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—— Abstract
We show that standard extragradient methods (i.e. mirror prox [26] and dual extrapolation [28])
recover optimal accelerated rates for first-order minimization of smooth convex functions. To
obtain this result we provide fine-grained characterization of the convergence rates of extragradient
methods for solving monotone variational inequalities in terms of a natural condition we call relative
Lipschitzness. We further generalize this framework to handle local and randomized notions of
relative Lipschitzness and thereby recover rates for box-constrained ¢~ regression based on area
convexity [34] and complexity bounds achieved by accelerated (randomized) coordinate descent
[5, 29] for smooth convex function minimization.
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1 Introduction

We study the classic extragradient algorithms of mirror prox [26] and dual extrapolation [28]
for solving variational inequalities (VIs) in monotone operators. This family of problems
includes convex optimization and finding the saddle point of a convex-concave game. Due
to applications of the latter to adversarial and robust training, extragradient methods have
received significant recent attention in the machine learning community, see e.g. [12, 24, 16].
Further, extragradient methods have been the subject of increasing study by the theoretical
computer science and optimization communities due to recent extragradient-based runtime
improvements for problems including maximum flow [34] and zero-sum games [10, 11].
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Given a Lipschitz monotone operator and a bounded strongly-convex regularizer, mirror
prox [26] and dual extrapolation [28] achieve O(T~1) regret for solving the associated VI
after T iterations. This rate is worst-case optimal when the Lipschitzness of the operator
and strong convexity of the regularizer are with respect to the Euclidean norm [30]. However,
in certain structured problems related to VlIs, alternative analyses and algorithms can yield
improved rates. For instance, when minimizing a smooth convex function (i.e. one with a
Lipschitz gradient), it is known that accelerated rates of O(T~2) are attainable, improving
upon the standard O(T 1) extragradient rate for the naive associated VI. Further, algorithms
inspired by extragradient methods have been developed recovering the O(T~2) rate [13, 37].

Additionally, alternative analyses of extragradient methods, such as optimism [32] and
area convexity [34] have shown that under assumptions beyond a Lipschitz operator and
a strongly convex regularizer, improved rates can be achieved. These works leveraged
modified algorithms which run efficiently under such non-standard assumptions. Further,
the area convexity-based methods of [34] have had a number of implications, including
faster algorithms for £, regression, maximum flow and multicommodity flow [34] as well as
improved parallel algorithms for work-efficient positive linear programming [8] and optimal
transport [17].

In this work we seek a better understanding of these structured problems and the somewhat
disparate-seeming analyses and algorithms for solving them. We ask, are the algorithmic
changes enabling these results necessary? Can standard mirror prox and dual extrapolation
be leveraged to obtain these results? Can we unify analyses for these problems, and further
clarify the relationship between acceleration, extragradient methods, and primal-dual methods?

Towards addressing these questions, we provide a general condition, which we term
relative Lipschitzness (cf. Definition 1), and analyze the convergence of mirror prox and
dual extrapolation for a monotone relatively Lipschitz operator.! This condition is derived
directly from the standard analysis of the methods and is stated in terms of a straightforward
relationship between the operator g and the regularizer r which define the algorithm. Our
condition is inspired by both area convexity as well as the “relative smoothness” condition
in convex optimization [6, 23], and can be thought of as a generalization of the latter to
variational inequalities (see Lemma 3). Further, through this analysis we show that standard
extragradient methods directly yield accelerated rates for smooth minimization and recover
the improved rates of [34] for box-constrained £, regression, making progress on the questions
outlined above. We also show our methods recover certain randomized accelerated rates and
have additional implications, outlined below.

Extragradient methods directly yield acceleration. In Section 4, we show that applying
algorithms of [26, 28] to a minimax formulation of min,cgra f(z), when f is smooth and
strongly convex, yields accelerated rates when analyzed via relative Lipschitzness. Specifically,
we consider the following problem, termed the Fenchel game in [37]:

i } —f } 1
min max (y, z) — *(y) (1)

L A somewhat similarly-named property appeared in [22], which also studied mirror descent algorithms
2 _ MVi(y)
S Jy=al?
propose. Further, during the preparation of this work, the relative Lipschitzness condition we propose
was also independently stated in [36] (unbeknownst to the authors of this paper until recently). However,
the work [36] does not derive the various consequences of relative Lipschitzness contained in this work
(e.g. recovery of acceleration and randomized acceleration, as well as applications of area convexity).

under relaxed conditions; their property ||g(z)|| for all z,y, is different than the one we
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and show that when f is u-strongly convex and L-smooth, O(y/L/ ) iterations of either mirror
prox [26] or dual extrapolation [28] produces an average iterate which halves the function
error of f. By repeated application, this yields an accelerated linear rate of convergence
and the optimal O(T~2) rates for non-strongly convex, smooth function minimization by
a reduction [4]. Crucially, to attain this rate we give a sharpened bound on the relative
Lipschitzness of the gradient operator of (1) with respect to a primal-dual regularizer.

Our result advances a recent line of research, [1, 2, 13], on applying primal-dual analyses to
shed light on the mysterious nature of acceleration. Specifically, [1, 2] show that the classical
algorithm of [27] can be rederived via applying primal-dual “optimistic” dynamics, inspired
by the framework of [32]. Further, [13] showed that an appropriate discretization of dynamics
inspired by extragradient algorithms yields an alternative accelerated algorithm. While
these results clarify the primal-dual nature of acceleration, additional tuning is ultimately
required to obtain their final algorithms and analysis. We obtain acceleration as a direct
application of known frameworks, i.e. standard mirror prox and dual extrapolation, applied
to the formulation (1), and hope this helps demystify acceleration.

In the full version of the paper, we further show that analyzing extragradient methods
tailored to strongly monotone operators via relative Lipschitzness, and applying this more
fine-grained analysis to a variant of the objective (1), also yields an accelerated linear rate
of convergence. The resulting proof strategy extends readily to accelerated minimization of
smooth and strongly convex functions in general norms, as we discuss at the end of Section 4,
and we believe it may be of independent interest.

Finally, we remark that there has been documented difficulty in accelerating the min-
imization of relatively smooth functions [15]; this was also explored more formally by [14].
It is noted in [15], as well as suggested in others (e.g. in the development of area convexity
[34]) that this discrepancy may be due to acceleration fundamentally requiring conditions on
relationships between groups of three points, rather than two. Our work, which presents an
alternative three-point condition yielding accelerated rates, sheds light on this phenomenon
and we believe it is an interesting future direction to explore the relationships between our
condition and other alternatives in the literature which are known to yield acceleration.

Area convexity for bilinear box-simplex games. In Section 5, we draw a connection between
relative Lipschitzness and the notion of an “area convex” regularizer, proposed by [34]. Area
convexity is a property which weakens strong convexity, but is suitable for extragradient
algorithms with a linear operator. It was introduced in the context of solving a formulation of
approximate undirected maximum flow via box-constrained /., regression, or more generally
approximating bilinear games between a box variable and a simplex variable. The algorithm
of [34] applied to bilinear games was a variant of standard extragradient methods and
analyzed via area convexity, which was proven via solving a subharmonic partial differential
equation. We show that mirror prox, as analyzed by a local variant of relative Lipschitzness,
yields the same rate of convergence as implied by area convexity, for box-simplex games. Our
proof of this rate is straightforward and based on a simple Cauchy-Schwarz argument after
demonstrating local stability of iterates.

Randomized extragradient methods via local variance reduction. In general, the use of
stochastic operator estimates in the design of extragradient algorithms for solving general
VIs is not as well-understood as their use in the special case of convex function minimization.
The best-known known stochastic methods for solving VIs [19] with bounded-variance
stochastic estimators obtain O(T~1/2) rates of convergence; this is by necessity, from known
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classical lower bounds on the rate of the special case of stochastic convex optimization [25].
Towards advancing the randomized extragradient toolkit, we ask: when can improved O(T~1)
rates of convergence be achieved by stochastic algorithms for solving specific VIs and fine-
grained bounds on estimator variance (i.e. more local notions of variance)? This direction is
inspired by analogous results in convex optimization, where reduced-variance and accelerated
rates have been obtained, matching and improving upon their deterministic counterparts
[18, 33, 3, 20, 29, 5].

For the special case of bilinear games, this question was recently addressed by the
works [31, 10], using proximal reductions to attain improved rates. In this work, we give a
framework for direct stochastic extragradient method design bypassing the variance bottleneck
limiting prior algorithms to a O(T~'/2) rate of convergence for problems with block-separable
structure. We identify a particular criterion of randomized operators used in the context of
extragradient algorithms (cf. Proposition 12) which enables O(T~!) rates of convergence.
Our approach is a form of “local variance reduction”, where estimators in an iteration of
the method share a random seed and we take expectations over the whole iteration in the
analysis. Our improved estimator design exploits the separable structure of the problem; it
would be interesting to design a more general variance reduction framework for randomized
extragradient methods.

Formally, we apply our local variance reduction framework in Section 6 to show that an
instance of our new randomized extragradient methods recover acceleration for coordinate-
smooth functions, matching the known tight rates of [5, 29]. Along the way, we give a
variation of relative Lipschitzness capturing an analagous property between a locally variance-
reduced randomized gradient estimator and a regularizer, which we exploit to obtain our
runtime. We note that a similar approach was taken in [35] to obtain faster approximate
maximum flow algorithms in the bilinear minimax setting; here, we generalize this strategy
and give conditions under which our variance reduction technique obtains improved rates for
extragradient methods more broadly.

Additional contributions. A minor contribution of our framework is that we show, in the full
version of the paper, that relative Lipschitzness implies new rates for minimax convex-concave
optimization, taking a step towards closing the gap with lower bounds with fine-grained
dependence on problem parameters. Under operator-norm bounds on blocks of the Hessian
of a convex-concave function, as well as blockwise strong convexity assumptions, [38] showed
a lower bound on the convergence rate to obtain an e-approximate saddle point. When the
blockwise operator norms of the Hessian are roughly equal, [21] gave an algorithm matching
the lower bound up to a polylogarithmic factor, using an alternating scheme repeatedly
calling an accelerated proximal point reduction. Applying our condition with a strongly
monotone variant of the mirror prox algorithm of [26] yields a new fine-grained rate for
minimax optimization, improving upon the runtime of [21] for a range of parameters. Our
algorithm is simple and the analysis follows directly from a tighter relative Lipschitzness
bound; we note the same result can also be obtained by considering an operator norm bound
of the problem after a rescaling of space, but we include this computation because it is a
straightforward implication of our condition.

Finally, in the full version, we also discuss the relation of relative Lipschitzness to another
framework for analyzing extragradient methods: namely, we note that our proof of the
sufficiency of relative Lipschitzness recovers known bounds for optimistic mirror descent [32].
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2 Notation

General notation. Variables are in R? unless otherwise noted. e; is the i*" standard basis
vector. |[-|| denotes an arbitrary norm; the dual norm is [|-||,, defined as |||, := max, <1 y" .
For a variable on two blocks z € X x ), we refer to the blocks by z* and z¥. We denote the
domain of f:R? — R by X'; when unspecified, X = R?. When f is clear from context, z* is
any minimizing argument. We call any « with f(x) < f(z*) + € an e-approzimate minimizer.

Bregman divergences. The Bregman divergence induced by convex r is

Vi(y) =r(y) —r(x) = (Vr(z),y —z).

The Bregman divergence is always nonnegative, and convex in its argument. We define the
following proximal operation with respect to a divergence from point z.

Prox’(g) := argmin, {(9.) + VI (4)} @)

Functions. We say f is L-smooth in ||-|| if |V f(z) — Vf(y)|l, < L |z — yl|, or equivalently
fly) < flx) +(Vf(x),y —2x> + Ly - z||® for 2,y € X. If f is twice-differentiable, equival-
ently y' V2f(z)y < L|ly|°. We say differentiable f is u-strongly convex if for some p > 0,
fy) = f(x) +(Vf(x),y —z) + 5lly — x| for z,y € X. We also say f is p-strongly convex
with respect to a distance-generating function r if V,/ (y) > uV/ (y) for all z,y € X. Further,
we use standard results from convex analysis throughout, in particular facts about Fenchel
duality, and defer these definitions and proofs to the full version of the paper.

Saddle points. We call function h(z,y) of two variables convez-concave if its restrictions to
2 and y are convex and concave respectively. We call (x,y) an e-approzimate saddle point if
max,/ {h(z,y")} — ming {h(z’,y)} <e. We equip any differentiable convex-concave function
with gradient operator g(z,y) := (Vzh(z,y), =V, h(z,y)).

Monotone operators. We call operator g : Z — Z* monotone if (g(w) — g(z),w — z) >
0 for all w, z € Z. Examples include the gradient of a convex function and gradient
operator of a convex-concave function. We call g m-strongly monotone with respect to r if
(g(w) — g(2),w —z) > m (V5(z) + V] (w)). We call z* € Z the solution to the variational
inequality (VI) in a monotone operator g if (g(z*),2z* —2) < 0 for all z € Z.2 Examples
include the minimizer of a convex function and the saddle point of a convex-concave function.

3 Extragradient convergence under relative Lipschitzness

We give a brief presentation of mirror prox [26], and a convergence analysis under relative
Lipschitzness. Our results also hold for dual extrapolation [28], which can be seen as a “lazy”
version of mirror prox updating a state in dual space (see [9]); we defer details to the full
version of the paper.

» Definition 1 (Relative Lipschitzness). For convex r : Z — R, we call operator g : Z — Z*
A-relatively Lipschitz with respect to r if for every three z,w,u € Z,

(g(w) = g(2),w —u) <A (V] (w) + Vi (u))

2 This is also known as a “strong solution”. A “weak solution” is a z* with (g(z), 2* — 2) < 0 for all 2.
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Algorithm 1 MIRROR-PROX(z0,7"): Mirror prox [26].

Input: Distance generating r, A-relatively Lipschitz monotone g : Z — Z*, initial point
20 € Z
for 0 <t< T do
wy < Prox, ($g(2t))
21 4 Prox? (59(wy))
end for

Definition 1 can be thought of as an alternative to a natural nonlinear analog of the area
convexity condition of [34] displayed below:

(g(w) —g(z),w —u) <A <r(z) +7r(w) —r(u) —3r (W)) .
Our proposed alternative is well-suited for the standard analyses of extragradient methods
such as mirror prox and dual extrapolation. For the special case of bilinear minimax problems
in a matrix A, the left hand side of Definition 1 measures the area of a triangle in a geometry
induced by A.

Relative Lipschitzness encapsulates the more standard assumptions that g is Lipschitz
and r is strongly convex (Lemma 2), as well as the more recent assumptions that f is convex
and relatively smooth with respect to 7 [6, 23] (Lemma 3).

» Lemma 2. If g is L-Lipschitz and r is p-strongly convez in ||-||, g is L/u-relatively Lipschitz
with respect to r.

Proof. By Cauchy-Schwarz, Lipschitzness of g, and strong convexity of r,

IN

(g(w) = g(2),w —u) < [lg(w) = g(2)|. v = ull < L|lw = z||[w —u]|

N

L 2 2 L r T
5 (=2l 4l i) < 22 (V7 (0) + V() 4

» Lemma 3. If f is L-relatively smooth with respect to r, i.e. V.{ (y) < LV (y) for all x and
y, then g, defined by g(x) := V f(x) for all x, is L-relatively Lipschitz with respect to r.

Proof. By assumption of relative smoothness of f and the definition of divergence,

LV (w) 4 Vi (w)) > V2 (

= f(w) = [f(2) + V() (w = 2)] + f(u) = [f(w) + VI(w)" (u—w)]
=V () =Vf(2) (z—u) = Vf(z) (w—2)+ Vf(w) (w—u)

=V () + (g(w) — g(2),u— 2) .

The result follows from the fact that V,f(u) > 0 by convexity of f. <

We now give an analysis of Algorithm 1 showing the average “regret” (g(w:), wy — u) of
iterates decays at a O(T~!) rate. This strengthens Lemma 3.1 of [26].

» Proposition 4. The iterates {w;} of Algorithm 1 satisfy for allu € Z,

3" (glwe), w, — u) < AVE ().

0<t<T
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Proof. First-order optimality conditions of wy, z;+1 with respect to uw imply

(9(2t), wi — ze41) < V] (2041) — Vi, (241) — V2, (wy),

(g(uwe), 201 — ) < VI (w) =V, () = VI (zen).

S >l
©w

Adding and manipulating gives, via relative Lipschitzness (Definition 1),

% (g(we),we —u) <V (u) = VI, (u) + % (9(we) — g(2t), we — ze41) — Vi, (2e41) — V2, (wy)
<VI(w) = V] (u).

Zt+1

(4)
Finally, summing and telescoping (4) yields the desired conclusion. <

We briefly comment on how to use Proposition 4 to approximately solve convex-concave
games in a function f(z,y). By applying convexity and concavity appropriately to the
regret guarantee (and dividing by T, the iteration count), one can replace the left hand
side of the guarantee with the duality gap of an average point w against a point u, namely
fw® u¥) — f(u”,wY). By maximizing the right hand side over w, this can be converted into
an overall duality gap guarantee. For some of our applications in following sections, u will
be some fixed point (rather than a best response) and the regret statement will be used in a
more direct manner to prove guarantees.

4  Acceleration via relative Lipschitzness

We show that directly applying Algorithm 1 to the optimization problem (1) recovers an
accelerated rate for first-order convex function minimization (for simplicity, we focus on the
{5 norm here; our methods extend to general norms, discussed in the full version of the
paper). Our main technical result, Lemma 5, shows the gradient operator of (1) is relatively
Lipschitz in the natural regularizer induced by f, which combined with Proposition 4 gives
our main result, Theorem 7. Crucially, our method regularizes the dual variable with f*, the
Fenchel dual of f, which we show admits efficient implementation, allowing us to obtain our
improved bound on the relative Lipschitzness parameter.

» Lemma 5 (Relative Lipschitzness for the Fenchel game). Let f : R? — R be L-smooth and
p-strongly convex in the Euclidean norm |-|,. Let g(z,y) = (y, Vf*(y) — x) be the gradient
operator of the convex-concave problem (1), and define the distance-generating function

r(z,y) =% Hx||§ + f*(y). Then, g is 1+ \/%-relatively Lipschitz with respect to r.

Proof. Counsider three points z = (2%, 2¥), w = (w*, wY), u = (u*,u¥). By direct calculation,
(9(w) = g(2),w —u) = (W’ — 2%, 0" —u”) + (—w® + 2" + Vf*(w’) = Vf(z"),w’ —u”) . (5)

By Cauchy-Schwarz and L~!-strong convexity of f* respectively, we have

(¥ — 2w — )+ (2 — w” ¥ — ) < = 2] e — a4 2 - w? - u?]

IA
o

H z 2 H z oz 2 i Yy Y2 i y_yQ)
(5 o™ = =15 4+ 5 ™ = w7 + g I = 2213 + 57 I =)

L T ™
< \/:(Vz (w) + Vi (u)) -

6)
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The second line used Young’s inequality twice. Furthermore, by convexity of f* from z¥
to uY,

(VI (w') = VI (2"),w’ —u)

= (VF*(2"),u? — 2%) — (V" (w’),u’ — w) — (Vf*(z"), 0" — 2¥) -
< ) = £ = (V) u = wt) — (V7 (2Y),w? — 2Y)
=V (") + V] (u¥) < VI (w) + Vi (u).

The last inequality used separability of r and nonnegativity of divergences. Summing the
bounds (6) and (7) and recalling (5) yields the conclusion, where we use Definition 1. <

We also state a convenient fact about the form our iterates take.

» Lemma 6. In the setting of Lemma 5, let z; = (x4,y:), wy = (IH%,yH%) be iterates
produced by running Algorithm 1 on the pair g, r. Suppose yo = V f(vg) for some vg. Then,
Yey 1 and Yi+1 can be recursively expressed as Yyl = Vf(vH%), Yir1 = Vf(vir1), for

1 1
Vyy1 evt—l—x(xt—vt), Via1 evt—l—x (mH_% —UH_%).

Proof. We prove this inductively; consider some iteration ¢. Assuming y; = V f(v:), by
definition

vy = argain, { (5 (V1 () =0 0) + % 0
— argmax, {<i(a;t — ) —|—vt,y> - f*(y)} — vy (ut 4 %(mt _ m) .

Here, we used standard facts about convex conjugates. A similar argument shows that we
can compute implicitly y;41 = V f (v + %(JUH% - vt+%)). <

We now prove Theorem 7, i.e. that we can halve function error in O (ﬁ) iterations of
Algorithm 1. Simply iterating Theorem 7 yields a linear rate of convergence for smooth,
strongly convex functions, yielding an e-approximate minimizer in O (\/% log M)
iterations.

» Theorem 7. In the setting of Lemma 5, run T > 4\ iterations of Algorithm 1 initialized
at zo = (xo, Vf(xo)) on the pair g,r with A =1+ \/%, and define

_ 1
V=5 Z Vyy 1 where wy = (mt+%,Vf(vt+%)).
0<t<T

Then we have f(v) — f(z*) < &(f(zo) — f(z*)), where x* minimizes f.

Proof. First, we remark that this form of w; follows from Lemma 6, and correctness of A
follows from Lemma 5. By an application of Proposition 4, letting v = (z*, V f(z*)),

% Z (g(we), wy —u) <

0<t<T

V) < 7 (Bllwo = 27134 V0 (V1)
(%o — a2 + £(wo) — £()) < 5 (Flwo) — F(&)).

= = ﬂ‘y
[N}
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The second line used the definition of divergence in f* and strong convexity of f, which
implies f(z0) > f(z*) + § ||zo — x*||§ Moreover, by the definition of g and V f(x*) = 0,

- Z (g(we), wy —u) = % Z <Vf(yt+%)’mt+% —x*> + <vt+% B xt+%,Vf(vt+%)>
0<t<T 0<t<T
> LS Sy - 1@ 2 1) - f),
0<t<T

The last line used convexity twice. Combining these two derivations yields the conclusion. <
For convenience, we state the full algorithm of Theorem 7 as Algorithm 2.

Algorithm 2 EG-ACCEL(zo, €): Extragradient accelerated smooth minimization.

Input: z¢ € R, f L-smooth and p-strongly convex in ||-||,, and g > f(xo) — f(2*)
Output: e-approximate minimizer of f
A1+ /L/p, 29 20, T + 4[N, K « [log, 2]
for 0 <k < K do
o < JU(k), Vo < To
for 0<t< T do
Typl Ty — M%\Vf(vt) and Vpy1 < U+ %(xt — )
Tep1 € Tt — lTl,\Vf(UH-%) and vey1 <= vy + %(Z‘t-&-% - Ut-&-%)
end for
g+

end for

1
T Zogt<T Vgl

return z&)

In the full version of the paper, we give an alternative proof of acceleration leveraging
relative Lipschitzness, as well as a variant of extragradient methods suited for strongly
monotone operators, by applying these tools to the saddle point problem (to be contrasted
with (1))

min f(z) = min max g ]2 + (y, 2) — h*(y), where h(z) := f(z) — K ]| .

z€R4 zeRI yeRd 2 2
This alternative proof strategy readily generalizes the accelerated rate of Theorem 7 to
general norms. While the rates attained by this alternative method are slightly less sharp
(losing a % factor in the logarithm) when compared to Theorem 7, the analysis is arguably
simpler. This is in the sense that our alternative strategy shows a potential function decreases
at a linear rate in every iteration, rather than requiring O(y/L/u) iterations to halve it.

5 Area convexity rates for box-simplex games via relative Lipschitzness

In this section, we show that a local variant of Definition 1 recovers the improved convergence
rate achieved by [34] for box-constrained {..-regression, and more generally box-simplex
bilinear games. Specifically, we will use the following result, a simple extension to Proposition 4
which states that relative Lipschitzness only must hold with respect to triples of algorithm
iterates.

» Corollary 8. Suppose Algorithm 1 is run with a monotone operator g and a distance
generating r satisfying, for all iterations t,

(g(wi) — g(2t), we — ze41) <A (Vth (wt) + Vi, (Zt+1)) . (8)

Then, the conclusion of Proposition 4 holds.
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Proof. Observe that the only applications of relative Lipschitzness in the proof of Proposi-
tion 4 are of the form (8) (namely, in (4)). Thus, the same conclusion still holds. <

We use Corollary 8 to give an alternative algorithm and analysis recovering the rates
implied by the use of area convexity in [34], for box-simplex games, which we now define.
» Definition 9 (Box-simplex game). Let A € R™*"™ be a matriz and let b € R™, ¢ € R™ be

vectors. The associated box-simplex game, and its induced monotone operator g, are

i =y Az — (b = (AT b— Ax). 9
mefr_nlr}l]”;ggzgf(x,y) y' Az — (b,y) + (c,z), g(z.y) == (A'y +ec, x) (9)

Here, A™ := {y € RY, : Zie[m] y; = 1} is the nonnegative probability simplex in m
dimensions.

By a simple reduction that at most doubles the size of the input (stacking A, b with
negated copies, cf. Section 3.1 of [35]), Definition 9 is a generalization of the box-constrained
{oo-regression problem

in Az — b .
Ie[rglgll]mll T = bl|

The work of [34] proposed a variant of extragradient algorithms, based on taking primal-dual

proximal steps in the following regularizer:?
r(a,y) =y |A|(2%) + 10[|A] 0o D vilogys. (10)
i€[m]

Here, |A] is the entrywise absolute value of A. The convergence rate of this algorithm was
proven in [34] via an analysis based on “area convexity” of the pair (g,r), which required a
somewhat sophisticated proof based on solving a partial differential equation over a triangle.
We now show that the same rate can be obtained by the extragradient algorithms of [26, 28],
and analyzed via local relative Lipschitzness (8).# We first make the following simplication
without loss of generality.

» Lemma 10. For all z € [—1,1]" the value of maxyeam f(x,y) in (9) is unchanged if
and the corresponding
rows of A. Therefore, in designing an algorithm to solve (9) to additive error with linear

| for all i € [m)].

we remove all coordinates of b with b; > ming«gpm) bix + 2 || Al o, o0

pre-processing it suffices to assume that b; € [0,2 ]| Al

o0—r00

Proof. For any = € [—1,1]", letting i* € argmin;c(,, b; we have
max y' (Az —b) = max[Az — b]; > — ||A]|
yeEA™ i€[m)]

However, [Az —b]; < || A]| —b; for all ¢ € [m]. Consequently, any coordinate i € [m] that

satisfies b; > b« + 2 || Al has [Az — b]; < [Axz — b];, and the value of maxycam f(x,y)

is unchanged if this entry of b; and the corresponding row of A is removed. Further, note

— b« .

soso0 [[Elloe = min b; > —[|A]|
i*elm

[ ] 00— 00
[ ok de el

00— 00

that (y,1) is a constant for all y € A™. Consequently, in linear time we can remove all
the coordinates ¢ with b; > ming. ) b + 2 || Al and shift all the coordinates by an
additive constant so that the minimum coordinate of a remaining b; is 0 without affecting
additive error of any . <

00— 00

8 We let [|A]

4 Although our analysis suffices to recover the rate of [34] for £ regression, the analysis of [34] is in
some sense more robust (and possibly) more broadly applicable than ours, as it does not need to reason
directly about how much the iterates vary in a step. Understanding or closing this gap is an interesting
open problem.

i.e. the £ operator norm of A or max ¢; norm of any row.

00 —+00 oo

= SUP|ig) =1 | Az||
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We now prove our main result regarding the use of mirror prox to solve box-simplex
games, using the regularizer analyzed (with a slightly different algorithm) in [34].

» Theorem 11. Assume the preprocessing of Lemma 10 so that b € [0,2| Al _ o
Consider running Algorithm 1 on the operator in (9) with A = 3, using the regularizer in
(10). The resulting iterates satisfy (8), and thus satisfy the conclusion of Proposition 4.

}m

Proof. Fix a particular iteration ¢. We first claim that the simplex variables w{ and z, ,
obey the following multiplicative stability property: entrywise,

1
wi}azi1+l € |:2Zi/a2zty:| . (11)

We will give the proof for w as the proof for z{, ; follows from the same reasoning. Recall
that

. 1 r
Wt = argmIll,,e An x[—1,1]m {<)\9(Zt)7 w> +Vz, (w)} )

and therefore, defining (z)* and (z7)” as the entrywise square of these vectors,

. Yi
'wg = argmlnyeAm <’Yfa y> + 10 ||A||OO—>OO Z Yi IOg W
i€[m] £

y 1 - 2 z\2
where v/ := Y (b— Azf) + |A] [(‘r) - (&) } '

Consequently, applying log and exp entrywise we have

1
o0— 00

This implies the desired (11), where we use that ||/ < 34|
Next, we have by a straightforward calculation (Lemma 3.4, [34] or Lemma 6, [17]) that

diag (|A;|Ty) 0
Vir(z,y) = i
r(z,y) = ( 0 [A]l o o0 diag (yi)

00—00?

(12)
By expanding the definition of Bregman divergence, we have

1 [eY
VI () = /0 /0 e = 241122, (o4 s —onyy ABc

Fix some 3 € [0,1], and let z3 := 2z; + B(w; — #;). Since the coordinates of zg also satisfy the
stability property (11), by the lower bound of (12), we have

2 v a2 1 2
[Jwe — Zt”V?'r(zB) z Z | Aij ([Zg}z [wi — 2 ]j + W [wi — Z?L)

i€[m].je(n] A

1 ¢ 1 2

>3 5 taol (Il -+ ol - 211,
ieml,jeln] 2]

By using a similar calculation to lower bound Vj (2¢11), we have by Young’s inequality the
desired

and exp(0.6) < 2.
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™ T 1 x x 1
VZ, (we) + Vi, (2641) > 1 Z [Aij ] ([Zf]i [wi — 2 ]? + N [wf — Zi’]?)
ie[m],j€n] ti
1 y z z 12 1 y y 12
+ Z Z [Ass| { [2]e we — 2045 + il [wf — 2],
e[ml.j€n] e
1 x Y
>3 Z Ay ([w? = 20, [wf = =], — [wf — 22,,], [wf - =71,)
i€[m],j€[n]
1
=3 (g(we) — g(zt), we — 2e41) - <

The range of the regularizer r is bounded by O(|| 4] _, ., logm), and hence the itera-
tion complexity to find an e additively-approximate solution to the box-simplex game is
O(M). Finally, we comment that the iteration complexity of solving the subprob-
lems required by extragradient methods in the regularizer r to sufficiently high accuracy
is logarithmically bounded in problem parameters via a simple alternating minimization
scheme proposed by [34]. Here, we note that the error guarantee e.g. Proposition 4 is robust
up to constant factors to solving each subproblem to e additive accuracy, and appropriately
using approximate optimality conditions (for an example of this straightforward extension,

see Corollary 1 of [17]).

6 Randomized coordinate acceleration via expected relative
Lipschitzness

We show relative Lipschitzness can compose with randomization. Specifically, we adapt
Algorithm 2 to coordinate smoothness, recovering the accelerated rate first obtained in
[5, 29]. We recall f is L;-coordinate-smooth if its coordinate restriction is smooth, i.e.
|Vif(z+ce;) — Vif(x)] < Li|c| Yz € X, ¢ € R; for twice-differentiable coordinate smooth f,
Vif(x) < Li.

Along the way, we build a framework for randomized extragradient methods via “local
variance reduction” in Proposition 12. In particular, we demonstrate how for separable
domains our technique can yield O(T~!) rates for stochastic extragradient algorithms,
bypassing a variance barrier encountered by prior methods [19]. Throughout, let f : R — R
be L;-smooth in coordinate i, and p-strongly convex in [|-||,, and define the distance generating
function r(z,y) = § )3 + £*(y)-

Our approach modifies that of Section 4 in the following ways. First, our iterates are
defined via stochastic estimators which “share randomness” (use the same coordinate in both
updates). Concretely, fix some iterate z; = (x4, V f(v;)). For a distribution {p;};c(q), sample
i ~ p; and let

i) = (2 Vaftw =) of? = (o), 95 03)) = Proc, (Jta0).

go(w?) = (pvifwﬁngﬁg— (wt+A§>)) for AP = 2, — (13)

4

=

£ = (2,9 10120 = Pro, (Sl )
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By observation, g;(z¢) is unbiased for g(z;); however, the same cannot be said for gl(wt( )), as

the random coordinate was used in the definition of wt( ), Nonetheless, examining the proof

of Proposition 4, we see that the conclusion

(@)~ ) < V30) ~E [V (0]
still holds for some point w;, as long as
E [(gitwi"),w” —u)| = {g(@), @ —u),
E [{gi(wi”) = gi (z0) 0l = 21 ) | < 2B [VZ (™) + Ve ()]

We make this concrete in the following claim, a generalization of Proposition 4 which handles

(14)

randomized operator estimates as well as an expected variant of relative Lipschitzness. We
remark that as in Corollary 8, the second condition in (14) only requires relative Lipschitzness
to hold for the iterates of the algorithm, rather than globally.

» Proposition 12. Suppose in every iteration of Algorithm 1, steps are conducted with respect
to randomized gradient operators {gi(zt),gi(wt(z))} satisfying (14) for some {w;}. Then, for
allu € Z,

E Z (9 (wr) , 0w —u) | <AV (u).

0<t<T

Proof. The proof follows identically to that of Proposition 4, where we iterate taking
expectations over (4), each time applying the two conditions in (14). <

For the rest of this section, we overload g; to mean the choices used in (13). This choice
is motivated via the following two properties, required by (14).

> Lemma 13. Let w; = (24 + D ;g At s Vf(vir1)). Then Vu, taking expectations over
iteration t,

E [<gi(w§v:>), w® — u>} = (g(wy), wy — u) .

Proof. Note v, 1 is deterministic regardless of the sampled i € [d]. Expanding for u =
(u®, u),

e [l nol? )] = 3o ({50l -7

i€[d]
+ <Ut+; - (xt + m&”) WYert T “y>>
= (g(we), wy —u) .
Here, we used the fact that Vif(UH_%) is 1-sparse. |
» Lemma 14 (Expected relative Lipschitzness). Let A = 14 Sy/2/\/11, where S5 =

Zie[d] VLi. Then, for the iterates (13) with p; = \/Li/Sy,2, taking expectations over
iteration t,

E |:<gi(wt(i)) —gi () wy) — Z§+1>} <AE |V, { ' (w NV ()(Ztﬁl)} -
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Proof. Equivalently, we wish to show that
. . , S
AN O N () _ ) < 1/2 (0 (8) T (4)
E [<gl(wt ) = 9i (2t) s wy Zt+1>} = (1 + NG ) E {Vzt( )+V w® (44—1)}
The proof is patterned from Lemma 5. By direct calculation, the left hand side is
E[(g:(wf”) = gi () wi” = =)
_sz< <vat+) Vif (ve), ,521_55§21>

i€[d]

1 50 (i) (15)
+;< t+1’v f(Ut+ 1) — Vif(vt11)>)
+ Z Di <Ut+1 Ut, Vf(’Ut+%) vf(vt:-l)>
1€[d]

We first bound the second and third lines of (15):

; <<V 1) = Vif (ve) ,IEQ% - I§21> + <-Tt - ziil,vif(le) - sz(”t(zl)>)
if/ (‘ til - t+1H if (vp11) Ut+1 H "
—|—g ‘ Tt —mg% 7. ‘Vif(vt+§) Vif (v) 2)

51/2
RV
The first inequality used the definition p; = \/L;/S1 /2 and Cauchy-Schwarz, and the second

used strong convexity and Lemma 13 of the full version of the paper. Next, we bound the
fourth line of (15):

(Vi) + Vo).

<Ut+1 e, VI(0py1) —E {Vf o D
< va(v (Vf(thr )) + va(v (E [Vf Ut+1 D

<100 <vf(v”%)) +E [ Vi, (Vf (vih) }
<E {VT-( (Z)> \%4 ol (Zt(le)}

The first inequality is (7), the second is convexity of Bregman divergence, and the third used
nonnegativity of & ||H§ Combining with an expectation over (16) yields the claim. <

Crucially, our proof of these results uses the fact that our randomized gradient estimators
are 1-sparse in the & component, and the fact that we “shared randomness” in the definition
of the gradient estimators. Moreover, our iterates are efficiently implementable, under the
“generalized partial derivative oracle” of prior work [20, 5, 29], which computes V; f(ax + by)
for z,y € R? and a,b € R. In many settings of interest, these oracles can be implemented
with a dimension-independent runtime; we defer a discussion to previous references.

» Lemma 15 (lterate maintenance). We can implement each iteration of Algorithm 3 using
two generalized partial derivative oracle queries and constant additional work.
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We defer a formal statement to the full version of the paper. Combining Lemma 13 and
Lemma 14, (14) is satisfied with A = 14 5, 5/,/it. Finally, all of these pieces directly imply
the following, via the proof of Theorem 7 and iterating expectations. We give our full method
as Algorithm 3.

» Theorem 16 (Coordinate acceleration). Algorithm 8 produces an e-approzimate minimizer

of f in

L; — *
O Z — log M iterations in expectation,
e VM €

with iteration complexity given by Lemma 15.
Proof. This follows from the proof of Theorem 7, using Proposition 12 in place of Proposi-

tion 4. <

Algorithm 3 EG-COORD-ACCEL(xo, €): Extragradient accelerated coordinate minimization.

Input: z9 € R, f {L;};e(g-coordinate smooth and p-s.c. in |||, and eg > f(zo) — f(z*)
1
A= 14+ cm V5Li/ ,T<—4[)\1,K<—[log2?1,A<—((1) . £21>
K2
Po < %o, go < Zo, Bo < Iax2
for 0 <k < K do
Sample 7 uniformly in [0,7 — 1]
for 0 <t <7 do
Sample i o< v/ L;
Compute V;f(vi), Vif((1 = A~1)v, + A7 1a,) via generalized partial derivative oracle
s (i V(L= Ao+ 37 M2) 5 Vif(w)

Ber1 < BeA, (pip1 @41) < (0 @) — B!
end for
Br]12 [BT]12)
Bo s Do 4= Pry Qo 4 4r
0 ([BT]QQ [Bq—]22 Po p qo q

Il= |

end for
return [B;]i2p; + [Br]22gr

7 Discussion

We give a general condition for extragradient algorithms to converge at a O(T~1) rate. In turn,
we show that this condition (coupled with additional tools such as locality, randomization,
or strong monotonicity) yields a recipe for tighter convergence guarantees in structured
instances. While our condition applies generally, we find it interesting to broaden the types
of instances where it obtains improved runtimes by formulating appropriate VI problems.
For example, can we recover acceleration in settings such as finite-sum convex optimization
(i.e. for stochastic gradient methods) [3] or composite optimization [7]? Moreover, we are
interested in the interplay between (tighter analyses of) extragradient algorithms with other
algorithmic frameworks. For example, is there a way to interpolate between our minimax
algorithm and the momentum-based framework of [21] to obtain tight runtimes for minimax
optimization? Ultimately, our hope is that our methods serve as an important stepping
stone towards developing the toolkit for solving e.g. convex-concave games and variational
inequalities in general.
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