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Abstract—Effective and causal observable functions for low-
order lifting linearization of nonlinear controlled systems are
learned from data by using neural networks. While Koopman
operator theory allows us to represent a nonlinear system as
a linear system in an infinite-dimensional space of observables,
exact linearization is guaranteed only for autonomous systems
with no input, and finding effective observable functions for
approximation with a low-order linear system remains an open
question. Dual-Faceted Linearization uses a set of effective
observables for low-order lifting linearization, but the method
requires knowledge of the physical structure of the nonlinear
system. Here, a data-driven method is presented for generating
a set of nonlinear observable functions that can accurately
approximate a nonlinear control system to a low-order linear
control system. A caveat in using data of measured variables as
observables is that the measured variables may contain input
to the system, which incurs a causality contradiction when
lifting the system, i.e. taking derivatives of the observables. The
current work presents a method for eliminating such anti-causal
components of the observables and lifting the system using
only causal observables. The method is applied to excavation
automation, a complex nonlinear dynamical system, to obtain
a low-order lifted linear model for control design.

I. INTRODUCTION

There is a growing need in the construction and mining
industries for excavation automation. Various technologies
are being developed for operating excavators autonomously
with increased productivity and fuel efficiency [1]. The recent
and projected growth of the global construction industry
[2] and the dangers of the excavation work environment
[3] are major drivers behind the development of intelligent
excavators for performing earth-moving tasks.

Excavation is a highly nonlinear process where soil and
rocks interact with the bucket of an excavator in a complex
manner (see Fig. 1). While terramechanics models have
been studied for many decades, their validity is limited due
to the difficulty of identifying the numerous parameters of
mechanistic models. Data-driven methods have recently been
introduced to autonomous excavation for capturing complex
nonlinearities [3]-[7], yet the nonlinear models are still too
complex to use, in particular, for real-time control.

Lifting linearization is a methodology for representing a
nonlinear dynamical system with a linear dynamic model in a
high dimensional space. Underpinned by Koopman operator
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Fig. 1. Learned lifting linearization of autonomous excavation.

theory, nonlinear systems represented with supernumerary
state variables behave more linearly in the lifted space. The
method has recently been applied to various robotics and
automation challenges, including active learning [8], soft
robotics [9], human-robot interaction [10], power systems
[11], and mission planning [12]. More broadly, deep learning
has proven a valuable tool for a variety of lifting linearization
techniques [13]-[16].

The original Koopman Operator has two major limitations:

1) The theory is applicable only to dynamical systems
with no exogenous input, i.e. autonomous systems, and

2) Exact linearization requires an infinite-dimensional
space, except for a restricted class of systems.

Any extension to non-autonomous, finite-dimensional sys-
tems is no longer exact, but an approximation. Various meth-
ods for truncating the system with a finite-dimensional space
have been reported. Among others, the eigendecomposition
of the lifted system allows us to represent the system at
desirable accuracy and granularity while providing useful
insights into the system [17]. Furthermore, the extended
Dynamic Mode Decomposition (eDMD) is completely data-
driven, providing a practical tool for complex nonlinear
system representation [18]. These methods, however, need a
set of observables, i.e. output variables, which are nonlinear
functions of independent state variables. It is still an open
question how to find an effective set of observable functions.

One of the key challenges in the lifting linearization
of nonlinear systems with exogenous input is causality. If
observable functions are functions of both state variables and
input variables, we cannot use such observables for lifting
the system. Lifting entails computing time derivatives of the
observables and, thereby, the dynamic equations inevitably



include the time derivative of input. In discrete formulation,
this means the use of future input. Including these input
terms, the time-evolution of the observables turns out not to
be causal. If one measures a set of candidates of observables
from a nonlinear system that is subject to control inputs and
uses the measured variables for lifting the system, they may
end up with a non-causal dynamical system.

In Dual-Faceted Linearization (DFL)—another approach
to lifting linearization—this causality issue has been analyzed
based on physical system modeling theory [19]. In DFL,
the propagation of inputs across the nonlinear dynamical
system can be tracked, and their effect upon all observables,
called auxiliary variables, can be localized. Assuming that
inputs are linearly involved in observables, a method has been
established for eliminating the input-dependent component
from each observable and lifting the dynamics by using
the remaining input-free observables. In the Koopman-based
lifting linearization, too, it is assumed that the observables
are input-affine in order to eliminate the input-dependent
components from observable functions, so that a causal
dynamic model can be obtained [20].

Lifting linearization is a powerful methodology for tack-
ling a broad spectrum of nonlinear problems, in particular,
excavation process modeling and control. However, two
critical challenges have not yet been fully solved:

1) Finding an effective set of observables to approximate
a nonlinear system in a low-dimensional lifted space
2) Finding causal observables uncorrelated with inputs

The objective of the current work is to solve these two chal-
lenges. We present a low-dimensional, causal, lifting linear
model obtained from experimental data. Neural networks are
used to find effective observables through learning.

In the following, we summarize a basic formulation of
lifting linearization in § II. We present the learning method
for obtaining an effective set of observables in § III. First, we
deal with nonlinear controlled systems where all measured
observables are not affected by inputs. Then, the method
is extended for physical observables that may be functions
of inputs. Simple numerical examples are discussed for
validating the proposed method in § IV, and we apply it
to excavation process modeling in § IV-B.

II. BACKGROUND

This section summarizes background knowledge for read-
ability. More details can be found in [19], [21].

A. Koopman Operator Theory

First proposed in 1931 by Koopman [21], Koopman op-
erator theory originally modeled only autonomous systems,
and the operator mapped the nonlinear dynamics only onto
an infinite-dimensional linear space. Later techniques ex-
panded the use of the operator for nonautonomous systems
[22] and developed methods for approximating the infinite-
dimensional mapping with a computationally feasible, finite-
dimensional space [23]-[25].

Let the discrete-time dynamics of a nonlinear, autonomous
system with state z; € R at time ¢ be given by z;1 = f(z;).

Furthermore, define a vector of nonlinear observables of the
state, n; = g(x) € R™,

The Koopman operator, /C, is linear and infinite-
dimensional and applies to observable functions: K¢g = go f,
where o represents the composition operator.

B. Dual-Faceted Linearization (DFL)

Despite the use of Koopman operators to provide a lifting
linearization for autonomous systems, the theory provides no
method by which to select an effective set of observables.
Because it is infeasible to compute the infinite-dimensional
space with finite computational resources, the choice of
which observables to use is very important. DFL [19] uses a
particular class of observables that are determined based on
physical modeling theory and bond graphs [26]. Those ob-
servables, called auxiliary variables, are physically meaning-
ful, and may be measured physically. Furthermore, causality
analysis of the method allows us to examine how exogenous
inputs propagate the system and influence specific auxiliary
variables. Using those variables with no input influence, one
can obtain a lifted system that is causal. Alternatively, input-
dependent variables can be “laundered” into causal variables.

Consider the discrete-time dynamics of a nonlinear, nonau-
tonomous system with input v, € R™ at time ¢ given by:

Ti41 = f(l'taut) (D

Assuming that the system is a lumped-parameter system
with integral causality, we can choose outputs of all the
nonlinear elements involved in the system as observables
e = g(zy) € R™ to augment the system state and construct
a linear representation of the system dynamics:

Tip1 = Agxe + A + Bouy 2

where A, € R¥!, A, € R™™, and B, € R™*" are fixed
matrix coefficients determined by the physical structure of
the system. This part of the state evolution is exact.

We approximate the 7n-dynamics using a second equation:

N1 = Hpxy + Hyny + Hyug + 15, ©))

where H, € R™*!, H, e R™*™ and H, € R™*™ are fixed
matrix coefficients and 7, , € R™ is a residual. Unlike A,
Ay, and B, which are determined from the physical structure
of the system, H,, H,, and H, must be regressed from data.
For brevity, define coefficient matrices A £ (A, A,), B;) €
R*P and H £ (H,,H,,H,) € R™*P and datum vector
& = (xf,n],u])T € R? where p = | +m + n. Apply a
negative discrete-time shift operator 7_; to (3) to optimize
H to minimize the mean squared error of predicting 7;41:

argming E [\Hft,l — nt|2l
E[n&] ] (B[&-161])
where E[-] is the expectation operator. Assuming that the
system is persistently excited and that u; is not collinear
with x;, there is a unique solution, H°.

The original nonlinear dynamics f can now be modeled
using the dual-faceted linear dynamics:
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Practical benefits of using DFL as a tool to model systems
include:

« Augmented state feedback can be used to better inform
controllers [27].

o Linear observer design is enabled for augmented state
feedback.

« Model-predictive control is convex [17].

o Because DFL is based in physical modelling theory,
augmented state systems may be measurable, and dy-
namics may have physical intuition [28].

For these reasons, DFL has proven to be a valuable tool in
modeling nonlinear systems. However, DFL requires knowl-
edge of the structure of the physical system. Furthermore,
many systems contain no obvious, measurable observables
with which to augment the state, and there is no guarantee
that, when they do exist, physically meaningful observables
make the best choices for augmenting the system state.

C. Machine Learning for Linear Latent Spaces

Like Koopman operator theory and DFL, learned latent-
space dynamic modeling techniques also involve constructing
a nonlinear representation of the original state, then using
a model to evolve the new “observables” through time. In
Koopman operator theory and DFL, the dynamic model
is linear. Recently, much work has been done to explore
applying deep learning techniques to Koopman operators.

Abraham and Murphey [8] presented an active learning
strategy for robotic systems that extended observables, g,
from Koopman operator theory to include the control input,
u. Their algorithm trains a neural network to approximate an
optimal g. In each epoch, they recompute a finite-dimensional
matrix approximation of the Koopman operator K, but be-
cause g is a function of both z; and w,, regressing such a
matrix requires knowing u;1 in addition to ;4. To solve
this causality problem, they propose replacing wusy; with uy
in the Koopman operator update.

Han et al. [29] also proposed using a neural network that
approximates an optimal lifting function g. At the end of each
epoch, after feeding z;_; forward through g, they solve a
least squares optimization problem to regress a modified H°
where H, = 0, then use the learned model to backpropagate
the error E [||g(x¢) — H°&_1]| z] plus a penalty on the norms
of the components of H°. Because they do not track the
evolution of the state, x, directly, they must simultaneously
learn an additional matrix to approximate ¢~ !.

Lusch ef al. [30] and Mastia and Bemporad [31] replaced
the g~! matrix approximation of Han et al. with a neural
network decoder. Their models learn to minimize cost along
three axes: neural network ¢g—' must invert neural network
g, i.e. z =g (¢7*(x)); the nonlinear model must be able to
predict, i.e. 2441 = g~ (Hg(z¢)); and the lifted state must
propagate linearly, i.e. g(z¢4+1) = Hg(x).

Work by Yeung et al. [32] applied deep learning to
dynamic mode decomposition (DMD) by training a neural
network to approximate the ‘“snapshot” function mapping
state to physical observable. Instead of optimizing a com-
plicated cost function like in [29]-[31], their work simply

trains a model to map states to other measurements of the
system, then regresses a linear dynamic model to propagate
the measurements forward in time.

Other work in learned latent spaces for lifting lineariza-
tions leverages neural networks to approximate functions
similar to Koopman’s observables in reinforcement learning
[16], sampling-based motion planning [14], Kalman filtering
[15], and partially observable Markov decision process [13]
paradigms. However, these works all learn linearizations A
and H that are time- or state-dependent, further reducing the
long-term robustness of the linear model and giving up the
benefits of provably convex optimal control.

D. Anticausal Observables

Most lifting linearization techniques, including Koopman
operator theory and DFL, require that the lifting observables
be control input-independent, i.e. n = g(x). If auxiliary
variables depend on the control input, u, i.e. n = g(z,u),
then propagating 7 forward through time requires knowledge
of future values of control input:

0 0
Ne+1 = N+ £ (g1 — ) + £ (U1 —ug)  (6)

In order to avoid problems with causality, most methods
explicitly avoid augmenting the system state with control
input-dependent variables. There are two common tech-
niques.

The first solution to the causality problem is to include
a state-feedback control law in the model [8], [29]. By
constraining the control input to be a known function of state,
the system becomes effectively autonomous, and the original
formulation of Koopman operator theory applies. This works
for regulators, including for controllers regulating a system
to follow a predetermined state trajectory, but no exogenous
input is allowed.

The second solution to the causality problem is to assume
that the auxiliary variables are linear in w [19], [20], [33]:

n(z,u) =n"(z) + Du )

where n* is exclusively state-dependent and D is a fixed
matrix coefficient of .

Although predicting future values of n(z,u) remains im-
possible without a control law, this formulation allows for
the modeling of the evolution of n*(x). The auxiliary state
equation can be rewritten:

Ny = Hyzg + Hing + Hiug + ey (8)

where 7,- ; is a residual.
Substituting (7) into (8) yields:
Niy1 = H;xtJrH;nf + (HZ +H:7‘D) U + T g )

which is a causal, augmented state dynamic equation. The
question of causality is therefore solved by preprocessing
the auxiliary state data to filter out their dependence on wu.
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Fig. 2. Block diagram of the learned lifting linearization algorithm. The loss, J, is used to tune the weights of neural network, g, and linear dynamic
model matrices A and H via error backpropagation (EBP). Note that both instances of g are equivalent to each other for all time ¢.

III. MODELING ALGORITHM

Fig. 2 shows the overview of the modeling algorithm. The
learning system consists of three major components. The first
is the Linear Dynamic Model predicting the transition of
the system. The second is a multi-layer neural network for
generating auxiliary variables, and the third is the process of
evaluating the prediction error.

We assume all state variables are accessible and sufficient
data for training are attainable. All state variables are fed
into the left neural network, g, to produce a set of synthetic
observables, 7;, to be learned. The state x;, observables 7;,
and input u; are fed into the linear dynamic model param-
eterized by matrices A and H. The linear model produces
predicted state ;11 and predicted observables 7);;;. The
predicted state and observables are compared to their ground
truth values, x;y1 and n:41 = g(x¢41;0), respectively. The
right neural network in the figure is a twin copy of the left
neural network, sharing parameters 6.

The squared error of the predicted state and observables,
J, is used for updating the linear dynamic model with
respect to parameters A and H and the neural network
weights. The update of these parameters is computed via
error backpropagation (EBP).

The causality analysis involved in the DFL modeling
allows us to examine whether observables, called auxiliary
variables, are functions of state alone or include inputs. If
some auxiliary variables are causal, having no dependence
on control input, they can be added to the state for lifting
the dynamics. Let ¢; represent causal auxiliary variables. As
shown in Fig. 2, the causal observables can be fed into the
neural network, so that the synthetic auxiliary variables 7
can be produced from richer data. Note that the ground truth
Nt+1, t00, can be produced in response to not only state z;4 1
but also ¢/, ;. The tunable parameter space of the neural
network is expanded with the use of the causal auxiliary
variables.

In case physically measurable auxiliary variables are func-
tions of both state and input, such input-dependent auxiliary
variables cannot be used in their original form for lifting the
dynamics. It is necessary to filter out the input components

from the observables. Fig. 2 also shows a simple filter to
eliminate the effect of input from those variables, (;, as
discussed in § III-B.

A. Discrete-Time Learned Lifting Linearization

Consider the discrete-time dynamic system from (1). Let g
be a neural network, illustrated in Fig. 3, defined by randomly
initialized parameters € to generate synthetic observables:

ny = g(x4;0) (10)

T
Define a datum vector £/ = <:I:tT, n’T, u{) .Let A € R\*P
and H € R™*P be matrix coefficients modeling the state and
augmented state transition dynamics, respectively. We over-
ride (5) to include residuals in the original and augmented
state dynamic equations:
Tipr = A+ 08
0 _ q7e0 4 .0
N1 = HE + Tnesa
0 .
No = g(an 9)

1)

Given observation data of x;, z;+_1, and u;_1, we synthe-
size observations of the augmented state, n’ = g(x;0) and
n?_, = g(w;_1;0), and assemble datum vectors £/_,.

By applying the discrete-time shift operator 7_; to (11)
and rearranging, we can compute a residual for each obser-
vation: 1§ =z, — A& | and rf = g(x;0) — HEJ .

We define a quadratic loss function, J;(6, A, H), used to
train the model:

Ji(0, A, H) 2 rTQr? (12)
where ( is a symmetric matrix coefficient and ¢ is a total
: : 9 & (.07 07\T
residual given by r{ = (r0T,70T)T.
Model parameter matrices A and H, as well as the param-
eters of the neural network, 6, are computed by solving the

following optimization problem via error backpropagation:

0°, A° H° = argminE [J;(0, A, H)]
0,A,H

13)



Fig. 3. Diagram of the neural network and linear dynamic model to compute
x¢+1 and ny41 given x; and u¢. With abuse of notation, we hereafter
include ¢* in x.

B. Extension to Anticausal Observables

As discussed in [19], augmenting the state with physical
observables is often useful. Because this learned lifting
linearization is data-driven, augmenting the state, x, with
control-independent, physical observables is trivial. However,
as reviewed in § II, if the augmented state is dependent on
the control input, the augmented system dynamics become
anticausal. In state space modeling, output equations include
inputs algebraically if there is a direct transmission term
from inputs to outputs [34], [35]. Namely, observations of
the system are functions of x; and u;. Consider a vector of
physical observables, ¢(x,u) € R, suspected of including
a dependence on u. As in [19], [20], and [33], assume that
this dependence is linear:

C(w,u) = ¢*(x) + Du

where (*(z) € R? is exclusively a function of state and
D € R**"™ is a fixed matrix coefficient of u. Assuming mean-
zero data, because (*(z) is uncorrelated with the control
input, E [(*(z)uT] = 0. Therefore, multiplying (14) by uT
and taking the expectation yields E [¢(x, u)uT] = DE [uuT].

Given observations of ((z,u) and u, computing D be-
comes a least-squares linear regression:

D =E[¢(z,u)u"| E [uuT] "

(14)

5)

assuming that the input is persistently exciting.

Before training the learned lifting linearization model in
(11), we preprocess the data to “clean” the physical observ-
ables from any linear dependence on u via

C*(xt) = C(xhut) - Dut

for each observation, t. Then, we augment the DFL
model to include (*(z). We override (10) with n! =
g ((¢*T(x1),2])T ;6) and follow the same training procedure
described above to tune g, A, and H using (13).

The complete learned lifted linearization algorithm is sum-
marized in Algorithm 1.

(16)

Algorithm 1: Learned Lifting Linearization

Result: Lifting linearization of nonlinear dynamics

Randomly initialize neural network g and linear
dynamic model A, H;

D« E[¢uT]E [uuT] " ;

while training do

get batch Of T, Ct, Ut, $t+1, Ct+1’ Ut+1 from
training dataset ;

G G — Duy ;

Cip1 < G+1 — Duggr s

m— 9((@e,¢7)) 5

M1 < 9((Te41,Gya)

gt A (x2'7<:‘T,n;I'7u;I')T ;

T (((xtT-i-lv gt*ll).r —A&)T, (41 — Hft)T)T ;

J—rTQr;

backpropagate J to update g, A, and H using
Adam ;

end
Au — Au +A<D 5
H, <+ H,+H:D ;

IV. NUMERICAL EXAMPLES
A. Toy Problem

The modeling algorithm in § III is implemented in PyTorch
[36] on a laptop running Ubuntu 18.04.5 LTS. The codebase
is hosted as a git repository at [37].

We test the learned lifting linearization (L.3) algorithm on
the nonlinear, massless spring-damper illustrated in Fig. 4
with @ (er) =2/ (1+ e *®) — 1, and ¢ (q) = sgn(q)q>.
We generate 100 5s trajectories at 20Hz with initial condi-
tions and control inputs drawn from uniform random distri-
butions. The state, x, consists only of the linear position, ¢,
and the control input, u, is the scalar effort (n = 1). We use
the system bond graph to identify observables ¢ = (f,ec)’.

The neural network, g, approximating the optimal synthetic
observables, 7, is a fully connected network of 3 linear input
neurons (I = 3); two hidden layers, each with 256 ReL.U neu-

€
S, —1 =R

f

C

Fig. 4. Bond graph of a nonlinear first-order system with state variable q.
In the bond graph, a nonlinear capacitor, C, and a nonlinear resistor, R, are
connected to an effort source, Se, that is an exogenous input u(t). Causality
analysis of the bond graph determines that effort variable ec is the output
of the nonlinear capacitor, while the output of the nonlinear resistor is flow
variable f. In the electrical circuit analogy, the effort variable ec is the
voltage across the capacitor, and the flow variable f is the current flowing
through the resistor. They are connected with the exogenous input voltage
u(t) at the “I” junction, which is equivalent to Kirchhoff’s Voltage Law.
The causality analysis also reveals that a direct transmission path exists from
input u(t) to flow variable f. Therefore, auxiliary variable f is not a causal
variable for lifting the system.
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Fig. 5. Results of open-loop simulation predicting the state, g of the
toy problem from Fig. 4 excited by a square wave input (in gray). The
solid black line indicates the true trajectory. The dashed lines indicate the
open-loop simulated trajectories of various models: Koopman-with-control
(Koopman, dim = 33), extended dynamic mode decomposition with control
(eDMDc, dim = 6), dual-faceted linearization (DFL, dim = 4), learned
lifting linearization (L3, dim = 6), and L3 without first filtering out the
control input using (16) (L3 NoF, dim = 6).

rons; and 2 output neurons, creating 2 synthetic observables
(m = 2). Before training, the data are randomly divided 80-
20 into a training set and a validation set. The neural network,
g, and the linear model consisting of A and H are trained
in batches of 32 input-output pairs using an Adam optimizer
[38] with o = 1075, 31 = 0.9, B2 = 0.999, and € = 1075,
The quadratic cost parameter () = I. Before each training
epoch, the learned lifting linearization model is evaluated
using the validation dataset without backpropagating the loss.
Training continues until the validation loss begins to increase.

We benchmark the learned lifting linearization algorithm
against Koopman-with-control, eDMDc, DFL, and L3 with-
out the anticausal filter. Using the same data from the training
and validation sets described above, 32 observables using
polynomial basis functions are created for the Koopman
observables and two similar observables are created for
eDMDc. We train the eDMDc and DFL models using the
same measurements, ¢, as L3.

After training, we simulate all models given a zero initial
condition and a square wave input trajectory. The modeled
state trajectory is compared against the ground truth in Fig.
5. The learned lifting linearization model outperforms the
Koopman model despite the significantly lower dimension-
ality. The integrated squared errors of the simulated models
are recorded in Table I.

Note that the fidelity of the Koopman operator model is
sensitive to hyperparameters. As discussed in [9], without L1
regularization, high-dimensional Koopman models quickly
overfit to the training data. Both DFL and L3 outperform
eDMDc due to the anticausal filter compensating for the
dependence of eg on w. Without the anticausal filter, L3
performs only marginally better than eDMDc. L3 also has
a slight advantage over DFL: in addition to penalizing non-
linearities in the state transition equation, the cost function

TABLE I
INTEGRATED SQUARED ERROR OF THE MODELS USED TO SIMULATE THE
TOY PROBLEM OVER TEN SECONDS.

Koopman  eDMDc
59 14

DFL L3
0.73

L3 (NoF)
0.48 12

(Fe, By)

Fig. 6. Diagram of the states and physical observables included in the data.

of the learned lifting linearization in (12) also penalizes
nonlinearities in the augmented state transition equation.

B. Excavation Process Modeling

We also test the learned lifting linearization algorithm
on an autonomous excavator simulation using agxTerrain,
a specialized module of the AGX Dynamics [39] physics
simulator used to test algorithms for autonomous excavation
[40]-[43] illustrated in Fig. 1. We generate a random soil
profile by summing several 2-D Gaussians of random height
and variance, yielding soil shapes like those in Fig. 1. Soil
properties are set in accordance to the AGX “gravel” profile.

We collect 100 7.5s randomized trajectories from large
sections of the workspace at 100Hz, setting one of them aside
for testing. A diagram of the collected data is illustrated in
Fig. 6. The trajectories include six states, x: position along
the x-axis, x; position along the y-axis, y; bucket angle, ¢;
velocity along the x-axis, vy; velocity along the y-axis, vy;
and rotational velocity of the bucket, w. The trajectories also
include three control inputs, u: force along the x-axis, uy;
force along the y-axis, u,; and torque actuating the bucket,
ug. The trajectories also include three physical observables,
(: soil reaction force on the bucket along the x-axis, Fy; soil
reaction force on the bucket along the y-axis, F,; and mass
of the soil in the bucket, mg.;.

These trajectories are generated using a naive, noisy PID
controller on the translation forces and bucket angle:

U = PID(X — U (Xmin, ¥max)) + U (—wx, ws)
Uy = PID(y — U(ymin; ymax)) + U(—U)y, wy)
Up = PID(¢ — U(Pmins Pmax)) + Z/{(—w¢, w¢)

where U is the uniform random distribution and wy, w,, and
wg are bounds on additional noise added to ensure persistent
excitation. The set points are drawn from a uniform random
distribution in accordance with [44].

The learned lifting linearization and Koopman models for
the terramechanics experiment are almost identical to those
of the nonlinear spring-damper experiment, with some excep-
tions. The neural network, g, has 9 input neurons, 1 hidden
layer with 256 ReLU neurons, and 4 output neurons. On
average, training the L3 model took 2.5 hours. The domain
of the Koopman dynamic model has a dimensionality of 67,
compared to 16 for the learned lifting linearization model. We

A7)
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Fig. 7. Results of open-loop simulation predicting the positional state and observable trajectories of the bucket through the soil given the initial condition
and control input. The solid black line indicates the true, observed trajectory. The dashed green line indicates the trajectory predicted by the Koopman

model. The dashed lines indicate the open-loop simulated trajectories of various models: dynamic mode decomposition with control (DMDc), learned

lifting linearization (L3), L3 without first filtering out the control input using (16) (L3 NoF), and L3 without any information from ¢ (L3 NoZ).

also benchmark against a DMDc model with a dimensionality
of 12 trained using the observables, (, in addition to the state.
There was not a significant performance difference between
DMDc and eDMDec. In addition to benchmarking the learned
lifting linearization model against the Koopman and DMDc
models, we also compare the results with and without fil-
tering out the control input from the physical observables
using (16). In this model, instead of following the procedure
described in § III-B, we incorporated {(z, u) directly into the
state without filtering. Effectively, this forces the model to
violate causality by predicting future values of observables
dependent upon control input, u. Finally, we also test L3
without any information from observations, (, to examine
the effect of removing supplementary measurements.

After training the learned lifting linearization and Koop-
man models, we simulate both models using the control input
trajectory and initial condition from the testing trajectory.
The modeled trajectories of the positional states, x, y, and
w, and the three observables, F;, I}, and m.;1, are compared
against the ground truth trajectories in Fig. 7. The integrated
squared error across the three states for the learned lifting
linearization model is only 5% and 18% of the same errors
for the Koopman and DMDc models, respectively.

We also retrain the learned lifting linearization model
without first filtering out the control input using (16) and
simulate using the same technique, L3 (NoF). The integrated
squared error across the three states is more than eight times
the same error for the standard L3 model. Input filtering is
vital to model robustness. A similar experiment performed
without any information from supplemental measurements,
L3 (NoZ), results in an error more than ten times greater than
the standard L3 model. Various experiments retraining the L3
model without access to individual states or observables (left
out of Fig. 7) result in similar reductions in accuracy.

V. DI1SCUSSION AND CONCLUSION

In this section, we highlight main takeaways from our
experiments.

In this paper, we presented a learned lifting linearization
algorithm to model nonlinear dynamic systems. This model
extended Koopman operator theory and dual-faceted lin-
earization by training a neural network to produce nonlinear
observables to augment the state. We also presented an
algorithm to “clean” anticausal physical observables of any
linear dependence on control input so that they can be used by
the neural network to generate richer synthetic observables.
We tested this algorithm on a nonlinear, massless spring-
damper model and an autonomous excavation simulation,
and we compared the results against Koopman, DMD, and
DFL models. Learned lifting linearization outperformed all
benchmarks at minimizing state prediction error.

As with many data-driven techniques, the quality of the
training data is paramount to model accuracy. The reason
for the reduced performance in modeling progression along
the y-axis is likely the relatively small size of the domain
of the training data along that dimension. If the system is
initialized in a configuration that is different from what has
been recorded during data collection, or if the quantity of data
available for learning is reduced by more than half, models
such as L3 and DMD perform substantially worse.

In real-world excavation tasks, soil properties can vary.
While this paper addresses more homogeneous soil profiles
like gravel, intelligent use of observables to include informa-
tion about the environment could enable L3 to learn optimal
auxiliary variables and linear models for dynamic soil proper-
ties. Additionally, L3 could be primed with simulator data to
reduce the amount of hardware-in-the-loop learning required.

Conventional excavators often lack the ability to do proper



end effector force control without expensive modifications to
the hydraulics. State-of-the-art excavators have solved this
problem [7], and this work focused on the nonlinearities
involved in soil dynamics. Future work on this topic should
include modeling of the nonlinearity of hydraulic systems.
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