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ABSTRACT

In this work, we investigate the problem of finding the min-
imum coverage time of an agricultural field using a team of het-
erogeneous unmanned aerial vehicles (UAVs). The aerial robotic
system is assumed to be heterogeneous in terms of the equipped
cameras’ field of view, flight speed, and battery capacity. The
coverage problem is formulated as a vehicle routing problem
(VRP) [1] with two significant extensions. First, the field is con-
verted into a graph, including nodes and edges generated based
on sweep direction and the minimum length of UAVs’ footprints.
Second, the underlying optimization problem accounts for aerial
vehicles having different sensor footprints. A series of simula-
tion experiments are carried out to demonstrate that the proposed
strategy can yield a satisfactory monitoring performance and of-
fer promise to be used in practice.

Keywords: Heterogeneity; Vehicle routing problem; Remote
sensing; Unmanned aerial vehicles (UAVs).

1 Introduction

With the advancements in technology, there has been much
ongoing research work on the use of robots for precision agricul-
ture applications to improve the quality and quantity of crop pro-
duction [2]. Candiago et al. in [3] deployed a multi-rotor aerial
vehicle to monitor a vineyard and a tomato farm, where the col-

*Address all correspondence to this author.

lected image data were then analyzed and evaluated. Berni ef al.
developed an autonomous aerial system to remotely monitor a
vegetation field with thermal and imaging sensors in [4]. Bakker
et al. in [5] suggested an autonomous navigation ground robot to
map crop rows and monitor sugar beets in a field.

Due to the limitations of a single unmanned vehicle, multi-
ple robots have been used to reduce the time taken to accomplish
tasks and improve overall system performance [6]. In [7], a sys-
tem consisting of aerial and ground vehicles was used to monitor
and control pests and weeds in three different agricultural fields.
Authors in [8] deployed a multi-robot system consisting of an un-
manned ground vehicle (UGV) and an unmanned aerial vehicle
(UAV) to monitor crops in a farm and collect crop data. Besides,
the use of remote sensing with a team of aerial robots has re-
cently received considerable attention for various purposes like
collecting visual data of crops and fields and the map reconstruc-
tion of the fields. For instance, Chao et al. [9] proposed multiple
automated aerial vehicles to remotely detect water level of crops
based on image analysis. Moreover, in [10], a team of UAVs was
proposed to monitor and control the presence of pests in a farm.

In practical scenarios, teams of heterogeneous UAV systems
might be deployed that have different capabilities (e.g., dynam-
ics, fields of view, speeds, or battery charges among others).
The field of view is an important factor that should be consid-
ered when solving coverage optimization problems for UAVs.
Ahmadzadeh et al. in [11] proposed a coverage method using
four heterogeneous UAV's with different footprints on the ground.
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Each camera’s field of view was defined to depend on the head-
ing, back angle, and position of the vehicle and was considered in
solving the coverage problem. In [12], the authors also deployed
an algorithm for a team of heterogeneous UAVs with different
circular fields of view.

For optimal deployment of a team of heterogeneous UAVs,
the coverage areas can be modeled as a graph so that each of the
vehicles can visit the edges of the graph at least once and avoid
overlapping [1]. In [13], Faryadi et al. proposed an area cover-
age method by converting the field of study into a correspond-
ing weighted graph with different nodes and edges to simplify
path planning. Davoodi ef al. in [14] modeled a target agricul-
tural field by a weighted undirected graph with nodes defined
around plant rows. Although drones have no limit to flying in
any direction, to avoid sharp turning and to move constantly dur-
ing their missions, they are forced to monitor the area executing
back and forth motions in most studies. Huang ef al. in [15]
modeled a coverage area as a directed graph to determine the op-
timal coverage direction by visiting each region of the area in a
back-and-forth motion. Similarly, in deploying multiple robots
to spray insecticides on a farm in a back-and-forth movement,
Luo et al. [16] modeled the field by a rectangular directed graph
so that the flight trajectories of the robots are parallel to the edges
of the field. After converting the area into a graph consisting of
nodes and edges, the coverage problem is formulated as a ve-
hicle routing problem (VRP), and each node is considered as
a customer that must be visited with a single vehicle (drone).
In [17], a solution to the VRP problem for multi-UAVs was pro-
posed by defining the objective function based on the information
collected by the vehicles’ cameras. In [18], Guerriero ef al. ad-
dressed a dynamic VRP in which the nodes of the graph represent
the temporal and spatial coverage points.

In this work, our main objective is to solve the problem of
minimizing the coverage time of monitoring an agricultural field
using a team of heterogeneous UAVs. More specifically, we as-
sume that UAVs can have different fields of view, battery charges,
and speeds. Our work is motivated by the methodology used
in [19], in which a fleet of UAV's was deployed to complete a mis-
sion of field coverage. In [19], the coverage area was modeled by
a directed graph, and the optimization problem was defined as a
min-max problem such that the time spent traveling through the
longest route (that is maximum flight time) is minimized. The
setup time for prepping and launching the vehicles was also con-
sidered. However, in this paper, we specify the number of UAVs
and consider the field of view of the vehicles’ cameras in the
formulated optimization problem.

The remaining sections of this paper are organized as fol-
lows: Section 2 provides a detailed description of the problem
we study here, as well as our proposed methodology to address
that. Section 3 presents the simulation results, and Section 4 con-
cludes the paper and provides perspectives for future work.

2 Problem Formulation and Proposed Solution

Method

The main goal of this work is to find a solution to the op-
timal deployment problem of M heterogeneous UAVs (drones)
in an agricultural field represented as a weighted graph in such a
way that the maximum traveling time by them be minimized. We
assume that a team of autonomous drones equipped with RGB
cameras with different fields of view needs to be deployed to
monitor the field and to collect data from plant rows. Assum-
ing that cameras are parallel to the ground, L,, is used to denote
the camera’s footprint on the plane for m-th drone. Moreover,
deployed drones are assumed to be different in terms of the max-
imum flight time 7,, and flight speed V", where m € {1,2,...,M},
and each drone flies at a fixed height H,,, which is chosen in such
a way that the camera can take sufficiently high-resolution im-
ages.

The deployment problem will be solved following the steps
below: (i) the given field is modeled as a weighted graph by con-
sidering the parallel coverage rows with optimum distance [15];
(i1) the coverage rows are partitioned/divided between different
drones by formulating and solving a mixed-integer linear pro-
gramming (MILP) optimization problem; (iii) based on the result
of solving MILP, optimal trajectories for drones are generated so
that they can effectively monitor the whole field.

2.1 Sweep direction and coverage rows

In most coverage applications, coverage time and energy
are two main factors contributing to the cost-efficiency. Con-
sequently, the coverage path must be generated so that a combi-
nation of total time and energy is minimized. To this end, similar
to the method proposed in [15], the area is decomposed into sub-
regions based on a specific sweep direction, and all drones must
fly over these regions using back and forth motion along the cov-
erage rows, which are perpendicular to the sweep direction. For
agricultural applications, the main purpose of deploying drones
over the field is to monitor plant rows and capture appropriate
images. To achieve this goal, the best sweep direction for drones
is defined in such a way that they can fly along the plant rows, as
shown in Fig. 1.

After defining the sweep direction, coverage rows will be
arranged with a fixed distance, which is calculated as a function
of the smallest footprint of the on-board cameras on the ground.
First, as shown in Fig. 2, the width L,, representing the camera’s
footprint for the m-th drone is calculated as [19]

In
Lm:Hmia (1)
Sm

where [, is the width of the camera, and f;, denotes the focal
length of the cameras’ lens for the m-th drone.
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FIGURE 2: Illustrative example showing the field of view.
For M heterogeneous drones with different footprints, L is
chosen as

L:min{Ll,Lz,...,LM}. (2)

Then, the number of coverage rows is

=)

where w represents the field’s width and e € (0, 1) is the fraction
showing two images’ overlap. Hence, the distance between two
rows is

l= “)

w
N’

Similar to our previous work [13,20], the field is converted into
a weighted graph represented by G = (V, E,C) with the node set
V € {1,2,...,N} shown in Fig. 3. Also, E C |V|x |V] is a set
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FIGURE 3: Field modeling as a graph.

of arcs (edges), and C is the specific costs (metric lengths) of
the edges. In this work, c;; represents the Euclidean distance
between nodes i and j. The novelty of this method is in arranging
coverage rows with the specific distance calculated based on the
minimum length of camera’s footprints (2) between the drones’
on-board cameras.

2.2 Coverage rows partitioning

To divide the coverage rows between the vehicles consid-
ering their sensing differences, we define a new parameter p,
representing the ratio of m-th drone’s footprint to the minimum
length L as

P = [L—’"] 5)

As shown in Fig. 4, p,, is defined to calculate the number of rows
that can be covered (monitored) by m-th drone while it is flying
OVer one coverage row.

After generating the field graph G, inspired by the method
proposed in [19], the coverage problem is transformed into a ve-
hicle routing problem (VRP) with specific constraints. It should
be noted that our work extends the results of [19] with two spe-
cific contributions that make our proposed problem unique. First,
unlike [19], our optimization problem (VRP) is formulated as a
function of the drones’ footprints and then solved for vehicles
with different sensing capabilities; second, unlike most routing
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FIGURE 4: Illustrative example showing different footprints of two heterogeneous drones.

problems, in our work, solving the VRP problem results in parti-
tioning coverage rows between vehicles and then optimum routes
are generated based on cameras’ footprints.

To formulate this optimization problem as a VRP, each node
of the field graph is considered as a customer that needs to be
visited by one drone. Moreover, decision variable E; € {0,1}is
defined indicating if arc(i, j) is used on the route or not by m-th
vehicle. Like most vehicle routing problems, in this application,
the main objective is to partition nodes between all drones in
order to minimize the time of mission. By knowing the m-th
drone’s flight speed V" and cost matrix C, the flight time of m-th
drone is calculated as follows

by = v Cij E™ 6
=Y Y SUE, ©®

where ¢;; denotes the entry (i, j) of the cost matrix C, and in-
dex O refers to the depot node. Then, the longest traveling time
between all drones is

Tax = max(ty,). 7

With the purpose of minimizing the longest traveling time taken
to cover the entire area, our optimization problem is

min(Tpgy), (8)

subject to several constraints explained below and given in equa-
tions (9) - (17).

The following constraint is imposed to ensure that the m-th
drone’s total coverage time does not exceed the maximum time

yy -
E} < Thax. 9)
S =V

For limiting the longest flight route of each drone with its battery
capacity, another constraint is imposed as follows

Yy <, (10)

N
=1j=1 vaij

1

where 7, denotes the maximum battery time duration of m-th
drone.

Constraint (11) below enforces each vehicle to leave the de-
pot (node 0) and arrive at a determined customer

N
Y Eji=1. )
i=1

Moreover, (12) guarantees that all drones would return back to
the depot:

N
Y En—1. (12)
j=1
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Constraint (13) ensures that each arc(i, j) is monitored only once

N}, i#j.  (13)

Y YEF =1, ije{l2,.,

The following constraint limits drones’ entrance and exit flows to
guarantee that the same vehicle would visit and leave each node
of the graph

N N
YEL-Y EL=0, p=0,1,2,..,N. (14)
i=0 j=0

In addition, equation (15) enforces drones to fly over coverage
rows perpendicular to the given sweep direction and along the
plant rows

i=1,2,3,..N.  (15)

M M

m m i
Y El+ Y EN =1,
m=1 m=1

Two important constraints (16) and (17) are defined to impose
drones executing back and forth motions to cover the area [19]:

S

Y Efi - Z Z Ei,;=0, i=13,.. (16)

m=1 m=1(j=0,2,4,...ni+1)

ZEUI Z Z El =0, i=2,4,6,. (I7)

m=1 m=1(j=1,3,5,..ni—1)

And finally, constraint (18) given below guarantees that the VRP
solution would make drones avoiding sub-tours:

i7j€{172’3""7N}7 l?é]?
(18)

M
Yi—yj+N Z El"; <=N-1,
m=1

where y;,y; € {0, 1} are additional binary variables.

After solving the optimization problem, represented as a
VRP, all nodes of the field graph and the corresponding cov-
erage rows are divided among a team of heterogeneous drones
considering their footprint ratios, flight speeds and battery lim-
itations (see Fig. 4). As an example, Fig. 5 shows coverage
regions resulted from solving the VRP for two drones with dif-
ferent footprints. In this figure, the edges plotted with solid red
lines from node 1 to node 8 are assigned to the drone with p =1

and dashed blue edges from node 9 to 26 are assigned to the
drone with p = 2.

In the ensuing subsection, a path planning method will be
applied to generate the optimal flight route for each drone with
the purpose of monitoring its partition resulted from the VRP
solution.

2.3 Drones’ path planning

By solving the afore discussed MILP optimization problem,
the field graph G is partitioned into m sub-graphs, each of which
is assigned to one of the drones. Then, the optimal trajectories
for each drone should be generated to make it capable of flying
over these rows and collect image data of the corresponding sub-
region. To generate optimal trajectories for UAVs to cover the
area modeled as a weighted graph, coverage rows are divided
between agents to minimize the total time of the mission. Then,
an optimal trajectory is needed to enforce UAVs to fly over these
rows and collect image data.

As explained before, the camera’s footprint ratio denoted by
Pm represents the number of coverage rows monitored by the m-
th drone while flying over only one row. For instance, in Fig.
5, the green squares show camera’s footprint of the first drone
with p; = 1 while the red ones (larger ones) represent the second
drone’s footprint with pp = 2. From Fig. 5, it is clear that when
a drone is flying over an arbitrary edge (i, j), in addition to this
edge, it will simultaneously cover R,, neighboring rows (R, /2
rows from the right and left sides of the (i, j)-th one), where

Ry =2(pn—1). (19)

For instance, in this figure, dashed blue trajectory shows the VRP
solution for the drone with p = 2 and it is in the following order:
depot +9—-10—12—-11—-13—-14—-16— 15—
1718 —=20—=19 =21 =22 =24 =23 — 25 = 26 —
depot.

However, this trajectory is not optimal and using R, as in (19),
after completing each row, 2R,, nodes should be skipped to find
the next best node and finally the following optimal route is ob-
tained

depot — 12 — 11 - 17 — 18 — 24 — 23 — depot.

Based on the above explanation, when the second drone (with
p2 = 2) flies over an arbitrary row, in addition to that row, it also
monitors 2(2 — 1) = 2 more (left and right) neighboring rows.
Therefore, after solving the proposed MILP optimization prob-
lem that partitions the field graph between different drones, the
optimal trajectories for all the drones will be generated following
the approach described above.
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FIGURE 5: Illustrative example showing path planning for two
drones with different fields of view.

3 Simulation Results

In this section, a series of simulation results is provided to
demonstrate the proposed methods and validate their effective-
ness. Our proposed optimization problem was implemented in
Python using MIP package to solve the underlying mixed-integer
linear program. In this setup, we assumed that there is a 20 x 50
m? agricultural field, including 32 plant rows. It is worth men-
tioning that the number of coverage rows is independent of the
number of plant rows and is computed based on the width of the
field and the minimum footprint of the drones’ cameras. Two
drones are deployed from node O (defined as a depot), and their
mission is to fly cooperatively over the field and collect image
data. First, to convert the field into a weighted graph, we defined
L =2 m as the minimum of the cameras’ footprint and then based
on equations (3) and (4), the field with a width of 50 m is divided
into 25 rows arranged from node 1 to node 50, as presented in
Fig. 6. Our proposed results are applied to the following three
different scenarios.

In the first scenario, we consider two homogeneous drones.
Indeed, it is assumed that they are equipped with cameras with
the same properties, their batteries are fully charged (at the be-
ginning of the mission), and they both fly at the same speed. In
this case, p; = p2 =2 m and, as shown in Fig. 6, by solving
the VRP for this setup, flight trajectories are generated for two
drones with the same characteristics leading to the field being
equally divided between the two drones to cover.

In the second scenario, it is assumed that the second drone

— UAV1 path
—— UAV2 path

Y position (m)

X position (m)

FIGURE 6: Simulation result showing the path planning outcome
for two homogeneous drones.

has smaller camera’s footprint than the first one (L; = 2L, =
4 m), but its battery time duration is two times larger than the
first drone (7] = %Tz = 1500 s). When the first drone flies from
node 8 to 7, considering its footprint ratio (p; = 2), it can mon-
itor arcs (5,6) and (9,10) simultaneously. Fig. 7 shows flight
trajectories for each drone based on the number of rows that they
can monitor flying over each edge. As observed, the first drone
is allocated and covers almost twice the field rows more than the
second drone.

In the third scenario, we assumed that the first drone that
has a larger field of view is fully charged, and its battery time
duration is equal to the second drone. Fig. 8 indicates the flight
routes for this scenario. As it is clear from this figure, most of the
rows are assigned to the first drone because of its large footprint
ratio.
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—— UAV1 path
—— UAV2 path

Y position (m)

X position (m)

FIGURE 7: Simulation result demonstrating the path planning for
two drones with different fields of view. First drone’s footprint
is assumed to be twice of that of the second drone, but its battery
charge is half of the full state.

4 Conclusion and Future Work

In this paper, we formulated (and solved) the problem of
optimal deployment of a team of heterogeneous drones in an
agricultural field in such a way to minimize the coverage time.
We considered a team of drones with different cameras’ field of
view, flight speeds, and batteries’ remaining charge. The field
was first modeled as a graph with a set of nodes arranged consid-
ering the minimum of footprints. The underlying optimization
problem was converted to a vehicle routing problem subject to a
set of specific constraints enforcing vehicles to travel along the
plant rows in a back and forth motion. The optimization problem
was formulated as a mixed-integer linear program (MILP), and

—— UAV1 path
—— UAV2 path

Y position (m)

X position (m)

FIGURE 8: Simulation result showing the path planning out-
come for two drones with different fields of view, where the
first drone’s footprint is twice the second drone’s but their bat-
tery charge is the same (both fully charged).

the performance of the proposed VRP solution was validated us-
ing various simulation studies to find the optimal flight path in a
given agricultural field.

The authors are currently investigating a new approach to
address the case with different flight heights for a team of drones,
with the goal of finding the optimum cameras’ footprint as a
function of the height at which drones fly. The experimental val-
idation (field study) of the proposed method is also underway.
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