we use h̃ to denote a quadratic extension of h. For flows
we use f and f̂ , the latter which refers to flows we wish to
augment by. We use ∆ and ∆̂ for circulations. The letters
w, µ, ν refer to weights and weight changes, and W refers
to a weight budget.

For ε < 1 define the functions

D(x)
def
= − log(1− x)− x and (11)

D̃ε(x)
def
=



D(x) for |x| ≤ ε

D(ε) +D′(ε)(x− ε) + D′′(ε)
2 (x− ε)2

for x ≥ ε

D(−ε) +D′(−ε)(x+ ε) + D′′(−ε)
2 (x+ ε)2

for x ≤ −ε.
(12)

Throughout, we will omit ε and write D̃(x)
def
= D̃1/10(x).

As discussed in Section IV-B D̃(x) is such that it behaves
as a quadratic around x = 0, and has continuous second
derivatives. We have defined D as the Bregman divergence
of − log(1 − x) from 0, and D̃ is the quadratic extension
of D as described in Section IV-B. Several useful properties
of the derivatives and stability of D and D̃ are collected in
Lemma V.1, which we prove in the full version.

Lemma V.1 (Properties of D̃). We have that 1/2 ≤
D̃′′(x) ≤ 2. Also, for x ≥ 0 we have that x/2 ≤ D̃′(x) ≤ 2x
and −x/2 ≥ D̃′(−x) ≥ −2x. We have that x2/4 ≤ D̃(x) ≤
x2 for all x.

Now, we define the higher order analog of electric energy
which we maximize under a weight budget. Below, we
assume without loss of generality that c+e ≤ c−e for all
edges e, as the orientation of each edge is arbitrary in the
algorithm. In this way, ce = c+e for all e.

DV
w (f)

def
=
∑
e∈E

(
w+

e D

(
fe

c+e

)
+ w−

e D

(
− fe

c−e

))

D̃V
w (f)

def
=
∑
e∈E

(
w+

e D̃

(
fe

c+e

)
+ w−

e D̃

(
− fe

c−e

))
Define val and ṽal as follows, where p = 2d

√
logme, and

W = m6η is a constant. For clarity, we express the vector
inside the ‖ ·‖p piece of Eqs. (13) and (14) coordinate-wise,
where the coordinate corresponding to edge e is written.

val(f)
def
= DV

w (f)

+W

∥∥∥∥(c+e)2(D(fe

c+e

)
+

(
c−e
c+e

)
D

(
− fe

c−e

))∥∥∥∥
p

(13)

ṽal(f)
def
= D̃V

w (f)

+W

∥∥∥∥(c+e)2(D̃(fe

c+e

)
+

(
c−e
c+e

)
D̃

(
− fe

c−e

))∥∥∥∥
p

(14)

These are defined so that for q as the dual norm of p,
i.e. 1/q + 1/p = 1, we have that val and ṽal correspond
to maximizing the minimum values of DV

w (f) and D̃V
w (f)

under a weighted `q weight budget. Specifically, we can
compute using Sion’s minimax theorem that

max
‖(c+e)−2ν+

e ‖q≤W

ν∈R2E
≥0

ν+
e

c
+
e

=
ν−
e

c
−
e

for all e∈E

min
BT f=d

DV
w+ν(f) (15)

= min
BT f=d

max
‖(c+e)−2ν+

e ‖q≤W

ν∈R2E
≥0

ν+
e

c
+
e

=
ν−
e

c
−
e

for all e∈E

DV
w+ν(f)

= min
BT f=d

max
‖(c+e)−2ν+

e ‖q≤W

ν∈R2E
≥0

ν+
e

c
+
e

=
ν−
e

c
−
e

for all e∈E

DV
w (f) +DV

ν (f)

= min
BT f=d

max
‖(c+e)−2ν+

e ‖q≤W

ν+∈R2E
≥0

DV
w (f)

+
∑
e∈E

(
ν+e D

(
fe

c+e

)
+

c−e
c+e

ν+e D

(
− fe

c−e

))
= min

BT f=d
val(f)

and similarly for D̃V
w (f) and ṽal(f). The objective re-

quires the constraint ν+e /c+e = ν−e /c−e for all e ∈ E to en-
sure that the weight increase ν maintains centrality, and the
coefficient of (c+e)

−2 in the weight budget ‖(c+e)−2ν+e ‖q ≤
W is chosen to ensure that the `p piece in ṽal(f) is ensured
to have approximately unit weights on the fe. Precisely, by
Lemma V.1 and c+e ≤ c−e we have(

c+e
)2(

D̃

(
fe

c+e

)
+

(
c−e
c+e

)
D̃

(
− fe

c−e

))
= Θ(f2

e).

We require this property in order to apply the smoothed `2-
`p flow solvers in Theorem 3.

As minBT f=d val(f) is the result of applying Sion’s
minimax theorem to a saddle point problem, there will be
an optimal solution pair (f∗, µ∗). Ultimately, f∗ will be the
flow which we add to our current flow to arrive at the next
central path point, and the weight change will be derived
from applying a weight reduction procedure to µ∗.

The remaining arguments in this section heavily use local
optimality of convex functions. For this reason, we note that
val(f) and ṽal(f) are convex, proof given in the full version.

Lemma V.2. val(f) and ṽal(f) are convex.

From now on, we fix a step size δ = Ft

105m1/2−η . This
simplifies our analysis, as our objectives are no longer linear
in δ, as is the case with electric flows. We now bound the
minimum value of D̃V

w (f) over all δχ-flows, and show a
congestion bound for the minimizer, where we recall that
congestion of a flow is the ratio of flow on an edge to
its residual capacity ce. Lemmas V.3 and V.4 generalize

corresponding bounds for electric flows shown in [5] and
[1] Lemma 4.5 and 5.2.

Lemma V.3. Let δ = Ft

105m1/2−η . Then
minBT f=δχ D̃V

w (f) ≤ 5 · 10−7m2η.

Proof: Let f ′ be the flow which routes δ/m units
of flow on each of the m preconditioning edges. For a
preconditioning edge ep, Lemma IV.1 and the invariant
‖w‖1 ≤ 3m tells us that

f ′
ep

cep
≤ δ/m

Ft/7‖w‖1
≤ 21

105m1/2−η
.

Therefore, applying Lemma V.1 to P , the set of m precon-
ditioning edges, and again applying that ‖w‖1 ≤ 3m gives
the desired bound, as

D̃V
w (f ′) =

∑
e∈P

(
w+

e D̃

(
f ′
e

c+e

)
+ w−

e D̃

(
− f ′

e

c−e

))

≤

(
f ′
ep

cep

)2∑
e∈P

(
w+

e + w−
e

)
≤
(

21

105m1/2−η

)2

‖w‖1 ≤ 5 · 10−7m2η

Lemma V.4. Let δ = Ft

105m1/2−η , and f̂ =

argminBT f=δχ D̃V
w (f). Then |f̂e|c−2

e ≤ m2η.

Proof: Local optimality tells us that there is a vector
z ∈ RV satisfying Bz = ∇D̃V

w (f̂). This, Lemma V.3, and
Lemma V.1, specifically that xD̃′(x) ≤ 2x2 ≤ 8D̃(x) gives

δχT z = f̂TBz = f̂T∇D̃V
w (f̂)

=
∑
e∈E

f̂e

(
w+

e

c+e
D̃′

(
f̂e

c+e

)
− w−

e

c−e
D̃′

(
− f̂e

c−e

))
≤ 8D̃V

w (f̂).

Note that the flow f̂ is acyclic, i.e. there is no cycle where
the flow is in the positive direction for every cycle edge,
as decreasing the flow along a cycle reduces the objective
value. Also, for all edges e = (u, v), we have zv − zu =

[Bz]e = [∇D̃V
w (f̂)]e, which has the same sign as f̂e. As f̂

is acyclic, it can be decomposed into a-b paths. Since, some
path contains the edge e, we get that |[Bz]e| = |zv − zu| ≤
zb−za = χT z. Using that xD̃′(x) ≥ x2/2 from Lemma V.1
we get that

|[Bz]e| = |[∇D̃V
w (f̂)]e| ≥

w+
e |f̂e|

2(c+e)2
+

w−
e |f̂e|

2(c−e)2
≥ 1

2
|f̂e|c−2

e .

Combining these gives

|f̂e|c−2
e ≤ 2|[Bz]e| ≤ 2χT z ≤ 16δ−1D̃V

w (f̂) ≤ m2η

after using Lemma V.3 and δ = Ft

105m1/2−η ≥ 10−5.

Now, we show that computing f̂ =
argminBT f=δχ ṽal(f) gives us weight changes to control
the congestion of the flow we wish to augment by. For
clarity, the process is shown in Algorithm 1.

Algorithm 1 AUGMENT(G,w, Ft, f
∗
t,w). Takes a precon-

ditioned undirected graph G with maximum capacity U ,
weights w ∈ R2E

≥1 with ‖w‖1 ≤ 5m/2, residual flow
Ft = t∗ − t, central path point f∗

t,w. Returns step size δ,
weights ν, and δχ-flow f̂ with f∗

t,w+ν = f∗
t,w + f̂ .

1: η ← logm(m1/6−o(1)U−1/3)
2: δ ← Ft

105m1/2−η . Step size.
3: c+e ← u+

e − [f∗
t,w]e, c

−
e ← u−

e + [f∗
t,w]e. . Residual

capacities.
4: W ← m6η . Weight budget.
5: f̂ ← argminBT f=δχ ṽal(f) . ṽal(f) implicitly

depends on W, c+e , c
−
e .

6: v ∈ RE defined as ve ←
(c+e)

2
(
D̃
(

f̂e
c+e

)
+
(

c−e
c+e

)
D̃
(
− f̂e

c−e

))
for all e ∈ E.

7: µ ∈ R2E
≥0 defined as µ+

e ←W (c+e)
2 · vp−1

e

‖v‖p−1
p

and µ−
e ←

c−e
c+e

µ+
e . . Preliminary weight change.

8: Initialize ν ∈ R2E
≥0. . Reduced weight change, satisfies

ν+
e

c+e −f̂e
− ν−

e

c−e +f̂e
=

µ+
e

c+e −f̂e
− µ−

e

c−e +f̂e
9: for e ∈ E do

10: if µ+
e

c+e −f̂e
− µ−

e

c−e +f̂e
≥ 0 then

11: ν+e ← (c+e − f̂e)
(

µ+
e

c+e −f̂e
− µ−

e

c−e +f̂e

)
, ν−e ← 0

12: else
13: ν+e ← 0, ν−e ← −(c−e + f̂e)

(
µ+
e

c+e −f̂e
− µ−

e

c−e +f̂e

)
14: end if
15: end forreturn (δ, f̂ , ν).

Now, we analyze Algorithm 1. We start by showing that
f̂ = argminBT f=δχ D̃V

w+µ(f) for the weight change µ in
line 7 of Algorithm 1, and that µ has bounded `1 norm. This
essentially follows from duality in our setup in Eq. (15).

Lemma V.5. Let parameters η,W, c+e , c
−
e , δ, flow f̂ , and

weight change µ be defined as in Algorithm 1, and assume
that Ft ≥ m1/2−η. Then we have that ‖µ‖1 ≤ m/2, f∗

t,w =

f∗
t,w+µ, and f̂ = argminBT f=δχ D̃V

w+µ(f).

Proof: Let v ∈ RE be the vector as defined in line 6 in
Algorithm 1. By local optimality of f̂ , we have that there is
a vector z satisfying for all e ∈ E that

[Bz]e =
[
∇ṽal(f̂)

]
e

=

(
w+

e

c+e
+

vp−1
e

‖v‖p−1
p

· W (c+e)
2

c+e

)
D̃′

(
f̂e

c+e

)

−
(
w−

e

c−e
+

vp−1
e

‖v‖p−1
p

· Wc+e c
−
e

c−e

)
D̃′

(
− f̂e

c−e

)
. (16)

For clarity, we rewrite line 7 of Algorithm 1 here as

µ+
e = W (c+e)

2 · vp−1
e

‖v‖p−1
p

and µ−
e =

c−e
c+e

µ+
e = Wc+e c

−
e ·

vp−1
e

‖v‖p−1
p

. (17)

Note that µ+
e /c

+
e = µ−

e /c
−
e , hence f∗

t,w = f∗
t,w+µ by

Eq. (7). Combining Eqs. (16) and (17) and optimality
conditions of the objective minBT f=δχ D̃V

w+µ(f) shows that

f̂ = argminBT f=δχ D̃V
w+µ(f). Additionally, if q is the dual

of p, i.e. 1/q + 1/p = 1, then

‖µ‖1 ≤ mo(1)‖µ‖q ≤ 2mo(1)WU2

∥∥∥∥ vp−1
e

‖v‖p−1
p

∥∥∥∥
q

= 2mo(1)WU2 = m6η+o(1)U2 ≤ m/2

by our choice of η = logm
(
m1/6−o(1)U1/3

)
.

We now show congestion bounds on f̂ by imitating the
proof of Lemma V.3 and applying Lemma V.4. Recall that
ce = min(c+e , c

−
e).

Lemma V.6. Let parameters η,W, c+e , c
−
e , δ, flow f̂ , and

weight change µ be defined as in Algorithm 1, and as-
sume that Ft ≥ m1/2−η. Then we have |f̂e| ≤ 1

500m
−2η

and |f̂e| ≤ 1
20ce for all edges e. It follows that f̂ =

argminBT f=δχ val(f).

Proof: We first show ṽal(f̂) ≤ 10−6m2η. Let f ′ be
the flow which routes δ

m units of flow on each of the
m preconditioning edges. As in Lemma V.3 we have that
D̃V

w (f ′) ≤ 5 ·10−7m2η. For a preconditioning edge e, using
Lemma V.1 and Lemma IV.1 gives that(

c+e
)2(

D̃

(
f ′
e

c+e

)
+

(
c−e
c+e

)
D̃

(
− f ′

e

c−e

))
≤
(
c+e
)2((f ′

e

c+e

)2

+

(
c−e
c+e

)(
f ′
e

c−e

)2
)
≤ 2(f ′

e)
2

≤ 2(δ/m)2 ≤ 2m−2

(
Ft

105m1/2−η

)2

≤ 10−8m2η−1U2.

as Ft ≤ 3mU . For the choice W = m6η we get that

ṽal(f ′) ≤ D̃V
w (f ′)

+W

∥∥∥∥(c+e)2(D̃(f ′
e

c+e

)
+

(
c−e
c+e

)
D̃

(
− f ′

e

c−e

))∥∥∥∥
p

≤ 5 · 10−7m2η + 10−8m8η−1+o(1)U2 ≤ 10−6m2η

where we have used ‖x‖p ≤ mo(1)‖x‖∞ for the choice p =
2
⌈√

logm
⌉
, and the choice of η = logm

(
m1/6−o(1)U1/3

)
to get m8η−1+o(1)U2 ≤ m2η .

We now show |f̂e| ≤ 1
500m

−2η for all e. Indeed, applying
D̃(x) ≥ x2/4 from Lemma V.1 yields

1

4
Wf̂2

e ≤ ṽal(f) ≤ 10−6m2η.

Using the choice W = m6η and rearranging gives |f̂e| ≤
1

500m
−2η.

Let µ be the weight increases given by line 7 of Algo-
rithm 1, and Eq. (17). As f̂ = minBT f=δχ D̃V

w+µ(f) and
‖w + µ‖1 ≤ 5m/2 + m/2 ≤ 3m by our invariant and
Lemma V.5, using Lemma V.4 gives

|f̂e|c−1
e =

(
|f̂e| · |f̂e|c−2

e

)1/2
≤
(

1

500
m−2η ·m2η

)1/2

≤ 1

20
.

Using that the functions D(x) and D̃(x) agree for |x| ≤ 1
10 ,

and |f̂e| ≤ 1
20ce for all e, Observation 1 gives that f̂ is also

a minimizer of minBT f=δχ val(f) as desired.
We now show that applying weight change µ and adding

f̂ to our current central path point f∗
t,w stays on the central

path, for path parameter t+ δ. This follows from optimality
conditions on the objective, which we designed to satisfy
exactly the desired property.

As the weight change µ may be too large, we reduce
the weight change µ to a weight change ν after advancing
the path parameter, and bound ‖ν‖1. Intuitively, this weight
reduction procedure can never hurt the algorithm. It happens
to help because we carefully designed our objective to
induce smoothed `2-`p flow instances with unit weights on
the `p part, the only instances which are known to admit
almost linear runtimes [6], which we use in Section V-A.

Lemma V.7. Let parameters η,W, c+e , c
−
e , δ, flow f̂ , and

weight changes µ, ν be defined as in Algorithm 1, and
assume that Ft ≥ m1/2−η. Then we have that ‖ν‖1 ≤
m4η+o(1)U and f∗

t+δ,w+ν = f∗
t,w + f̂ .

Proof: We first show f∗
t+δ,w+µ = f∗

t,w+µ+f̂ = f∗
t,w+f̂ .

By Lemma V.6, we have f̂ = argminBT f=δχ val(f). Let
the vector v be defined as in line 6 of Algorithm 1. There
exist vectors y, z ∈ RE such that

[Bz]e =
[
∇val(f̂)

]
e

=

(
w+

e

c+e
+

vp−1
e

‖v‖p−1
p

· W (c+e)
2

c+e

)
D′

(
f̂e

c+e

)

−
(
w−

e

c−e
+

vp−1
e

‖v‖p−1
p

· Wc+e c
−
e

c−e

)
D′

(
− f̂e

c−e

)

=

[
w+

e + µ+
e

c+e − f̂e
− w+

e + µ+
e

c+e

]
−
[
w−

e + µ−
e

c−e + f̂e
− w−

e + µ−
e

c−e

]
=

[
w+

e + µ+
e

u+
e −

[
f∗
t,w+µ

]
e
− f̂e

− w−
e + µ−

e

u−
e +

[
f∗
t,w+µ

]
e
+ f̂e

]
− [By]e.

Here, the first line follows from local optimality of f̂ =
argminBT f=δχ val(f), the third is explicit computation
of D′, and the fourth follows from centrality of f∗

t,w+µ.

Therefore, the (t+ δ)χ-flow which is f∗
t,w+µ + f̂ satisfies

[B(y + z)]e =[
w+

e + µ+
e

u+
e −

[
f∗
t,w+µ

]
e
− f̂e

− w−
e + µ−

e

u−
e +

[
f∗
t,w+µ

]
e
+ f̂e

]
hence is central for weights w+µ. So f∗

t+δ,w+µ = f∗
t,w+µ+

f̂ = f∗
t,w + f̂ .

Now, note that ν as defined in lines 8 to 13 of Algorithm 1
satisfies

ν+e

c+e − f̂e
− ν−e

c−e + f̂e
=

µ+
e

c+e − f̂e
− µ−

e

c−e + f̂e

and centrality conditions Eq. (7) tell us that f∗
t+δ,w+ν =

f∗
t+δ,w+µ.

We now bound ‖ν‖1. Line 13 of Algorithm 1 and
µ+
e /c

+
e = µ−

e /c
−
e gives that

ν+e + ν−e = −(c−e + f̂e)

(
µ+
e

c+e − f̂e
− µ−

e

c−e + f̂e

)
= −µ−

e

((
c−e + f̂e

c+e − f̂e

)
c+e
c−e
− 1

)
≤ 3c−1

e |f̂e|µ−
e ,

where we have used that c−1
e |f̂e| ≤ 1/20. A similar analysis

of line 11 gives that

ν+e + ν−e = (c+e − f̂e)

(
µ+
e

c+e − f̂e
− µ−

e

c−e + f̂e

)
= µ+

e

(
1−

(
c+e − f̂e

c−e + f̂e

)
c−e
c+e

)
≤ 3c−1

e |f̂e|µ+
e .

In both cases, we have that ν+e + ν−e ≤ 3c−1
e |f̂e|(µ+

e +µ−
e).

Using the choice W = m6η , Eq. (17) and Lemma V.6 yield

‖ν‖1 ≤
∑
e∈E

3c−1
e |f̂e|(µ−

e + µ+
e)

≤ 6W
∑
e∈E

|f̂e|c−e ·
vp−1
e

‖v‖p−1
p

≤ 12W · 1

500
m−2ηU

∥∥∥∥ vp−1
e

‖v‖p−1
p

∥∥∥∥
1

≤ m4η+o(1)U

∥∥∥∥ vp−1
e

‖v‖p−1
p

∥∥∥∥
q

= m4η+o(1)U.

A. Efficient Divergence Maximization

Lemma V.7 shows that our algorithm just needs to com-
pute argminBT f=δχ ṽal(f) in line 5 of Algorithm 1, as all
other lines clearly take O(m) time. Here, we show how to
do this in time m1+o(1).

Lemma V.8. There is an algorithm that in m1+o(1) time
computes a flow f ′ with BT f ′ = δχ and ṽal(f ′) ≤
minBT f=δχ ṽal(f) + 1

2poly(log m) .

To prove Lemma V.8, we first show a generalization
Theorem 2.

Theorem 2. For graph G = (V,E) and all e ∈ E, let
0 ≤ ae ≤ 2poly(logm) be constants, qe : R→ R be functions
with |qe(0)|, |q′e(0)| ≤ 2poly(logm) and ae/4 ≤ q′′e (x) ≤
4ae for all x ∈ R, and he : R → R be functions with
he(0) = h′

e(0) = 0 and 1/4 ≤ h′′
e (x) ≤ 4 for all x ∈ R.

For demand d with entries bounded by 2poly(logm), even
integer p ∈ (ω(1), (log n)2/3−o(1)), and all flows f define

val(f)
def
=
∑
e∈E

qe(fe) +

(∑
e∈E

he(fe)
p

)1/p

and OPT
def
= min

BT f=d
val(f).

We can compute in time m1+o(1) a flow f ′ with BT f ′ = d
and val(f ′) ≤ OPT + 1

2poly(log m) .

We do this by carefully applying and extending the
analysis of the following result of [6] on smoothed `2-`p
flows.

Theorem 3 (Theorem 1.1 in [6], arXiv version). Consider
p ∈ (ω(1), (log n)2/3−o(1)), g ∈ RE , r ∈ RE

≥0, demand
vector d ∈ RV , real number s ≥ 0, and initial solution f0 ∈
RE such that all parameters are bounded by 2poly(logm) and
BT f0 = d. For a flow f , define

valg,r,s(f)
def
=
∑
e∈E

gefe +

(∑
e∈E

ref
2
e

)
+ s‖f‖pp

and OPT
def
= min

BT f=d
valg,r,s(f).

There is an algorithm that in m1+o(1) time computes a flow
f such that BT f = d and

valg,r,s(f)−OPT

≤ 1

2poly(logm)
(valg,r,s(f0)−OPT) +

1

2poly(logm)
.

The remaining details of the proof of Lemma V.8 and The-
orem 2 are deferred to the full version.

B. Algorithm

Here we state Algorithm 2 to show Theorem 1. It repeat-
edly takes steps computed with Algorithm 1, and when the
remaining flow is m1/2−η , we stop the algorithm, round to
an integral flow and run augmenting paths.

Proof of Theorem 1: We show that MAXFLOW(G)
computes a maximum flow on G in time
m3/2−η+o(1) = m4/3+o(1)U1/3 by the choice of η. Correct-
ness follows from Lemmas V.7 and V.8.

It suffices to control the weights. Our choice of δ guar-
antees that we route Ω(m−1/2+η) fraction of the remaining
flow per iteration, hence line 3 executes Õ(m1/2−η) times.

Algorithm 2 MAXFLOW(G). Takes a preconditioned undi-
rected graph G with maximum capacity U . Returns the
maximum ab flow in G.

1: η ← logm(m1/6−o(1)U−1/3).
2: f ← 0, t← 0, w ← 1.
3: while Ft ≥ m1/2−η do
4: (δ, f̂ , ν)← AUGMENT(G,w, t∗ − t, f).
5: f ← f + f̂ , w ← w + ν, and t← t+ δ.
6: end while
7: Round to an integral flow and use augmenting paths

until done.

‖ν‖1 ≤ m4η+o(1)U always by Lemma V.7, hence at the end
of the algorithm by the choice of η we have

‖w‖1 ≤ 2m+ Õ
(
m1/2−η ·m4η+o(1)U

)
≤ 5m/2 .

To analyze the runtime, first note that by Lemma V.8
line 4 takes m1+o(1) time, so the total runtime of these
throughout the algorithm is m3/2−η+o(1). Rounding to an
integral flow takes Õ(m) time [4], [27]. Augmenting paths
takes O(m3/2−η) time also, as desired.

VI. CONCLUSION

We conclude by first stating the difficulties in going
beyond an m4/3 runtime for maxflow, and then discussing
potential directions for future research on the topic.

A Possible Barrier at m4/3: Here we briefly discuss
why we believe that m4/3 is a natural runtime barrier for
IPM based algorithms for maxflow on sparse unweighted
graphs. All currently known weighted IPM advances satisfy
that the weights only increase and do not be become super
linear and that the methods step from one central path point
to the next one in Θ(m) time and the congestion of this
step is multiplicatively bounded. Our algorithm precisely
computes the weight changes under a budget to ensure that
the congestion to the next central path point is reduced
significantly. In this sense, to break the m4/3 barrier, one
would have to depart from this template and e.g., backtrack
on weight changes on the central path so that they are not
additive throughout the algorithm, show better amortized
bounds on weight change than shown here, or provide a
novel algorithm to step to faraway points on the central path,
outside a ball where the congestions are bounded.

Potential future directions: An interesting question
is potentially achieving a mn1/3+o(1) time algorithm for
maxflow through the approach of [2] and robust central
paths [23], [24]. It would also be interesting to understand
whether IPMs can achieve m3/2−Ω(1) logO(1) U runtimes
for maxflow or understand whether m4/3 barrier descriibed
above can be broken.

ACKNOWLEDGMENT

Yang P. Liu was supported by the Department of Defense
(DoD) through the National Defense Science and Engineer-
ing Graduate Fellowship (NDSEG) Program. Aaron Sidford
was supported by NSF CAREER Award CCF-1844855.
Tarun Kathuria is supported by NSF Grant CCF 1718695.
We thank Arun Jambulapati, Michael B. Cohen, Yin Tat
Lee, Jonathan Kelner, Aleksander Mądry, and Richard Peng
for helpful discussions. The first author would like to thank
Jelena Diakonikolas and Daniel Spielman for helpful discus-
sions. The second and third authors are extremely grateful
to Yin-Tat Lee for the fruitful suggestion of using quadratic
extensions.

REFERENCES

[1] Y. P. Liu and A. Sidford, “Faster energy maximization for
faster maximum flow,” STOC, 2020.

[2] Y. T. Lee and A. Sidford, “Path finding methods for linear
programming: Solving linear programs in õ(vrank) iterations
and faster algorithms for maximum flow,” in 55th IEEE
Annual Symposium on Foundations of Computer Science,
FOCS, 2014.

[3] J. B. Orlin, “Max flows in o(nm) time, or better,” in
Symposium on Theory of Computing Conference, STOC’13,
Palo Alto, CA, USA, June 1-4, 2013, 2013, pp. 765–774.
[Online]. Available: https://doi.org/10.1145/2488608.2488705

[4] A. Mądry, “Navigating central path with electrical flows:
From flows to matchings, and back,” in 54th Annual IEEE
Symposium on Foundations of Computer Science, FOCS,
2013.

[5] ——, “Computing maximum flow with augmenting electrical
flows,” in IEEE 57th Annual Symposium on Foundations of
Computer Science, FOCS, 2016.

[6] R. Kyng, R. Peng, S. Sachdeva, and D. Wang, “Flows in
almost linear time via adaptive preconditioning,” in Proceed-
ings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, STOC, 2019.

[7] D. Adil and S. Sachdeva, “Faster p-norm minimizing flows,
via smoothed q-norm problems,” in Proceedings of the Thir-
tieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, 2020.

[8] Y. Liu and A. Sidford, “Faster divergence maximization for
faster maximum flow,” in arXiv preprints, 2003.08929, 2020.

[9] T. Kathuria, “A potential reduction inspired algorithm for
exact max flow in almost Õ(m4/3)time,” in arXiv preprints,
2009.03260, 2020.

[10] A. V. Goldberg and S. Rao, “Beyond the flow decomposition
barrier,” J. ACM, vol. 45, no. 5, pp. 783–797, 1998.

[11] A. V. Karzanov, “O nakhozhdenii maksimal’nogo potoka
v setyakh spetsial’nogo vida i nekotorykh prilozheniyakh,”
Mathematicheskie Voprosy Upravleniya Proizvodstvom, 1973.

https://doi.org/10.1145/2488608.2488705

[12] S. Even and R. E. Tarjan, “Network flow and testing graph
connectivity,” SIAM journal on computing, vol. 4, no. 4, pp.
507–518, 1975.

[13] P. Christiano, J. A. Kelner, A. Mądry, D. A. Spielman,
and S. Teng, “Electrical flows, laplacian systems, and faster
approximation of maximum flow in undirected graphs,” in
Proceedings of the 43rd ACM Symposium on Theory of
Computing, STOC, 2011.

[14] D. R. Karger, “Using random sampling to find maximum
flows in uncapacitated undirected graphs,” in Annual ACM
Symposium on Theory of Computing: Proceedings of the
twenty-ninth annual ACM symposium on Theory of comput-
ing, vol. 4, 1997, pp. 240–249.

[15] ——, “Better random sampling algorithms for flows in undi-
rected graphs,” in SODA, vol. 98, 1998, pp. 490–499.

[16] D. R. Karger and M. S. Levine, “Finding maximum flows in
undirected graphs seems easier than bipartite matching,” in
STOC, vol. 98, 1998, pp. 69–78.

[17] D. R. Karger, “Random sampling in cut, flow, and network
design problems,” in Mathematics of Operations Research,
vol. 24(2), 1999, pp. 383–413.

[18] D. A. Spielman and S. Teng, “Nearly linear time algorithms
for preconditioning and solving symmetric, diagonally dom-
inant linear systems,” SIAM J. Matrix Analysis Applications,
vol. 35, no. 3, pp. 835–885, 2014.

[19] A. Sidford and K. Tian, “Coordinate methods for accelerating
`∞ regression and faster approximate maximum flow,”
in 59th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2018, Paris, France, October
7-9, 2018, 2018, pp. 922–933. [Online]. Available: https:
//doi.org/10.1109/FOCS.2018.00091

[20] J. Renegar, A mathematical view of interior-point methods in
convex optimization, ser. MPS-SIAM series on optimization.
SIAM, 2001.

[21] S. I. Daitch and D. A. Spielman, “Faster approximate lossy
generalized flow via interior point algorithms,” in Proceedings
of the 40th Annual ACM Symposium on Theory of Computing,
C. Dwork, Ed., 2008.

[22] K. Axiotis, A. Mądry, and A. Vladu, “Circulation control
for faster minimum cost flow in unit-capacity graphs,” Arxiv
preprints, vol. abs/2003.04863, 2020.

[23] M. B. Cohen, Y. T. Lee, and Z. Song, “Solving linear
programs in the current matrix multiplication time,” in Pro-
ceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, STOC, 2019.

[24] J. van den Brand, Y. T. Lee, A. Sidford, and Z. Song, “Solving
tall dense linear programs in nearly linear time,” STOC, 2020.

[25] K. Anstreicher, “Potential reduction algorithms,” 1996.

[26] J. Chuzhoy, Y. Gao, J. Li, D. Nanongkai, R. Peng, and
T. Saranurak, “A deterministic algorithm for balanced cut with
applications to dynamic connectivity, flows, and beyond,” in
CoRR, abs/1910.08025, 2019.

[27] Y. T. Lee, S. Rao, and N. Srivastava, “A new approach to
computing maximum flows using electrical flows,” in Sympo-
sium on Theory of Computing Conference, STOC, 2013.

[28] J. A. Kelner, Y. T. Lee, L. Orecchia, and A. Sidford, “An
almost-linear-time algorithm for approximate max flow in
undirected graphs, and its multicommodity generalizations,”
in Proceedings of the Twenty-Fifth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA, 2014.

[29] J. Sherman, “Nearly maximum flows in nearly linear time,” in
54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS, 2013.

[30] R. Peng, “Approximate undirected maximum flows in
O(mpolylog(n)) time,” in Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, January 10-12, 2016,
R. Krauthgamer, Ed. SIAM, 2016, pp. 1862–1867. [Online].
Available: https://doi.org/10.1137/1.9781611974331.ch130

[31] J. Sherman, “Area-convexity, l∞ regularization, and undi-
rected multicommodity flow,” in Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing,
STOC, 2017.

[32] Y. E. Nesterov and A. Nemirovskii, Interior-point polynomial
algorithms in convex programming, ser. Siam studies in
applied mathematics. SIAM, 1994, vol. 13.

[33] M. B. Cohen, A. Mądry, P. Sankowski, and A. Vladu,
“Negative-weight shortest paths and unit capacity minimum
cost flow in õ (m10/7 log W) time,” in Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, 2017.

[34] J. van den Brand, Y.-T. Lee, D. Nanongkai, R. Peng, T. Sara-
nurak, A. Sidford, Z. Song, and D. Wang, “Bipartite matching
in nearly-linear time on moderately dense graphs,” arXiv e-
prints, pp. arXiv–2009, 2020.

[35] S. Bubeck, M. B. Cohen, Y. T. Lee, and Y. Li, “An homotopy
method for lp regression provably beyond self-concordance
and in input-sparsity time,” in Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, STOC,
2018.

[36] D. Adil, R. Kyng, R. Peng, and S. Sachdeva, “Iterative
refinement for lp-norm regression,” in Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA, 2019.

[37] H. Lin, “Reducing directed max flow to undirected max flow,”
in Unpublished Manuscript, 4(2), 2009.

https://doi.org/10.1109/FOCS.2018.00091
https://doi.org/10.1109/FOCS.2018.00091
https://doi.org/10.1137/1.9781611974331.ch130

	Introduction
	Our Contributions
	Our Results
	Previous work

	Preliminaries
	Algorithm Derivation and Motivation
	Interior Point Method Setup
	Progress steps via divergence minimization
	Energy-based improvements
	Our new method: beyond electric energy

	Technical Ingredients
	IPM Details and Preconditioning
	Advancing along the central path via quadratic smoothing
	Iterative refinement

	Efficient Divergence Maximization
	Efficient Divergence Maximization
	Algorithm

	Conclusion
	References

