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Abstract—We develop primal-dual coordinate methods
for solving bilinear saddle-point problems of the form
mingex maxyey y' Az which contain linear programming,
classification, and regression as special cases. Our methods
push existing fully stochastic sublinear methods and variance-
reduced methods towards their limits in terms of per-iteration
complexity and sample complexity. We obtain nearly-constant
per-iteration complexity by designing efficient data structures
leveraging Taylor approximations to the exponential and a
binomial heap. We improve sample complexity via low-variance
gradient estimators using dynamic sampling distributions that
depend on both the iterates and the magnitude of the matrix
entries.

Our runtime bounds improve upon those of existing primal-
dual methods by a factor depending on sparsity measures of
the m by n matrix A. For example, when rows and columns
have constant ¢ /{2 norm ratios, we offer improvements by a
factor of m + n in the fully stochastic setting and /m +n
in the variance-reduced setting. We apply our methods to
computational geometry problems, i.e. minimum enclosing ball,
maximum inscribed ball, and linear regression, and obtain
improved complexity bounds. For linear regression with an
elementwise nonnegative matrix, our guarantees improve on

exact gradient methods by a factor of /nnz(A4)/(m + n).

Keywords-minimax optimization; stochastic gradient meth-
ods; matrix games; linear regression

This version is a preliminary extended abstract, and a full
version [1] can be found at https://arxiv.org/abs/2009.08447.

I. INTRODUCTION
Bilinear minimax problems of the form

Rmxn

) ey

min max yTAm where A €
TEX yeY
are fundamental to machine learning, economics and theo-
retical computer science [2-4]. We focus on three important
settings characterized by different domain geometries. When
X and Y are probability simplices—which we call the ¢1-/;
setting—the problem (1) corresponds to a zero-sum matrix
game and also to a linear program in canonical feasibility
form. The ¢5-¢; setting, where A" is a Euclidean ball and
Y is a simplex, is useful for linear classification (hard-
margin support vector machines) as well as problems in
computational geometry [5]. Further, the /5-¢5 setting, where
both X and ) are Euclidean balls (with general center),
includes linear regression.
Many problems of practical interest are sparse, i.e., the
number of nonzero elements in A, which we denote by
nnz, satisfies nnz < mn. Examples include: linear programs
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with constraints involving few variables, linear classification
with 1-hot-encoded features, and linear systems that arise
from physical models with local interactions. The problem
description size nnz plays a central role in several runtime
analyses of algorithms for solving the problem (1).

However, sparsity is not an entirely satisfactory measure of
instance complexity: it is not continuous in the elements of
A and consequently it cannot accurately reflect the simplicity
of “nearly sparse” instances with many small (but nonzero)
elements. Measures of numerical sparsity, such as the /1 to
{5 norm ratio, can fill this gap [6]. Indeed, many problems
encountered in practice are numerically sparse. Examples
include: linear programming constraints of the form z; >
% > ; 4, linear classification with neural network activations
as features, and linear systems arising from physical models
with interaction whose strength decays with distance.

Existing bilinear minimax solvers do not exploit the
numerical sparsity of A and their runtime guarantees do
not depend on it—the basic limitation of these methods is
that they do not directly access the large matrix entries, and
instead sample the full columns and rows in which they
occur. To overcome this limitation, we propose methods
that access A a single entry at a time, leverage numerical
sparsity by accessing larger coordinates more frequently,
and enjoy runtime guarantees that depend explicitly on
numerical sparsity measures. For numerically sparse large-
scale instances our runtimes are substantially better than the
previous state-of-the-art. Moreover, our runtimes subsume
the previous state-of-the-art dependence on nnz and rcs, the
maximum number of nonzeros in any row or column.

In addition to proposing algorithms with improved run-
times, we develop two techniques that may be of broader
interest. First, we design non-uniform sampling schemes that
minimize regret bounds; we use a general framework that
unifies the Euclidean and (local norms) simplex geometries,
possibly facilitating future extension. Second, we build a
data structure capable of efficiently maintaining and sampling
from multiplicative weights iterations (i.e. entropic projection)
with a fixed dense component. This data structure overcomes
limitations of existing techniques for maintaining entropic
projections and we believe it may prove effective in other
settings where such projections appear.
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Table I
DEPENDENCE ON A FOR DIFFERENT METHODS IN DIFFERENT GEOMETRIES.

L. (matrix-vector) L. (row-column) L, (coordinate)
£1-01 max; ; |Aijl max; ; |Aij| max { max; || Az ||, , max; | A, }
i
b=ty max; || As [l max; || Azl maX{maXi 1 Aslly 5 ”A”F}

oty 14l Al ma { /52, 14615 /S, 14517}

Comments: A;: and A.; are the ith row and jth column of A, respectively. Numerically sparse instances satisfy
Leo = O(Ly). TIn the £2-¢; setting we can also achieve, via alternative sampling schemes, Lco = Lycr/rcs
and Leo = max{max; || 4|, , /max; [[A: [, max; [|A;][, }.

Table 1T
COMPARISON OF ITERATIVE METHODS FOR BILINEAR PROBLEMS

Method Iteration cost Total runtime
Exact gradient [7, 8] O(nnz) 5(nnz Ly - 671)
Row-column [5, 9, 10] O(n+m) 5((m +n)- L2 - 6_2)
Row-column VR [10, 11] O(n+m) 6(nnz +/nnz-(m+mn)- Ly - e_l)
Sparse row-col (folklore) O (rcs) 9) (rcs L. e_2>
Sparse row-col VR (this work) O (rcs) 6<nnz ++/nnz-rcs- Ly - e_l)
Coordinate (this work) 0 (1) 9) (n nz+ L2, - 672)
Coordinate VR (this work) O (1) é(nnz +v/nnz - Le, - 6_1)

Comments: nnz denotes the number of nonzeros in A € R™*™ and rcs < max{m, n} denotes the maximum

number of nonzeros in any row and column of A. The quantities Lmy, Lco and Ly depend on problem geometry
(see Table I).

Table III
COMPARISON OF COMPLEXITY FOR DIFFERENT APPLICATIONS.

Task Method Runtime (m > n)
MaxIB Allen-Zhu et al. [12] . O (mn+ pmy/n-et)
Our method (this work) O (nnz + py/nnz -rcs - e 1)
MinER Allen-Zhu et al. [12] ) O (mn +my/n - e 1/?) T
Our method (this work) O (nnz + y/nnz -rcs - e71/2)
AGD [13] 5(nnz- Al %)
Regression °PVE

. ~ 1/3
(ATA > uI) Gupta and Sidford [6] O(nnz +nnz?/3 . (Zie[n] lAllg - || A1 - ||AZ|\2) ﬁ)

Our method (this work) 6(nnz +4/nnz - max{\/zi 1A%, /22, ||A]||%}ﬁ)

Comments: p denotes the radii ratio of the minimum ball enclosing the rows of A and maximum ball inscribed

in them. T For MinEB, we state an upper bound here and refer readers to the full version for a more fine-grained
runtime.



A. Our results

Table II summarizes our runtime guarantees and puts
them in the context of the best existing results. We consider
methods that output (expected) e-accurate solutions of the
saddle-point problem (1), namely a pair z,y satisfying

E |maxv' Az —miny' Au| <e.
veEY ueX

The algorithms in Table II are all iterative solvers for
the general problem min, ey maxyey f(x,y), specialized to
f(x,y) =y " Ax. Each algorithm presents a different tradeoff
between per-iteration complexity and the required iteration
count, corresponding to the matrix access modality: exact
gradient methods compute matrix-vector products in each
iteration, row-column stochastic gradient methods sample
a row and a column in each iteration, and our proposed
coordinate methods take this tradeoff to an extreme by
sampling a single coordinate of the matrix per iteration.'
In addition, variance reduction (VR) schemes combine
both fast stochastic gradient computations and infrequent
exact gradient computations, maintaining the amortized per-
iteration cost of the stochastic scheme and reducing the total
iteration count for sufficiently small e.

The runtimes in Table II depend on the numerical range
of A through a matrix norm L that changes with both the
problem geometry and the type of matrix access; we use Ly,
L, and L, to denote the constants corresponding to matrix-
vector products, row-column queries and coordinated queries,
respectively. Below, we describe these runtimes in detail.
In the settings we study, our results are the first theoretical
demonstration of runtime gains arising from sampling a single
coordinate of A at a time, as opposed to entire rows and
columns.

Coordinate stochastic gradient methods. We develop
coordinate stochastic gradient estimators which allow per-
iteration cost O (1) and iteration count O (n + m + (%)2)
We define L., in Table I; for each domain geometry, the
quantity ﬁc: is a measure of the numerical sparsity of A,
satisfying

L2
1< =2 <rcs.
ch

Every iteration of our method requires sampling an element in
a row or a column with probability proportional to its entries.

nterior point methods offer an alternative tradeoff between iteration
cost and iteration count: the number of required iterations depends on
1/¢ only logarithmically, but every iteration is costly, requiring a linear
system solution which at present takes time Q(min{m, n}?). In the £1-¢1
geometry, the best known runtimes for interior point methods are O((nnz +
min{m, n}2)y/min{m, n}) [14], O(max{m,n}*) [15], and O(mn +
min{m, n}3) [16]. In this paper we are mainly interested in the large-scale
low-accuracy regime with L /e < min(m,n) where the runtimes described
in Table II are favorable (with the exception of [16] in certain cases). Our
methods take only few passes over the data, which are not the case for
many interior-point methods [14, 15]. Also, our methods do not rely on a
general (ill-conditioned) linear system solver, which is a key ingredient in
interior point methods.

Assuming a matrix access model that allows such sampling
in time O (1) (similarly to [17-19]), the total runtime of our
method is O (n +m+ (%)2) In this case, for numerically
sparse problems such that L., = O(Ly.), the proposed coor-
dinate methods outperform row-column sampling by a factor
of m+n. Moreover, the bound L2, < L2 (m+n) implies that
our runtime is never worse than that of row-column methods.
When only coordinate access to the matrix A is initially
available, we may implement the required sampling access
via preprocessing in time O(nnz). This changes the runtime
to O (nnz + (L6°°)2), so that the comparison above holds
only when (£=)? = Q(nnz). In that regime, the variance
reduction technique we describe below provides even stronger
guarantees.

Coordinate methods with variance reduction. Using
our recently proposed framework [11] we design a variance
reduction algorithm with amortized per-iteration cost O (1),
required iteration count of O (\/ﬁ . %) and total running
time O (nnz + y/nnz - £=). In the numerically sparse regime

€
Lo = O(Lyc), our runtime improves on row-column VR by

a factor of \/nnz/(m + n), and in general the bound L, <
L..v/m +n guarantees it is never worse. Since variance
reduction methods always require a single pass over the
data to compute an exact gradient, this comparison holds
regardless of the matrix access model. In the /5-¢5 setting
we note that for elementwise non-negative matrices, Le, =
max{||A1|,, |AT1|/,} < Lmvv/m +n, and consequently
our method outperforms exact gradient methods by a factor
of v/nnz/(m + n), even without any numerical or spectral
sparsity in A. Notably, this is the same factor of improvement
that row-column VR achieves over exact gradient methods
in the ¢1-¢; and ¢2-¢; regimes.

Optimality of the constant Le,. For the ¢1-f1 and {o-o
settings, we argue that the constant L., in Table I is optimal
in the restricted sense that no alternative sampling distribution
for coordinate gradient estimation can have a better variance
bound than L, (a similar sense of optimality also holds
for L. in each geometry). In the ¢5-¢; setting, a different
sampling distribution produces an improved (and optimal)
constant max{max; || A;.|, , [|[A]l[,,}, where A;. is the ith
row of A, and |A|;; = |A;;| is the elementwise absolute
value of A. However, it is unclear how to efficiently sample
from this distribution.

Row-column sparse instances. Some problem instances
admit a structured form of sparsity where every row and
column has at most rcs nonzero elements. In all settings we
have Le, < Lyy/rcs and so our coordinate methods natu-
rally improve when rcs is small. Specifically, the sampling
distributions and data structures we develop in this paper
allow us to modify previous methods for row-column VR
[11] to leverage row-column sparsity, reducing the amortized
per-iteration cost from O (m + n) to O (rcs).

Applications. We illustrate the implications of our
results for two problems in computational geometry, mini-




mum enclosing ball (Min-EB) and maximum inscribed ball
(Max-IB), as well as linear regression. For Min-EB and
Max-IB in the non-degenerate case m > n, we apply our
{5-£1 results to obtain algorithms whose runtime bounds
coincide with the state-of-the-art [12] for dense problems, but
can be significantly better for sparse or row-column sparse
instances. For linear regression we focus on accelerated
linearly converging algorithms, i.e., those that find x such
that || Az — b||, < € in time proportional to poz log 1 where
j is the smallest eigenvalue of AT A. Within this class and in
a number of settings, our reduced variance coordinate method
offers improvement over the state-of-the-art: for instances
where [ Au[l, = O(|Acl,) and [ A ll, = O(|[A,l,) for
all 4,7 it outperforms [6] by a factor of nnz'/®, and for
elementwise nonnegative instances it outperforms accelerated

gradient descent by a factor of y/nnz/(m + n). See Table III
for a detailed runtime comparison.

B. Our approach

We now provide a detailed overview of our algorithm de-
sign and analysis techniques, highlighting our main technical
insights. We focus on the ¢1-¢; geometry, since it showcases
all of our developments. Our technical contributions have
two central themes:

1) Sampling schemes design. The key to obtaining efficient
coordinate methods is carefully choosing the sampling
distribution. Here, local norms analysis of stochastic
mirror descent [20] on the one hand enables tight regret
bounds, and on the other hand imposes an additional
design constraint since the stochastic estimators must be
bounded for the analysis to apply. We achieve estimators
with improved variance bounds meeting this boundedness
constraint by leveraging a “clipping” operation introduced
by Clarkson et al. [5]. Specifically, in the simplex geometry,
we truncate large coordinates of our estimators, and show
that our method is robust to the resulting distortion.

2) Data structure design. Our goal is to perform iterations
in O (1) time, but our mirror descent procedures call for
updates that change m + n variables in each step. We
resolve this tension via data structures that implicitly main-
tain the iterates. Variance reduction poses a considerable
challenge here, because every reduced-variance stochastic
gradient contains a dense component that changes all co-
ordinates in a complicated way. In particular, existing data
structures cannot efficiently compute the normalization
factor necessary for projection to the simplex. We design
a data structure that overcomes this hurdle via Taylor
expansions, coordinate binning, and a binomial heap-like
construction. The data structure computes approximate
mirror projections, and we modify the standard mirror
descent analysis to show it is stable under the particular
structure of the resulting approximation errors.

At the intersection of these two themes is a novel sampling
technique we call “sampling from the sum,” which addresses

the same variance challenges as the “sampling from the
difference” technique of [11], but is more amenable to
efficient implementation with a data structure.

1) Coordinate stochastic gradient method Our algo-
rithm is an instance of stochastic mirror descent [21],
which in the ¢;-¢; setting produces a sequence of iterates
(z1,41), (x2,¥2), . .. according to

Tip1 = Ia (24 0 exp{—ng*(z¢,ye)})
and Y41 = A (yr 0 exp{—ng’ (@, 1) }),

where IIa (v) = ﬁ is the projection onto the simplex (exp
and log are applied to vectors elementwise, and elementwise
multiplication is denoted by o), 7 is a step size, and g*, ¥
are stochastic gradient estimators for f(x,y) = y' Az

satisfying

)

E§(z,y) = Vof(z,y) = ATy
and Egy(z7y) = 7vyf(x7y) = 7‘41’

We describe the computation and analysis of §*; the
treatment of ¥ is analogous. To compute §*(z, y), we sample
i,j from a distribution p(x,y) on [m] x [n] and let

YiAij
Pij (%, y)
where p;;(z,y) denotes the probability of drawing 4,5 from
p(x,y) and e; is the jth standard basis vector—a simple
calculation shows that E g% = ATy for any p. We first design
p(z,y) to guarantee an O ((£=)?) iteration complexity for
finding an e-accurate solution, and then briefly touch on how
to compute the resulting iterations in O (1) time.

gx(xvy) = €5, (3)

Local norms-informed distribution design. The stan-
dard stochastic mirror descent analysis [21] shows that if
E ||g*(x,y) ||C2>O < L2 for all z, y (and similarly for §¥), taking
n = £ and a choice of T = O ((£)?) suffices to ensure that
the iterate average + Z;‘F:l(xt, y+) is an e-accurate solution
in expectation. Unfortunately, this analysis demonstrably
fails to yield sufficiently tight bounds for our coordinate
estimator: there exist instances for which any distribution p
produces L > nL,. We tighten the analysis using a local
norms argument [cf. 20, Section 2.8], showing that O ((£)?)
iterations suffice whenever ||7g*||,, < 1 with probability 1
and for all z,y

~ 2 2
E |7z, y)|2 < L, where ||3 =" a7}
J

is the local norm at x € X. We take
A7

ij
=y )
[

Dij



(recalling that =,y are both probability vectors). Substituting
into (3) gives

2 yz‘QAzzjwj 2
E (g, m)l; =Y === uildilsz;
1,5

i P

2 2
= willAull; < max [|A;.[|; < L,
7

with L, = max{max; || A; ||, , max; ||A;|,} as in Table 1.

While this is the desired bound on E ||§X(x,y)|\i, the
requirement ||ng*||,, < 1 does not hold when A has
sufficiently small elements. We address this by clipping g:
we replace ng* with clip(nz*), where

[clip(v)]; == min{|v;|, 1} sign(v;),

the Euclidean projection to the unit box. The clipped gradient
estimator clearly satisfies the desired bounds on infinity norm
and local norm second moment, but is biased for the true
gradient. Following the analysis of Clarkson et al. [5], we
account for the bias by relating it to the second moment via

| {(y —clip(y), ) | < |12,

which allows to absorb the effect of the bias into existing
terms in our error bounds. Putting together these pieces yields
the desired bound on the iteration count.

Efficient implementation. Data structures for performing
the update (2) and sampling from the resulting iterates in
O (1) time are standard in the literature [e.g., 22]. We add
to these the somewhat non-standard ability to also efficiently
track the running sum of the iterates. To efficiently sample
1,7 ~ p according to (4) we first use the data structure
to sample ¢ ~ y in O (1) time and then draw j € [n]
with probability proportional to A?j in time O(1), via either
O(nnz) preprocessing or an appropriate assumption about the
matrix access model. The “heavy lifting” of our data structure
design is dedicated for supporting variance reduction, which
we describe in the next section.

Sampling distributions beyond {1-{1. Table IV lists the
sampling distributions we develop for the various problem
geometries. Note that for the />-f; setting we give three
different distributions for sampling the simplex block of
the gradient (i.e., ¢g¥); each distribution corresponds to a
different parameter L., (see comments following Table I).
The distribution ¢;; o /y; |Aijx;| yields a stronger bound
L in the ¢5-¢; setting, but we do not know how to efficiently
sample from it.

2) Coordinate variance reduction To accelerate the
stochastic coordinate method we apply our recently proposed
variance reduction framework [11]. This framework operates
in % epochs, where « is a design parameter that trades
between full and stochastic gradient computations. Each
epoch consists of three parts: (i) computing the exact gradient
at a reference point (g, o), (ii) performing 7' iterations
of regularized stochastic mirror descent to produce the

sequence (z1,91),...,(zr,yr) and (iii) taking an extra-
gradient step from the average of the iterates in (ii). Setting
k =1/(1 + na/2), the iterates x; follow the recursion

Tey1 = A (2 0 25" o exp{—nklgy + 0 (x4, y)]}),

where ITa (v) , and g5 = AT yo (%)

v
lolly

is the exact gradient at the reference point, and &% is a

stochastic gradient difference estimator satisfying

E&(z,y) = Vaf(z,y) — Vaf(zo,50) = AT (y — o).

The iteration for y,; is similar. In [11] we show that if 5
satisfies

E (5 (@,y)I% < £ (llo = @oll} + lly = oll}) v,y ©)

and a similar bound holds on E||6Y(z,y)||%,, then T =
2

O(%) iterations per epoch with step size n = 7z suffice for

the overall algorithm to return a point with expected error

below e.

_ We would like to design a coordinate-based estimator
0 such that the bound (6) holds for L = L., as in
Table I and each iteration (5) takes O (1) time. Since every
epoch also requires O(nnz) time for matrix-vector product
(exact gradig:nt) computations, the overall runtime would be

O((nnz+ Zs) . 2). Choosing o = L¢o/+/nnz then gives the

o2

. . LCD
desired runtime O(nnz + y/nnz - ==).

Distribution design (sampling from the difference).

We start with a straightforward adaptation of the general
estimator form (3). To compute 5*(95, y), we sample i,j ~ p,
where p may depend on z, xg,y and yg, and let

gx($7y) _ (yi - [yO]i)Aij e, (7)

Pij

where e; is the jth standard basis vector. As in the previous
section, we find that the requirement (6) is too stringent
for coordinate-based estimators. Here too, we address this
challenge with a local norms argument and clipping of the
difference estimate. Using the “sampling from the difference”
technique from [11], we arrive at

_ |y — [yolil . A?j
Iy —voll, || Asll3

This distribution satisfies the local norm relaxation of (6)
with L? = L2.

®)

ij

Data structure design. Efficiently computing (5) is
significantly more challenging than its counterpart (2). To
clarify the difficulty and describe our solution, we write

Ty = HA(jt) = it/ ||j5t||1



Table IV
THE DISTRIBUTIONS USED IN OUR COORDINATE GRADIENT ESTIMATOR

Setting Dij ij
A3 A2
51-51 Yi - v T 1]
411 T A
|Aij A
loely ”i :
4::Ih H
441 i
lo-t ;- - > 1.
21 Y A4z x xj - la,;#0
2
la-ly Yi [As5] Aij - T
14514 > ke 1Akl “xF
(-t 1Al 1Ayl 14403 Ayl
Drepm) 1ARITE N Azl g 1A 1451
lo-l v 1Ayl w2 Ayl
lylly 1Al =2 A5

Recall that the estimator is of the form g(z,y) = (%yiAij - €5, —ﬁAlkxk . el) where 7,7 ~ pand [, k ~ q.
ij

Table V
THE DISTRIBUTIONS p, ¢ USED FOR OUR REDUCED VARIANCE COORDINATE GRADIENT ESTIMATOR

Setting Dij ij
000, yi + 2ol A} i+ 2ol A
2 2
3 14|l 3 145115
yi +2[yoli | Ay A%
la-ty : :
5 A Tl

yi +2[yoli Ayl

fo-f . —x0]? 14,
20 3 14zl o [z = ol - Lago
ly-ts i + 2[yol . | Al |Aij| - [z — 370]?
3 | As]l1 D ke 14wl - [z = 20]3
lg-ts [Aillf Ayl 14517 Ayl
Dok MAIT N4l Xiep 1Al 14511
ly—wl? Ayl [z —zol]  |Ayl
Oyl - .
ly —woll5 14l |z —zoll5 14501

. . ~ 1 1
Recall that the estimator is of the form g(x,y) = (ATy + —(yi — yo,i)Aij - €j, —Ax — — A (T — o ,k) - €1)
Dij qik
where i,j ~ p and [, k ~ q and xo, yo is a reference poing



and break the recursion for the unnormalized iterates Z; into
two steps

2, = 2} oexp{v}, and )
T = 2} o exp{si}, (10)

where v = (1 — k) log zg —nKgy is a fixed dense vector, and
St = —ngx(mt, y¢) is a varying 1-sparse vector. The key task
of the data structures is maintaining the normalization factor
||, in near-constant time. Standard data structures do not
suffice because they lack support for the dense step (9).

Our high-level strategy is to handle the two steps (9)
and (10) separately. To handle the dense step (9), we
propose the data structure ScaleMaintainer that efficiently
approximates |||/, in the “homogeneous” case of no sparse
updates (i.e. s = 0 for all ¢). We then add support for
the sparse step (10) using a binomial heap-like construction
involving O(logn) instances of ScaleMaintainer.

The ScaleMaintainer data structure. When s; = 0
for all ¢ the iterates Z; admit closed forms

T—1 , 1 k7

- _ ART t _ ~rT

Fprr =3F oexp vg K'Yy =a} oexp{1 Hv}
t'=0

— &0 exp{[l - #7]0} |

where ¥ = 1% — logz;. Consequently, we design

ScaleMaintainer to take as initialization n-dimensional
vectors Z € RZ, and ¥ € R™ and provide approximations
of the normalization factor

Z.(&,0) = lzoexp{(L - &)V, (D)

for arbitrary values of 7 > 1. We show how to implement
each query of Z.(7,v) in amortized time O (1). The data
structure also supports initialization in time O (7) and
deletions (i.e., setting elements of T to zero) in amortized
time O (1).

To efficiently approximate the quantity Z, (Z, v) we replace
the exponential with its order p = O(logn) Taylor series.
That is, we would like to write

Zo(z,5) = 3 [a]ie1 )0

1€[n]
"1
~ Y laliy E(l — &7)[0);
i€[n] q=0
P _.T\q
227(1 - " (7,59,
q=0 &
1—k7)%

The approximation ZS:O ( o (x,v?) is cheap to com-
pute, since for every 7 it is a linear combination of the p =
O (1) numbers {(Z,97)}4¢[p) Which we can compute once at
initialization. However, the Taylor series approximation has
low multiplicative error only when |(1 — k7)[0];| = O(p),
which may fail to hold, as we may have |7, = poly(n)

in general. To handle this, suppose that for a fixed 7 we
have an offset ;1 € R and “active set” A C [n] such that
the following conditions hold for a threshold R = O(p):
(a) the Taylor approximation is valid in A, e.g. we have
[(1—k")(v; — )| < 2R for all i € A, (b) entries outside A
are small; (1 — x7)[0; —pu] < —R for all i ¢ A, and (c) at
least one entry in the active set is large; (1 —£7)[v; — ] > 0
for some 7 € A. Under these conditions, the entries in A°
are negligibly small and we can truncate them, resulting in
the approximation

aonr (S =D oy R
€ ZO q! <xa (vfﬂ) >A+e <$71>AC )
q=

which we show approximates
O (RAlogn)—Q(p) multiplicative error, where we used
(a,b)g = > cgaib;; here, we also require that
max; T; __ : .
log B2t = O(R), which we guarantee when choosing

the initial .

Z,;(z,0) to within

The challenge then becomes efficiently mapping any 7 to
{{Z, (v — p)?) o }qepp) for suitable p and A. We address this
by jointly bucketing 7 and . Specifically, we map 7 into
a bucket index k = |log, %J, pick p to be the largest
integer multiple of R/((1 — x)2¥) such that y < max; v;,
and set A = {i | |(1 — x)2¥(v; — )| < R}. Since k <
Emax = [logs ﬁj = O(logn), we argue that computing
(Z, (v — p)9) 4 for every possible resulting ;o and A takes at
most O(nplog 1) = O (7) time, which we can charge to
initialization. We further show how to support deletions in
O (1) time by carefully manipulating the computed quantities.

Supporting  sparse  updates. Building on
ScaleMaintainer, we design the data structure
ApproxExpMaintainer that (approximately) implements
the entire mirror descent step (5) in time O (1).> The
data structure maintains vectors T € A™ and v € R”
and K = [logy(n+1)] instances of ScaleMaintainer
denoted {ScaleMaintainerj}ic[x]. The kth instance
tracks a coordinate subset Sy C [n] such that {Sy}re(x)
partitions [n], and has initial data [Z]s, and [0]s,. We
let 7, > 0 denote the “time index” parameter of the kth
instance. The data structure satisfies two invariants; first, the
unnormalized iterate & satisfies

[#]s, = [T oexp{(1 — k™)v}]g, , forall k € [K]. (12)
Second, the partition satisfies

|Sk| <28 — 1 for all k € [K], (13)

>The data structures ApproxExpMaintainer and ScaleMaintainer
structure support two additional operations necessary for our algorithm:
efficient approximate sampling from x; and maintenance of a running sum
of Z-. Given the normalization constant approximation, the implementation
of these operations is fairly straightforward, so we do not discuss them in
the introduction.



where at initialization we let S = [n] and S, = () for

k<K,Z=uwm, V=1 —logzo and 75c = 0.

_The invariant (12) allows us to efficiently (in time
O(K) = O(1)) query coordinates of x; = &/ |4,
since ScaleMaintainer allows us to approximate |||, =
oreir] Zn([Z]s,: [Us,) with Z as defined in (11). To
implement the dense step (9), we simply increment 75 <—
7 + 1 for every k. Let j be the nonzero coordinate of
st in the sparse step (10), and let k& € [K] be such
that j € Sk. To implement (10), we delete coordinate j
from ScaleMaintainery, and create a singleton instance
ScaleMaintainer, maintaining Sy = {j} with initial
data [Z]s, = e™;, [v]s, = v;/(1 — k) — log(e™ ;)
and 79 = 0. Going from £ = 1 to k¥ = K, we merge
ScaleMaintainer,_; into ScaleMaintainer; until the
invariant (13) holds again. For example, if before the sparse
step we have |S1| = 1, |S2| = 3 and |S3| = 2, we will
perform 3 consecutive merges, so that afterwards we have
|Sl| = |SQ| =0 and ‘53| =1.

To merge two ScaleMaintainer;_; into
ScaleMaintainery, we let S}, = Si_1 U Sk and initialize
a new ScaleMaintainer instance with [Z]s; = [2] g;c,3

[v]s; = [U]S};/(l — k) — log[Z]s; and 7, = 0 this takes
0] (1Si]) = O (2¥) time due to the invariant (13). Noting
that a merge at level & can only happen once in every 2(2%)
updates, we conclude that the amortized cost of merges at
each level is O (1), and (since K = O (1)), so is the cost of
the sparse update.

Back to distribution design (sampling from the sum).
Our data structure enables us to compute the iteration (5)
and query coordinates of the iterates x; and y; in O (1)
amortized time. However, we cannot compute 5 using the
distribution (8) because we do not have an efficient way of
sampling from |y; — yo|; Taylor approximation techniques are
not effective for approximating the absolute value because it
is not smooth. To overcome this final barrier, we introduce
a new design which we call “sampling from the sum,”

1 2 A3
i (T, Y) = sy + 5Woli | - —— . 14
pulr) = (o ok ) 1% a9
Sampling from the modified distribution is simple, as our
data structure allows us to sample from y,. Moreover, we
show that the distribution (14) satisfies a relaxed version
of (6) where the LHS is replaced by a local norm as before,
and the RHS is replaced by L?(Vy, (x¢) + Vi, (y¢)), where
Vi (2') is the KL divergence between = and z’. In Table V
we list the sampling distributions we design for variance
reduction in the different domain geometries.

3More precisely, for every j € S}, we set T; = &; + €max;egr Z;,
where ¢ is a small padding constant that ensures the bounded multiplicative
range necessary for correct operation of ScaleMaintainer.

C. Related work

Coordinate methods. Updating a single coordinate at a
time—or more broadly computing only a single coordinate
of the gradient at every iteration—is a well-studied and
successful technique in optimization [23]. Selecting coor-
dinates at random is key to obtaining strong performance
guarantees: Strohmer and Vershynin [24] show this for linear
regression, Shalev-Shwartz and Tewari [25] show this for ¢;
regularized linear models, and Nesterov [26] shows this for
general smooth minimization. Later works [27-29] propose
accelerated coordinate methods. These works share two
common themes: selecting the gradient coordinate from a
non-uniform distribution (see also [30]), and augmenting the
1-sparse stochastic gradient with a dense momentum term.
These techniques play important roles in our development
as well.

To reap the full benefits of coordinate methods, iterations
must be very cheap, ideally taking near-constant time.
However, most coordinate methods require super-constant
time, typically in the form of a vector-vector computation.
Even works that consider coordinate methods in a primal-
dual context [12, 22, 31-33] perform the coordinate updates
only on the dual variable and require a vector-vector product
(or more generally a component gradient computation) at
every iteration.

A notable exception is the work of Wang [34, 35] which
develops a primal-dual stochastic coordinate method for
solving Markov decision processes, essentially viewing them
as {~,-¢1 bilinear saddle-point problems. Using a tree-based
¢1 sampler data structure similar to the ¢; sampler we use for
sNimplex domains for the sublinear case, the method allows for
O (1) iterations and a potentially sublinear runtime scaling
as € 2. Tan et al. [36] also consider bilinear saddle-point
problems and variance reduction. Unlike our work, they
assume a separable domain, use uniform sampling, and do
not accelerate their variance reduction scheme with extra-
gradient steps. The separable domain makes attaining constant
iteration cost time much simpler, since there is no longer a
normalization factor to track, but it also rules out applications
to the simplex domain. While Tan et al. [36] report promising
empirical results, their theoretical guarantees do not improve
upon prior work.

Our work develops coordinate methods with 9) (1) iteration
cost for new types of problems. Furthermore, it maintains the
iteration efficiency even in the presence of dense components
arising from the update, thus allowing for acceleration via
an extra-gradient scheme.

Data structures for optimization. Performing iterations
in time that is asymptotically smaller than the number of
variables updated at every iteration forces us to carry out
the updates implicitly using data structures; several prior
works employ data structures for exactly the same reason.
One of the most similar examples comes from Lee and



Sidford [27], who design a data structure for an accelerated
coordinate method in Euclidean geometry. In our terminology,
their data structure allows performing each iteration in time
O(rcs) while implicitly updating variables of size O(n).
Duchi et al. [37] design a data structure based on balanced
search trees that supports efficient Euclidean projection to
the ¢; ball of vector of the form u + s where v is in the ¢;
ball and s is sparse. They apply it in a stochastic gradient
method for learning ¢; regularized linear classifier with sparse
features. Among the many applications of this data structure,
Namkoong and Duchi [33] adapt it to efficiently compute
Euclidean projections into the intersection of the simplex and
a x2 ball for 1-sparse updates. Shalev-Shwartz and Wexler
[22] and Wang [34, 35], among others, use binary tree data
structures to perform multiplicative weights projection to the
simplex and sampling from the iterates.

A recent work of Sidford and Tian [38] develops
a data structure which is somewhat similar to our
ApproxExpMaintainer data structure, for updates arising
from a primal-dual method to efficiently solve ¢, regression.
Their data structure was also designed to handle updates
to a simplex variable which summed a structured dense
component and a sparse component. However, the data
structure design of that work specifically exploited the
structure of the maximum flow problem in a number of ways,
such as bounding the sizes of the update components and
relating these bounds to how often the entire data structure
should be restarted. Our data structure can handle a broader
range of structured updates to simplex variables and has
a much more flexible interface, which is crucial to the
development of our variance-reduced methods as well as
our applications.

Another notable use of data structures in optimization
appears in second order methods, where a long line of work
uses them to efficiently solve sequences of linear systems
and approximately compute iterates [14—16, 39-42]. Finally,
several works on low rank optimization make use of sketches
to efficiently represent their iterates and solutions [43, 44].

Numerical sparsity. Measures of numerical sparsity,
such as the /3/fo, or {1/¢y ratios, are continuous and
dimensionless relaxations of the £o norm. The stable rank of
a matrix A measures the numerical sparsity of its singular
values (specifically, their squared ¢o/¢, ratio) [45].

For linear regression, stochastic methods generally outper-
form exact gradient methods only when A is has low stable
rank, cf. discussion in [11, Section 4.3], i.e., numerically
sparse singular values. In recent work, Gupta and Sidford
[6] develop algorithms for linear regression and eigenvector
problems for matrices with numerically sparse entries (as
opposed to singular values). Our paper further broadens the
scope of matrix problems for which we can benefit from
numerical sparsity. Moreover, our results have implications
for regression as well, improving on [6] in certain numerically
sparse regimes.

In recent work by Babichev et al. [46], the authors develop
primal-dual sublinear methods for ¢;-regularized linear multi-
class classification (bilinear games in ¢;-¢,, geometry), and
obtain complexity improvements depending on the numerical
sparsity of the problem. Similarly to our work, careful design
of the sampling distribution plays a central role in [46].
They also develop a data structure that allows iteration cost
independent of the number of classes. However, unlike our
work, Babichev et al. [46] rely on sampling entire rows and
columns, have iteration costs linear in n + m, and do not
utilize variance reduction. We believe that our techniques
can yield improvements in their setting.
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