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ABSTRACT  

Evacuations play a critical role in saving human lives during hurricanes. But individual evacuation 
decision-making is a complex dynamic process, often studied using post-hurricane survey data. 
Alternatively, ubiquitous use of social media generates a massive amount of data that can be used 
to predict evacuation behavior in real time. In this paper, we present a method to infer individual 
evacuation behaviors (e.g., evacuation decision, timing, destination) from social media data. We 
develop an input output hidden Markov model (IO-HMM) to infer evacuation decisions from user 
tweets. To extract the underlying evacuation context from tweets, we first estimate a word2vec 
model from a corpus of more than 100 million tweets collected over four major hurricanes. Using 
input variables such as evacuation context, time to landfall, type of evacuation order, and the 
distance from home, the proposed model infers what activities are made by individuals, when they 
decide to evacuate, and where they evacuate to. To validate our results, we have created a labeled 
dataset from 38,256 tweets posted between September 2, 2017 and September 19, 2017 by 2,571 
users from Florida during hurricane Irma. Our findings show that the proposed IO-HMM method 
can be useful for inferring evacuation behavior in real time from social media data. Since 
traditional surveys are infrequent, costly, and often performed at a post-hurricane period, the 
proposed approach can be very useful for predicting evacuation demand as a hurricane unfolds in 
real time. 
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1. INTRODUCTION 
Extreme weather events have become more common these days due to climate change and other 
related causes. These extreme events have caused significant physical and socio-economic losses 
(Guha-sapir et al., 2017; Hasan and Foliente, 2015; Re, 2013; Tousignant Lauren, 2017). A real-
time demand-responsive evacuation system is essential to save human lives and minimize losses 
(Murray-Tuite and Wolshon, 2013). Traditionally, post-hurricane surveys are conducted to collect 
data to understand and predict the evacuation behavior of a population. Such surveys are costly, 
time consuming, and not effective to manage evacuation when a hurricane unfolds in real time 
(Chaniotakis et al., 2017). With the ubiquitous use of social media platforms (e.g. Twitter, 
Facebook etc.), a massive volume of real-time data is available. Such data can provide valuable 
insights on individual behavior during extreme events such as a hurricane (Sadri et al., 2017a; 
Wang and Taylor, 2014; Xiao et al., 2015).  

Thus, large-scale social media data can be used for a better understanding of evacuation 
behaviors during hurricanes (Martín et al., 2017). However, one of the major challenges of using 
social media data is to reliably model evacuation decisions from such data. To date, the studies 
investigating social media data are limited to inferring evacuation choices. These studies 
(Chaniotakis et al., 2017; Martín et al., 2017) have mainly adopted clustering approaches that 
locate a user during pre-evacuation and evacuation periods. A recent case study  (Kumar and 
Ukkusuri, 2018) on hurricane Sandy Twitter data shows the relationship between social 
connectivity and evacuation decision without specifically modeling the real-time dynamics of 
evacuation decision-making. Using geotagged Facebook data from hurricane Irma, Harvey, and 
Maria, another recent study (Metaxa-Kakavouli et al., 2018) has analyzed the influence of social 
ties on evacuation behavior. Although these studies have demonstrated the significant potential of 
using location-based social media data in an evacuation context, they have not developed any 
modeling framework that can answer what, when, and where users participate in different activities 
during a hurricane.  

In this paper, we present a modeling approach for understanding the dynamics of hurricane 
evacuation from social media data. In particular, we have developed an input-output hidden 
Markov model (IO-HMM) to infer evacuation behavior from Twitter data. We have gathered 
large-scale Twitter data during hurricane Irma and used the spatio-temporal and contextual 
sequences from this data to run the proposed model. Hurricane Irma, the largest storm ever 
recorded in the Atlantic Ocean, made its landfall on the southern coastal areas of Florida. The 
storm generated a massive amount of social media posts nationwide, especially in Florida. This 
paper has the following contributions: 

• We implement a process to gather hurricane evacuation information from geo-tagged 
Twitter data. We validate the results by manually checking locations and tweet texts of the 
users. As traditional survey data is costly and often confined with small geographic region, 
this type of data can be used for understanding evacuation behavior during hurricane to 
complement traditional approaches. 

• We develop a Word2Vec model to extract contexts based on the tweets collected from 
multiple hurricanes (Sandy, Matthew, Harvey, and Irma). The model has been trained using 
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more than 100 million tweets having about 882.54 million words (after filtering out the 
stop words, punctuations, emoticon, URLs). This model can contribute in future research 
to determine disaster contexts from Twitter data.  

• We develop an input output hidden Markov model from the sequences generated from user 
tweets. To the best of our knowledge, this is one of the first studies that use social media 
data for modeling the dynamics of hurricane evacuation decisions. The model can capture 
the dynamics of hurricane evacuation by answering what, when, and how users participate 
in different activities during a hurricane.   

2. LITERATURE REVIEW 
During a hurricane, timely evacuation is critical to reduce hazard risks and save human lives 
(Baker, 1979). Despite the importance of evacuation, some people choose not to evacuate 
(Whitehead et al., 2000). Therefore, a thorough understanding of the determinants of evacuation 
behavior is needed to protect the loss of lives, especially for the vulnerable communities (Hasan 
et al., 2011b). Many studies have investigated population response during hurricanes from 
different perspectives, particularly focusing on evacuation choices (Murray-Tuite and Wolshon, 
2013). These topics include: evacuation decision making (Gladwin et al., 2001; Hasan et al., 
2011b; Kang et al., 2007; Yang et al., 2019), evacuation time (Hasan et al., 2013; Lindell, 2008; 
Rambha et al., 2019), evacuation demand (Xu et al., 2016), destination choice (Mesa-arango et al., 
2013), and mode and route selection (Sadri et al., 2015, 2014). However, most of these studies are 
based on post-disaster household surveys collecting information on population behavior instead of 
real-time dynamics. Studies (Lin et al., 2009; Ukkusuri et al., 2017; Yin et al., 2014) have 
developed high fidelity agent-based models to predict population responses in future hurricanes. 
One of the major shortcomings of these models is that factors influencing evacuation decisions do 
not change over time. Although a few models (Fu and Wilmot, 2004; Sarwar et al., 2018)  
considered the dynamics of evacuation decision-making process, these models depended on post-
disaster surveys, mainly focusing on household characteristics with limited transferability (across 
regions, communities, and disaster contexts) (Hasan et al., 2011a; Martín et al., 2017). Survey data 
have limitations in capturing the dynamic nature of the evacuation decision‐making process 
(Murray-Tuite et al., 2019). 

However, hurricane response is a dynamic event with significant changes and uncertainties 
involving parameters beyond household characteristics. During a hurricane, emergency agencies 
and weather services issue frequent advisories providing information on the hurricane’s projected 
trajectory and category, wind speed, rainfall, storm surge, evacuation warning etc. Local and 
national news channels disseminate information on the present condition of the hazard and traffic 
situation. Context awareness, considering all these dynamic factors, plays a critical role for a large 
number of populations to decide whether to leave or not. Lee et al. explored the dynamics of 
visiting patterns to the weather-related websites during  Hurricane Katrina (Lee et al., 2009). Yabe 
et al. developed a web-search query-based evacuation prediction model (Yabe et al., 2019). These 
studies mainly focused on understanding risk perceptions without modeling the spatial-temporal 
dynamics of evacuation behavior. As an alternative to relying on static post-disaster surveys, 
dynamic predictive models can be built employing real-time information received from multiple 
sources including individuals, transportation facilities, and emergency services. For instance, 
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Meyer et al. studied the dynamics of risk perception by using survey data collected during an 
approaching hurricane (Meyer et al., 2014). Studies also developed a physics-based hazard 
modeling approach to simulate evacuation uncertainty considering the physical interaction among 
multiple hazard components (Blanton et al., 2020; Davidson et al., 2020). However, these studies 
were based on simulated environments and did not use real-time information available from 
different sources. Evacuation models can utilize the vast amount of streaming data available from 
social media, giving us real-time insights on individual actions during evacuations (Chaniotakis et 
al., 2017; Kryvasheyeu and Chen, 2015; Martín et al., 2017; Sadri et al., 2017b).  

Recently, the role of social media in a disaster management context has gained a significant 
attention, mainly from the perspectives of crisis communication (Lachlan et al., 2016; Roy et al., 
2020; Sadri et al., 2017b, 2017a), human mobility analysis (Beiró et al., 2016; Pan et al., 2013; 
Roy et al., 2019; Yanjie Duan et al., 2016), nowcasting damage assessment (Kryvasheyeu et al., 
2016), and event detection (Dong et al., 2015; Kryvasheyeu and Chen, 2015). However, its 
potential in understanding evacuation behavior is still underexplored. Existing studies on inferring 
evacuation decisions from social media data found home locations and displacements to determine 
if a user has evacuated or not. Chaniotakis et al. (Chaniotakis et al., 2017) used a density based 
clustering approach to identify home and geotagged tweet counts during an evacuation order to 
identify evacuation decision. Using hurricane Matthew data, Martin et al. (Martín et al., 2017) 
showed that Twitter data can be used to understand evacuation compliance behavior. This study 
considered user median locations during a normal period as their homes and median locations 
during a hurricane as their evacuation destinations. Using similar approach on hurricane Sandy 
twitter data, Kumar and Ukkusuri (Kumar and Ukkusuri, 2018) studied the evacuation decision of 
New York City residents in relation to the social connection of the users, distance from coastline, 
and time to evacuation. They have found that higher number of social ties (number of friends, 
followers) decrease the likelihood to evacuate. A recent study using Facebook data of hurricane 
Irma, Harvey, and Matthew found a similar result that social ties decrease the likelihood to 
evacuate (Metaxa-Kakavouli et al., 2018). However, these studies did not capture the dynamics of 
individual evacuation decisions requiring a modeling framework that can infer evacuation choices 
from geo-location data.    

In this paper, we present an input output hidden Markov model to infer evacuation behavior 
from Twitter data. Hidden Markov models (HMMs) relate a sequence of observations to a 
sequence of hidden states that explain the observations (Ghahramani and Jordan, 1996). HMMs 
have been widely used in speech recognition (Rabiner, 1989), protein topology (Krogh et al., 
2001), social science (Eagle and Pentland, 2006), and activity modeling (Yin et al., 2017). HMMs 
have been used to classify activity categories considering spatiotemporal features (Ye et al., 2013) 
and to determine activity-location sequence from geo-location data (Hasan and Ukkusuri, 2017). 
Duong et al. (Duong et al., 2005) introduced a switching hidden semi-Markov model for online 
activity recognition and abnormality detection. Input-output hidden Markov model is an extension 
to the standard hidden Markov model for using the HMM in a supervised fashion (Bengio and 
Frasconi, 1995). IO-HMM has shown the added advantages over HMM to map the output 
sequences with the inputs in studies such as audio-visual mapping (Bengio and Frasconi, 1995), 
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price forecasting (González et al., 2005), hand-gesture (Marcel et al., 2000) etc. Yin et. al (Yin et 
al., 2017) proposed an IO-HMM based modeling framework to infer urban activity patterns.  

3. DATA PREPROCESSING AND DESCRIPTION  
In this study, for inferring evacuation choices from social media posts, we have used Twitter data 
from hurricane Irma. Using its streaming API, we collected around 1.81 million tweets made by 
248,763 users between September 5, 2017 and September 14, 2017. We collected the data using a 
bounding box covering Florida, Georgia, and South Carolina. To obtain user activities during a 
pre-disaster period, we also collected user-specific historical data using Twitter’s rest API which 
allows to collect the most recent 3,200 tweets for a given user. We collected user specific data for 
19,000 users who were active for at least three days between the day the first evacuation order was 
issued and the landfall day, so that we have enough data for capturing the activity dynamics during 
the evacuation.  

For our analysis, we have considered only the tweets with geo-location information. The 
geolocation information is provided either as a point (latitude, longitude) or a bounding box (area 
defined by two latitude and longitudes pairs). The point location is the exact location whereas the 
bounding box has different level of precision of where a tweet has been posted. We use the center 
point of a bounding box as the latitude and longitude of that place. To convert all the locations to 
a region under a geocoding system and to protect the privacy of the users, we have used geohash 
geocoding system with a precision of ~5 kilometers.   Geohash converts a latitude, longitude pair 
into a short string of letters and digits depending on the precision (length of the strings) (Balkić et 
al., 2012). In our study, we have used a geohash of length 5, which is equivalent to a region 
surrounded by ~ 5 km × 5 km area and has a reasonable resolution to capture the spatial dynamics. 

3.1 Preparing Evacuation Data 
From the historical tweets of a user, we extracted the most visited place during office hours (9:00 
AM to 6:00 PM) on weekdays and the most visited place during nighttime (10:00 PM to 7:00 AM). 
For each user, we assigned the most frequent office hour place and night hour place as office 
location and home location, respectively. For some users, the office and home location can be 
same because users may not be a worker or may have their offices within 5 km from home.  

Every year Florida attracts millions of visitors from home and abroad. We adopt several 
steps to remove the users who came from outside of Florida (international visitors and domestic 
users coming from states other than Florida). Through the filtering steps, we consider only the 
users whose home and office locations are within Florida, whose evacuation distance is less than 
2,400 km (chosen based on the literature (Cheng et al., 2008; Han et al., 2019)), and who have 
returned to their home after the landfall. 

In this study, we have focused on capturing the evacuation demand that is most likely to 
affect traffic flows on highways. Short distance evacuations (e.g., going to a nearby shelter) are 
not likely to impact highway traffic. Also, previous studies found that short distance evacuations 
are only a small percentage of the total evacuation count. During hurricane Floyd, very few 
evacuations were found less than 50 miles (~80.5 km); about 3.5% of the respondents chose a 
shelter or a church as an evacuation destination (Cheng et al., 2008). Based on hurricane Matthew 
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Twitter data, a recent study (Han et al., 2019) has found that evacuees are likely to move more 
than 200 km for an evacuation. During hurricane Irma, only 4% of the respondents were found to 
evacuate to a shelter (Wong et al., 2018, 2020). Moreover, some of the geotagged tweets do not 
have the necessary granularity (tweets with locations as a bounding box) to detect short distance 
evacuation. Thus, we select a threshold of 200 km to identify evacuation. After returning home, a 
user may not have any tweets posted from her home but may have posted from nearby locations. 
Thus, we select a 20 km distance threshold from someone’s home to identify the return of an 
evacuee. 

Starting from the beginning (9 days prior to landfall) of the location sequence to the landfall 
day, if a user has not tweeted from home or office but tweeted from somewhere else with a 
displacement of at least 200 kilometers, we consider that the user evacuated and the corresponding 
time as evacuation time. After landfall, a return is considered as the time when an evacuated user 
is first seen within the 20 kilometers from her home or office. We collect the information on 
evacuation orders from the official Twitter account of each county. We have considered the 
timings of the evacuation orders issued by each county. So, if someone evacuates before the first 
official order, it is considered as an evacuation without an official order. We have found that 252 
users have evacuated among 2,571 identified Florida users. 

We have manually checked the results of the above approach of identifying a user’s home 
location and evacuation (if any), it’s destination, and timing. Please see the supporting information 
section for details of the manual checking process. We compare the results from the manual 
checking process with the results obtained from this approach. We find that both the results match 
with respect to evacuation time and displacement traveled during evacuation. We use this resulting 
data as labeled dataset for the purpose of model estimation and validation. After all the processing, 
our final dataset contains 38,256 geotagged tweets, posted by 2,571 users from Florida. For each 
user, we created a sequence of his/her tweets and the corresponding locations posted between 
September 2, 2017 and September 19, 2017.  

3.2 Data Exploration 
Figure 1 shows the origins and destinations of the evacuated users. Here the identified home 
location of an evacuee is considered as the origin and the evacuation destination place is considered 
as the destination. Figure 1 shows the result of 252 Florida-based users after filtering out the 
tourists/visitors. Residents of Florida evacuated to Georgia (Atlanta was one of the major 
destinations), Alabama, South Carolina, and North Carolina. Some users (at right bottom of Figure 
1, near coast) moved to places that are closer to the coast than before. This is reasonable as the 
projected path of hurricane Irma changed overnight on September 8, 2017. Initially, Irma was 
expected to hit from the east coast of Florida, but later it changed its path and was predicted to hit 
from the west coast. These results seem plausible according to the news updates from different 
sources during hurricane Irma (Luz Lazo, 2017; Marshal, 2017). The majority of the evacuees 
were from Miami, Tampa, West Palm Beach etc. (see Figure 1), where mandatory evacuations 
were ordered.  

Figure 2 shows the distribution plot of evacuation time and return time of the users who 
evacuated during Irma. Figure 2(a) shows the marginal and joint frequency distributions of 
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evacuation time and return time; the top histogram along x axis shows the distribution of 
evacuation count in 24-hour intervals; the right histogram along y axis shows the distribution of 
return time in 24-hour intervals; each cell in the heatmap shows both evacuation count and return 
count with respect to the corresponding 24-hour evacuation interval on x axis and return interval 
on y axis. 

 

FIGURE 1 Evacuation Origin and Destination 

Figure 2(b) and 2(c) show the probability distributions of evacuation and return time 
considering the type of evacuation order received. The evacuation time and return time are 
expressed as the time difference from landfall time (September 10, 2017), a negative value 
indicates a period before the landfall and a positive value indicates a period after the landfall. Most 
evacuees left within 100 hours before the landfall (September 10, 2017); 18 to 42 hours before 
landfall was the most frequently chosen evacuation time window. On the other hand, 78 to 102 
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hours after the landfall was most frequently chosen return time window. People started evacuating 
before the official evacuation order (see Figure 2 (b)). Although the pattern of evacuation time is 
different for voluntary and mandatory orders, the patterns of return times are almost similar (see 
Figure 2 (c)). The resulting distributions are aligned to the actual evacuation time and return time 
according to the concurrent news reports during hurricane Irma (ABC News, 2017; 
FLKEYSNEWS, 2017). 

 
(a) 

 

 

(b) (c) 
FIGURE 2 Distributions of Evacuation Time and Return Time during Hurricane Irma, 

(a) Joint distribution of evacuation time and return time (b) Probability distribution of 
evacuation time for mandatory and without mandatory evacuation order, and (c) Probability 

distribution of return time for mandatory and without mandatory evacuation order. 
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4. METHODOLOGY 
We have used an Input Output Hidden Markov Model (IO-HMM) to identify activity sequence 
during a hurricane. We compare the results with a standard Hidden Markov Model (HMM). The 
model structures are shown in Figure 3. The IO-HMM is similar to HMM, but it maps the input 
sequence to output sequences and applies the expectation maximization algorithm (EM) in a 
supervised fashion.  

In an HMM modeling framework, the system being modeled follows a Markov process with 
unobserved (i.e., hidden) states. Figure 3(a) shows a graphical representation of an HMM. The 
solid circles represent the observed information and the transparent circles represent the hidden 
state latent variables, in our case the activity types of a user. Here, the hidden states, (𝐻1, 𝐻2 … . 𝐻𝑇) 
are assumed to follow a Markov process that means a hidden state, the probability distribution of 
 𝐻𝑡 depends only on the previous state, 𝐻𝑡−1; i.e., 𝐻𝑡 = 𝑓(𝐻𝑡−1). On the other hand, for the 
observations (𝑂1, 𝑂2, … 𝑂𝑇), an observation, the probability distribution of 𝑂𝑡 depends only on its 
current hidden state, 𝐻𝑡; i.e., 𝑂𝑡 = 𝑓(𝐻𝑡).  

Unlike the standard HMM, in IO-HMM, the probability distribution of hidden state 𝐻𝑡 at time 
𝑡, depends on the previous state 𝐻𝑡−1 and the input 𝐼𝑡 at time 𝑡; i.e., 𝐻𝑡 = 𝑓(𝐻𝑡−1 , 𝐼𝑡). The 
probability distribution of observation 𝑂𝑡 at time 𝑡 depends on both the hidden state 𝐻𝑡 and 𝐼𝑡 at 
time 𝑡; i.e., 𝑂𝑡 = 𝑓(𝐻𝑡 , 𝐼𝑡) (see Figure 3(b)).  

Here, 𝐼𝑡 ∈ 𝑅𝑚 is the input vector at time t. 𝑂𝑡 ∈ 𝑅𝑚  is an output vector, and 𝐻𝑡 ∈ {1,2, … . 𝑇} is 
a discrete state. Similar to HMM, IO-HMM has three set of parameters (𝜃): initial probability 
parameters (𝛼), transition model parameters (β), and emission model parameters (𝛾). 

 
(a) HMM 

 
(b) IO-HMM 

FIGURE 3 Graphical Model Specifying Conditional Independence Properties (a) For a 
Hidden Markov Model (b) For an Input Output Hidden Markov Model 

 

The likelihood of a data sequence given the model parameters (𝜃) is given by: 
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 𝐿(𝜃, 𝑂, 𝐼) = ∑ (𝑃𝑟(𝐻1|𝐼1; 𝛼). ∏ Pr(𝐻𝑡|𝐻𝑡−1, 𝐼𝑡 , 𝛽) .

𝑇

𝑡=2

∏ Pr (𝑂𝑡|𝐻𝑡 , 𝐼𝑡; 𝛾)

𝑇

𝑡=1

) 

𝐻

    
(1) 

 

The model parameters are estimated by an expectation maximization algorithm 
(McLachlan and Krishnan, 2007). For initial and transition models, we have used a multinomial 
logistic regression model. If we assume that there are 𝑘 hidden states, the equation of initial 
probability model becomes the following: 

 Pr(𝐻1 = 𝑖|𝐼1; 𝛼) =
𝑒𝛼𝑖𝐼1

∑ 𝑒𝛼𝑘𝐼1  𝑘

 (2) 

where 𝛼 is a coefficient matrix for initial probability model with 𝛼𝑖 represents the 
coefficients for the initial state being at state 𝑖. 

The transition from the state 𝑖 to the state 𝑗 can be modeled as: 

 Pr(𝐻𝑡 = 𝑗 |𝐻𝑡−1 = 𝑖, 𝐼𝑡 ; 𝛽) =
𝑒𝛽𝑖

𝑗
𝐼𝑡

∑ 𝑒𝛽𝑖
𝑘𝐼𝑡

𝑘

 (3) 

where 𝛽  represents the transition probability matrices with the (𝛽𝑖
𝑗
) being the 

coefficients for transitioning to next state 𝑗 given the current state is 𝑖. 

For the output model, we have used a linear model for a continuous outcome:  

 Pr(𝑂𝑡|𝐻𝑡 = 𝑖, 𝐼𝑡 ; 𝛾𝑖) =
1

√2𝜋𝜎𝑖

𝑒
−

(𝑂𝑡−𝛾𝑖.𝐼𝑡)2

2𝜎𝑖
2

 (4) 

where, 𝛾𝑖  represents the emission coefficient when the hidden state is 𝑖. For a hidden state 
𝑖, 𝛾𝑖  and 𝜎𝑖 denote the arrays of model coefficient and standard deviation of the linear model. 

And a logistic regression model is used for a categorical outcome:   

 Pr(𝑂𝑡|𝐻𝑡 = 𝑖, 𝐼𝑡;  𝛾𝑖) =
𝑒𝛾𝑖𝐼𝑡

∑ 𝑒𝛾𝑘𝐼𝑡  𝑘
 ; 𝑖𝑓 𝑂𝑡 𝑖𝑠 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 (5) 

where, 𝛾𝑖   denotes the model coefficient when the hidden state is 𝑖.  

Detailed descriptions of HMMs and the associated inference algorithms can be found in 
ref (Rabiner, 1989). The IO-HMM model architecture and its formulation can be found in this ref 
(Bengio and Frasconi, 1995). 

5. MODEL DEVELOPMENT 
An IO-HMM model considers data as sequences of inputs and outputs for each user. For that 
purpose, we need to process the data from raw tweets in that specific form. Figure 4 shows the 
sequence generation process. For a user, {𝑡1, 𝑡2, … … . . 𝑡𝑇} represent the times of the tweets posted 
at locations {𝑙1, 𝑙2, 𝑙3 … … . . 𝑙𝑇}, respectively. We have collected hurricane related information for 
each of the location (county level) such as whether the location had a mandatory evacuation order 
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or not, whether the location had a voluntary order or not, whether the time is before landfall or 
after landfall. This information is encoded as a binary variable in the sequence. Other information 
associated with each location is distance from home and time difference from landfall, similarity 
score of the posted tweet text with the evacuation context words. For simplicity, all information is 
not shown in Figure 4. We calculate the similarity score by training a word to vector model using 
tweets from 4 hurricanes (Irma, Matthew, Harvey, and Sandy).       

 
FIGURE 4 Schematic diagram of sequence generation. Here, 𝑙𝑖=location of the user when 
posting tweet 𝑖 ; 𝑡𝑒𝑥𝑡𝑖= texts of the tweet 𝑖 ; 𝑡𝑖= time of the tweet 𝑖 ; and 𝑇 = total number of 

tweets posted.  

5.1 Inferring Evacuation Context from a Tweet 
In general, the text of a tweet may reflect the underlying context such as hurricane awareness, 
evacuation intent, information sharing/seeking, power outage etc. We use a similarity score to 
quantify how similar a tweet is to an evacuation context (e.g., words such as ‘evacuate’, 
‘evacuating’, ‘sheltering’). We have used a vector space model called word2vec to learn the word 
vectors of an evacuation-related tweet.  

Vector Space Model (D. E. Rumelhart, G. E. Hinton, 1986) is a natural language processing 
tool to represent texts as a continuous vector where words that appear in the same contexts share 
semantic meaning (Sahlgren, 2008),(Baroni and Dinu, 2014). A detailed description of how the 
model works is given in the supporting information. Once a model is trained, every word in the 
vocabulary will have a vector representation of a length equal to the vocabulary size (see 
supporting information). We train a word2vec model using CBOW architecture (please see the 
supporting information for details) on a corpus of 100 million hurricane-related tweets, collected 
during multiple hurricanes (Hurricanes Sandy, Harvey, Matthew, and Irma). We calculate the 
cosine similarity (Huang, 2008) between two word vectors 𝑊𝑜𝑟𝑑𝑖 𝑎𝑛𝑑 𝑊𝑜𝑟𝑑𝑗  by the following 
equation:  

  𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos(𝜃) =
𝑊𝑜𝑟𝑑𝑖 . 𝑊𝑜𝑟𝑑𝑗

||𝑊𝑜𝑟𝑑𝑖||𝑊𝑜𝑟𝑑𝑗||
 (6) 

 

Here, 𝑜𝑟𝑑𝑖 , 𝑊𝑜𝑟𝑑𝑗 ∈ {𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙} , 𝑘 = 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑜𝑟𝑑 𝑣𝑒𝑐𝑡𝑜𝑟. In 
our study, to calculate the similarity of a word to an evacuation context, 𝑤𝑜𝑟𝑑𝑖 ∈

{′𝑒𝑣𝑎𝑐𝑢𝑎𝑡𝑖𝑜𝑛′,′ 𝑒𝑣𝑎𝑐𝑢𝑎𝑡𝑖𝑛𝑔′, ′𝑠ℎ𝑒𝑙𝑡𝑒𝑟𝑖𝑛𝑔′} and 𝑤𝑜𝑟𝑑𝑗 ∈ {𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑎 𝑡𝑤𝑒𝑒𝑡}. If a window size 
of 𝑛 is selected, then score of a tweet is calculated by summing up to 𝑛𝑡ℎ top score for the words 
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present in the tweet. We have used the top one score to represent the similarity of a tweet with 
respect to an evacuation context. Similarity scores of the tweets posted at locations 
𝑙1, 𝑙2, 𝑙3 … … . . 𝑙𝑇 are denoted by {𝑆𝑐𝑜𝑟𝑒𝑡𝑒𝑥𝑡1

, 𝑆𝑐𝑜𝑟𝑒𝑡𝑒𝑥𝑡2
, … … . . , 𝑆𝑐𝑜𝑟𝑒𝑡𝑒𝑥𝑡𝑇−1

, 𝑆𝑐𝑜𝑟𝑒𝑡𝑒𝑥𝑡𝑇
}.  

6. MODEL ESTIMATION 
As we obtain the sequences of all the information needed, we need to specify the inputs and 
outputs. In IO-HMM, both inputs and outputs are available at the training stage; but after training, 
the model should infer the outputs given its inputs. In general, the inputs are known before the 
start of a transition to a new state/activity, but the outputs are not known. In our model, we choose 
input variables that are likely to influence the decision of a user’s next activities. We select 5 input 
variables including: the time difference from landfall in hours represented as negative to positive 
where negative means a pre-landfall period (𝐼1), a binary variable representing a pre-landfall or a 
post landfall period (𝐼2), an interaction variable representing the time difference from landfall only 
for a pre-landfall period (𝐼3), a binary variable representing if the user’s home location is under a 
mandatory evacuation order (𝐼4), and a binary variable representing if the user’s home location is 
under a voluntary evacuation order (𝐼5). As outputs, we choose two variables such as: current 
location’s distance from home (𝑂1) and evacuation similarity score (word2vec score) of the tweets 
posted in the location (𝑂2). 

We make several assumptions for selecting the dependencies among the initial, transition, 
and output models of the IO-HMM structure. We assume that the transition (see Figure 3b) 
between the hidden states depend on the current state and the input variables 𝐼1(time difference 
from landfall), I2(post landfall), 𝐼4(user’s home is under mandatory evacuation), 𝐼5(user’s home 
is under voluntary evacuation). We did not explicitly study the research question of what factors 
impact an individual’s evacuation behavior. Rather we model this behavior as part of an activity 
dynamics process, where evacuation is considered as an activity type. The coefficients of these 
five input variables corresponding to an evacuation activity transition indirectly capture the factors 
impacting evacuation behavior.  Existing literatures have also found that variables like mandatory 
evacuation order, voluntary evacuation orders, time of landfall significantly affect people’s 
evacuation decisions (Pham et al., 2020; Whitehead et al., 2000; Wong et al., 2018). We also 
assume that output variables include 𝑂1(home distance) and 𝑂2(word2vec score). These output 
variables depend on the current state and the input variables including 𝐼1(time difference from 
landfall), 𝐼3(time difference from landfall during pre-landfall), 𝐼4(user’s home is under mandatory 
evacuation) and 𝐼5(user’s home is under voluntary evacuation). Moreover, no input is chosen for 
the initial probability model and thus parameters will be learned by the EM algorithm only. 
Multinomial logistic regression is used as the transition and initial models. Since both the outputs 
distance from home (𝑂1) and word2vec evacuation similarity score (𝑂2) are continuous, linear 
regression models are used as output models. 

In the given setting of IO-HMM, to unfold the dynamics of hurricane evacuation, we 
choose four types of activities as hidden states: home activity, office activity, evacuation, and other 
activity. Home activity and office activity represent the activities when the user stays at home and 
office, respectively; any activities participated at other locations are defined as “other” activities. 
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Considering these four states would allow us to better capture the dynamics in user activities as a 
hurricane approaches to make a landfall. For instance, it would enable us to capture the differences 
between activity transitions in a zone with a mandatory evacuation order and those transitions in 
other areas without a mandatory order (e.g., in a mandatory order zone, an individual is likely to 
end office activity earlier).  

Starting from the first evacuation order to the landfall day, if a user has only other activity 
but no home/office activity and is found at a location of 200 kilometers or more away from home, 
we labeled it as an evacuation activity. We train the IO-HMM model using the labeled sequences 
of 80% (n=202) of the evacuated users and 80% (n=1855) of the non-evacuated users. To validate 
the model, we use the data from the 20% (n=50) of the evacuated users and 20% (n=463) of the 
non-evacuated users. We implement the models in Python programming language using the IO-
HMM package developed by (Yin et al., 2017), available at https://github.com/Mogeng/IO-HMM.  

7. RESULTS 
In this section, we present the results of our evacuation dynamics model. First, we apply a standard 
HMM model to find the learned distributions of the selected outputs. Then we interpret the results 
of IO-HMM.  

7.1 HMM Results 
In the HMM structure, we have four latent states/activities considering the output variables as 
mixtures of gaussian distributions. Table 1 presents the posterior distributions of home distance 
and word2vec score for each latent activity. Mean distances from home are 0, 22.64, 129.18, 
699.97 kilometers for home activity, office activity, other activity, and evacuation, respectively. 
The model has estimated higher average distance of 699.97 kilometer for evacuation activities. 
Average distance for office activity is 22.64 kilometers with dispersion of 32.64 kilometer. We 
choose other activities as a broad category for simplicity of the model; it may include grocery 
shopping before hurricane, eating at restaurants, short or long trips etc., thus 129.18 kilometer of 
average distance with the highest dispersion of 340.44 kilometer seems reasonable. 

We are interested in learning how users respond to evacuation warning in their tweets. We 
find the word2Vec evacuation similarity scores as 0.54, 0.48, 0.48, and 0.50 for home activity, 
office activity, other activity, and evacuation, respectively. Although the difference is not that 
much, we see a higher score during home activity and evacuation activity. This means that users 
have tweeted about evacuation more during evacuation or home activity (0.54 and 0.50 word2vec 
similarity score). It is expected since evacuated users are more likely to share posts about 
evacuation. Also, during a hurricane, people are more likely to share evacuation related updates 
from their homes.  
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Table 1 Posterior Distributions of Output Variables. Here 𝓝 (𝜇, 𝜎) represents a normal 

distribution with mean 𝜇 and standard deviation of 𝜎. 

Latent States 
(Activity Types) 

Distribution of Output Variables 
Distance from Home Word2Vec Score 

Home 𝓝 (0.00,0.00) 𝓝 (0.54, 0.2) 
Office 𝓝 (22.64, 32.64) 𝓝 (0.48, 0.19) 
Other 𝓝 (129.18, 340.44) 𝓝 (0.48, 0.2) 
Evacuation 𝓝 (699.97, 444.5) 𝓝 (0.5, 0.22) 

7.2 IO-HMM Results 
Although an HMM can learn the latent activities from the observed tweets, it does not allow to 
incorporate contextual input variables to infer the latent activities and their relationship with the 
outputs. Table 2 shows the coefficients of the output model when applied an IO-HMM structure. 
We have considered other variables such as friends count and follower count; but the estimated 
coefficients for these variables are not significant. We have excluded these variables from our final 
model. The output variable, distance from home, given the current state is a home activity has no 
coefficient. This is plausible since, for any user at home, distance from home is always zero. As 
expected, among all activities, the evacuation activity has the highest intercept for the distance 
from home output variable. The coefficients of 𝐼1 𝑎𝑛𝑑 𝐼3, for an evacuation activity, are found 
statistically insignificant, indicating a lack of evidence in the data that evacuation distance depends 
on the time difference from landfall. However, negative values of these coefficients indicate that 
an increase in the time difference from landfall (e.g., a time closer to the landfall in a pre-landfall 
period) would decrease evacuation distance. Positive coefficients for both mandatory (𝐼4) and 
voluntary order (𝐼5) indicate that evacuated users from mandatory and voluntary evacuation zones 
will travel longer than a user from a zone with no evacuation order. Furthermore, users from 
voluntary evacuation zones would travel longer than the users from mandatory evacuation zones.   

TABLE 2 Coefficients of the Output Models for IO-HMM 

Output 
Variables 

Latent 
Variables 

 Input Variables 

Intercept 

Time 
difference 
from 
landfall 
(hour), 𝑰𝟏  

Time 
difference 
from 
landfall*Pre-
landfall 
period 
(hour), 𝑰𝟑 

Home 
location 
under 
mandatory 
evacuation 
order, 𝑰𝟒 

Home 
location 
under 
voluntary 
evacuation 
order, 𝑰𝟓 

Distance 
from 
Home 
 

Home Activity 0 0 0 0 0 
Office Activity 22.565*** 0.015*** -0.021* 1.893* -5.724*** 
Other Activity 111.639*** 0.189*** -0.457*** -24.910*** 10.991*** 
Evacuation 585.724*** -0.125 -0.572 160.968*** 176.748*** 

word2vec 
Score 

Home Activity 0.667*** -0.0006*** 0.002*** 0.035*** -0.0272*** 
Office Activity 0.577*** 0.0005*** 0.001*** -0.030*** 0.019** 
Other Activity 0.571*** -0.001*** 0.011*** 0.015*** -0.013*** 
Evacuation 0.563*** -0.0005*** 0.002*** -0.040*** -0.036* 

*Note: ~p*<0.1; **~p<0.05; ***~p<0.01;  
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For word2vec evacuation similarity score, home activity has the highest intercept value. It 
means that if all the independent variables are equal to zero (equivalent to the landfall day and no 
evacuation order has been issued), users are more likely to post about evacuation from their homes. 
This is reasonable as users who are not required to evacuate are more likely to stay at home and 
may post evacuation related tweets. For evacuation activity, a negative coefficient of 𝐼1(-0.0005) 
and a positive coefficient of 𝐼3(0.002) indicate that evacuated users post more about evacuation 
during a pre-landfall period as time approaches to landfall compared to a post-landfall period. In 
other words, an evacuated user posts more about evacuation before landfall, probably because they 
have already evacuated and expressing concerns who are yet to evacuate. These variables (𝐼1, 𝐼3) 
have similar effect for home activity and other activities, indicating that in general users are 
expected to post more about evacuation before the landfall than in a post-landfall period. For home 
activity and other activity, mandatory evacuation order (𝐼4) has a positive coefficient and 
voluntary evacuation order (𝐼5) has a negative coefficient for word2vec evacuation similarity 
score. It means that if all other variables remain constant, while staying at home or participating 
in other activity, compared to a user from no evacuation order zone, a user from a mandatory 
evacuation order zones is likely to post more about evacuation whereas a user from voluntary 
evacuation order zones is likely to post less about evacuation. On the other hand, for evacuation 
activity, variables representing mandatory order zone and voluntary order zone have negative 
coefficients for word2vec evacuation similarity score. This indicates that evacuated users from a 
mandatory or voluntary order zone post less about evacuation compared to evacuees from a zone 
with no evacuation order. This is plausible since evacuated users may have less time to tweet while 
traveling.  

Table 3 shows the coefficients of multinomial logistic regression (MNL) models for the 
transition models of IO-HMM. Given the current state, there are 4 MNL models to capture the 
transition among the hidden states (activity types). Here, any positive coefficient means that an 
increase in the associated variable will increase the probability to make a transition between the 
corresponding states. We have 80 different coefficients to capture the dynamics of transition 
between any two states. We mainly focus on interpreting the coefficients associated with 
evacuation. For instance, if we observe the coefficients of home: evacuation (see Table 3), a 
negative sign of the variable 𝐼2(i.e., a post landfall period) represents that if a user’s current state 
is a home activity, in comparison to a pre-landfall period, a post-landfall period decreases the 
likelihood to evacuate if all other variables remain constant. It is also same for office: evacuation, 
other: evacuation and evacuation: evacuation transitions (see Table 3). These results are quite 
expected as individuals are less likely to evacuate after the landfall.    

The coefficient of the variable time difference from landfall (𝐼1) is insignificant for the 
evacuation: evacuation transition; but it is significant and has negative coefficients for other 3 
transitions (i.e., home: evacuation, office: evacuation, other: evacuation).  This means that if 
everything remains constant, with increase in time difference from the landfall (as time becomes 
closer to landfall or away from landfall) these transitions are less likely to occur. The input variable 
𝐼4 (home location under mandatory evacuation order) has positive coefficients for home: 
evacuation, office: evacuation, and other: evacuation but it has a negative coefficient for the 
evacuation: evacuation transition. A plausible explanation is that a user may evacuate directly from 
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home/office (some user’s home and office are same) or may perform some other activities 
(distance < 200 km) and then evacuate. The positive coefficient of 𝐼4 indicates that compared to 
the users from zones with no or voluntary evacuation order, users from mandatory evacuation 
order zones are more likely to evacuate. A negative coefficient of 𝐼4 for evacuation: evacuation 
transition means that users who evacuate from mandatory evacuation zone are less likely to remain 
in the evacuation state. It might be because due to their concerns about the damage of their home 
caused by the hurricane. The input variable 𝐼5 (home location under voluntary evacuation order) 
has positive coefficients for home: evacuation, office: evacuation transition and negative 
coefficients for other: evacuation and evacuation: evacuation transition. The positive coefficient 
of (𝐼5) indicates that compared to the users from no evacuation order, the users from voluntary 
evacuation order are more likely to evacuate given their current activity is home or office. The 
negative coefficient of 𝐼5 indicates that given the current state is other or evacuation, compared to 
the users from zones with no evacuation order, users from voluntary evacuation zone are less likely 
to evacuate or continue to maintain evacuation state.  

TABLE 3 Coefficients of the Transition Models for IO-HMM  

From Activity: To 
Activity Intercept 

Time 
difference 
from 
landfall 
(hour), 𝑰𝟏 

Whether 
time is 
post 
landfall, 
(𝑰𝟐) 

Home 
location 
under 
mandatory 
evacuation 
order, 𝑰𝟒 

Home 
location 
under 
voluntary 
evacuation 
order, 𝑰𝟓 

Home: Home 0.034*** 0.253*** 0.0001*** 0.521*** 0.051 
Home: Office 0.037*** -0.084 0.002*** -0.032 0.083 
Home: Other 0.121*** 0.521*** -0.001*** 0.088* 0.067 
Home: Evacuation -0.191*** -0.691*** -0.0003 0.401*** 0.201*** 
      
Office: Home 0.174*** 0.061 0.001*** -0.062** -0.293*** 
Office: Office 0.393*** 0.450*** 0.002*** 0.588*** 0.391*** 
Office: Other 0.282 0.364*** -0.001*** 0.196*** 0.069* 
Office: Evacuation -0.242*** -0.875*** -0.003*** -0.722*** 0.167*** 
      
Other: Home 0.159*** 0.023 0.001*** 0.228*** 0.065 
Other: Office -0.062*** -0.157 0.002*** 0.111* -0.088 
Other: Other 0.103*** 0.957*** -0.004** 0.187*** 0.233*** 
Other: Evacuation -0.165*** -0.734*** -0.0002 0.236*** -0.177* 
      
Evacuation: Home -0.099 0.103 0.010*** -0.072 0.137 
Evacuation: Office -0.132 -0.460 0.0008 0.049 0.237 
Evacuation: Other -0.053 0.025 -0.0009 -0.372*** 0.147 
Evacuation: Evacuation 0.283*** 0.332 -0.010*** -0.394*** -0.523*** 
*Note: ~p*<0.1; **~p<0.05; ***~p<0.01;  
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Figure 5 shows the combined effect of different variables contributing to the transition 
probability from one activity to another. The color of each cell represents the probability of making 
a transition from the associated row activity to the associated column activity. The sum of each 
row equals to 1 indicating that from the current state/activity type, it will make transition to any of 
the four activity types. Figure 5 (a) and 5 (b) show the transition probabilities 100 hours before 
landfall, whereas Figures 5 (c) and 5 (d) show the transition probabilities 100 hours after the 
landfall. Overall, before the landfall, given a current state, it has higher probabilities to make a 
transition to evacuation state compared to the post-landfall period. Figure 5 (a) and 5 (b) show the 
differences in transition probabilities between voluntary evacuation order and mandatory 
evacuation order at the home location, 100 hours before the landfall. Given the current state is a 
home activity, compared to the voluntary evacuation order, a mandatory evacuation order has a 
slightly higher probability of evacuation (0.25 vs. 0.24) and a lower probability of transitioning to 
the office (0.16 vs. 0.21). In both cases, we see that given that the current state is a home activity, 
the probability to participate in other activity is high (0.30 under a voluntary order and 0.26 under 
a mandatory order). Given the current state represents other activity, the probability to evacuate 
increases from 0.16 to 0.21 from zones with a voluntary evacuation order to zones with a 
mandatory evacuation order, respectively. Moreover, given the current state represents an office 
activity, the probability to evacuate decreases from 0.28 to 0.12 from a voluntary evacuation zone 
to a mandatory evacuation zone, respectively. Besides, the probabilities that an evacuated user will 
continue to remain evacuated for voluntary and mandatory evacuation zones are 0.45 and 0.56, 
respectively.  

Similarly, Figure 5 (c) and (d) show the transition probabilities after 100 hours of the 
landfall for users under voluntary and mandatory evacuation zones, respectively. Given any state, 
the probabilities to evacuate, 100 hours after the landfall, are very low. For an evacuated user, an 
individual from a voluntary evacuation zone has a lower probability (0.076) to remain evacuated 
(see Figure 5c), compared to an individual from a mandatory evacuation zone (0.11) (see Figure 
6d). In both Figures 5 (c) and 5(d), the highest probability values are observed for the transition 
from evacuation to home. However, there is not much difference in the probability of returning to 
home for users, 100 hours after hurricane landfall, from a voluntary evacuation zone (0.59) or a 
mandatory evacuation zone (0.60). 
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Using the trained IO-HMM model, we predict the activity sequences for the test data (20% 
of the labeled dataset). Figure 6 shows the performance of activity recognition of IO-HMM. The 
confusion matrix reports the numbers of predicted labels and the ratio of correctly predicted label 
to actual label. IO-HMM has 100 %, 98.17 %, 28.62% and 77.03% accuracy for recognizing home, 
office, other, and evacuation activities, respectively (see Figure 6(a)). Using the standard HMM, 
we obtain 100%, 92.38%, 29.01%, and 62.51% accuracy for home, office, other, and evacuation 
activity recognition, respectively. Thus, using an IO-HMM structure instead of a standard HMM 
structure improves accuracy. 

  
(a) 100 hours before landfall, home location 

under voluntary evacuation order 
(b) 100 hours before landfall, home location 

under mandatory evacuation order 

  
(c) 100 hours after landfall, home location 

under voluntary evacuation order 
(d) 100 hours after landfall, home location 

under mandatory evacuation order 
FIGURE 5 Activity Transition Matrices under different scenarios 
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(a) for activity types (b) for activity types 

  
(c) for identifying evacuation decisions (d) for identifying evacuation decisions 

FIGURE 6 Classification Performance of IO-HMM. (a) and (b) represent the activity 
(home, office, other and evacuation) classification performance in terms of confusion matrix 

and ROC curve. (c) and (d) represent the evacuee (evacuated or not) identification 
performance in terms of confusion matrix and ROC curve.  

 

We observe that the model has relatively low accuracy in identifying ‘other’ activity types 
than ‘home’, ‘office’, and ‘evacuation’ activities. This happens because of the similarity between 
office activity and other activity and the overlap between the learned probability distributions of 
these two activity types. The result indicates that the model predicts a significant number of ‘other’ 
activities as ‘office’ activities (see Figure 6a). Although the model has a low performance in 
identifying ‘other’ activity, it is unlikely to have any consequence in predicting evacuated users 
(see Figure 6c).  
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Figure 6(b) shows the ROC curves which plot true positive rates vs. false positives rates 
under every possible classification threshold. For example, for home activity recognition, a true 
positive rate answers the question when an actual activity is at home how often the model predicts 
it as a home activity (true home activity/all home activity). On the other hand, false positive rate 
for home activity recognition answers the question when actual activity is not at home how often 
the model predicts it as a home activity (false home activity/ all not home activity). In Figure 6(b) 
classes 0, 1, 2, and 3 represent home, office, other, and evacuation activities, respectively. Area 
under the curve or AUC represents the classification performance where AUC is percentage of the 
whole box which is under the ROC curve (range 0 to 1). If any ROC curve is close the diagonal 
line or AUC =0.5, the model is not any better than random guessing. We can see that the model 
has the AUC values of 0.98, 0.87, 0.94, 0.99 for home, office, other, and evacuation activities, 
respectively. 

We also report the performance of the IO-HMM model in identifying evacuation decision 
(if a user has evacuated or not) at an individual level. Using the test set, for each user, we convert 
the predicted activity sequence as a binary output by checking if any evacuation state is present in 
the predicted activity sequence or not. Then we compare the converted evacuation identification 
result against our labeled data to estimate the model performance using confusion matrix and ROC 
curve. Figure 6(c) and 6(d) show the confusion matrix, ROC curve, respectively, for individual-
level prediction. For identifying individual evacuation decision, the model has 92% and 94% 
accuracy for non-evacuated and evacuated users, respectively (see Figure 6(c)). The model has the 
same AUC value of 0.98 for both evacuated and non-evacuated users. 

Figure 7 shows evacuation participation rates over time. From the labeled data, we divide 
evacuations in two categories: evacuations generated from zones under a mandatory evacuation 
order and evacuations generated from zones under a voluntary or no evacuation order. The 
evacuations from later zones are also known as shadow evacuation (Sorensen and Vogt, 2006; 
Zeigler et al., 1981). We find that from our collected samples, around 65% evacuations are 
generated from the mandatory evacuation order zone and the remaining 35% are from a zone with 
either a voluntary or no evacuation order. Shadow evacuation causes additional traffic congestion 
and often hampers the evacuation of the actually threatened population (Murray-Tuite and 
Wolshon, 2013).  Using the trained IO-HMM model, we predict the activity sequences of all the 
users (including both training and test data). We compare the predicted timing of evacuation state 
and the number of evacuated users with the labeled data. From Figure 7, we see that on aggregate 
the model identifies around 62% of total evacuation as mandatory evacuation and around 38% as 
shadow evacuation. The model captures the overall trend of the evacuation timing and 
participation numbers.  
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FIGURE 7 Cumulative evacuation frequencies and predicted evacuation frequencies 

across time. 
 

8. CONCLUSIONS 
To better capture the dynamics of individual-level evacuation behavior, longitudinal spatio-
temporal data are needed covering both pre- and post-disaster periods. Traditional data collection 
approaches such as household surveys are static and conducted in a post-disaster period. This limits 
our ability to capture the dynamics of evacuation decision-making process such as determining the 
probability of evacuation given the states of the variables (e.g., evacuation order, projected landfall 
time) changing over time. With longitudinal data collected, we can determine the effects of the 
changes in variables over time on evacuation decisions. In addition, since the data are collected in 
real time, we are able to capture the dynamics when the situation is evolving, instead of at a post-
disaster period.  

In this study, we use Twitter data from Hurricane Irma to develop a model for inferring 
individual hurricane evacuation dynamics. We have collected evacuation data from Twitter 
covering all counties of Florida. Based on the tweets of active users during an evacuation period, 
we develop an input output hidden Markov model to infer what type of activities individuals 
participate, the locations and timing of those activities, when they evacuate, and where they 
evacuate to. We model individual participation in four activity types (home activity, office activity, 
other activity, and evacuation) during a hurricane.  
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The modeling approach provides rich insights on evacuation and other activity types during 
a hurricane both spatially and temporally. For instance, we have learned from real-time Twitter 
data to what extent individual social communication and evacuation distance depend on evacuation 
order type and time to landfall.  

 The results associated with the spatial variables (e.g., home location under a mandatory 
evacuation order, home location under voluntary evacuation order) indicate that if a user’s home 
location is under a mandatory or voluntary evacuation order, he/she is likely to evacuate longer 
distance compared to the users under no evacuation order. We also find that users from a 
mandatory evacuation zone are likely to post more about evacuation during home activity and the 
users from a voluntary evacuation zone are more likely to post about evacuation during an office 
activity compared to the users from no evacuation order zone. From the activity transition 
dynamics, we find that given the current activity is a home activity, the probability to evacuate 
increases for both mandatory and voluntary evacuation order; given the  current activity is an office 
activity, the probability to evacuate increases for mandatory evacuation order and decreases for 
voluntary evacuation order; and given the current activity is other activity, the probability to 
evacuate increases for mandatory evacuation order and decreases for voluntary evacuation order. 

The results associated with the variables related to temporal dynamics show that evacuation 
distance is likely to decrease with a decrease in time difference from landfall in a pre-disaster 
period. The number of evacuation related tweets (representing evacuation context) are likely to 
increase with decrease in time difference from landfall in a pre-disaster period. We also find that, 
before the landfall, as the time difference from landfall increases (reaching closer to the landfall), 
the likelihood of evacuation decreases. And after the landfall, as the time difference from landfall 
increases, the probability of returning to home increases. Thus, this study can capture the dynamics 
of evacuation behavior both spatially and temporally within a single modeling framework. Such 
insights for hurricane evacuation are critical for emergency management. For instance, identifying 
the evacuated and not evacuated population during a hurricane can make its preparation more 
effective and dynamic. Another benefit of our modeling framework is that, with the parameters 
estimated in this study, we can generate the behavior of a synthetic population by simulating their 
activity dynamics. Such simulated data from the model based on the total population of a region 
will allow us to determine evacuation demand in real-time. 

This study has some limitations such as Twitter may have different penetration in different 
areas. Twitter users are not equally distributed across different age groups. Consequently, 
geotagged tweets may not represent the behavior of all population segments. We have assumed 
200 km as a threshold distance to identify an evacuation and 20 km to detect a return from an 
evacuation. Thus, our approach cannot detect shorter distance evacuation such as relocating to 
higher ground or a better-protected place or a shelter within one’s locality. This is due to the lack 
of granularity in our data since some tweets have a city/county level location instead of a precise 
GPS location. Other variants of HMM can be applied to get better accuracy. Also, to verify our 
results data from other sources are not used as they are not currently available.   

In spite of the above limitations, this study adds to the growing literature on modeling the 
dynamics of evacuation behavior. In particular, it investigates the potential of using social media 
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data for understanding evacuation dynamics. However, future research should focus on how to 
account for potential biases present in Twitter data. As social media data can be gathered in real 
time at large scale during a hurricane, our model can make evacuation traffic predictions and 
provide behavioral insights in real time. Since traditional survey data are costly and often 
conducted at a post-hurricane period, our method of using social media data can complement the 
traditional approaches of modeling evacuation behavior.   
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SUPPORTING INFORMATION 

Manual Checking of the Labeled Dataset 

We created an interactive map to manually check whether a user evacuated or not. For each user, 
we visualized the home, office, evacuation destination (if any), the visited locations, and the 
tweets. We checked the tweets if there was any mention that the user was evacuating or leaving 
home during the evacuation period. As an example, Figure S1 shows the snapshot of our manual 
checking process for a user. The locations are plotted with a 5-km precision to protect user privacy. 
The user, shown in Figure S1, had home and office in Lee County, FL and evacuated to 
Birmingham city, Alabama. While evacuating, the user tweeted from Tampa, FL indicating that 
he/she was aware of hurricane Irma’s changing path. We checked each user’s home location, 
evacuation destination (if any), traveled distance, and tweet text to infer whether the user evacuated 
or not. Using this process, we checked 252 evacuated users and 2,319 non-evacuated users. The 
manual checking was performed by two individuals.  
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Figure S1: Demonstration of the Manual Checking Process. It shows a snapshot of the 
interactive visualization a user’s home, evacuation destination, and visited places—containing 
tweet time, tweet text and distance from home. 

 

Word2Vec Model  

Word2vec is a predictive model developed by  Mikolov et al.(Mikolov et al., 2013b, 2013a). It 
contains two distinct algorithms: Continuous Bag-of-Words (CBOW) and Skip-Gram. Skip-Gram 
predicts context word given a target word and CBOW predicts the target word given the context 
word. Details of word2vec model can be found in refs (Meyer, 2016; Mikolov et al., 2013a, 2013b). 
It is a very simple, scalable, fast to train model that can learned over billions of words of text that 
will produce exceedingly good word representations. Word2vec uses the theory of meaning to 
predict between each word and the context word. Word2Vec contains two distinct algorithms, 
Continuous Bag-of-Words (CBOW) and Skip-Gram, where Skip-Gram predict context word given 
the target word and CBOW predict the target word given the context word. Figure S2 shows the 
CBOW architecture.  
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In CBOW, for a window size C, the inputs are one-hot (size equal to vocabulary size, V) 
encoded context words {𝑥1, … . . , 𝑥𝑐}. The hidden layer ℎ is N-dimensional. The output/target word 
𝑦𝑗 for the context input words is also one hot encoded of size 𝑉. The input layer and hidden layer 
are connected by weights matrix 𝑊 of dimension 𝑉 × 𝑁 and the hidden layer and output layer are 
connected by another weight matrix 𝑊′ of dimension 𝑁 × 𝑉. The workflow of CBOW can be 
described in three steps described below. 

Forward Propagation 

This section describes how the output is computed from the input given that the input and output 
weight matrixes are known. Hidden layer output is computed first from the input layer and weight 
matrix 𝑊. This is computed as shown in equation (7) 

 ℎ =
1

𝐶
 𝑊. (∑ 𝑥𝑖

𝐶

𝑖=1

) (7) 

 
 

Figure S2: The CBOW architecture predicting the current word based on the context 
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which is the weighted average of the input vectors and weight matrix 𝑊. Next, the input to each 
node of output layer is computed by the following  

 𝑢𝑗 = 𝑣𝑤𝑗
′ 𝑇

. ℎ (8) 
Where 𝑣𝑤𝑗

′  is the 𝑗𝑡ℎ column of the output weight matrix 𝑊′. Finally, the outputs 𝑦𝑗 of the output 
layer are computed by applying a soft-max function as shown in equation (9). 

 𝑦𝑗 = 𝑝 (𝑤𝑦𝑗
|𝑤1, … … . . , 𝑤𝑐) =

exp(𝑢𝑗)

∑ exp(𝑢𝑗)𝑣
𝑗=1

 (8) 

 

As the output is computed, the weight matrix 𝑊 and 𝑊′ can be learned from by back-propagating 
the errors. The process is discussed in the next section.  

Learning the Weight Matrices  

To learn the weight matrices, at first the 𝑊 and 𝑊′ are randomly initialized. By feeding the training 
examples sequentially and observing the predicted output, we get the error which is a function of 
difference between the actual and predicted output. It is also known as loss function. The objective 
is to maximize the conditional probability of the output word given the input context, therefore our 
loss function will be the following: 

𝐸 = −𝑙𝑜𝑔 𝑝(𝑤0|𝑤𝐼) 

= −𝑢𝑗∗ − log ∑ exp (𝑢𝑗′)

𝑣

𝑗′=1

 

 = −𝑣𝑤0
𝑇 . ℎ − log ∑ exp (𝑣

𝑤𝑗
′

𝑇 . ℎ)

𝑣

𝑗′=1

 (9) 

Here 𝑗∗ is the index of the actual output word. The next step is to update the weight matrices based 
on the gradient. The gradient of this error is computed with respect to both weight matrices and 
correct them in the direction of this gradient. This optimization procedure is known as stochastic 
gradient descent. Details of the optimization procedure can be found here (Bottou, 2010). 

 

Word2Vec Sample Results 

We train the model with the corpus of hurricane related tweets collected from 4 hurricanes (Irma, 
Matthew, Harvey and Sandy). We use minimum word count=3 for preparing the vocabulary. We 
tran the model using a window size, C=32 for context words. Once the model is trained each word 
in the vocabulary will have a vector representation with its context words. The cosine similarity 
between two word vectors is computed using the equation 6. Figure S3 shows the top 15 similar 
words for ‘Evacuation’, ‘Evacuating’ and ‘Sheltering’. For example, similar words to evacuation 
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Evacuation Evacuating Sheltering 

   
FIGURE S3 Top 15 Word2Vec Cosine Similarity Score of Evacuation, Evacuating, and 

Sheltering 
 contains evac, evacuations, evacs, evacuations…, evacuate etc. which may have been used as a 
short form of evacuation and also evac is emergency service provider name in Volusia county. 
Other similar words are mandatory, curfews, patrols and a cell number (4092832172) etc. 
Evacuation is very related with mandatory order for evacuation. And patrol, curfew is also 
related to evacuation because during state of emergency, state issue curfew and police patrol 
monitor the situation during hurricane evacuation. This cell number (409-283-2172) is the 
contact number of Tyler County - Sheriffs' Association of Texas which was very active during 
Harvey evacuation period. Thus, the result shows very good consistency in finding out the 
related/similar word 
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