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Abstract
A plethora of applications hinge on a network or an array of sensors to undertake measurement
tasks. A rule of thumb for sensing is that a collective measurement taken by M independent
sensors can improve the sensitivity by 1/

√
M, known as the standard quantum limit (SQL).

Quantum resources such as entanglement and squeezed light can be harnessed to surpass the SQL.
Distributed quantum sensing is an emerging subject dedicated to investigating the performance
gain enabled by entangled states shared by multiple sensors in tackling different measurement
problems. This review formulates distributed quantum sensing (DQS) from a
quantum-information perspective and describes DQS protocols and their experimental
demonstrations. The applications enabled by DQS and an outlook for future opportunities will
also be discussed.

1. Introduction

The overarching goal of quantum information science and its enabled emerging quantum technologies is to
demonstrate capabilities beyond what is allowed by their classical counterparts. Since the discovery of Shor’s
factoring algorithm [1], quantum computing has received significant interests and investments as it is
widely deemed a disruptive paradigm capable of solving many classically intractable optimization [2–6],
artificial intelligence [7–13], and big-data analysis problems [14–17]. A remarkable milestone for quantum
computing is the accomplishment of ‘quantum supremacy’ on Google’s 53-qubit superconducting quantum
computer in solving a quantum random sampling problem [18]. Despite the tremendous recent advances in
quantum computing, immense challenges arise when utilizing the available noisy intermediate-scale
quantum (NISQ) hardware [19] to implement practically useful quantum algorithms due to a lack of
fault-tolerant mechanism. A continued pursuit for the quantum-information community is to seek
application scenarios in which quantum technologies enjoy a quantifiable advantage over their classical
counterparts.

Sensing is an arena that quantum technologies can achieve advantages over classical sensing technologies
for practical applications in the near term. Quantum metrology [20–24] studies the use of nonclassical
resources to enhance the performance of measurements for a variety of sensing applications. As a
prominent example, the Laser Interferometer Gravitational-wave Observatory (LIGO) injects nonclassical
squeezed light into its Michelson interferometer to surpass the standard quantum limit (SQL) due to laser
shot noise [25–27]. Apart from LIGO, quantum metrology has also been exploited in target detection
[28–34], microscopy [35], biological sensing [36], and phase tracking [37] (see references [21–24, 38, 39]
for comprehensive reviews of quantum metrology and references [40, 41] for a review of quantum sensing).
The focus of all these quantum-metrology experiments is on utilizing quantum resources to improve the
performance at a single sensor. Recent theoretical works [42–45] proposed distributed quantum sensing
(DQS) protocols that enable multiple sensors to leverage their shared entangled states to boost the
performance of probing global properties of an interrogated object. Since a multitude of real-world
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Figure 1. (a) DQS with entangled inputs vs (b) DCS with separable inputs.

Figure 2. Sensing modeled as a single-parameter estimation problem. The initial state ρ̂0 is used to probe a parameter α
embedded in the unitary operation Û(α), yielding output probe state ρ̂(α). A measurement on ρ̂(α) produces an estimator α̃.

applications rest upon a network or an array of sensors that work collectively to undertake sensing tasks,
DQS significantly broadens the applicable scope of quantum metrology and opens a new route for
achieving a quantum advantage with near-term quantum hardware.

This review first provides in section 2 an overview of DQS and compares it with distributed classical
sensing (DCS). Section 3 describes DQS protocols with continuous-variables (CVs) and discrete variables
(DVs). Section 4 then analyzes DQS and DCS protocols, quantifies DQS’s quantum advantage, and
accounts for practical nonidealities. To articulate the applications of DQS, section 5 reviews two recent DQS
experiments for, respectively, optical phase sensing and radio-frequency (RF) sensing applications. An
outlook for future prospects of DQS will be discussed in section 6.

2. Overview

Usual multi-parameter estimation protocols endeavor to estimate all unknown parameters, while some
multi-parameter estimation protocols alternatively consider extracting a single parameter while regarding
the rest as nuisance parameters. DQS belongs to neither cases as it is aimed at estimating a global property
of multiple parameters.

A conceptual schematic for DQS is sketched in figure 1(a): a quantum circuit processes the initial
quantum state ρ̂0 to create an entangled probe state shared by M sensors that jointly interrogate an object.
The measurement data produced by all sensors are postprocessed to infer a global parameter of the probed
object. By contrast, in DCS illustrated in figure 1(b), the quantum state at M sensors is in a separable form
(e.g., a product form ρ̂1 ⊗ ρ̂2 ⊗ . . . ⊗ ρ̂M) to generate measurement data that are also postprocessed to infer
a global property of the object. The ideal measurement sensitivity of DQS typically scales as 1/M, whereas
the scaling of the measurement sensitivity of DCS is limited by the SQL of 1/

√
M.

To quantify the advantage of DQS, a performance baseline set by a comparable DCS protocol is needed.
To assess the performance of a DCS protocol, one needs to constrain its accessible resources. For example,
the performance of optical sensors needs to be evaluated at a fixed probe power level as granting more
probe power can always improve the performance. A commonly used resource constraint is by assuming
that the compared DQS and DCS protocols use the same amount of total power at their sensors. In this
case, DCS protocols are allowed to leverage separable local nonclassical resources such as squeezed light as
long as the overall probe power equals that used in the compared DQS protocol. The quantum advantage is
quantified as the performance disparity between the compared DQS and DCS protocols. Such a resource
constraint has also been adopted by other quantum-sensing protocols such as quantum illumination
[28–33], quantum reading [46] and their multi-hypothesis generalizations [47–50], and absorption
spectroscopy [51]. It is worth noting that DQS protocols typically also enjoy a practical advantage over DCS
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Table 1. A list of protocols mentioned in this paper. PNR: photon-number-resolving. BS: beam
splitter. SS: spin squeezing states. SV: squeezed vacuum states. GHZ: Greenberger–Horne–Zeilinger
states. GKP: Gottesman–Kitaev–Preskill states.

Reference Sensed parameter Source Measurement Robustness Experiments

[44] Displacement/phase SV + BS Homodyne Yes [55, 56]
[57] Complex displacement GKP + BS GKP + Gaussian Yes N/A
[43] General DV parameter GHZ type Unspecified Unknown N/A
[42] Phase |N〉 + BS PNR detectors Unknown N/A
[45, 58] Qubit phase rotation GHZ/SS Parity/total spin Unknown [59, 60]

protocols in terms of the required hardware. Specifically, a DCS protocol allowed to take advantage of local
nonclassical resources such as squeezed light would need to deploy one nonclassical source at each sensor
while a DQS protocol only needs one entanglement source to serve all sensors.

3. Distributed quantum sensing protocols

Prior to introducing DQS, let us first formulate quantum sensing using an example of single-parameter
estimation, as shown in figure 2. Consider a parameter α embedded in a unitary operation Û (α) =
exp

[
−iĤα

]
, whose generator is the Hermitian operator Ĥ. To sense α, one prepares an initial quantum

state ρ̂0 and passes it through Û (α), obtaining the output state

ρ̂ (α) = Û (α) ρ̂0Û† (α) (1)

after the sensing operation. Subsequently, a suitable measurement on ρ̂ (α) gives information for building
an estimator α̃. The precision of such an estimator is characterized by the variance, i.e., the mean squared
error δα2 = 〈(α̃− α)2〉, where δα is the standard deviation (std), i.e., the root-mean-square (rms) error. To
improve the precision of estimation, one can independently use M probes to interrogate the same object
and repeat the measurement process M times. In this case, the initial state is in a product form of ρ̂⊗M

0 , and
the measurement on each output state ρ̂ (α) yields the estimator α̃. Due to the i.i.d. nature of individual
sensing attempts, a simple average over all estimators leads to an overall precision of δαM = δα/

√
M, per

the law of large numbers. Such a scaling is also called the SQL.
In a distributed sensing scenario, one looks at a more general problem: consider a general unitary

operation comprising a product of M unitary operations Û (α) ≡ ⊗M
$=1 Û (α$), which, in general, entail M

unknown parameters. To carry out sensing, one inputs M probes in a quantum state ρ̂M and obtains the
output quantum state

ρ̂M (α) = Û (α) ρ̂MÛ† (α) , (2)

where the unknown parameters are α = {αm}M
m=1 instead of being a single unknown parameter as in

equation (1). In a multi-parameter estimation scenario, one aims to estimate all unknown parameters;
alternatively, one may only be interested in a single parameter while regarding the rest M − 1 parameters
nuisance. Distributed sensing belongs to neither categories, as it endeavors to estimate a global parameter,
e.g., a weighted average

ᾱ = w · α ≡
M∑

$=1

w$α$, (3)

where the weights, w = {wm}M
m=1, are non-negative and sum to one without loss of generality. One can in

principle consider a general analytical scalar function f (α), but as pointed out in reference [58], via
adaptive strategies one can obtain a rough estimate for α̃ and then perform linear expansion around the
point to obtain f (α) ( f (α̃) +

∑
$∂α$ f (α̃) (α$ − α̃$). By suitably dividing the number of measurements,

one can reduce the problem of estimating the scalar function to estimating the weighted average in
equation (3). More recent works extended the above case to multiple linear functions [52].

We point out that the special case of identical parameters αm = α and identical weights wm = 1/M has
been considered in pioneering works of quantum metrology [20, 53, 54], which show that entanglement
can beat the SQL (see section 4.2 for more details) and approach the Heisenberg limit of δα ∝ 1/M. A
major advance made by DQS lies in the extension to a multi-parameter scenario, with an arbitrary scalar
function of the parameters under estimation.

In the following, we will describe several DQS protocols and analyze their performances in the presence
of imperfections. The protocols are also summarized in table 1, in terms of the source, measurement, and
robustness.
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Figure 3. Distributed displacement sensing with identical displacements and weights. SV: squeezed-vacuum state with mean
photon number NS and squeezed real quadrature. Nη : pure-loss channel with transmissivity 0 < η ! 1. Û(α): field-quadrature
displacement by real-valued α. Homo: homodyne measurement on the real quadrature. (a) Original protocol. (b)–(d)
Equivalent protocols from reduction relations (see main text for details).

3.1. Distributed displacement sensing
This section covers single-quadrature displacement DQS protocols, with the generator being Ĥ = p̂. The
protocol is based on entanglement generated from linear optics and single-mode squeezed vacuum states.
Extension to a DQS protocol capable of simultaneous estimation of both quadrature displacements can be
achieved by replacing the single-mode squeezed vacuum with a Gottesman–Kitaev–Preskill (GKP) grid
state [61], as studied in reference [57].

3.1.1. Special DQS protocols
We begin with a special case of DQS with identical displacements and identical weights [44]. As shown in
figure 3(a), the entangled probe state is prepared by distributing a single-mode squeezed vacuum state b̂1 on
a balanced beam-splitter array. After each probe mode âm going through the displacement Û (α), one
performs a homodyne measurement on the real quadrature Re

(
â′m

)
. Combining all measurement data

{ã′m}M
m=1 through classical data processing, one obtains an estimator α̃ =

∑M
m=1 ã′m/M. We model the

imperfection in each sensor by the most common model of a pure-loss channel Nη of transmissivity η,
which is described by the Bogoliubov transform

â →√
ηâ +

√
1 − ηê, (4)

on the input mode â and vacuum environment mode ê. To begin with, we consider the losses to be identical
across different sensors.

To analyze the performance, a sequence of reduction is utilized to simplify the problem to a
single-parameter estimation situation. First, since the beam-splitter array B̂† commutes with the identical
loss channels N⊗M

η , an equivalent protocol is devised in figure 3(b). Moreover, the data processing of equal
weighted sum can be implemented by a balanced beam-splitter array B̂ in front of the homodyne
measurements, leading to another equivalent protocol in figure 3(c), where the identical displacements are
now sandwitched between two beam-splitter arrays such that a single homodyne measurement suffices to
carry out the estimation. At this juncture, we can utilize a unitary reduction relation

B̂†Û⊗M (α) B̂ = Û
(√

Mα
)
⊗ Û⊗(M−1) (0) (5)

to further simplify the protocol to figure 3(d), which shows that the multimode protocol is reduced to a
single-mode protocol, as only b̂1 interrogates a single channel that entails information about α. A
single-mode displacement is estimated after the reduction. Thus, results in section 4.3.2 immediately infer
that the optimal Gaussian [62] input state for the reduced protocol depicted in figure 3(d) is a single-mode
squeezed vacuum state. The resulting sensitivity obeys

δαE
η =

1√
IGauss, E, max

F

=

(
η

M
(√

NS + 1 +
√

NS
)2 +

1 − η

M

)1/2

, (6)
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Figure 4. (a) Plots of the rms estimation errors , δαE
η (solid curves) and δαP

η (dashed curves), versus the number of sensor nodes,
M, for various transmissivity values, from top to bottom, η = 0.95, 0.99, 1, with nS ≡ NS/M fixed at ns = 1. Reprinted figure
with permission from [44], Copyright (2018) by the American Physical Society. (b) Comparison between bounds and
performance . NS = 10, M = 10, δαE

η : performance of the optimal entangled Gaussian scheme for DQS (red). δαP
η : performance

of optimal separable Gaussian scheme for DCS (blue). δαE,LB
η : lower bound of precision in equation (8) for all entangled scheme

(red, dashed). δαP,LB
η : lower bound of precision in equation (9) for all separable scheme. When η ∼ 1, we see that δαE

η beats the
non-tight lower bound δαP,LB

η of separable scheme. Reprinted figure with permission from [63], Copyright (2019) by the
American Physical Society.

where NS is the total mean photon number of the probes and IGauss, E, max
F is given in equation (46). We note

that although the input state in the reduced protocol is a single-mode squeezed-vacuum state, the M-mode
input {âm}M

m=1 in the original DQS protocol illustrated figure 3(a) is in a multipartite entangled state. The
sensitivity given by equation (6) is the optimum among all DQS protocols based on Gaussian states.
Moreover, in a lossless situation (η = 1), the above DQS protocol is the optimum among all DQS protocols
per the results introduced in section 4.2.2.

Similarly, subject to the resource counting of mean photon number, the optimal DCS protocol with
Gaussian states for η < 1 and the general optimal DCS protocol for η = 1 is based on a product of
single-mode squeezed-vacuum states and yields a sensitivity level of

δαP
η =

1√
IGauss, C, max

F

=




η

M
(√

NS/M + 1 +
√

NS/M
)2 +

1 − η

M





1/2

, (7)

where IGauss, C, max
F is given by equation (45). The performance of the optimal DQS protocol and the optimal

DCS protocol is compared in figure 4(a). At η = 1 and a fixed nS ≡ NS/M, equations (6) and (7) indicate
that δαE

η ∼ 1/M, i.e., a Hisenberg scaling, while δαP
η ∼ 1/

√
M is subject to the SQL, as is verified in

figure 4(a). For sub-unity η, δαE
η deviates from the Heisenberg scaling at large M ∝ 1/(1 − η). To sustain

the Heisenberg scaling at a large M, one can utilize bosonic error-correcting codes, as demonstrated in
reference [57].

Now that we know the optimality of the performance in equations (6) and (7) for special cases, we can
compare them with the general precision lower bounds

δαE,LB
η =

1√
IUB,E

F

=
(

4ηM
(√

NS +
√

NS + 1
)2

+ 4 (1 − η) M
)−1/2

(8)

δαC,LB
η =

1√
IUB,C

F

=

(
4ηM

(√
NS/M +

√
NS/M + 1

)2
+ 4 (1 − η) M

)−1/2

, (9)

which are obtained from the Fisher information upper bounds equations (40) and (41) in section 4.3.1. We
compare the above bounds and the actual protocol’s performance in figure 4(b). Indeed, the lower bounds
are tight at η = 1 (also trivially tight at η = 0), confirming the optimality. However, when η < 1, there is a
gap between the optimal Gaussian protocol and the lower bound. It is an open question whether other
protocols can beat the optimal Gaussian protocol.

3.1.2. General DQS protocols
We now extend the special DQS protocol of section 3.1.1 to a DQS protocol for estimating an arbitrary
weighted average of heterogeneous displacements in the presence of heterogeneous experimental
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Figure 5. Distributed displacement sensing in the general case. Nηm : pure-loss channel with transmissivity 0 < ηm ! 1. Û(αm):
field-quadrature displacement by real-valued αm.

Figure 6. Schematic of the analyses. (a) Original protocol with unknown optimal entangled input. (b)–(d) Equivalent protocols
from reduction relation (see main text for details).

imperfections. As shown in figure 5, the objective is to estimate a weighted average, ᾱ ≡
∑M

m=1wmαm, of
displacements {αm}M

m=1 among M sensor nodes. Experimental imperfections are modelled by lossy
channels {Nηm}M

m=1, where the transmissivities η = {ηm}M
m=1 can vary across different sensor nodes. The

input modes {âm}M
m=1 are in an entangled state, generated from distributing a single-mode

squeezed-vacuum state via a general beam-splitter array with ratios suitably optimized.
To derive the optimal entangled probe state, we again utilize equivalence relations shown in figure 6.

Figure 6(a) illustrates the problem of deriving the optimal entangled probe state assuming homodyne
measurements. As shown in figure 6(b), before the homodyne measurements, one can apply a beam-splitter
array B̂, which can be compensated in the data processing on measurement data while preserving the Fisher
information. Moreover, one can insert B̂B̂† = Î in between the lossy channels and the sensing displacement
operations. From properties of Gaussian unitary, as shown in figure 6(c) one can suitably choose B̂ to
obtain

B̂† [⊗M
m=1Û (αm)

]
B̂ = Û

(
ᾱ/w̄

)
⊗
[
⊗M

m=2Û
(
α′

m

)]
, (10)

where w̄ ≡
√∑M

m=1w2
m and all other parameters α′

m are independent of the parameter of interest ᾱ. As
such, one only needs to measure the first output mode to estimate ᾱ. Now the problem becomes choosing
the optimal input among {âm}M

m=1 such that mode â′′1 is the optimum for single-mode displacement
sensing. Considering the transform B̂ and the lossy channels, it is easy to obtain

â′′1 =
M∑

m=1

wm

w̄
√
ηmâm + vacuum terms =

√
η̄b̂1 + vacuum terms, (11)

where b̂1 ≡
∑M

m=1 wm
√
ηm âm/w̄, η̄ ≡

∑M
m=1 w2

mηm/w̄2, and w̄ ≡
√∑M

m=1 w2
mηm. This indicates that the

effective probe mode â′′m is obtained from passing a single mode b̂1 through a pure-loss channel Nη̄. Given
the energy constraint, the optimal Gaussian state is therefore obtained by applying a beam-splitter array T̂†

on a single-mode squeezed vacuum mode b̂1 and vacuum states, as shown in figure 6(d).
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Figure 7. General distributed phase sensing with beam-splitter array and product inputs (see also figure 1(b) in reference [42]).

With the above protocol, α̃ ≡
∑M

m=1 wmRe(â′m) is an unbiased estimator of ᾱ with the minimum rms
error

δαE
η =

w̄
2

(
η̄

(
√

NS + 1 +
√

NS)2
+ 1 − η̄

)1/2

. (12)

Parallel to section 3.1.1, one can compare the above DQS protocol with the optimal Gaussian DCS protocol,
which, under the considered scenario, employs a product of single-mode squeezed-vacuum states, yielding a
precision of

δαP
η = min

M∑
m=1

Nm=NS

[
M∑

m=1

w2
m

(
ηm(√

Nm + 1 +
√

Nm
)2 + 1 − ηm

)
/4

]1/2

(13)

without a known closed form. One can easily check that at ηm = η, αm = α, wm = 1/
√

M, equations (12)
and (13) converge to the simple case of equations (6) and (7). Also, we emphasize that the same optimality
holds: the above DCS protocol is the optimum among all protocols based on Gaussian states and the
optimum among all DCS protocols at ηm = 1 for all m.

3.2. Distributed phase sensing
In distributed phase sensing, equation (2) involves a phase rotation unitary operation Û (αm) = exp(
−iαmâ†

mâm
)

at each probe âm. As explained in section 4.2.2, the Fisher information of phase sensing is
unbounded for non-Gaussian states if only subject to a photon-number constraint. As such, previous works
have been focusing on finding the optimal Gaussian protocol [64, 65], considering constraints on the
photon-number variance [66, 67] or limiting to a finite photon-number cutoff [68, 69].

Through evaluating the precision limit of DQS in equation (50) for all Gaussian states (obtained from
the multi-parameter CR bound, see section 4.4), reference [65] shows that the CV entangled state obtained
via distributing a single-mode squeezed-vacuum state via a beam-splitter array—identical to the optimal
state in the displacement case in section 3.1—is the optimal Gaussian state for estimating the weighted sum
of phase.

In the identical weight case, a balanced beam-splitter array is adopted and the corresponding precision

δαE =
1√

8NS (NS + 1)
=

1√
8MnS (MnS + 1)

, (14)

can be easily achieved by performing homodyne measurements—again identical to the approach in the
displacement DQS of section 3.1. While the optimal separable input and homodyne measurement (identical
to the case of section 3.1) gives the performance

δαP =
1√

8MnS (nS + 1)
. (15)

We see a similar advantage from the entanglement as the case of displacement DQS discussed in section 3.1.
Although the above state is the optimal for an ideal lossless situation, in the presence of loss, however,
reference [55] finds that adding a non-zero displacement to the original single-mode squeezed vacuum can
further improve the performance. The optimal entangled probe state in the presence of loss remains
unknown, even restricting to Gaussian states.

Like the displacement DQS protocols, the resource constraint should be properly chosen to ensure an
equitable comparison with DCS protocols. In this regard, the above works have adopted a resource
constraint on the total mean photon number, accounting for the coherent-state portion and the
squeezed-state portion, as introduced in section 2. This resource constraint is justified if the power probing
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the samples has to be limited, for example, for the purpose of covertness or avoiding harming delicate
biological tissues. However, coherent states are much easier to generate than squeezed-vacuum states and is
often orders of magnitude higher in power as well. In applications, e.g., LIGO, that require strong coherent
light, resource constraint is on the power of the coherent-state portion. In some phase DQS protocols,
phase shifts transform strong coherent states into displacements so that the displacement DQS protocol
introduced in section 3.1 can then be utilized, as proposed in reference [44]. A similar technique is adopted
in DQS for RF-sensing applications, as detailed in section 5.2.

As we see in the above protocols for phase sensing and displacement sensing, a beam-splitter array, i.e., a
linear optical network, has the power of generating multipartite entangled states that benefit the estimation
of global parameters. In this regard, reference [42] systematically evaluated the use of entangled states
prepared by a beam-splitter array on separable inputs ⊗|ψm〉m=1 in DQS (figure 7).

A different resource constraint needs to be adopted for phase sensing because the precision can be
unbounded under a simple mean photon-number constraint. A commonly used resource-counting scheme
for phase sensing is based on the photon-number fluctuation,

nLO
j ≡

√
〈ψj|n̂j

2|ψj〉 ! n(
j , (16)

of each two-mode product state |ψj〉 as an input to the beam-splitter array. For general unnormalized
weights w( (maxj|w(

j | = 1/d, which is different from our previous definition) and photon-number
fluctuation constraints n( ≡

(
n(

1, . . . , n(
M

)
, reference [42] showed that the precision of phase DQS is lower

bounded by

δᾱ " δᾱLB∗ ≡ M|w(|2

2|n(| , (17)

where |w(|2 =
∑

jw
(2
j and |n|2 =

∑
jn

(2
j . To better understand the interpretation, we can consider the equal

weight case, i.e., |w(|2 = 1/M, yielding

δᾱ " δᾱLB∗ =
1

2|n(| "
1

2N(
S

. (18)

The second lower bound is achieved by concentrating all N(
S photons on the same mode, so |n(| =

N(
S = Mn(

S saturates the Heisenberg limit. While an even distribution of photons among all input modes of
the beam-splitter array leads to the SQL δᾱ " 1/(2n(

S

√
M). As such, the benefit from entanglement only

arises when photons are concentrated on a few input modes to the beam-splitter array. A protocol is also
provided in reference [42] by choosing the input to the beam-splitter array as a twin-Fock state.

Now let us further compare the lower bound in equation (18) with the achievable performance in
equation (14). Since N(

S =
√
〈n̂2〉 =

√
NS (3NS + 2) for a single-mode squeezed-vacuum state,

equation (18) yields a valid lower bound of

δᾱLB∗ =
1

2
√

NS (3NS + 2)
! δαE =

1√
8NS (NS + 1)

. (19)

In the NS - 1 limit,
δαE

δᾱLB∗ ∼
√

3
2
. (20)

Note that the DV DQS protocol based on generalized twin-Fock state [42] gives δαE = 2/
√

2NS(NS + 2).
Although also achieving a Heisenberg scaling, the DV DQS protocol’s performance is inferior to that of the
CV DQS protocols [44, 65].

4. Performance limits

In this section, we analyze the performance limits for DQS protocols. A brief review on the limits of
quantum sensing, including quantum Cramér–Rao (CR) bound, SQL for separable protocols, and
Heisenberg limit of entangled protocols will first be provided. Then, the quantum CR bound will be utilized
to understand the performance limits of the DQS and DCS protocols in section 3, which leads to
conclusions about the optimality of these protocols.
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4.1. Quantum Cramér–Rao bound and the standard quantum limit
The ultimate precision of estimating a single-parameter α (without bias) from the state ρ̂ (α) is
asymptotically given by the quantum CR bound [70–75]

δα2
M " 1

M
δα2

CR ≡ 1
MIF[ρ̂ (α)]

, (21)

where M is the number of sensing attempts and the single-parameter Fisher information [73]

IF[ρ̂(α)] ≡ lim
ε→0

8
{

1 −
√

F[ρ̂(α), ρ̂(α + ε)]
}

/ε2 (22)

is given in terms of the Uhlmann fidelity [76, 77], F(σ̂1, σ̂2) ≡
[

Tr
(√√

σ̂1σ̂2
√
σ̂1

)]2
, between states σ̂1

and σ̂2. Alternatively, the Fisher information can be obtained from the symmetric logarithmic derivative
(SLD) L̂α, which is Hermitian and satisfies

L̂αρ̂α + ρ̂αL̂α

2
=

∂ρ̂α
∂α

. (23)

Then in general the Fisher information is defined as

IF[ρ̂(α)] ≡ Tr
[
ρ̂αL̂2

α

]
. (24)

In fact, for quantum states in the form of equation (1), one can easily obtain the Fisher information in both
ways for pure states. The fidelity for a pure state ρ̂ = |ψ〉〈ψ| is easily devried by F(Û (α) |ψ〉, Û (α + ε)
|ψ〉) = |〈ψ|Û (ε) |ψ〉|2, and thus by taking derivatives the Fisher information reads

IF[Û (α) |ψ〉]/4 = var
(
Ĥ
)
ψ
≡ 〈ψ|Ĥ2|ψ〉 − 〈ψ|Ĥ|ψ〉2. (25)

In terms of SLD, a pure state has ρ̂2
α = ρ̂α, it is thus easy to verify that L̂α = 2∂αρ̂α = −2iĤρ̂α + 2iρ̂αĤ,

and therefore equation (24) leads to equation (25). However, it is important to note that equation (25) does
not in general hold for mixed states, while both equations (22) and (24) remain valid for all mixed states.
Moreover, the CR bound in equation (21) is guaranteed to be asymptotically, i.e., at M - 1, achievable for
a single-parameter estimation problem by adaptive strategies [78–82], in which the input state and the
associated measurement setting evolve as the number of measurement increases. However, all input states
are constrained to a product form.

One can generalize the above protocol to using an arbitrary separable input state across M
measurements and allowing an arbitrary joint measurement [20]. However, the CR bound in equation (21)
holds true, and the δαM ∝ 1/

√
M scaling is usually referred to as the SQL.

4.2. Beating the standard quantum limit
Entanglement between the input states across different measurements is needed to beat the SQL. Early
works of quantum metrology [20, 53, 54] found that the so-called Heisenberg scaling of precision,
δαM ∝ 1/M, can be approached if the input states across M measurements are in a multipartite entangled
form. To analyze this setting, we consider applying a joint operation on an M-probe pure state |ψM〉:

ρ̂M (α) = Û⊗M (α) |ψM〉〈ψM|Û†⊗M (α) , (26)

where Û⊗M (α) = exp
[
−iα

∑
$Ĥ$

]
, with {Ĥ$} being identical generators applied on different probes. Then,

the Fisher information is derived using equation (25) as

IF[Û⊗M (α) |ψM〉]/4 = var

(
∑

$

Ĥ$

)

ψM

≡ 〈ψM|
(
∑

$

Ĥ$

)2

|ψM〉 − 〈ψM|
∑

$

Ĥ$|ψM〉2. (27)

For a product state |ψM〉 = ⊗M
$=1|ψ$〉 (not necessarily identical), 〈ψM|(

∑
$Ĥ$)2|ψM〉 =

∑
$〈ψ$|Ĥ2

$ |ψ$〉
+
∑

$ .=$′ 〈ψ$Ĥ$|ψ$〉〈ψ$′ |Ĥ$′ |ψ$′ 〉, which, after some simple algebra, shows additivity for Fisher information
between product states:

IF[Û⊗M (α)⊗M
$=1|ψ$〉]/4 =

∑

$

IF[Û (α) |ψ$〉]/4. (28)

Combining the convexity property of the Fisher information, we conclude that any separable input state
will have Fisher information upper bounded by M times the maximum Fisher information for the
individual states, therefore giving the SQL of δαM ∝ 1/

√
M. Equation (28), however, does not hold for

entangled states. The disparity between the SQL performance and sub-SQL performance demonstrates a
provable quantum advantage enabled by entanglement, as elaborated below by a few examples.
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4.2.1. Finite-dimensional probes
For d-dimensional probe states, e.g., DV systems such as atoms, NV centers etc, or CV systems with a finite
photon-number cutoff, one can simply consider the eigenstates {|λn〉}d

n=1 of the generator, i.e. Ĥ|λn〉 =
λn|λn〉, as discussed in reference [54]. Suppose the minimum and maximum eigenvalues are λmin and λmax,
each term IF[Û (α) |ψ$〉]/4 = var

(
Ĥ
)
ψ$

! (λmax − λmin)2/4. Equation (28) then provides the following
bound for a separable input

IF ! Imax,C
F ≡ M(λmax − λmin)2. (29)

In contrast, with an entangled input, ĤM =
∑

$Ĥ$ is regarded as a global generator, and the minimum and
maximum eigenvalues then become Mλmin and Mλmax, leading to the Fisher information

IF ! Imax,E
F ≡ M2(λmax − λmin)2, (30)

achievable by the superposition state |ψM〉 =
(
|λmax〉⊗M + |λmin〉⊗M

)
/
√

2. The above Fisher information
follows ∝ M2, corresponding to an optimal Heisenberg scaling of δαM ∝ 1/M [83].

4.2.2. Infinite-dimensional probes
For infinite-dimensional probe states, e.g., in a CV system, the eigenvalues of the generator can be
unbounded. In this case, additional constraints, such as the mean occupation number (the mean photon
number in the context of quantum optics) NS =

∑M
$=1〈â

†
$â$〉, are necessary to ensure a physical input state.

The Fisher information for CV states needs to be calculated on a case-by-case basis. For example, in
single-mode phase sensing with Ĥ = â†â being the number operator, one can construct an input state
|ψ〉 =

√
1 − NS/S|0〉 +

√
NS/S|S〉, with mean photon number NS bounded but the variance

var
(

Ĥ
)
ψ

= NS(S − NS) can be arbitrarily large, and therefore, the Fisher information can be unbounded.
Hence, further constraints, such as restricting to Gaussian input states or fixing the photon-number
fluctuation, are required to operate in a physically allowed regime.

Another important scenario is displacement sensing with a generator of Ĥ = p̂. First considering a
single probe, the Fisher information reads IF[Û (α) |ψ〉]/4 = var

(
p̂
)
ψ
. To achieve the optimal precision, we

need to maximize var
(
p̂
)
ψ

, subject to the energy constraint NS = 〈â†â〉 ≡
(

var
(
p̂
)
ψ

+ var
(
q̂
)
ψ

)
/4 − 1/2.

Here, zero-mean input states are chosen because displacement does not enhance the precision. Taking into
account the uncertainty principle, var

(
p̂
)
ψ

· var
(
q̂
)
ψ
" 1, and the energy constraint, it shows that var

(
p̂
)
ψ

is
maximized when the input is in a squeezed-vacuum state, with the optimal Fisher information

IF[Û (α) |ψ〉]/4 =
(√

NS +
√

NS + 1
)2

. (31)

We now consider M probes with a total energy constraint NS. For separable input states, the Fisher
information is additive (equation (28)). Since the single-mode Fisher information in equation (31) is
concave with respect to the energy NS, the Fisher information for M separable probes becomes

IF ! Imax,C
F ≡ 4M

(√
NS/M +

√
NS/M + 1

)2
( 16NS, (32)

whose maximum is achieved with the input being in an i.i.d. product of single-mode squeezed vacuum
states. Asymptotically, it is independent of the number of probes M.

With an entangled input state, we need to consider the overall Fisher information of equation (27):

IF[Û⊗M (α) |ψM〉]/4 = M · var
(
P̂
)
ψM

, (33)

where P̂ =
∑

$p̂$/
√

M is defined as a global momentum quadrature, with the corresponding global position
quadrature defined as Q̂ =

∑
$q̂$/

√
M. Because P̂ and Q̂ satisfy the canonical commutation relation and

can be obtained by applying a passive linear transform on the original single-mode quadrature operators,
they can be regarded as being effectively produced by sending the original input modes through a balanced
beam-splitter array. As energy is preserved under a beam-splitter transform, it is clear that concentrating all
the energy on the global mode of P̂ and Q̂ is optimal, as the other global modes are all in vacuum states. At
this juncture, we have reduced the multimode problem to a single-mode problem, and the Fisher
information

IF ! Imax,E
F ≡ 4M

(√
NS +

√
NS + 1

)2 ( 16MNS (34)

is achieved by an entangled input state whose corresponding global mode is in a single-mode
squeezed-vacuum state. This sub-SQL performance is achieved in a specific DQS protocol, as explained in
section 3.1.2.
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4.3. Precision limits in the presence of noise
The above analyses assume pure states so that the Fisher information has a simple form represented in
equations (25) and (27). However, experimental imperfections are in general inevitable, rendering the
output state mixed and the evaluation of the Fisher information more challenging. Although an exact
optimization of the Fisher information is difficult, one can obtain upper bounds on the Fisher information
[66]. One can also focus on certain specific classes of input states, such as the Gaussian states [62], to make
the problem tractable.

Here, we consider the CV example of displacement estimation introduced in section 4.2.2 and explain
the above two approaches. We consider the most common noise in photonic sensing—loss, i.e. the vacuum
noise Suppose pure loss occurs before the probing process, the input–output relation for a single mode is

ρ̂(α) = Û(α)[Nη(ρ̂)]Û†(α), (35)

which augments a lossy channel into the sensing model described equation (1). Similar to equation (26),
the output M-mode state is

ρ̂M (α) = Û⊗M (α) [N⊗M
η (ρ̂M)]Û†⊗M (α) . (36)

4.3.1. General upper bounds
Several general upper bounds for the DQS and DCS protocols will be presented (details in reference [63]).
The probe state after loss is in general mixed, expressed as ρ̂M =

∑
$c$|ψ$〉〈ψ$|, where

∑
$ c$ = 1 are

positive eigenvalues and ψ$’s are the eigenstates. Per convexity of the Fisher information, we have

IF[ρ̂M(α)] !
∑

$

c$IF[Û(α)⊗M|ψ$〉]. (37)

For each pure state, similar to equation (27), we can explicitly express IF[Û(α)⊗M|ψ$〉] = 4var
(∑

kp̂′k
)
ψ$

,

where p̂′k is the momentum quadrature of the kth probe after the lossy channel. Combining the above with
equation (37), we have

IF[ρ̂M(α)]/4 !
〈(

∑

k

p̂′k

)2〉

ρ̂M (α)

−
∑

$

c$

〈(
∑

k

p̂′k

)〉2

ψ$

! var

(
∑

k

p̂′k

)

ρ̂M (0)

, (38)

where the inequality
∑

$c$x
2
$ "

(∑
$c$x$

)2
and the invariance of quadrature variances under displacement

are used. Because the pure-loss channel transforms p̂′k =
√
ηp̂k +

√
1 − ηp̂ek , where p̂ek and p̂k are the

momentum quadratures of the environment and the mode before the loss, we immediately have

IF[ρ̂M(α)]/4 ! ηvar

(
∑

k

p̂k

)
+ (1 − η) M, (39)

where the variance is evaluated before the pure-loss channel. Combining with the analyses in equation (34),
an upper bound (UB) for the Fisher information is derived as

IF ! IUB,E
F ≡ ηImax,E

F + 4 (1 − η) M. (40)

At η = 1, the UB recovers equation (34) and is therefore achievable. However, it is unclear whether
equation (40) is achievable at η < 1. One also finds that the method utilizing purification to reduce to pure
states calculations 66 gives the same UB as equation (40).

Similarly, the Fisher information UB in DCS is derived as

IF ! IUB,C
F ≡ ηImax,C

F + 4 (1 − η) M, (41)

which recovers equation (32) at η = 1, while its achievability remains unknown for η < 1.

4.3.2. Optimal Gaussian states
Now we discuss the optimal Gaussian states for the DQS and DCS protocols [44]. In the following, we first
show that a single-mode squeezed-vacuum state is the optimal Gaussian probe for single-mode sensing.

The Gaussian input state ρ̂ in equation (35) is fully characterized [62] by its quadratures’ mean vector a
and covariance matrix V, where the quadratures are defined as Re(â) and Im(â). Then, writing ρ̂ as the
Gaussian state ρ̂G(a, V), we get ρ̂G(

√
η a + α, ηV + (1 − η)I/4) for a Gaussian state ρ̂(α), where α ≡ [α, 0]

and I is the 2 × 2 identity matrix. Thus, ρ̂G(
√
η a + α + ε, ηV + (1 − η)I/4) for the Gaussian state
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ρ̂(α + ε), where ε ≡ [ε, 0]. The quadrature covariance matrix of an arbitrary ρ̂G(a, V) can always be written
in the form of V = RθVdiag RT

θ , where Vdiag = Diag[(2n + 1)e−r/4, (2n + 1)er/4] with r " 0, n " 0, and

Rθ =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
. (42)

With this V representation, reference [84] shows how to evaluate the Uhlmann fidelity between
ρ̂G(

√
η a + α, ηV + (1 − η)I/4) and ρ̂G(

√
η a + α + ε, ηV + (1 − η)I/4) (see reference [85] for a general

method of calculating fidelity between Gaussian states). Using the result of that evaluation in equation (22)
gives

IF[ρ̂(α)] =
4{er(1 − η) + (2n + 1)η[e2r cos2(θ) + sin2(θ)]}
(er(1 − η) + (2n + 1)η)[(2n + 1)ηer + 1 − η]

. (43)

This expression’s maximum over θ and n occurs when θ = n = 0, in which case maxθ,nIF[ρ̂(α)] =
4/(ηe−r + 1 − η) with mean the photon-number constraint NS = aTa + [cosh(r) − 1]/2. From this result
it is clear that a = 0 is optimal, so the UB

IGauss
F ! IGauss, max

F ≡
(

η

4(
√

NS + 1 +
√

NS)2
+

1 − η

4

)−1

, (44)

is achieved by a single-mode squeeze-vacuum state.
One can then solve the separable Gaussian input case, via considering the power distribution {Nm}M

m=1

across different modes. Optimization over the additive Fisher information gives the UB

IGauss,C
F ! IGauss, C, max

F ≡




η

M
(√

NS/M + 1 +
√

NS/M
)2 +

1 − η

M





−1

, (45)

which is achievable by an i.i.d. product of single-mode squeezed-vacuum state. At η = 1, equation (45)
reduces to equation (32), confirming that in a lossless case the Gaussian state is the optimum. For the
entangled input, as we explained in section 3.1.2, one can reduce the M-probing problem to a single
probing and obtain

IGauss,E
F ! IGauss, E, max

F ≡
(

η

M
(√

NS + 1 +
√

NS
)2 +

1 − η

M

)−1

, (46)

which is achievable by an entangled input designed in section 3.1.2. Similarly, at η = 1, equation (46)
reduces to equation (34), affirming that in the lossless case the Gaussian state is optimal.

4.4. Multiparameter quantum Cramér–Rao bound
In distributed sensing, although a single scalar function is being estimated, one in general needs a
multi-parameter quantum CR bound to analyze the performance limit of an unbiased estimation. Here, we
generalize the analyses in section 4.1.

Consider the estimation of parameters α of the state ρ̂M (α) = Û (α) ρ̂MÛ† (α) given in equation (2).

For distributed sensing, it suffices to consider Û (α) = exp
(
−
∑M

m=1 Ĥmαm

)
, with generators Ĥm

commuting. In a general multi-parameter estimation scenario, one performs measurement and obtains an
estimator α̃ = (α̃1, . . . , α̃M). The precision is characterized by the covariance matrix with elements

Vmn = 〈(α̃m − αm) (α̃n − αn)〉. (47)

Similar to equation (23), we introduce the SLD L̂αm for each parameter. Then, the Fisher information
matrix has elements

Hmn = tr

[
ρ̂M (α)

L̂αm L̂αn + L̂αn L̂αm

2

]
. (48)

For an arbitrary weight matrix G, we have the CR bound

Tr [GV] " Tr
[
GH−1

]
. (49)

For distributed sensing, we focus on the estimation of ᾱ ≡
∑M

$=1w$α$ in equation (3) and therefore one
can choose G = wTw in equation (49) to obtain the ultimate limit of distributed sensing in estimating ᾱ as

δα2 ≡ tr
[
wTwV

]
" tr

[
wTwH−1

]
. (50)

12



Quantum Sci. Technol. 6 (2021) 043001 Topical Review

Figure 8. DQS experiment for optical phase sensing using CV multipartite entanglement. (a) Experimental diagram. OPO:
optical parametric oscillator; EOM: electro-optic modulator; BSN: beam-splitter network; HD: homodyne detector; FFT: fast
Fourier transform. (b) The frequency-domain measurement data acquired by the first sensor, showing a signal peak at 3 MHz
and a noise floor. (c) The averaged measurement data in the frequency domain. The averaged data show a higher signal-to-noise
ratio than the measurement data acquired at a single sensor due to the entanglement-enabled cancellation of measurement noise
from different sensors. (d) Comparison of the measurement sensitivities of the DQS scheme and the DCS scheme. σopt

e : optimal
measurement sensitivity for DQS; σopt

s : optimal measurement sensitivity for DCS; σe: experimental measurement sensitivity for
DQS; σs: experimental measurement sensitivity for DCS. Copyright © 2019, The Author(s), under exclusive licence to Springer
Nature Limited [55].

An alternative bound from the right logarithmic derivative can be obtained similarly. For
multiple-parameter estimation, the readers can refer to references [86–91] .

Evaluating the Fisher information matrix in equation (48) is in general challenging, but can be done for
Gaussian states [65], as the fidelity can be evaluated by the method in reference [75].

5. Applications of distributed quantum sensing

DQS has been demonstrated in two experiments based on CVs [55, 56], and very recently, in two other
experiments based on DVs [59, 60]. We next introduce the two CV DQS experiments and discuss their
applications in optical phase and RF sensing.

5.1. Optical phase sensing
Guo et al verified the principle of DQS in a CV quantum-optics platform. Figure 8(a) illustrates the
experimental setup. An electro-optic modulator (EOM) creates 3 MHz sidebands of a 1550 nm beam,
which is subsequently injected into an optical parametric oscillator (OPO) cavity as the seed. The OPO
cavity is pumped below the oscillation threshold and produces displaced squeezed light at the 3 MHz
sidebands at its output. The displaced squeezed light is then split into four arms by a beam-splitter network
(BSN) comprising three 50:50 beam splitters. Each arm serves as a sensor node to probe an optical phase
shift controlled by wave plates. The objective of the sensing task is to measure a global parameter, the
average phase shift, across the sensor network. To this end, a homodyne detector (HD) measures the
quadrature displacement at each sensor. The measurement data from four sensors are postprocessed to
derive the average phase shift. The frequency-domain data acquired by a single sensor are plotted in
figure 8(b), where the signal peak at 3 MHz and the measurement-noise floor can be clearly identified. The
spectrum of the signal averaged over four sensors is depicted in figure 8(c). Due to the quantum correlation
between the measurement noise at different sensors, the noise power after averaging is significantly reduced,
leading to a higher signal-to-noise ratio than that at a single sensor. In figure 8(d), the performance of DQS
(red solid curve) is compared with that of DCS (blue solid curve) and the SQL (black dashed curve). The
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Figure 9. DQS experiment for RF sensing using CV multipartite entanglement. (a) The experimental diagram. PPKTP:
periodically-poled KTiOPO4; OPA: optical parametric amplifier; VBS: variable beam splitter; HWP: half-wave plate; PBS:
polarizing beam splitter; EOM: electro-optic modulator; LO: local oscillator. (b) Estimation of RF-field phase difference at an
edge sensor node by DQS (blue) and DCS (red). The estimation uncertainty (shades) of DQS clearly outperforms that of DCS.
Reprinted figure with permission from [56], Copyright (2020) by the American Physical Society.

DCS experiment employs separable displaced squeezed states at the sensors subject to the same total mean
photon number as the DQS experiment based on entangled probe states. The derivation of the SQL
assumes that the sensors utilize classical coherent light to estimate the average optical phase shift. DQS
outperforms both the DCS and SQL at all mean photon-number levels. The DCS performs better than the
SQL due to single-mode squeezed light used by each sensor. This DQS experiment demonstrated an
entanglement-enabled quantum advantage over all DCS protocols using the same probe power.

5.2. RF sensing
In addition to optical phase sensing, DQS can enhance a wide range of sensing applications by introducing
transducers that covert the probed physical parameters into modulations on the entangled probe state in the
optical domain. Xia et al [56] recently reported an experiment of DQS for RF sensing, as sketched in
figure 9(a). Squeezed light is produced from an optical parametric amplifier (OPA) cavity in which a type-0
periodically-poled KTiOPO4 (PPKTP) crystal is embedded. The OPA cavity is seeded with 1550 nm light
such that its output consists of a strong classical coherent state at the central wavelength and phase squeezed
vacuum state residing at the sidebands. Two variable beam splitters (VBSs), each composed of a half-wave
plat (HWP) and a polarizing beam splitter (PBS), constitute a quantum circuit that configures the
multipartite entangled state. As we discuss below, one needs to tailor the structure of the multipartite
entangled state to achieve the optimal performance for a specified RF-sensing task such as average RF-field
amplitude estimation or angle-of-arrival estimation via RF-field phase difference measurements. In the
experiment, a three-mode entangled state is generated for probing a global property of the RF field
observed at three RF-photonic sensors. The RF field at the mth RF-photonic sensor can be represented as

Em(t) = Em cos(ωct + ϕm), (51)

where Am is the RF amplitude, ωc is the RF carrier frequency, t is time, and ϕm is the RF phase. Under the
weak-field limit, an EOM converts the RF field into a displacement

αm ∝ Emϕm (52)

on the phase quadrature. A balanced homodyne detector measures the quadrature displacement, yielding
an estimator α̃m. Postprocessing on the α̃m’s from all three sensors leads to an estimation on the RF-field
property of interest.

Three RF-sensing tasks were investigated in the experiment: RF-field average amplitude estimation,
phase-difference estimation at a central sensor node, and phase-difference estimation at an edge sensor
node. The same RF-sensing tasks were carried out by DCS as a performance benchmark. In DCS that
defines the SQL, the sidebands were in vacuum states after turning off the entangled states while the strong
coherent state remains at the central wavelength was retained. Figure 9(b) compares the estimation
uncertainty of DQS (blue shade) and DCS (red shade) under the task of measuring the phase difference at
an edge node. DQS enjoys an appreciable advantage over DCS by virtue of the multipartite entangled state
shared by the three sensors. The DCS experiment used ∼100 µW of optical power, whereas the DQS
experiment further introduced entangled sidebands at a sub-nW power level to beat the SQL. As such, the
DQS and DCS protocols in practice used almost the same amount of probe power. The performance of the
demonstrated DQS protocol can also be compared with a DCS protocol based on local separable squeezed
states with the same total mean photon number as that of the entangled states employed in the DQS
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Figure 10. Optimization of multipartite entangled state for (a) RF-field average amplitude estimation, (b) phase-difference
estimation at a central sensor node, and (c) phase-difference estimation at an edge sensor node. Insets show the tuning ranges of
the splitting ratios for VBSs. Circles: DQS experimental data; triangles: DCS experimental data; solid curves: theory. Reprinted
figure with permission from [56], Copyright (2020) by the American Physical Society.

Figure 11. (a) Classical supervised-learning (SL) scheme. (b) Supervised-learning assisted by an entangled sensor network
(SLAEN). Both schemes rely on training data to configure the classical algorithms and variational quantum circuits. Reprinted
figure with permission from [92], Copyright (2019) by the American Physical Society.

protocol. Like the phase-sensing experiment [55], the DQS protocol only needs one squeezed-light source
in contrast to three separate squeezed-light sources required by the DCS protocol, thereby enjoying a
substantially reduced implementation complexity. Nonetheless, the DQS protocol still demonstrated a
∼10% signal-to-noise-ratio advantage over the DCS protocol based on separable squeezed states [56].

The entangled senor network is reconfigurable in that the multipartite entangled state can be tailored by
the quantum circuit to minimize the estimation uncertainty for a specified RF-sensing problem. To build a
connection between the structure of the multipartite entangled state and the performance of a RF-sensing
problem, Xia et al optimized the multipartite entangled state by tuning the parameters of the quantum
circuit and measured the variance of estimation under different settings [56]. The theoretical predictions
(solid curves) and experimental data for DQS (circles) and DCS (triangles) are depicted in figure 10.
Entanglement optimization for three RF-sensing problems are studied: RF-field average amplitude
estimation (figure 10(a)), phase-difference estimation at a central sensor node (figure 10(b)), and
phase-difference estimation at an edge sensor node (figure 10(c)). In all cases, the splitting ratio of one VBS
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Figure 12. Error probability vs training steps for SLAEN (blue curves) and classical supervised learning (red curves). (a), (b),
(c), and (d) assume different source brightness and system efficiencies in their simulations. Insets: the scaling of the error
probability with respect to the source brightness. Reprinted figure with permission from [92], Copyright (2019) by the American
Physical Society.

of the quantum circuit is tuned while the other VBS’s splitting ratio is fixed. In the optimization of the
multipartite entangled state for phase-difference estimation, the phase of one arm of the quantum state is
flipped between 0 and π as an additional knob. The largest advantage of DQS over DCS is only achieved at
an appropriately chosen beam-splitter ratio and phase, highlighting the necessity of tailoring the entangled
probe state for different RF-sensing tasks. Notable, a consequence of the quantum correlations between the
measurement noise at different sensors, the DQS estimation variances show asymmetric behaviors as the
phase is flipped [56].

5.3. Machine-learning applications
Quantum machine learning [7–13] has recently spurred broad interest as it creates new opportunities to
harness the power of quantum resources to reduce the complexity of many data-processing problems. At
present, however, large-scale fault-tolerant random access quantum memories and NISQ devices with
sufficient circuit depths remain elusive to allow many quantum machine-learning schemes to achieve an
advantage over classical machine-learning schemes.

Many real-world applications rely on sensors to acquire data for classical machine-learning algorithms
to perform further processing, e.g., classification or compression. A conventional classical
supervised-learning scheme is illustrated in figure 11(a) using a target classification example. Sensors in
separable quantum states probe an object, generating local measurement data that are processed by a
classical supervised-learning algorithm. The classical supervised-learning algorithm is first trained using
known objects such that it becomes capable of processing data acquired from interrogating unknown
objects once the training completes. The involvement of sensors opens a window to leverage DQS to achieve
quantum-enhanced performance in data processing. In particular, as machine-learning applications often
only requires the acquisition of a global property, such as the class of the sample, it is natural that DQS can
be utilized to benefit. Supervised learning assisted by an entangled sensor network (SLAEN) [92], illustrated
in figure 11(b) is a recently developed hybrid quantum–classical machine-learning scheme that reaps such
benefits from DQS. In SLAEN, a variational quantum circuit is trained by a classical supervised-learning
algorithm to generate entangled states shared by the sensors. After interrogating the object, a second
variational quantum circuit processes the quantum state prior to measurements. The measurement data are
fed to a classical algorithm to complete data processing. Like the classical supervised-learning scheme,
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SLAEN also rest upon training data to configure the variational quantum circuit and the classical algorithm
to achieve the optimal performance and largest quantum advantage.

The error probabilities of SLAEN (blue curves) and the classical supervised-learning scheme
(red curves) during the training process are plotted in figure 12 for different physical parameters. It is
evident that SLAEN achieves a quantum advantage over the classical supervised-learning scheme by
enabling a reduced error probability in solving data-classification problems. Since sensors are ubiquitous for
data collection, SLAEN and DQS would pave a distinct and broad route for quantum-enhanced data
processing in the NISQ era, as demonstrated in a recent experiment for the classification of RF signals [93].

6. Outlook

As a new paradigm for quantum metrology, DQS endows new quantum-enhanced capabilities for
applications built upon a network of sensors. Yet, a few fundamental questions about DQS remain
unanswered. First, although section 3.1 has elucidated the optimal DQS scheme for displacement sensing in
the absence of loss and the optimal Gaussian scheme in the presence of loss, and section 3.2 provided the
optimal Gaussian DQS scheme for phase sensing, a general optimal DQS scheme remains unknown and
warrants future investigations. Second, it is well known that non-Gaussian resources such as the GKP state
[61] lead to universality in CV quantum computing [94]. It is shown that the GKP state can improve the
performance of DQS by compensating for loss [57], but it calls for further studies to assess the utility of
non-Gaussian probe states and measurements in DQS. Third, DV DQS protocols are useful for a variety of
applications such as magnetic and stress sensing, but they are less explored than CV DQS protocols. In
particular, it would be worthwhile to conduct a systematic analysis on the performance of DV DQS
protocols subject to practical nonidealities. Also, scalable creation of DV entangled states and distributing
them to DV sensors need additional research.

From an application perspective, DQS can be exploited to address sensing and data-processing problems
in different physical domains. For example, a recent theoretical proposal envisages use of DQS to boost the
performance of fiber gyroscopes for navigation applications [95]. The idea is to inject multimode entangled
light, like what was utilized in the DQS RF-sensing experiment [56], into to an array of fiber gyroscopes to
improve the scaling of the measurement noise. Such a configuration would also be applicable to enhancing
the readout signal-to-noise ratio of an array of optomechanical transducers used in inertial sensing [96] and
atomic force microscopes [97]. With the recently developed SLAEN framework, it would be foreseeable that
an array of entangled sensor can be trained to benefit physical-layer data processing tasks such as biological
molecular identification and object tracking [36, 98]. More generally, a quantum network of clocks [99] can
also be considered as a DV DQS system in which the entanglement shared by distributed quantum-network
nodes can boost the stability of accuracy of synchronizing remote atomic clocks.

The experimental demonstrations of DQS so far are all based on table-top quantum-optics platforms.
Recent advances in on-chip generation of squeezed light [100–103] and entangled photons [104, 105], in
conjunction with efficient on-chip transducers [106], have promised a more scalable and cost-effective
solution for the widespread deployment of CV DQS protocols. On the DV front, large-scale integration of
color centers with photonic circuits has been recently achieved [107], opening a route for utilizing DQS to
benefit chip-scale magnetic and electric-field sensing applications.
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