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Abstract

Recently, contrastive learning has achieved great results
in self-supervised learning, where the main idea is to pull
two augmentations of an image (positive pairs) closer com-
pared to other random images (negative pairs). We argue
that not all negative images are equally negative. Hence,
we introduce a self-supervised learning algorithm where we
use a soft similarity for the negative images rather than a
binary distinction between positive and negative pairs. We
iteratively distill a slowly evolving teacher model to the stu-
dent model by capturing the similarity of a query image to
some random images and transferring that knowledge to
the student. Specifically, our method should handle unbal-
anced and unlabeled data better than existing contrastive
learning methods, because the randomly chosen negative
set might include many samples that are semantically simi-
lar to the query image. In this case, our method labels them
as highly similar while standard contrastive methods label
them as negatives. Our method achieves comparable results
to the state-of-the-art models. Our code is available here:
https://github.com/UMBCVvision/ISD.

1. Introduction

We can view the recent crop of SSL methods as itera-
tive self-distillation where there is a teacher and a student.
Both teacher and student improve simultaneously while the
teacher is evolving more slowly (running average) com-
pared to the student: (1) In the case of contrastive methods
e.g. MoCo [20], we classify images to positive and nega-
tive pairs in the binary form. (2) In the case of clustering
methods (DC-v2 [8], SWAV [8], SeLA [50]), the student
predicts the quantized representations from the teacher. (3)
In the case of BYOL [18], the student simply regresses the
teacher’s embeddings vector. Here, we introduce a novel
method using similarity based distillation to transfer the
knowledge from the teacher to the student. We argue that
our method is more regularized compared to prior work and
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improves the quality of the features in transfer learning.

In the standard contrastive setting, e.g., MoCo [20], there
is a binary distinction between positive and negative pairs,
but in practice, many negative pairs may be from the same
category as the positive one. Thus, forcing the model to
classify them as negative is misleading. This can be more
important when the unlabeled training data is unbalanced,
for example, when a large portion of images are from a
small number of categories. Such scenario can happen in
applications like self-driving cars, where most of the data is
just repetitive data captured from a high-way scene with a
couple of cars in it. In such cases, the standard contrastive
learning methods will try to learn features to distinguish two
instances of the most frequent category that are in a negative
pair, which may not be helpful for the down-stream task of
understanding rare cases.

We are interested in relaxing the binary classification of
contrastive learning with soft labeling, where the teacher
network calculates the similarity of the query image with re-
spect to a set of anchor points in the memory bank, converts
that into a probability distribution over neighboring exam-
ples, and then transfers that knowledge to the student, so
that the student also mimics the same neighborhood similar-
ity. In the experiments, we show that our method is compet-
itive with SOTA self-supervised methods on ImageNet and
show an improved accuracy when trained on unbalanced,
unlabeled data (for which we use a subset of ImageNet).

Our method is different from BYOL [18] in that we
are comparing the query image with other random images
rather than only with a different augmentation of the same
query image. We believe our method can be seen as a more
relaxed version of BYOL. Instead of imposing that the em-
bedding of the query image should not change at all due
to an augmentation (as done in BYOL), we are allowing
the embedding to vary as long as its neighborhood simi-
larity does not change. In other words, the augmentation
should not change the similarity of the image compared to
its neighboring images. This relaxation lets self-supervised
learning focus on what matters most in learning rich fea-
tures rather than forcing an unnecessary constraint of no
change at all, which is difficult to achieve.
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Figure 1. Our method: We initialize both teacher and student networks from scratch and update the teacher as running average of the
student. We feed some random images to the teacher, and feed two different augmentations of a query image to both teacher and student.
We capture the similarity of the query to the anchor points in the teacher’s embedding space and transfer that knowledge to the student. We
update the student based on KL divergence loss and update the teacher to be a slow moving average of the student. This can be seen as a
soft version of MoCo [20] which can handle negative images that are similar to the query image. Note that unlike contrastive learning and
BYOL [18], we never compare two augmentations of the query images directly (positive pair).

Our distillation method is inspired by the CompRess
method [ 1], which introduces an analogous similarity-based
distillation method to compress a deeper self-supervised
model to a smaller one and get better results compared to
training the small model from scratch. Our method is dif-
ferent from [1] in that in our case, both teacher and student
share the same architecture, we do self-supervised learning
from scratch rather than compressing from another deeper
model, and also the teacher evolves over time as a running
average of the student rather than being frozen as in [1].

2. Method

We are interested in learning rich representations from
unlabeled data. We have a teacher network and a student
network. We initialize both models from scratch and up-
date the teacher to be a slower version of the student: we
use the momentum idea from MoCo in updating the teacher
so that it is running average of the student. The method is
described in Figure 1. Following the notation in [1], at each
iteration, we pick a random query image and a bunch of
random other images that we call anchor points. We aug-
ment those images and feed them to the teacher model to
get their embeddings. Then, we augment the query again
independent of the earlier augmentation and feed it to the

student model only. We calculate the similarity of the query
point compared to the anchor points in the teacher’s embed-
ding space and then optimize the student to mimic the same
similarity for the anchor point at the student’s embedding
space. Finally, we update the teacher with a momentum
to be the running average of the student similar to MoCo
and BYOL. Note that our method is closely related to Com-
Press method [!] which uses the similarity distillation for
compressing a frozen larger model to a smaller one.

More formally, we assume a teacher model ¢ and a stu-
dent model s. Given a query image g, we augment it twice
independently to get ¢; and g,. We also assume a set of n
augmented random images {x; }_,. We feed {mz ', tothe
teacher model to get their embeddings {¢(x;)}? , and call
them anchor points. We also feed ¢; to the teacher and ¢, to
the student to get ¢(q; ) and s(gs) respectively. Then, we cal-
culate the similarity of the query embedding ¢(g;) compared
to all anchor points, divide by a temperature, and convert to
a probability distribution using a SoftMax operator to get:

exp(51m(( ), t(x ))/Tt)
Zj:l exp(s1m( (@)t (xj))/Tt)

where 7, is the teacher’s temperature parameter and sim(., .)
refers to the similarity between two vectors. In our exper-

pi(i) = —log
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Figure 2. Positives vs. negatives: We sample some query images randomly (left column), calculate their teacher probability distribution
over all anchor points in the memory bank (size=128K) and rank them in descending order (right columns). The second left column is
another augmented version of the query image that contrastive learning methods use for the positive pair. Our students learns to mimic the
probability number written below each anchor image while contrastive learning method (e.g., MoCo) learn to predict the one-hot encoding
written below the images. Note that there are lots of images in the top anchor points that are semantically similar to the query point that
MoCo tries to discriminate them from the query while our method does not.

iments, we use cosine similarity which is standard in most
recent contrastive learning methods.

Then, we calculate a similar probability distribution for
the student’s query embedding to get:

exp(sim(s(qs), t(z;))/7s)
Sy exp(sim(s(qs), t(x;)) /7s)
Where, 75 is the student’s temperature parameter. Fi-

nally, we optimize the student only by minimizing the fol-
lowing loss:

ps(i) = —log

L = KL(pt||ps)

and the teacher is updated using the following rule:

0y < mby + (1 — m)f,

where 6 refers to the parameters of a model and m is a
the momentum hyperparameter that is set be close to one
(0.99 in our ResNet50 experiments) as in MoCo. Since the
teacher is not optimized by the loss directly, the loss can be
simplified as cross entropy loss instead of KL divergence.
Note that unlike the positive pair in contrastive learn-
ing methods and BYOL, the query image is never com-
pared to its own augmentation as it is not included in the

anchor points. We do this since when the features are ma-
ture, the similarity of the query to itself will be very large
and will dominate the whole probability distribution. Note
that one can convert our method to MoCo by including the
query in anchor points and replacing the probability of the
teacher p; with a one-hot encoding vector in which the pos-
itive pair (query) corresponds to one and all other anchor
points correspond to zero. Figure 2 shows some example
teacher probabilities for both ISD and MoCo.

Our method can benefit from a large number of an-
chor points to cover the neighborhood of any query image,
and also the anchor points are fed to the teacher only that
evolves slowly. Hence, we use MoCo’s trick of a large
memory bank (queue) for the anchor points. The queue size
is 128K in our experiments which uses only 1.6% of the
total memory and less than 1% of the total computation.

Different Temperature for student and teacher: Since
the student is learning from the teacher, we can use a lower
temperature for the teacher compared to the student to make
the teacher more confident. In the extreme case, when the
teacher uses zero temperature, its output will be a one-hot
encoding over the anchor points which is a very sharp dis-
tribution. In the experiments we observe best results when
the teacher has 10 times smaller temperature.



Method Ref | Batch | Epochs | Sym. Loss | Top-1 | NN | 20-NN
Size 2x FLOPS | Linear
ResNet-50

Supervised - 256 100 - 762 | 714 | 748

| SWAV[S8] | [i1]] 4096 | 200 | v [ 691 | - | - |
SimCLR[9] [O] | 4096 1000 v 69.3 - -
MoCo-V2 [20] | [11] | 256 200 v 69.9 - -
SimSiam [11] [11] ]| 256 200 v 70.0 - -
BYOL [18] [11] | 4096 200 v 70.6 - -
MoCo-V2 [10] | [10] | 256 400 v 71.0 - -
MoCo-V2 [20] | [20] | 256 800 X 71.1 | 573 | 61.0
CompRess* [1] | [!] 256 | 1K+130 X 719 | 633 | 66.8
BYOL [18] [18] | 4096 1000 v 743 | 62.8 | 669
SWAV T [3] [8] | 4096 800 4 75.3 - -

| MoCo-V21[20] | [11]] 256 | 200 | —x | 675 | - | - |
CO2 [45] [45] | 256 200 X 68.0 - -
BYOL-asym - 256 200 X 69.3 | 55.0 | 592
MSF ¥ [25] [25] | 256 200 X 724 | 62.0 | 649
ISD - 256 200 X 69.8 | 59.2 | 62.0

ResNet-18

Supervised - 256 100 - 69.8 | 63.0 | 67.6

| MoCo-V21[20] | [117] 256 | 200 | —Xx | 510 |37.7] 421 |
BYOL-asym - 256 200 X 52.6 | 40.0 | 44.8
ISD - 256 200 X 53.8 | 415 | 46.6

Table 1. Evaluation on full ImageNet: We compare our method with other state-of-the-art SSL methods by evaluating the learned
features on the full ImageNet. A single linear layer is trained on top of a frozen backbone. Note that methods using symmetric losses use
2 computation per mini-batch. Thus, it is not fair to compare them with the asymmetric loss methods. Further, we find that given a similar
computational budget, both asymmetric MoCo-V2 (400 epochs) and symmetric MoCo-V2 (800 epochs) have similar accuracies (71.0 vs
71.1). Under similar resource constraints, our method performs competitively with other state-of-the-art methods. * is compressed from
ResNet-50x4. : SWAV is not comparable as it uses multiple crops together. I: is our concurrent (future of this!) work.

3. Experiments

We describe various experiments and their results in
this section. We compare our proposed self-supervised
method with other state-of-the-art methods on ImageNet
and transfer learning. We also demonstrate the advantage
of our method compared to MoCo on unbalanced, unlabeled
dataset.

Implementation details: For all experiments, we use
PyTorch with SGD optimizer (momentum = 0.9, weight de-
cay = le—4, batch size = 256) except when stated otherwise.
Details about the specific architecture, epochs for training,
and learning rate are described for each experiment in its re-
spective section. We follow the evaluation protocols in [1]
for nearest neighbor (NN) and linear layer (Linear) evalua-
tion. We use the ImageNet labels only in the setting of eval-
uating the learned features. To evaluate how SSL features
transfer to new tasks, we perform Linear layer evaluation
on different datasets including Food101 [6], SUN397 [47],
CIFAR10 [27], CIFAR100 [27], Cars [26], Flowers [30],
Pets [35], Caltech-101 [15] and DTD [13]. More details
about the datasets and training can be found in the appendix.
We follow [18] setting for transfer learning and reproduce
BYOL results for fairness.

3.1. Self-supervised learning

BYOL-asym (baseline). ResNet-50 is recently used as
a benchmark in the community. Unfortunately, we can-
not run it for 1000 epochs because of resource constraints.
Some methods [18, 8] are even slower as they forward the
mini-batch through the model more than once. For in-
stance, BYOL method forwards the images twice to calcu-
late the symmetric loss, so 100 epochs of symmetric BYOL
is equivalent to almost 200 epochs of asymmetric BYOL
in terms of running time. As shown in [I1], given a con-
stant budget, there is no big difference between symmetric
and asymmetric losses. Thus, for a fair comparison with
our method and MoCo, we use asymmetric loss, a small
batch size (256), momentum for the teacher is 0.99, and
train for 200 epochs. We implement BYOL in PyTorch fol-
lowing [18]. We call this baseline as BYOL-asym since it’s
asymmetric version of BYOL. For ResNet18, hidden units
in the MLP for projection and prediction layers is 1024, and
output embedding dimension is 128. For ResNet50, hid-
den units in the MLP for projection and prediction layers is
4096, and output embedding dimension is 512. We use cos
learning rate scheduler with initial learning rate of 0.05.



Method Ref. | Epochs | Food | CIFAR | CIFAR | SUN | Cars | DTD | Pets | Caltech | Flowers | Mean
101 10 100 397 | 196 101 102
ResNet-50
Sup-IN [18] 72.3 93.6 78.3 61.9 | 66.7 | 749 | 91.5 94.5 94.7 80.9
SimCLR [9] [18] 1000 72.8 90.5 74.4 60.6 | 493 | 75.7 | 84.6 89.3 92.6 68.6
MoCo v2 [10] - 800 72.5 92.2 74.6 59.6 | 50.5 | 744 | 84.6 90.0 90.5 76.5
BYOL [18] rep. 1000 754 92.7 78.1 62.1 | 67.1 | 76.8 | 89.8 922 95.5 81.1
BYOL [18] [18] 1000 75.3 91.3 78.4 62.2 | 67.8 | 75.5 | 90.4 94.2 96.1 81.2
BYOL-asym [ 18] - 200 70.2 91.5 74.2 59.0 | 54.0 | 73.4 | 86.2 90.4 92.1 76.8
MoCo v2 [10] - 200 70.4 91.0 73.5 575 | 47.7 | 739 | 81.3 88.7 91.1 75.0
MSF * [25] [25] 200 71.2 92.6 76.3 59.2 | 55.6 | 73.2 | 88.7 92.7 92.0 77.9
ISD - 200 68.6 90.8 72.0 55.8 | 45.8 | 68.6 | 89.1 90.3 87.4 74.3
ResNet-18
BYOL-asym [ 18] - 200 55.0 83.4 59.3 482 | 26.6 | 654 | 74.1 82.7 82.3 64.1
MoCo v2 [10] - 200 56.7 83.0 59.7 48.8 | 304 | 644 | 70.1 80.5 83.1 64.1
ISD - 200 58.3 83.3 62.7 49.6 | 36.1 | 65.6 | 76.4 84.5 87.4 67.1

Table 2. Linear transfer evaluation: We linear classifiers on top of frozen features for various downstream datasets. Hyperparameters
are tuned individually for each method and the results are reported on the hold-out test sets. Our ResNet-18 is significantly better than
other state-of-the-art SSL methods. “rep.” refers to the reproduction with our framework for a fair comparison. I: our concurrent work.

Top-1 Top-5

Method Epochs 1%  10% 1% 10%
Entire network is fine-tuned.

Supervised 254 564 484 804
PIRL [28] 800 - - 572 838
CO2 [45] 200 - - 71.0 85.7
SimCLR [9] 1000 483 656 755 878
InvP [44] 800 - - 78.2 88.7
BYOL [18] 1000 532 68.8 784 89.0
SwAVT [8] 800 539 702 785 89.9
Only the linear layer is trained.

BYOL' [18] 1000 557 68.6 80.0 88.6
CompRess* [1] 1K+130 59.7 67.0 823 875
MoCo v2 [10] 200 436 584 712 829
BYOL-asym [18] 200 479 613 746 847
ISD 200 534 63.0 78.8 859

Table 3. Evaluation on limited labels ImageNet for ResNet-50:
We evaluate our model for the 1% and 10% ImageNet linear eval-
vation. Unlike other methods, we only train a single linear layer
on top of the frozen backbone. We observe that our method is bet-
ter than other state-of-the-art methods given similar computational
budgets. * is compressed from ResNet-50x4

ResNet-18 experiments: Following CompRess [1], we
train our self-supervised ResNet-18 model with the initial
learning rate set to 0.01 and multiplied by 0.2 at epochs 140
and 180. We follow [18] and add a prediction layer for the
student. The hidden and output dimensions of the prediction
MLP layer are set to 512. We do not have any projection
layer for ResNet18. We use the same set of augmentations
used in [10, 9, 18]. We use the same temperature for teacher
and student 75 = 7, = 0.02. The memory bank size is 128K

and momentum m for teacher encoder is 0.999. We choose
these parameters based on ablations which can be found in
the appendix. The results are shown in Tables 1 and 2. Our
model outperforms both baselines on full ImageNet linear
and transfer linear benchmarks.

It is important to note that our method can be seen as a
soft version of MoCo. So, ISD outperforming MoCo, em-
pirically supports our main motivation of improving repre-
sentations by smoothing the contrastive learning: not con-
sidering all negatives equally negative.

ResNet-50 experiments: We train ResNet-50 with dif-
ferent settings than ResNet-18. We use same architecture
and settings as ResNet-50 BYOL-asym. We use cos learn-
ing rate scheduler with initial learning rate of 0.05. We use
temperature of 75 = 0.1 for the student and 7, = 0.01 for
the teacher. Memory bank size is 128K, and momentum m
for teacher encoder is 0.99. We study the effect of memory
bank size in Figure 3 which shows that memory bank size
of even 16K is on-par with 128K and above. Additionally,
inspired by [40], we train our model with two different aug-
mentation sets which we call it weak (random cropping and
random horizontal flipping) and strong (same as [10, 9, 18]).
The teacher view uses weak augmentation while the student
view uses the strong augmentation. We evaluate the effect
of different augmentation in Table 5. ResNet50 results are
shown in Tables I and 2.

Tables 1 and 2 show the results on ImageNet and transfer
learning settings respectively. Our method is comparable to
SOTA SSL methods including BYOL in Linear and nearest
neighbor evaluation on ImageNet. As mentioned earlier, we
believe our method is more relaxed compared to BYOL as
our method lets the embeddings of augmented images move
as long as their similarity relationship with neighbors has



not changed. Table 3 shows our results when only limited
labels are available in ImageNet dataset. Figure 5 shows
random image samples from random clusters where each
row corresponds to a cluster. Note that each row contains
almost semantically similar images.

Evolution of teacher and student models: In Figure 4,
for every 10 epoch of ResNet-18, we evaluate both teacher
and student models for BYOL, MoCo, and ISD methods us-
ing nearest neighbor. For all methods, the teacher performs
usually better than the student in the initial epochs when the
learning rate is relatively large and then is very close to the
student when it shrinks. This is interesting as we have not
seen previous papers comparing the teacher with the stu-
dent. This might happen since the teacher is a running aver-
age of the student so can be seen as an ensemble over many
student networks similar to [41]. We believe this deserves
more investigation as future work.

Effect of varying Memory Bank size

Acc Top 1(%)
Z

NN
46 20-NN
w6k 16k | B4K 128K 512K 1024K
Size of Memory Bank

Figure 3. Effect of Memory Bank Size: We study the effect of

memory bank size by varying from 256 to 1024K for ISD on
ResNet-50 model.

Ablation study: We varied the temperature for our
method on ResNet-18 with 130 epochs and reported the re-
sults in Table 6. Here, LR = 0.01 and it is multiplied by
0.2 at 90 and 120 epochs. Also, for more fair comparison
with BYOL on ResNet18, we varied the learning rate and
chose the best one for BYOL. Table 7 shows the results of
this experiment.

3.2. Self-Supervised Learning on Unbalanced
Dataset

Most recent self-supervised learning methods are bench-
marked by training on unlabeled ImageNet. However, we
know that ImageNet has a particular bias of having an al-
most uniform distribution over the number of samples per
category. We believe this bias does not exist in many real-
world applications where the data is unbalanced: a few cat-
egories have a large number of samples while the rest of the
data have a small number of samples. For instance, in self-
driving car applications, it is really important to learn fea-
tures for understanding rare scenes while most of the data
is captured from repetitive safe highway scenes. Hence, we

believe it is important to design and evaluate self-supervised
learning methods for such unbalanced data.

As mentioned earlier, since standard contrastive learning
methods e.g., MoCo, consider all negative examples equally
negative, when the query image is from a large category,
it is possible to have multiple samples from the same cat-
egory in the memory bank. Then, the contrastive loss in
MoCo pushes their embeddings to be far apart as negative
pairs. However, our method can handle such cases since our
teacher assigns a soft label to the negative samples, so if an
anchor example is very similar to the query, it will have
high similarity and the student is optimized to reproduce
such similarity.

To study our method on unbalanced data, we design a
controlled setting to introduce the unbalanced data in the
SSL training only and factor out its effect in the feature
evaluation step. Hence, we sub-sample ImageNet data with
38 random categories where 8 categories are large (use all
of almost 1300 images per category) and 30 categories are
small (use only 100 images per category.) We train our SSL
method and then evaluate by nearest neighbor (NN) classi-
fier on the balanced validation data. To make sure that the
feature evaluation is not affected by the unbalanced data,
we keep both evaluation and the training data of NN search
balanced, so for NN search, we use all ImageNet training
images (almost 1300 x 38 images) for those 38 categories.

We repeat the sampling of 38 categories 10 times to
come up with 10 datasets and report the results for our
method and also MoCo in Table 4. To measure the effect
of the unbalanced data. we report the accuracy on all 38
categories and also on those 30 small categories only sepa-
rately. Our method performs consistently better than MoCo,
but more interestingly, the gap the improvement is larger
when we evaluate on the 30 small categories only. We be-
lieve this empirically proves our hypothesis that our method
may be able to handle unbalanced data more effectively. For
a fair comparison, we train both our model and MoCo for
400 epochs with a memory bank size of 8192 and cosine
learning schedule.

4. Related Work

Self-supervised learning: The task of learning repre-
sentations by solving a pretext task without using any super-
vised annotations is called self-supervised learning. Various
pretext tasks like solving jigsaw puzzles [3 1], predicting ro-
tations [17], counting the visual primitives [32], filling up
a missing patch [37], predicting missing channels of input
[52, 53], and contrastive learning [19, 20] are explored in
the literature. We are proposing a novel pretext task based
on iterative similarity based distillation.

Contrastive learning: The task of learning unsuper-
vised representations by contrasting the representations of
an image with other images is called contrastive learning
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Figure 4. Evolution of teacher and student models: Comparing the teacher and student ResNet18 models using Nearest Neighbor while
training for MoCo, BYOL, and ISD methods. Interestingly, the teacher performs better than the student before shrinking the learning rate.
Most previous works use the student as the final model which seems to be sub-optimal. We believe this is due to ensembling effect similar

to [41] and needs more investigation.

Figure 5. Random Clusters: We cluster ImageNet dataset into 1000 clusters using k-means and show random samples from random
clusters. We did not do cherry-picking for this visualization. Each row corresponds to a cluster. Note that semantically similar images are

clustered together. More results can be found in the appendix.

[19]. Contrastive learning is essentially positive/negative
classification where the positive and negative pairs of em-
beddings can be defined in various ways. In [46, 9, 20], the
positive pairs are augmented views of the same image while
the negative pairs are those of different images. In [21],
the positive pairs are a patch and context embeddings from
the same image while the negatives pairs are a patch and
context embedding from different images. In [23, 4], the
positives pairs are global and local features from the same
image while the negative pairs are global and local features
from different images. In [50, 8, 7], the positive pairs are
members of the same cluster while the negative pairs are
member of different clusters. We are different from these
contrastive methods in that we do not consider all negatives
equally: we calculate a soft labeling for the negatives us-
ing similarity of the data points. Also, we do not consider
positive pairs directly: the comparison for the positive pairs

is done through the similarity distillation. A few methods
have attempted to fix false negative problem of contrastive
learning by debiasing the loss [12] and by sampling the lo-
cal neighborhood as positives [44]. We’re different as we
simply make the contrastive learning soft. [24] is a concur-
rent work that identifies some wrong negatives and cancels
them in constrictive leaning.

Knowledge Distillation: The task of transferring the
knowledge from one model to the other is called knowledge
distillation [22, 3]. The knowledge from the teacher can
be extracted and transferred in various ways. The knowl-
edge in the activations of intermediate layers can be trans-
ferred through regression [39, 49, 51]. While in most works
the teacher is a deeper model and the student is a shal-
lower model, in [5, 16] both teacher and the student use the
same architecture. Techniques from knowledge distillation
can also be used in an unsupervised way to improve self-



Method ‘ Dy ‘ Do ‘ Ds ‘ Dy ‘ Dy ‘ Dg ‘ D ‘ Dg ‘ Dy ‘ Do H Mean
Evaluation On All 38 Categories
MoCo 489 | 57.8 | 59.4 | 56.7 | 62.0 | 54.6 | 57.8 | 57.2 | 62.4 | 544 | 57.12
ISD 49.6 | 579 | 619 | 58.6 | 62.3 | 563 | 57.8 | 58.1 | 62.5 | 55.3 || 58.03
Diff +0.7 | +0.1 | +2.5 | +1.9 | +0.3 | +1.7 0 +0.9 | +0.1 | +0.9 || +0.91
Evaluation Only on 30 Rare Categories
MoCo 447 | 52.3 | 57.3 | 53.1 | 57.7 | 50.7 | 51.1 | 51.9 | 58.9 | 59.8 || 53.75
ISD 46.5 | 53.9 | 60.8 | 56.8 | 60.5 | 54.5 | 53.1 | 55.0 | 60.7 | 61.5 || 56.33
Diff +1.7 | +1.6 | +3.5 | +3.7 | 42.8 | 43.8 | +2.0 | +3.1 | +1.8 | +1.7 || 42.57

Table 4. Unbalanced dataset: Nearest Neighbor (NN) results with ResNet-18 model for the unbalanced data when we consider all 38
categories and 30 small categories separately. We repeat the experiment 10 times with different random sets of 38 categories. NN is done
on the validation set of ImageNet (which has uniform distribution) by searching the nearest neighbors among all ImageNet training data of
those 38 categories (so the training data of NN also has uniform distribution). Hence, the whole evaluation is on balanced data to make sure
we observe the effect of the unbalanced, “unlabeled” data only. “Diff” shows the improvement of our method over MoCo. Interestingly
the improvement is bigger in the rare categories. This is aligned with out hypothesis that our method can handle unbalanced, unlabeled
data better since it does not consider all negative images equally negative.

Method | Student Teacher | NN  20-NN
Aug. Aug.
ISD weak weak | 40.4 435
ISD strong weak | 229 263
ISD strong strong | 58.0 61.2
ISD weak strong | 59.2  62.0

Table 5. Effect of augmentation strategies: Effect of using weak
or strong augmentations for ResNet-50 trained with 200 epochs.

T | 0.003
NN | 372

0.007 0.01 0.02 0.04 0.06
37.8 377 39.7 353 325

Table 6. Effect of temperature: Effect of changing temperature
for our method ISD on ResNet-18 model.

LR
NN

0.01
373

0.05
40.0

0.10 0.20
38.6 373

Table 7. Effect of learning rates for BYOL: Comparison of dif-
ferent learning rates for BYOL on ResNet-18 with 200 epochs and
cosine learning rate scheduler.

supervised learning [ 1, 33, 48]. Instead of using knowledge
distillation for model compression or reducing the general-
ization gap, we use it iteratively to evolve the teacher and
student together to learn rich representations from scratch.
Similarity based knowledge distillation: While the
above methods [22, 3, 39, 49, 51] only extract the infor-
mation about a single data point from the teacher, similar-
ity based distillation methods [36, 38, 34, 43, 2, 42, 1, 14]
represent the knowledge from the teacher in terms of simi-
larities between data points. CompRess [1] and SEED [14]
are the closest related work to our method that uses similar-
ity based distillation to compresses a large self-supervised
model to a smaller one. Our method is different as we use

similarity based distillation to iteratively distill an evolving
teacher to a student.

Consistency regularization: Consistency regulariza-
tion is a method of regularization that seeks to make the
output of a model consistent across small perturbations in
either the input [29] or the model parameters [41]. Re-
cently, BYOL [ 18] applied a variant of Mean Teachers [4 1]
for self-supervised learning. Our method uses a variation of
this idea through similarity based loss rather than regression
loss defined on data points individually. [45] is probably the
closet to ours that uses a loss similar to our as a regularizer
in addition to the MoCo loss. Our method is different as we
optimize our loss from scratch as the main objective without
adding it to another method. Also, our method benefits from
different temperatures for the teacher and student networks
which is inspired by [14].

5. Conclusion

We introduce ISD, a novel self-supervised learning

method. It is a variation of contrastive learning (e.g., MoCo)
in which negative samples are not all treated equally. The
similarity between images in the teacher’s embedding space
determines how much each anchor image should be con-
trasted with. Our extensive experiments show that our
method performs comparable to the state-of-the-art SSL
methods on ImageNet, transfer learning tasks, and when the
unlabeled data is unbalanced.
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tially supported by the United States Air Force under Con-
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