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Abstract
Given the widespread deployment of black box deep neural
networks in computer vision applications, the interpretability
aspect of these black box systems has recently gained trac-
tion. Various methods have been proposed to explain the re-
sults of such deep neural networks. However, some recent
works have shown that such explanation methods are biased
and do not produce consistent interpretations. Hence, rather
than introducing a novel explanation method, we learn mod-
els that are encouraged to be interpretable given an expla-
nation method. We use Grad-CAM as the explanation algo-
rithm and encourage the network to learn consistent interpre-
tations along with maximizing the log-likelihood of the cor-
rect class. We show that our method outperforms the baseline
on the pointing game evaluation on ImageNet and MS-COCO
datasets respectively. We also introduce new evaluation met-
rics that penalize the saliency map if it lies outside the ground
truth bounding box or segmentation mask, and show that our
method outperforms the baseline on these metrics as well.
Moreover, our model trained with interpretation consistency
generalizes to other explanation algorithms on all the evalua-
tion metrics.

1 Introduction
Deep learning has achieved great results in various applica-
tions including computer vision. In many applications, par-
ticularly in safety critical systems, it is very important to
understand the underlying decision making process of the
model (Alexandrov 2017; Vellido 2019). For instance, when
a self-driving car makes a wrong decision resulting in an
accident, we want to be able to investigate what part of
the input influenced this decision. As another example, in
medical applications, it is not easy to utilize the results of
deep learning models without knowing the underlying rea-
soning process in a human interpretable way (Caruana et al.
2015). Hence, building network interpretation methods have
become an active research area. Most such methods focus
on using a heatmap to describe the interpretation: Given a
model, an input image, and a decision, e.g., an output cate-
gory in classification setting, the interpretation method gen-
erates a heatmap in the size of the input image that has larger
values on the regions of the image that has influenced the
model to make the given decision.
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Recent works (Adebayo et al. 2018; Subramanya, Pillai,
and Pirsiavash 2019) have shown that the result of most
current model interpretation methods is not consistent with
our prior knowledge about understanding of an image, and
hence are difficult to trust. We believe this inconsistency
may have at least two sources: (1) the interpretation method
does not produce correct interpretation, (2) the model is not
making the decision as we want (e.g., it has learned some un-
wanted bias from the training data). For instance, in training
an image classifier for “fish” category, if a person is holding
the fish in most training examples for “fish” category, then
the model may decide to use features of the person’s hand to
detect the fish. This is an example of association bias in the
training data. However, it is unwanted since we know that
such biases may not exist in some final test images (Singh
et al. 2020).

There is a large community developing better interpre-
tation algorithms to solve the first point above, so in this
work, we assume the interpretation method is given and try
to focus on resolving the second point above. Specifically,
we train deep models such that under a “given” interpreta-
tion method, the network produces a reasonable interpreta-
tion that is consistent. This means the model should only use
the information that we believe is relevant to the model’s fi-
nal decision. We would like to emphasize that we are not
improving the interpretation algorithm as many other works
do. Instead, we are learning a more trustworthy model under
a given interpretation method.

If we knew the ground truth interpretation for a decision,
this goal can be achieved by simply supervising the interpre-
tation output (Ross, Hughes, and Doshi-Velez 2017). How-
ever, we do not always have access to the ground truth in-
terpretation. There are some works that assume the inter-
pretation mask should be close to the object’s segmenta-
tion mask (Li et al. 2019) and use the segmentation mask in
the supervision. However, we believe that such a hard con-
straint might not always be necessary as the network can
make decisions by relying solely on the most discrimina-
tive parts of an object instead of the whole object area. For
example, the model can use only the head of a dog instead
of its whole body to reason about dog classification. More-
over, such methods require the segmentation mask during
training, which is generally expensive. To mitigate this lack
of ground truth masks, we adopt ideas from self-supervised
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Figure 1: To encourage interpretation consistency, we randomly sample three distractor images for a given input image and feed
all four to the Image Composer module which creates a 2× 2 grid and places the positive image and the three negative images
in random cells. We also feed the Grad-CAM interpretation mask for the ground truth category (‘Keyboard’) to the Image
Composer to obtain the ground truth Grad-CAM mask of this composite image for the positive image category. The negative
quadrants of this mask are set to zero. We then penalize the network if the Grad-CAM heatmap of the composite image for the
positive image category does not match the ground truth Grad-CAM mask.

learning methods which have recently gained prominence.
Self-supervised learning: Recently, there is huge

progress in developing self-supervised learning (SSL) al-
gorithms which learn rich visual representations from un-
labeled data. A class of SSL methods learn representations
by enforcing some form of consistency that we know should
exist in the visual feature space (Noroozi and Favaro 2016;
Noroozi, Pirsiavash, and Favaro 2017; Zhang, Isola, and
Efros 2016). Contrastive learning (Hadsell, Chopra, and Le-
Cun 2006; He et al. 2019), that achieves state-of-the-art re-
sults, is an instance of this class. We develop a method in-
spired by these SSL methods to deal with the unlabeled
ground truth interpretation masks.

In training the model, we apply a transformation in the in-
put image for which we know the corresponding transforma-
tion in the interpretation space. Then, we design a loss to pe-
nalize deviation from the expected behaviour. More specif-
ically, given an image, we compose a novel image using a
2×2 grid of images where the original image is on a random
cell and the other three images are distractors that are ran-
domly sampled from other categories. We know that the dis-
tractor images do not contain the category of interest (origi-
nal image’s category), so the interpretation of the model for
the original category should be unaffected by the distractor
images. Hence, we minimize the difference between inter-
pretations of the original image and the composite image.

Moreover we know that there is not a clear evaluation pro-
tocol for network interpretation, so building better evalua-
tion methods for interpretation is also an important research
topic. We argue that the standard evaluation of localizing
objects using interpretation is not a good fit as the interpre-
tation does not need to focus on the entire object. Hence, we
propose to evaluate the interpretation by measuring the per-
centage of heatmap (interpretation probability distribution)
lying inside the object segmentation mask or bounding box.

In other words, we prefer a model for which the interpre-
tation does not use any pixel outside the human annotated
object boundary in making the decision.

We design our method based on the Grad-CAM interpre-
tation algorithm that is differentiable, and show that even
though our model is tuned for consistency under Grad-CAM
interpretation only, the trained model has consistent inter-
pretations under a few other interpretation methods as well.

2 Related Work
2.1 Interpretability methods for black box models
Explainability of black box deep neural networks has been
an active area of research in the past few years given the
widespread adoption of deep neural networks for a variety
of tasks. (Ribeiro, Singh, and Guestrin 2016) have shown
that it is often very easy for machine learning models to pick
up undesirable correlation artifacts during training which are
often difficult to discover if we only rely upon prediction ac-
curacy. Various approaches for detecting salient regions of
an image has been proposed in the past few years (Zeiler
and Fergus 2013; Simonyan, Vedaldi, and Zisserman 2013;
Zhou et al. 2015b,a; Zhang et al. 2016). Zeiler and Fergus
(Zeiler and Fergus 2013) introduced an approach that used
the gradients of the class conditional output with respect to
the input image and used spatial locations with large gra-
dient magnitudes to obtain a saliency map corresponding
to the class. (Springenberg et al. 2014; Sundararajan, Taly,
and Yan 2017) build upon this work to obtain saliency maps
which are sharper. (Ross, Hughes, and Doshi-Velez 2017)
showed that input based gradient explanations match state
of the art sample based explanations on several datasets.
The authors also show that constraining the gradient expla-
nations to be small in irrelevant areas using an annotation
mask leads to improved gradient explanations, but comes at
an added cost. Gradient-weighted Class Activation Mapping



(Grad-CAM) (Selvaraju et al. 2016) generalizes class activa-
tion maps (Zhou et al. 2015a) beyond global average pooling
by using the gradients for a given class flowing into the final
convolutional layer to obtain a coarse localization map high-
lighting the important regions in the image for predicting the
class. Sanity checks (Adebayo et al. 2018) have shown that
some of the existing methods produce saliency maps very
similar to an edge detector and exhibit minimal sensitivity
to randomization tests. Recently, (Subramanya, Pillai, and
Pirsiavash 2019) showed that state-of-the-art interpretation
algorithms might not always explain the true cause of a pre-
diction and proposed evaluation metrics for assessing the re-
liability of network interpretation algorithms.

2.2 Explainable models
There have been recent works (Melis and Jaakkola 2018;
Chen et al. 2019; Plumb et al. 2019) that attempt to train
models that are explainable by definition. One such ap-
proach (Chen et al. 2019) introduces a new deep network
architecture - ProtoPNet, that dissects a given input image
by finding prototypical parts and makes a weighted combi-
nation of the prototypes to make a final classification. (Melis
and Jaakkola 2018) introduce the notion of stability for ex-
planations, i.e similar inputs should yield similar explana-
tions. This is done by introducing a regularizer that encour-
ages the model to behave like a linear model locally, but not
globally and hence achieve interpretability without sacrific-
ing accuracy. We build upon these ideas by incorporating a
consistency constraint for the interpretation during the train-
ing phase of our model.

2.3 Self-supervised learning
Self-supervised learning deals with learning representations
without explicit annotations by leveraging structural pri-
ors in the data. These priors are then used for automati-
cally generating ‘labels’ for discriminative training. (Do-
ersch, Gupta, and Efros 2015) introduced a pretext task
that exploits structural properties in the visual domain to
learn representations. Additional pretext tasks have since
been proposed for images that exploit the spatial structure
(Noroozi and Favaro 2016; Noroozi, Pirsiavash, and Favaro
2017; Noroozi et al. 2018), color information (Deshpande,
Rock, and Forsyth 2015; Larsson, Maire, and Shakhnarovich
2016, 2017; Zhang, Isola, and Efros 2016), rotation (Gidaris,
Singh, and Komodakis 2018), etc. We take inspiration from
these techniques since we often lack annotations for network
interpretation. In fact, interpretations can often be subjective
and there is no clear definition of a ground truth for inter-
pretation. (Wang et al. 2020) and (Guo et al. 2019) proposed
training models to have consistent visual attention under dif-
ferent spatial transformations. Our method differs from these
works by using distractor images while generating the com-
posite training images and hence reducing the model’s de-
pendency on spurious contextual information.

3 Method
We first review Grad-CAM (Selvaraju et al. 2016) as a net-
work interpretation method briefly since our model uses it in
the learning.

Background on Grad-CAM visualization: Given an im-
age x and a deep classification model f , we feed the image
to the model and get a vector of logits y where yt corre-
sponds to the output for category t, and feeding y through a
SoftMax operator produces the probability distribution over
categories.

To interpret the model’s decision, Grad-CAM of model
f for category t produces a heatmap that highlights the re-
gions of the image that lead the model to classify the image
as category t. To do so, we pick a convolutional layer, e.g.,
conv5 in AlexNet, and calculate the derivative of the output
yt with respect to that layer and average it over space to get
the importance of each channel of the convolutional layer:

αt
k =

1

Z

∑
i

∑
j

∂yt

∂Ak
ij

(1)

where Ak
ij is the activations of conv layer at channel k and

location (i, j), Z is a normalizer, and αt
k is the importance

of channel k in making the decision. Then, we multiply each
activation map by the corresponding importance, average
them over the channels, and discard negative values:

gcamt
ij = max(0,

∑
k

αt
kA

k
ij) (2)

Finally, to visualize it on image space, we up-sample it to
the image size.
Element-wise Grad-CAM: In Eq. (1), the importance of
each channel is averaged over the space to come up with
one scalar for each channel. We believe this is sub-optimal
as it does not consider the location information in the impor-
tance. Similar to (Saha et al. 2019), we fix this problem by
removing the averaging and simply defining Grad-CAM as:

gcamt
ij = max(0,

∑
k

∂yt

∂Ak
ij

Ak
ij) (3)

For input x and category y, we normalize Grad-CAM to
sum to 1 and call it gyx = gcamy

|gcamy|1 .
Enforcing consistency in interpretation (GC): Fig. 1
shows our GC learning method. Given a training image x
and its label y, we sample three random training images z1,
z2, and z3 that are labeled with any category except y. Then,
we generate a twice larger image with a 2×2 grid and 4 cells.
We place the above four images, x, z1, z2, and z3 on random
cells of the grid to come up with the composite image c:

c = comp(k, x, z1, z2, z3)

where comp(.) is the composition operator that simply con-
catenates the images in a 2× 2 grid, and k ∈ {1...4}, that is
picked randomly, is the cell index for the first image x. An
example composite image is shown in the middle of Fig. 1.

We input x to the model f and calculate the Grad-CAM
for the category y to get gyx. We also input the composite
image c to the model f and calculate the Grad-CAM for the
category y to get gyc .

Since we know that the distractor images zi, do not con-
tain the category y, we would like the network to not decide



on category y based on the regions of the distractor images.
Hence, the heatmap for category y should be zero for the
location of distractor images on the grid. Therefore, we gen-
erate the target heatmap for the composite image by placing
gyx at the right cell and filling the other three cells with zeros.

g̃yc = comp(k, gyx, 0, 0, 0) (4)

This can be seen as simply zero-padding the Grad-CAM
visualization. Hence, we minimize the following loss func-
tion in training the model f :

min
f

(
lce(f, x, y) + λ|gyc − g̃yc |1

)
(5)

where the first term is simply the standard cross entropy loss
that encourages the network to predict the correct label, the
second term encourages consistency on the model interpre-
tation, and λ is a hyper-parameter for trade-off between the
two loss terms.

Note that Grad-CAM uses derivative of the model, so us-
ing its result in the loss function needs using double gradient
of the model f in the optimization. This is straight forward in
recent deep learning frameworks like PyTorch where the cal-
culation of derivative itself is represented as a deep model.
ResNet with Global Max Pooling (GMP): Since ResNet
architecture has a global average pooling over space in the
last layer, it removes the location information and spreads
out the explanation of a decision over the whole image. This
is similar to the average pooling operation in standard Grad-
CAM method that we removed in the element-wise Grad-
CAM. Hence, to produce sharper interpretation and also en-
able the model to collect information from selective regions
of the image rather than the whole image, we simply replace
the global average pooling layer with a global max pooling
layer. In the experiments, we show that this simple change
produces more consistent interpretations without degrading
the model’s accuracy.

Interestingly, as a byproduct, we also show that this sim-
ple change in the model architecture makes the model more
robust to FGSM adversarial attacks (Goodfellow, Shlens,
and Szegedy 2014a). We believe this happens since the new
model focuses on concise regions of the image rather than
collecting information from all over the image. Then, the ad-
versarial attack cannot fool the model to detect a fake “dog”
by introducing weak features of dog over the whole image.
Note that introducing a fake dog in a small region requires
more perturbation that might be visible.

4 Experiments
4.1 Datasets
We perform all our experiments on ImageNet (Deng et al.
2009) and MS-COCO (Lin et al. 2014) datasets. For evalu-
ation, we use the validation set of 50k images for ImageNet
and ≈ 40k images for MS-COCO dataset.

4.2 Interpretation methods
We use the following network interpretation algorithms for
our evaluations:
Grad-CAM: This is described in the method section.

Contrastive Top-down Attention (cMWP): (Zhang et al.
2016) introduced contrastive Marginal Winning Probability
(cMWP) a stochastic Winner Takes All (WTA) formulation
for CNN architectures for modelling the top-down attention
for neural networks highlighting the most discriminative re-
gions in an image used for classification. Here, the connec-
tions between activation neurons are considered to be exci-
tatory if its weights are positive and inhibitory otherwise.
During backpropagation, only the gradients for the excita-
tory connections are passed along the layers to obtain dis-
criminative saliency maps for any layer.
FullGrad: FullGrad (Srinivas and Fleuret 2019) is another
interpretation algorithm that creates an approximate saliency
map visualization by aggregating the full-gradient compo-
nents of the network for the given input. These full-gradient
components are obtained by decomposing the output of a
neural network into input sensitivity and per-neuron sensi-
tivity components.

4.3 Evaluation metrics
We report model accuracy for all the models since we not
only want the model to be interpretable, but also want it to
perform well on the test set. Here, we describe the metrics
we use for evaluating the visualization heatmaps:
Pointing Game (PG): This metric (Zhang et al. 2016) was
introduced to quantitatively evaluate different interpretation
algorithms using the ground truth semantic annotations.
In this method, a given interpretation algorithm is used to
compute a saliency map for each of the object classes in the
input image. If the maximum point of this saliency map lies
within the ground truth annotation mask of the object, we
consider this as a hit, otherwise we consider this as a miss.
Then the overall pointing game accuracy is computed as

#Hits
#Hits+#Misses . Similar to (Zhang et al. 2016), we dilate
the object mask or bounding box by a margin before count-
ing the number of hits to tolerate small misalignments. We
use a margin of 15 pixels when images are of size 224×224.

Stochastic Pointing Game (SPG): One valid criticism for
the pointing game metric is that it picks only the most salient
point from the saliency map and hence only evaluates the se-
lectiveness of a given interpretation algorithm for a model.
This does not give us the full picture with respect to spuri-
ous correlations in the saliency map if its magnitude in the
saliency map is not the maximum. Here, we are interested
in evaluating not only the maximum point on the saliency
map, but also the distribution of the saliency map across the
image with respect to the annotation mask. To this end, we
normalize the saliency map obtained from an interpretation
algorithm to sum to 1 and treat it as a probability distribu-
tion over locations. We sample 100 spatial coordinates from
this probability distribution, evaluate each sample similar to
the pointing game, and report the average number of hits us-
ing the same 15 pixels margin as in PG. We call this method
‘Stochastic Pointing Game’ for which higher values are bet-
ter. The value will be low if the saliency map highlights re-
gions outside the object area.
Content Heatmap (CH): Next, we go a step further and



attempt to quantify the percentage of the heatmap that lies
strictly within the object annotation mask for a given in-
terpretation algorithm. If the model is expected to not rely
on spurious contextual information for making classification
decisions, we can assume that the percentage of the heatmap
that lies inside the object annotation mask should be close to
1. Hence, we expect this metric to be high if the interpre-
tation heatmap is mostly within the boundary of the object
annotation mask.
Negative Quadrants Heatmap (NQH): Here, we use the
same composite image creation method used to train our
model with interpretation consistency and measure the per-
centage of the interpretation heatmap within the distractor
quadrants. We expect this metric to be low since we know
that the distractor quadrants do not contain the ground truth
object by construction.

Note that CH is equal to the extreme case of SPG when
we remove the tolerance margin and increase the number of
trials to infinity. Also, PG is the other extreme of SPG when
there is only one trial at the mode of the distribution. Hence,
SPG is the intermediate point between two extreme cases.

4.4 Implementation details
We use AlexNet (Krizhevsky, Sutskever, and Hinton 2012),
ResNet18 (He et al. 2015), and ResNet50 network architec-
tures for all our experiments. We use PyTorch (Paszke et al.
2019) along with Nvidia Titan RTX and 2080Ti GPUs for
training and evaluating our models. We maintain the resolu-
tion of images in the 2x2 composite image, so the composite
image is 448x448 while the original image is 224x224. We
use standard AlexNet and ResNet architectures in PyTorch
which handle the change in input resolution with adaptive
average pooling after the last convolutional layer. For train-
ing the models on the ImageNet dataset, we use SGD with a
learning rate of 0.1 for ResNet18 and 0.01 for AlexNet de-
cayed by 0.1 every 30 epochs. We set the λ hyperparameter
in Eq (5) to 25 for the ImageNet experiments and 1 for the
MS-COCO experiments respectively.

4.5 Results
We first describe the nomenclature of the methods: (1) GC
refers to using Grad-CAM consistency loss in training. (2)
GMP refers to using global max pooling in the ResNet ar-
chitecture. We train the baseline models with ImageNet and
MS-COCO datasets with standard cross entropy loss. For
our Grad-CAM consistency method, we use our loss defined
in Eq (5). For GC on MS-COCO dataset, we initialize from
a model pretrained on ImageNet with our GC loss. The clas-
sification accuracy of the models are shown in Table 1 for
ImageNet and in Table 2 for MS-COCO. Introduction of our
GC loss and Max Pooling layer does not degrade the accu-
racy of the model significantly. Interestingly, our method im-
proves the accuracy marginally on MS-COCO dataset. We
did not aim for this improvement as we are mainly focused
on improving the consistency of interpretation without los-
ing much in accuracy.
Interpretation Consistency: Tables 1 and 2 show the re-
sults using the evaluation metrics from section 4.3 on the
ImageNet and MS-COCO datasets respectively. For the

stochastic pointing game evaluations, we report the mean
and standard deviation values over 5 independent runs. Our
method improves over the baseline model on all evaluation
metrics for both datasets.
Consistency for Elementwise Grad-CAM: Since AlexNet
doesn’t have any pooling layer, we use Elementwise Grad-
CAM without any change in the architecture. Table 5
shows that the AlexNet model trained with GC outperforms
the baseline on both Grad-CAM and Elementwise Grad-
CAM interpretation methods. More importantly, Element-
wise Grad-CAM outperforms the standard Grad-CAM for
both the baseline and GC. This empirically validate our hy-
pothesis that standard Grad-CAM reduces the localization
information. We use Elementwise Grad-CAM in all other
experiments, but since the baseline ResNet models come
with an average pooling layer, there is no difference between
the original Grad-CAM and the Elementwise Grad-CAM.
Transfer across interpretation algorithms: To confirm
that the improved interpretation for the model trained for in-
terpretation consistency is not overfitted to the Grad-CAM,
we also evaluate our model using other interpretation algo-
rithms discussed in section 4.2. Tables 3 and 4 show that
the improvements transfer to the other interpretation meth-
ods even though they are not used in the loss function. The
learning always uses Grad-CAM in the loss.
Robustness against adversarial attacks: Unlike standard
ResNet architecture, since the global max pooling layer will
only focus on the most salient spatial location for each fil-
ter, we expect such a network to be more robust relative to
the standard ResNet architecture with global average pool-
ing. An adversarial attack on standard ResNet can add mi-
nor perturbations to multiple spatial locations and the av-
erage pooling operation will aggregate all these minor per-
turbations for the final classification layer; whereas, such an
attack on the network using global max pooling will need a
much larger magnitude ε adversarial attack to make the same
adversarial attack successful. Table 6 compares the baseline
ResNet50 with ResNet50 trained with GMP and also com-
bined GMP+GC. Our results show that GMP+GC is able
to withstand adversarial attacks of much larger magnitudes
compared to the baseline. This is inline with our goal of re-
ducing the effect of context in decision making, as using
non-relevant information in making the decision opens the
doors to the adversary to influence the decision by spread-
ing the attack across the whole image area.

5 Qualitative Results

Fig. 2 shows some examples comparing the Grad-CAM vi-
sualization of our model with the baseline. We see that our
method reduces the contextual correlation in the saliency
map for a given object category in an image. We also
compare our method with the ResNet18 model which uses
Global Max Pooling instead of Global Average Pooling. We
hypothesize that our method improves the resulting saliency
map for a given object category in an image by focusing on
the most discriminative part of the object.



Model Top-1 Acc (%) PG SPG CH (%) NQH (%)

AlexNet Baseline 56.51 72.80 53.45 ± 0.02 45.78 43.53
GC 56.16 73.70 61.15 ± 0.01 48.10 33.94

ResNet18

Baseline 69.43 79.80 60.50 ± 0.01 54.36 24.35
GC 67.74 80.00 65.85 ± 0.01 57.73 7.62
GMP 69.08 79.30 66.66 ± 0.01 62.89 38.96
GMP + GC 69.02 79.60 68.74 ± 0.01 65.35 31.15

ResNet50

Baseline 76.13 80.0 60.95 ± 0.00 54.78 21.48
GC 74.40 80.30 65.26 ± 0.00 59.42 7.43
GMP 74.63 79.80 66.29 ± 0.00 54.23 33.91
GMP + GC 74.14 79.60 69.51 ± 0.00 59.70 21.30

Table 1: Evaluation using Grad-CAM interpretation for AlexNet, ResNet18, and ResNet50 on the ImageNet validation set.
Note that for the PG (Pointing Game), SPG (Stochastic Pointing Game) and CH (Content Heatmap), higher values are better;
whereas, for NQH (Negative Quadrants Heatmap), lower values are better. We observe that when GC is combined with GMP,
the resulting interpretation heatmaps show reduced influence of the regions outside the object annotation mask. We also observe
a marginal drop in classification accuracy while yielding consistent interpretations.

Model F1-PerClass F1-Overall PG SPG CH (%) NQH (%)

ResNet18

Baseline 59.81 67.56 61.50 43.25 ± 0.01 29.15 29.27
GC 61.50 68.59 63.80 44.26 ± 0.00 29.95 28.35
GMP 61.19 68.41 63.10 45.62 ± 0.01 33.97 41.09
GMP + GC 61.99 68.93 66.10 46.88 ± 0.01 35.16 40.17

Table 2: Evaluation using Grad-CAM interpretaion for ResNet18 on the MS-COCO validation set.

ResNet18 PG SPG CH NQH
(%) (%)

Baseline 63.30 45.68 ± 0.00 32.23 74.89
GC 65.60 48.54 ± 0.01 34.44 74.90
GMP 63.80 51.21 ± 0.01 37.54 75.21
GMP + GC 65.60 52.22 ± 0.01 38.17 74.86

Table 3: Evaluation using the Contrastive Excitation Back-
prop (Zhang et al. 2016) interpretation algorithm on the MS-
COCO validation set

ResNet18 PG SPG CH NQH
(%) (%)

Baseline 59.90 18.99 ± 0.00 13.38 73.83
GC 64.90 19.46 ± 0.00 13.71 73.46
GMP 66.50 27.09 ± 0.01 19.14 68.64
GMP + GC 68.70 27.18 ± 0.00 19.14 68.49

Table 4: Evaluation using the FullGrad (Srinivas and Fleuret
2019) interpretation algorithm on MS-COCO validation set

6 Conclusion
We propose a novel learning method that enforces consis-
tency in the interpretation of deep models. Since the ground-
truth for the right interpretation is not known, we adopt ideas
from self-supervised learning approaches that deal with un-
labeled data for representation learning. We show that com-
pared to standard models, our model focuses more on the ob-

AlexNet
PG CH (%)

GCAM Elementwise GCAM Elementwise
GCAM GCAM

Baseline 72.8 74.0 45.78 46.79
GC 73.7 76.6 48.10 55.20

Table 5: Evaluation using the regular Grad-CAM and the El-
ementwise Grad-CAM interpretation on the ImageNet vali-
dation set for AlexNet.

ResNet50
ε for L∞ adversarial attack using FGSM

(Goodfellow, Shlens, and Szegedy 2014b)
1 2 8 16 32 64

Baseline 3.11 2.98 2.95 2.89 2.30 1.06
GMP 6.27 6.20 6.23 5.99 4.81 1.95
GMP + GC 8.08 7.93 7.96 7.88 6.63 2.71

Table 6: Evaluation of robustness for ResNet50 architec-
ture. Our method when used with GMP on ResNet50 is able
to withstand adversarial attacks of much larger magnitudes
compared to the baseline.

jects of interest rather than the background regions. We ex-
periment with two datasets and three network architectures
and also show that our method transfers to other interpre-
tation algorithms. Moreover, we introduce new evaluation
metrics to evaluate the consistency of the interpretation.
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Figure 2: Grad-CAM visualization results for images from the ImageNet validation set using ResNet18. Our method has much
better interpretation heatmaps compared to the baseline. In the first row, our method does not rely on the hand of the person
to detect the ‘harp’ category, thereby reducing the importance of correlated contextual information. We also observe that the
visualization maps for the Global Max Pooling model is much sharper and our method further improves upon this model.
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