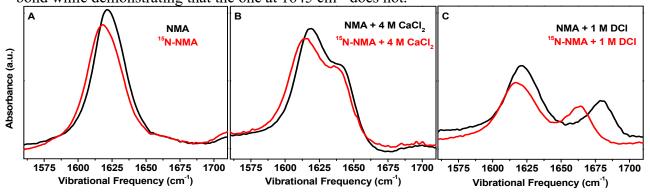
Comment on "Arresting an Unusual Amide Tautomer Using Divalent Cations"

Chad I. Drexler¹, Stephen J. Koehler¹, Ryan L. Myers¹, Braidon A. Lape¹, Elizabeth Elacqua¹, and Paul S. Cremer^{*,1,2}


¹Department of Chemistry and ²Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, United States

Herein, we comment on the interpretation of spectroscopic data in "Arresting an Unusual Amide Tautomer Using Divalent Cations", *J. Phys. Chem. B* **2019**, *123* (40), 8419–8424, by Bagchi and coworkers. In their paper, the authors assign the appearance of a blue-shifted shoulder on the amide I vibration of *N*-methylacetamide (NMA), *N*, *N*-dimethylacetamide (DMA), and urea to the formation of a tautomer-like structure in the presence of divalent metal cations. In other words, the shoulder should originate from a C=N⁺ resonance that is stabilized by the presence of divalent metal cations. Moreover, Bagchi and coworkers argue that the C=N⁺ resonance is coincidently located at a position just to the blue of the amide I band upon the introduction of divalent metal cation salts. This assignment represents an alternative to the idea that the blue-shifted shoulder on the amide I band arises from the dehydration of the amide oxygen upon interaction with metal cations.^{2,3} Bagchi's putative new assignment can be directly tested by studying ¹⁵N isotope labeled NMA. Such experiments were performed in our laboratory and are described below.

We synthesized NMA and ¹⁵N-labeled NMA by reacting acetyl chloride with methylamine·HCl and ¹⁵N-labeled methylamine·HCl, respectively (see Supporting Information for details). The resulting amide-containing molecules were introduced into D₂O at a concentration of 100 mM (Fig. 1A). In the absence of salt, there is a small isotope shift upon substitution with the ¹⁵N-labeled molecule. This very modest red shift from 1620 cm⁻¹ to 1617 cm⁻¹ in the case of ¹⁵N-labeled NMA is expected because the amide I resonance is not purely C=O in character. Upon adding 4 M CaCl₂, a blue-shifted shoulder appears at 1645 cm⁻¹ with NMA as well as with ¹⁵N-labeled NMA (Fig 1B). This is not what one would expect if the blue shoulder was from C=N⁺. Indeed, if the C=N⁺ assignment was correct, then this mode should have been quite sensitive to the mass of the nitrogen atom. Moreover, one can look for an isotope shift upon the addition of acid to solution. As Bagchi and coworkers point out, one expects to observe the formation of a C=N⁺ resonance at low pH. As

^{*}Corresponding Author P.S.C. <u>psc11@psu.edu</u>

such, we added 1 M DCl to solution to directly examine this feature (Fig. 1C). In the case of NMA, a new peak appears at 1680 cm⁻¹ (Fig. 1C, black curve). Next, the same experiment was performed with a solution containing ¹⁵N-labeled NMA (Fig. 1C, red curve). In this case, the new mode red shifts down to 1663 cm⁻¹. These observations confirm that the peak at 1680 cm⁻¹ arises from a CN bond while demonstrating that the one at 1645 cm⁻¹ does not.

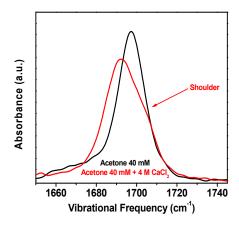


Figure 1. ATR-FTIR absorption spectra of the amide I resonance for solutions containing 0.1 M NMA and 0.1 M ¹⁵N-labeled NMA. All solutions were prepared in D₂O. (A) The amide I resonances of NMA and ¹⁵N- labeled NMA in D₂O, respectively. (B) The same molecules in the presence of 4 M CaCl₂ and (C) upon the addition of 1 M DCl.

The current results are consistent with previous assignments of the blue-shifted shoulder to the dehydration of the carbonyl oxygen atom when divalent metal cations are present.^{2,3} Indeed, in the absence of CaCl₂, there should be a small amount of charge transfer to the σ^* orbital of the water, which red-shifts the amide I resonance.⁴ When the hydration shell is disrupted by metal ions, the peak is expected to blue shift part way back toward its gas phase frequency. While the above results disprove the idea that the blue-shifted shoulder in the amide I spectra in Figure 1B come from a C=N⁺ resonance, they do not mean that tautomerization cannot occur when salt is introduced. In fact, a recent study has shown that a trace amount of this structure can be formed, but only in the presence of 6 M CaCl₂ and in that case the peak is also at 1680 cm⁻¹.⁵

Finally, we have measured the vibrational spectrum of 40 mM acetone in the presence and absence of 4 M CaCl₂ (Figure 2). As can be seen, a shoulder similar to the one in Figure 1B appears, albeit somewhat less pronounced. As such, a CN resonance is not required for this observation. This is significant, because acetone cannot tautomerize. Curiously, Bagchi and coworkers provide spectra for acetone in the presence of CaCl₂ in Figure S2 of their manuscript.¹ The authors claim that these spectra serve as controls to demonstrate that the blue-shifted shoulder is specific to amide-

containing molecules. Nevertheless, it is straightforward to demonstrate that such shoulders can also occur with simple ketones such as acetone.

Figure 2. Absorption spectra of the C=O stretch resonance of acetone in the presence and absence of 4 M $CaCl_2$. Both solutions were prepared in D_2O . The acetone concentration was 40 mM. The blue-shifted shoulder is denoted by an arrow.

Acknowledgements

We thank the National Science Foundation (CHE-2004050) for support.

References

- (1) Kashid, S. M.; Singh, R. K.; Kwon, H.; Kim, Y. S.; Mukherjee, A.; Bagchi, S. Arresting an Unusual Amide Tautomer Using Divalent Cations. *J. Phys. Chem. B* **2019**, *123* (40), 8419–8424.
- (2) Okur, H. I.; Kherb, J.; Cremer, P. S. Cations Bind Only Weakly to Amides in Aqueous Solutions. J. Am. Chem. Soc. 2013, 135 (13), 5062–5067.
- (3) Pluhařová, E.; Baer, M. D.; Mundy, C. J.; Schmidt, B.; Jungwirth, P. Aqueous Cation-Amide Binding: Free Energies and IR Spectral Signatures by Ab Initio Molecular Dynamics. *J. Phys. Chem. Lett.* **2014**, *5* (13), 2235–2240.
- (4) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. *Chem. Rev.* **1988**, *88* (6), 899–926.
- (5) Cracchiolo, O. M.; Geremia, D. K.; Corcelli, S. A.; Serrano, A. L. Hydrogen Bond Exchange and Ca²⁺ Binding of Aqueous N-Methylacetamide Revealed by 2DIR Spectroscopy. *J. Phys. Chem. B* **2020**, *124* (32), 6947–6954.