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ABSTRACT 
 
Ensuring safer mobility for evacuee drivers during a hurricane evacuation has always been a major 
concern for traffic managers. That concern has grown further, particularly after recent hurricanes, 
which forced millions of people to evacuate, causing significant congestion and a high number of 
traffic crashes. Though several strategies have been deployed to manage the heavy traffic demand 
during a hurricane evacuation, current approaches seem to have less impact on traffic safety. In a 
situation where people are ordered to evacuate to a safer place involving long hours of driving, 
perception related errors are inevitable. In such conditions, advanced driving assistance system or 
vehicle automation can have a positive impact. In this study, we assess the safety impact of 
Adaptive Cruise Control (ACC) systems during an evacuation. We develop a microscopic 
simulation model of evacuation traffic in SUMO and calibrate it using real-world traffic data 
collected during the evacuation period of hurricane Irma for a segment in the Interstate highway 
in Florida. To evaluate the safety impact of ACC systems, we adopt two surrogate measures: time 
to collision (TTC) and deceleration rate to avoid a collision (DRAC). Our simulation experiments 
show that, during the evacuation, about 49.7% of traffic collisions can be reduced at a 25% market 
penetration of ACC equipped vehicles. Our result has potential implications for hurricane 
evacuation management since a modest decrease in the number of crashes can help reduce the 
massive delays most commonly experienced during a major evacuation.  

Index Terms – Hurricane Evacuation, Stop-and-go Traffic, Microscopic Traffic Simulation, 
Surrogate Safety Measures, Adaptive Cruise Control.  

1. Introduction 

Devastating experiences from recent hurricanes such as Harvey, Irma, Maria, Florence, and 
Michael have made emergency evacuation a major issue for the coastal residents of the United 
States. For instance, during hurricane Irma in Florida, about 6.5 million residents were ordered to 
evacuate, which caused significant traffic congestion and delay on two major freeways (I-75 and 
I-95) available for leaving Florida. Evacuation creates a surge in traffic demand resulting in 
irregular traffic flow patterns, which may cause traffic crashes. In such critical situations, a 
challenge for transportation and emergency management agencies is to ensure safe and efficient 
evacuation of a significantly large number of people. Several strategies have been deployed to 
manage traffic during evacuation (Murray-Tuite et al., 2017). However, these strategies seem to 
be less effective in reducing the number of traffic crashes. During the evacuation period of 
hurricane Irma, about 221 crashes occurred on I-75 from September 6 to September 9, 2017 (before 
the landfall day), which also caused significant delay for the evacuees. Despite the high number of 
crashes, studies related to evacuation traffic modeling and safety analysis are less common and 
inadequate to address the severity of this problem.  

During an evacuation period, the traffic stream follows oscillatory speed, similar to a stop and go 
wave, potentially contributing to rear-end crashes (Abdel-aty et al., 2004; Tanishita and van Wee, 
2017; Wu et al., 2018). Previous studies have shown that, in a stop and go traffic condition, rear-
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end collisions are the primary collision type, which occurs due to frequent acceleration and 
deceleration induced by the propagation of kinematic waves (Abdel-Aty and Abdelwahab, 2003; 
Kim et al., 2007; Li et al., 2017a). Also, the most dangerous situation occurs when the leading 
vehicle is forced to deaccelerate while the following vehicle maintains high speed (Abdel-Aty et 
al., 2005; Xu et al., 2012; Zheng et al., 2010).  Ye Li et al. (Li et al., 2017a) found that rear-end 
collisions in stop and go traffic depends on three parameters: perception-reaction time, the initial 
gap between vehicles, and deceleration ability. These factors largely depend on the driver’s 
perception of traffic conditions. In hurricane evacuation—when evacuees are eager to reach a safe 
destination and are frustrated due to long hours of driving through highly congested highways—
perception related errors are inevitable. Thus, unstable traffic flow leading to driver’s perception 
error may contribute to a high number of collisions during a hurricane evacuation.  

To reduce the number of crashes during the evacuation, we cannot just rely on infrastructure-based 
solutions. We also need advanced traffic management strategies that will improve traffic stability 
as well as provide route guidance and assistance to the drivers to ensure safety. Strategies like 
contraflow to facilitate evacuation traffic or use of hard shoulder as an extra lane increase roadway 
capacity to manage the high volume of traffic. However, these strategies will not address and 
improve an evacuee’s perception related errors reducing the number of crashes. In such cases, in-
vehicle driving assistance systems can offer a viable solution.   

In this study, we assess the safety impacts of an Adaptive Cruise Control (ACC) system during an 
evacuation period. ACC systems are commonly designed to maintain a constant time-gap (CTG) 
between vehicles when following a vehicle. Several studies have shown that the ACC system 
substantially reduces traffic collisions (Li et al., 2017a; Wang and Rajamani, 2004), especially 
rear-end crashes, under regular traffic demand. In this paper, we present a microscopic traffic 
simulation-based study using SUMO to evaluate the impact of the ACC system on improving 
traffic safety during evacuation. To develop the simulation model, we have collected traffic data 
for Interstate 75 (I-75) between September 3 and September 16, 2017, which includes the 
evacuation period of hurricane Irma. We develop and calibrate a microscopic traffic simulation 
model to replicate the evacuation traffic behavior. Then we add ACC equipped vehicles at different 
market penetration rates (MPR) to check the overall improvement in traffic collisions. Thus, this 
study has made two significant contributions:  

(i)  It calibrates, for the first time to the best of our knowledge, a microscopic traffic 
simulation model using real-world hurricane evacuation data and offers more in-depth 
insights on driver behavior during evacuations, and  

(ii) It provides experimental evidence of potential safety impact of advanced driving 
assistance systems, for transportation agencies, during a hurricane evacuation.  

2. Literature Review 
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In recent times, automobile industries have been experimenting new state-of-the-art technologies 
such as advanced collision warning (Aust et al., 2013; Bueno et al., 2014), vehicle to vehicle (V2V) 
and vehicle to infrastructure (V2I) communication (Harigovindan et al., 2014; Li et al., 2016; 
Rahman et al., 2018; Rahman and Abdel-Aty, 2018; van Nunen et al., 2012), and automated 
driving systems (Jeong et al., 2017; Martín de Diego et al., 2013; Zeeb et al., 2015). The definition 
of an automated vehicle is more generic including five levels of automation (Talebpour and 
Mahmassani, 2016) with each level consisting certain upgraded features associated with 
longitudinal and lateral control of a vehicle. Currently, fully automated vehicles are not available 
in the market, and they are going through rigorous regulatory scrutiny and field experiments. 
However, several low-level automation technologies, such as vehicle adaptive cruise control 
(ACC), have already been introduced and are likely to expand their market in the coming years 
(Bose and Ioannou, 2003; Kesting et al., 2008; Marsden et al., 2001; Tapani, 2012; Yue et al., 
2018).  

An adaptive cruise control system is a state-of-the-art driving assistance system that allows the 
vehicle to maintain a constant gap with the leading vehicle by automatically adapting to the speed 
variation. Several studies have evaluated the impact of ACC equipped vehicles on traffic flow and 
safety. Studies have claimed that ACC technologies reduce the variation of vehicle acceleration 
(Li et al., 2017a; Marsden et al., 2001; Tapani, 2012) and stabilize traffic (Kesting et al., 2008). 
While some field tests of commercially available ACC systems have shown that the strings of 
ACC equipped vehicles might not be stable and the speed oscillation was amplified from the initial 
vehicle to the following vehicles (Milanes et al., 2014; Milanés and Shladover, 2014). The impact 
of the ACC system largely depends on the parameter setting, but in the field experiment, the 
parameters are allowed to adjust only within a small range (Li et al., 2017c). In the future, the 
adjustability range of the parameters could be improved with the advancement in the radar 
detection quality, processing and communication speed, and inherent feedback controllers, which 
will affect the operation of vehicle strings. However, the impacts of the parameters in ACC systems 
on traffic operation, especially during stop and go traffic has not thoroughly evaluated.    

Few studies have been conducted to assess the safety impact of the ACC system, especially for an 
oscillatory traffic condition. Recently, Li et al. (7) have evaluated the safety impact of ACC 
equipped vehicles in oscillatory traffic, which showed that ACC equipped vehicles can 
significantly reduce the number of crashes. However, this study has been conducted with synthetic 
data generated in a predefined control environment (e.g., controlling speed distribution, 
acceleration, headway, and demand) to replicate the congested oscillatory traffic condition.  To 
the best of our knowledge, no study has evaluated the safety and mobility impact of these advanced 
technologies while dealing with a more critical situation such as a hurricane evacuation. In this 
study, we aim to fill this research gap by assessing the safety impact of the ACC system during 
hurricane evacuation using a microscopic simulation-based approach with a more realistic 
experimental setup and real-world evacuation data. 
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3. Data and Methods 

3.1. Data Description and Preparation  
We have collected the data for a 9.5 miles long segment of the I-75 (Fig. 1(a)) from the Regional 
Integrated Transportation Information System (RITIS) database, which includes traffic data from 
September 3 to September 17, 2017. This time span covers the evacuation period of hurricane 
Irma. We have observed previous evacuation patterns to understand the most critical evacuation 
routes. We have found that during an evacuation, a large portion of residents living in Florida 
evacuates to Georgia or adjacent states. Hence, we have chosen a study segment on I-75 between 
Ocala to Gainesville, a road segment that serves a major portion of the evacuation traffic during 
Irma. We extract the data from 11 microwave vehicle detectors (MVDS) (Fig. 1(b)). Among these 
detectors, we are unable to extract any data from three detectors. These detectors might have been 
dysfunctional during the evacuation period, so they could not record any traffic information. Each 
MVDS detector provides speed, volume, and occupancy at a high resolution (every 20 to 30 
seconds).  

     
(a)                                                                           (b) 

Fig. 1. Study Segment on I-75: (a) Google Map View of the Route (b) Location of the MVDS 
detectors 

Previous studies (Abdel-Aty and Wang, 2017; Katrakazas et al., 2018; Lee et al., 2016), 
investigating highway safety using microsimulation, aggregated input data over 5 to 15 min 
intervals. For evacuation traffic condition, the traffic speed variations are expected to be more 
abrupt within a small-time interval (Rahman and Hasan, 2018), hence we choose a 5-minute 
interval for aggregating the input data. While processing the data, we observe some missing values 
for speed and volume. We apply a simple rolling average method with a window size of three to 
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replace the missing values—by taking the average from the previous three available interval 
values.  

The raw data collected from traffic detectors are subjected to errors. Several factors such as 
detector malfunctioning, false encoding during storing the data into the server, overlapping of 
multiple entries, duplicate entries, and bad weather conditions can cause errors. For example, in 
some cases during congested stop and go traffic conditions, microwave radar detectors fail to 
detect the immobile vehicles, hence provide misleading information. Therefore, before proceeding 
to model preparation, we need to check the outliers in the dataset. We use 1.5 times the interquartile 
range (IQR) as the boundary to detect the outlier inside the data. The interquartile range is the 
difference between the first quartile (𝑄1) and third quartile (𝑄3) of a data sample. Outliers are 
defined as observations that fall below 𝑄1  −  1.5 𝐼𝑄𝑅 or above 𝑄3  +  1.5 𝐼𝑄𝑅. From this process, 
we observe very few outliers. Similar to missing values, we replace the outliers using the rolling 
average method.  

We have also collected incident data for the study area from the RITIS incident database. The 
incident data covers four types of incidents: crash, weather-related incident, congestion, and other 
regular events (disabled vehicle, road construction related delay, etc.). 

 

(a)  
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 (b)  

Fig. 2. Traffic Flow Variation during (a) Non-evacuation period and (b) Evacuation period 

3.2. Data Exploration 
In a typical operating condition, traffic flow shows predictable patterns such as heavy demand 
during peak hours resulting in high traffic flows. Fig. 2(a) shows the distribution of traffic flow 
from August 5th, 2017 to August 12th, 2017 for the northbound traffic of I-75. We observe distinct 
morning peak between 8 am, and 10 am. However, during an emergency event such as a hurricane 
evacuation, overall traffic condition has to bear severe disruption due to a drastic increase in traffic 
demand. Drastic oscillation and sudden flow breakdown are the common characteristics of 
evacuation traffic. Fig. 2(b) shows the distribution of evacuation traffic from September 5th, 2017 
to September 9th, 2017. It shows traffic flow variation during the evacuation period of hurricane 
Irma. We observe that during the evacuation period, overall traffic flow is higher than a regular 
period with irregular variations and no distinctive morning or evening peak.  

As we observe in Fig. 2 (b) we could not extract any traffic data after September 9, 2017, so we 
are unable to show the traffic flow variation after that time period. Hurricane Irma made its landfall 
at the Florida Keys on September 10, 2017 as a category 4 storm. Then it passed over several 
regions of Florida from September 10, 2017 to September 12, 2017. It caused significant power 
outages, in its path, at several regions in Florida. It took about a week to restore the overall system. 
So, it is likely that the detectors were malfunctioning, or the data collection server could not 
retrieve any information during that period.   

Hurricane Irma 
made landfall on 
Sep. 10 on 4 pm 
at South Florida 

Evacuation 
orders issued 
from Sep. 6, 2017 
starting from Key 
West and Miami  
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The roadway segment considered in this study is a three-lane freeway. According to highway 
capacity manual (National Research Council (U.S.). Transportation Research Board, 2010) the 
maximum capacity of a freeway segment, under regular condition, should vary from 2000 to 2400 
pc/h/ln (passenger car per hour per lane), however these values are applicable only for stable 
uninterrupted flow condition. From Fig. 2(b), we find that during hurricane Irma traffic condition 
starts to deteriorate just after the declaration of evacuation order on September 6th, 2017. From 
September 6th to September 9th, 2017 overall traffic flow is higher than regular traffic condition. 
Especially from September 7th to September 8th   the traffic flow is heavier than rest of the 
evacuation period; the maximum flows for different roadway segments (i.e. detectors) vary from 
4200-5000 vph (vehicle per hour) for all the three lanes combined. Although maximum flow is 
less than theoretical capacity (3*2000=6000) of the roadway, we observe a significant reduction 
in overall traffic speed. During Hurricane Irma’s evacuation, average traffic speed varies from 40 
mph to 60 mph, indicating an unstable traffic flow condition.   

To further analyze the prevailing traffic condition, we plot speed vs flow relationship from 
September 4 to September 9, 2017 which includes both evacuation and non-evacuation periods 
(see Appendix. B Fig. 8 (a)). In this figure, the red dashed line indicates fundamental speed-flow 
relationship as a visual guidance (we have not fitted this line to actual data) and the dark dashed 
line separates between the stable and unstable flow conditions. The upper portion of the horizontal 
line (see Appendix. B Fig. 8 (a)) indicates stable flow condition, while the lower portion indicates 
unstable flow condition. In unstable flow condition traffic speed is lower than the free flow speed 
indicating oversaturated traffic flow. In such condition, the effective roadway capacity will be 
lower than the theoretical capacity due to interruption in traffic flow (congested condition). 

We also plot speed vs. flow relationship (see Appendix. B Fig. 8 (b)) only for the evacuation period 
from September 7 to September 8, 2017 (when heavy evacuation traffic has been observed). From 
the figure we find that, during evacuation, the overall traffic is operating either near or below 
capacity and the observed maximum flow is lower than the theoretical capacity value. A study on 
Hurricane Ivan (2004), Hurricane Katrina (2005) and Hurricane Gustav (2008) showed that during 
hurricane evacuation, highway capacity reduces by 35-50% (Dixit and Wolshon, 2014). Hence, 
comparing the maximum flow values during evacuation with the theoretical capacity under regular 
condition will be inappropriate due to the difference in the prevailing traffic conditions. To make 
such a comparison, we need to consider the effective capacity based on prevailing traffic flow 
condition. It will be interesting to determine, in future studies, to what extent and why the effective 
capacity is dropping during evacuation.  

We also analyze the temporal distribution of total number crashes for I75; Fig. 3 shows the 
distribution of crashes on different dates during evacuation. We observe that there is an increase 
in the number of crashes on 6th, 7th, and 8th September which are basically the evacuation period 
after the declaration of the state of emergency due to Irma. Majority of the crashes during this 
period were rear-end collisions (about 51%).  
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Fig. 3. Number of Crashes during Hurricane Irma Evacuation  

3.3. Car-Following Model in SUMO 

A car following behavior represents the reaction of the following vehicle with respect to the actions 
from the leading vehicle, where both vehicles are driving in the same lane. To replicate car 
following behavior in a simulation environment, researchers have been using different car-
following models such as IDM, Wiedemann Krauss, etc. These models represent the driver's 
behavior (e.g., brake, accelerate) based on the interaction between leading and following vehicles.  

In this study, we develop a micro-simulation model of evacuation traffic in SUMO (29) version 
1.2.0. We use a collision-free model Krauss (Kraus, 1998), which is the default car-following 
model for SUMO. Though the Intelligent Driver Model (IDM) has been widely used for car-
following modeling, studies have shown that the IDM provides greater errors in speed than Krauss 
model for unsteady traffic conditions, especially for car and heavy vehicles (Kanagaraj et al., 
2013). Because IDM  does not perceptibly follow the speed changes of the preceding vehicle 
(Milanés and Shladover, 2014) in an unsteady state. The Krauss model is a microscopic, space 
continuous car-following model, which is a stochastic version of the Gipps model (M. Treiber and 
Kesting, 2013). The model was developed by Krauss in 1997 based on the concept of safe speed, 
where the safe speed is computed as follows: 

𝑣𝑠𝑎𝑓𝑒 = 𝑣𝑛(𝑡) + 
𝑔(𝑡) − 𝑣𝑛(𝑡)𝜏

𝑣𝑛(𝑡) + 𝑣𝑛−1(𝑡)
2𝑏𝑚

+ 𝜏
                                                                                            (1) 

where, 𝑣𝑛−1(𝑡) 𝑎𝑛𝑑 𝑣𝑛(𝑡) represent the speeds of the leading and following vehicles at time 𝑡, 
𝑔(𝑡) is the gap to the leading vehicle at time 𝑡, 𝜏 is the driver’s reaction time (about 1s) and 𝑏𝑚 is 
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the maximum deceleration of the vehicle (𝑚/𝑠2). In a car following scenario, 𝑣𝑠𝑎𝑓𝑒  can be larger 
than the maximum speed (𝑣𝑚𝑎𝑥) allowed on the road or larger than the vehicle’s physical 
acceleration capabilities. To prevent this scenario, the desired speed of the vehicles is calculated. 
The desired speed  (𝑣𝑑) of each vehicle is the minimum of the safe speed 𝑣𝑠𝑎𝑓𝑒, the current speed 
plus the maximum acceleration and the maximum speed (Bieker-Walz et al., 2017):  

𝑣𝑑(t) = 𝑚𝑖𝑛[𝑣𝑠𝑎𝑓𝑒(𝑡), 𝑣𝑛(𝑡) + 𝑎𝜏, 𝑣𝑚𝑎𝑥]                                                                                         (2) 

To account the human error-related imperfection for human drivers, a random error (𝜎𝑎) was 
subtracted from the desired speed  

𝑣𝑛(𝑡) = 𝑚𝑎𝑥[0, 𝑟𝑎𝑛𝑑[𝑣𝑑(𝑡) − 𝜎𝑎, 𝑣𝑑(t)]]                                                                                          (3) 

We use the Krauss model to simulate human-driven vehicles in SUMO. The default parameters 
for the model can be found in (“Simulation of Urban Mobility: Vehicle Type Parameter Defaults,” 
2019). To select the base model, we reviewed several studies, though all the studies were done for 
regular traffic conditions. We use these parameter values in our initial model (see Table 1). 
Through the calibration process, we change these parameters to represent the evacuation condition. 
Here the parameter sigma has been introduced to model driver’s imperfection to adapt to the speed 
of a traffic stream. If the value of sigma (𝜎𝑎) is above 0, drivers with the default car-following 
model will drive slower than possible safe speed, and the value will be chosen from a random 
distribution between [0, acceleration]. Whereas tau (𝜏) indicates the reaction time for the drivers 
which varies from 1.0 to 1.5 sec.  

In a traffic stream, the desired driving speed usually varies for different vehicles. This can be 
modeled by defining the attribute “speed factor,” which allows a vehicle to draw “speed factor” 
from a normal distribution. This parameter can be given as “norm (mean, dev)” or “normc (mean, 
dev, min, max).” For instance, if we choose the speed factor as “normc (1, 0.1, 0.2, 2)”, then it will 
result in a speed distribution where 95% of the vehicles drive between 80% and 120% of the legal 
speed limit.  

Table 1 
Initial Model before Adjusting the Parameters  
 
Vehicle 
Types 

Max 
Speed  
(m/s) 

Speed Factor 
norm (mean, 

deviation, min, 
max) 

Min 
Gap 
(m) 

Car 
Following 

Model 

Max 
Accel 
(m/s2) 

Max 
Decel 
(m/s2) 

Sigma  Tau 
(s)  

PC 70 normc(1,0.1,0.2,2.0) 3.0 Krauss 3.0 5.5 0.5 1.0 
HGV 65 normc(1,0.1,0.2,2.0) 3.0 3.0 5.5 0.5 1.0 

 

3.4 ACC Controller  
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We select the ACC driving model based on (Liu et al., 2018; Milanes et al., 2014; Milanés and 
Shladover, 2016, 2014; Xiao et al., 2017), where the ACC control algorithm is divided into three 
modes based on three different motion purposes: (i) the cruising (or speed) control mode is 
designed to maintain the drivers’ chosen desired speed, (ii) the gap control mode aims to maintain 
a constant time gap between the controlled vehicle and its predecessor, and (iii) the gap-closing 
controller enables the smooth transition from speed control mode to gap control mode. Later, 
TransAID (Mintsis, 2018) has introduced a fourth mode (i.e. collision avoidance mode) to the 
controller that prevents rear-end collisions when safety critical conditions prevail. The selected 
parameters for the ACC car following model is shown in Table 2. We present the basic definitions 
and equations for these four ACC control modes in Appendix A.  

Table 2 
Controller Parameters for ACC 
 

Parameters Value Remarks 

Speed Control Gain 0.4 𝑠−1 Cruising Model 

Gap Control Gain Space 0.23 𝑠−2 Car following Model 

Gap Control Gain Speed 0.07 𝑠−1 Car following Model 

Gap Closing Control Gain Space 0.04 𝑠−2 Approaching Model 

Gap Closing Control Gain Speed 0.80 𝑠−1 Approaching Model 

Collision Avoidance Gain Space 0.8 𝑠−2 Collision Avoidance 
Model 

Collision Avoidance Gain Speed 0.23 𝑠−1 Collision Avoidance 
Model 

 

3.5. SUMO Simulation Model Development and Calibration  
To design simulation experiments in SUMO, we would need a well-calibrated model. This requires 
representing the real-world network in the simulation environment with proper geometric features. 
To replicate the real-world scenario, we imported the traffic network for I-75 from the Open Street 
Map and converted this network into the sumo network file. We simulate a 9.5-mile-long segment 
between Ocala to Gainesville, which includes two entry and exit ramps. We have adjusted the 
traffic network using the SUMO network editor and removed all the unnecessary routes and nodes.  

In the simulation, we include two types of vehicles: passenger car (PC) and heavy goods vehicle 
(HVG). We do not have the exact distribution of PC and HGV for that study period. However, 
most of the cases the HGV percentages vary from 2 to 5% of the total number of vehicles. For our 
simulation, we assume the HGVs as 4%, which would be adjusted during the calibration process. 
We get the traffic volume from the RITIS database at 20 to 30-second resolution and aggregate 
them into 5 min interval and convert this volume into 5 min average flow. Since we are simulating 
a 2-hour period, we input the average interval flow for 2 hours. From the analysis, we find that the 
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maximum number of crashes occurred on September 8, 2017, between 2 pm and 5 pm. Therefore, 
we have chosen the time window of 1:30 to 3:30 pm for our simulation experiments. After 
excluding the first 30 minutes of simulation warm-up time and last 30 minutes of cool-down time 
(no statistics were collected during this time), simulation data of 60 minutes (2-3 pm) were used 
for calibration and validation. 

For calibrating the model, we add 8 loop detectors on the network exactly at the same location as 
the MVDS detectors (see Fig. 1). The default output frequency from SUMO is 1sec; however, we 
can adjust this value by changing the default settings. In our case, we obtain aggregated volume 
and average speed for 5-min intervals from the loop detectors. We use Geoffrey E. Heaver (GEH) 
statistics  (Bash, 2012), modified chi-square statistics to compare the filed volume with the 
simulation. GEH statistics incorporate both relative and absolute differences between the two 
groups. The GEH can be stated as follows: 

𝐺𝐸𝐻 = √
2 ∗ (𝑀𝑜𝑏𝑠(𝑛) − 𝑀𝑠𝑖𝑚(𝑛))

2

(𝑀𝑜𝑏𝑠(𝑛) + 𝑀𝑠𝑖𝑚(𝑛))
                                                                                                     (4) 

We calculate the GEH for each detector (i.e., 8 detectors) and each time interval (i.e., 2:00 pm to 
3:00 pm, in total 12 intervals). We also calculate the Root Mean Square Error (RMSE) and Root 
Mean Square Percentage Error (RMSPE). To check the compatibility of the developed model, we 
reviewed several specifications. However, all of the specifications for calibrating a traffic 
simulation model is given for regular traffic condition. For an evacuation period, traffic variation 
is significantly higher than a regular period, and it is difficult to achieve better accuracy. So, there 
should be a different set of guidelines for calibrating models for the evacuation period. We still 
follow the standards mentioned in (Nezamuddin et al., 2011), which recommend for 85% of the 
data point the GEH value should be less than 5, and the absolute speed difference (ASD) between 
simulated speeds and field speeds should be within 5 mph (or 2.5 m/s). So, our objective is to keep 
the GEH less than 5 and absolute speed difference below 2.5 m/s.   

First, we select the speed distribution of vehicles based on the field measurement, which is slightly 
adjusted during the calibration process. We change each parameter within a specific range, which 
has been selected based on previous studies and engineering judgment (Table 3).  

Table 3  

Parameter ranges for model calibration process 

Types Proportion 
(%) 

Min 
Gap 
(m) 

Max 
Accel. 
(m/s2) 

Max Decel. 
(m/s2) 

Sigma Tau (s) 

Car [96,97,98] [2.0, 
2.5 
3.0] 

[3.0, 
3.5, 

[5.0,5.5,6.0,6.5 
7.0,7.5] 

[0.1,0.2,0.3,0.4,0.5] [1.0,1.2,1.3,1.4 
1.5] 
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4.0, 
4.5] 

HGV [2, 3, 4] [2.0, 
2.5 
3.0] 

[3.0. 
3.5, 
4.0 
4.5] 

[5.0,5.5,6.0,6.5] [0.1,0.2,0.3,0.4,0.5] [1.0,1.2,1.3,1.4 
1.5] 

 

When calibrating the model we perturb each parameter and run the simulation 10 times with 
random seeds to observe the variations in GEH, ASD, RMSE and RMSPE values. In total we run 
the simulation 260 times (3 ∗ 10 [𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛]  +  3 ∗ 10 [𝑀𝑖𝑛 𝐺𝑎𝑝]  +  4 ∗

10 [𝑀𝑎𝑥 𝐴𝑐𝑐𝑒𝑙. ]  +  6 ∗ 10 [𝑀𝑎𝑥 𝐷𝑐𝑐𝑒𝑙. ]  +  5 ∗ 10 [𝑆𝑖𝑔𝑚𝑎]  +  5 ∗ 10 [𝑇𝑎𝑢] ) based on the 
ranges of different parameters. Due to the large variation of speed and flow, it is challenging to 
achieve better accuracy levels for simulating evacuation traffic. We present the final parameters 
for the model in Table 4. We run the final model 10 times with random seeds and each time we 
estimate the GEH, ASD, RMSE, and RMSPE. Finally, we estimate the average value for each of 
these metrics (Table 5). About 73% of the observations show a GEH value of less than 5 and ASD 
value below 2.5 m/s. Moreover, RMSE for speed is less than 5m/s, which indicates the model is 
reasonably calibrated to capture the speed variations occurring during an evacuation period. As 
shown in Fig. 2, there is some drastic change in traffic speed at certain points, which induce a large 
error in our model (high absolute difference). We are unable to capture this variation with the 
simulation model. Evacuation traffic modeling is a challenging task that requires different 
standards and specifications to check the performance of the calibrated model. However, currently, 
such standards do not exist for evacuation traffic simulation models.  

In our final model (see Table 4), values of maximum acceleration and deceleration are higher than 
the regular car-following model for normal traffic conditions. This indicates that abrupt changes 
in speeds and a higher rate of acceleration are typically followed in the evacuation.  In a stop and 
go traffic condition, drivers are more likely to take every opportunity to accelerate to recover the 
delays induced by a repetitive breakdown in traffic flow. In case of minimum gap (Min Gap) 
parameter, previous studies have used different values ranging between 2 and 4m to simulate 
traffic for regular condition (Li et al., 2017b; Martin Treiber and Kesting, 2013). However, there 
is no specific guideline to choose the minimum gap parameter for the car following model for 
evacuation traffic conditions. Selection of the minimum gap value is critical. If the minimum gap 
is very low, it will produce an unrealistically high value of deceleration. Considering this issue, 
we use minimum gap value between 2.0 and 3.0m when calibrating the model. Moreover, several 
studies (Li et al., 2017a) have used minimum gap of 2.0m while modeling congested stop and go 
traffic condition to represent realistic driving behavior. From the model calibration result, we find 
the minimum gap parameter value as 2.0 m. This is plausible since in a highly congested condition 
such as evacuation, drivers are more likely to reduce the gap from the leading vehicle.  Also, 
drivers attempt to maintain a minimum time gap of tau between the rear bumper of their leader 
and their front-bumper. In our case, the value of tau is 1.2, which is less than the usual reaction 
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time of 1.5 sec under a regular traffic condition. These changes in parameters from a regular traffic 
condition, however, indicate potential crash risks during evacuation.  

Table 4  
The Final Model after Adjusting the Parameters  
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PC 98
% 70 normc(0.96,0.3,0.2,1) 2.0 

Krauss 
4.5 6.5 0.2 1.2 

HGV 2% 65 normc(0.96,0.3,0.2,1) 2.0 4.5 6.5 0.2 1.2 

 

Table 5  

Values of the performance metrics for the calibrated model 

Metrics Average Values for 
Flow 

Metrics Average Values for 
Speed 

GEH <5 72.9 % of the total 
observations  

ASD <2.5 m/s 73.2% of the total 
observations 

RMSE 278.863 RMSE 4.738 
RMSPE 12.312 RMSPE 20.76 

3.6. Surrogate Safety Measures  
A simulated environment does not explicitly show the collisions between two interacting vehicles. 
Hence, we need some surrogate measures to represent interactions between vehicles in a traffic 
stream and to identify potentially unsafe conditions. To evaluate crash risks from simulation 
models, previous studies have used several surrogate safety measures such as time to collision 
(TTC), post encroachment time (PET), rear-end crash risk index, deceleration rate to avoid a 
collision (DRAC). In this study, we are using one temporal proximity-based indicator (TTC) and 
one deceleration-based indicator (DRAC) to evaluate the impact of ACC equipped vehicles on 
crash risks. However, in absence of these measures we can also use the variance of speed. A higher 
variance in speed would indicate an unstable traffic stream, and consequently a potential collision 
scenario. To implement this approach at a micro level, we have to track speed variations (e.g., 
speed variance) of each vehicle and check if there is a sudden reduction in speed. This process 
would take more time and resources in processing the outcome to estimate the number of potential 
collisions.  In our study, we followed a similar approach. Instead of directly using the speed 
variance, we use a sophisticated measure DRAC to automatically indicate an abrupt decrease in 
traffic speed in case of a potential collision. Since, DRAC is derived from speed variations, we 
believe that both approaches will produce a similar outcome. 
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The TTC measure, first introduced by Hayward (Hayward, 1972), is defined as the expected time 
for two vehicles to reach a common position on the road, given that their speed and trajectory 
remain the same. If the following vehicle n moves faster than the preceding vehicle (n-1), then 
TTC can be evaluated by using Equation 5. 

𝑇𝑇𝐶𝑛(𝑡) = {
𝑥𝑛−1(𝑡)−𝑥𝑛(𝑡)−𝐿𝑛−1

𝑣𝑛(𝑡)−𝑣𝑛−1(𝑡)
, 𝑖𝑓 𝑣𝑛(𝑡) > 𝑣𝑛−1(𝑡)

∞ , 𝑖𝑓 𝑣𝑛(𝑡) < 𝑣𝑛−1(𝑡)
                                                              (5)                                                             

where 𝑇𝑇𝐶𝑛(𝑡) denotes the TTC value of the vehicle 𝑛 at time 𝑡 and  𝑥, 𝑣, 𝐿 denote the position, 
speed, and length of the corresponding leading (𝑛 − 1) and following (𝑛) vehicles, respectively. 
Researchers have used different threshold values (1.0, 1.5, 2.0, etc.) of TTC to identify whether 
two vehicles will collide or not (Essa and Sayed, 2015; Guo et al., 2019; Li et al., 2017c, 2017b, 
2017a; Liu et al., 2018; Wang and Rajamani, 2004). Van der Horst (Van Der Horst and Hogema, 
1993) suggested that the preceding vehicle and following vehicle are assumed to be in a collision 
if the TTC value for the following vehicle is less than 1.5.  

In an oscillatory traffic condition (stop and go traffic) deceleration-based indicator are more 
critical. So, we are using the deceleration rate to avoid a collision (DRAC) to consider the effect 
of speed differentials and decelerations on crash risks. DRAC, first introduced by Cooper and 
Ferguson (Cooper and Ferguson, 1976), indicates the maximum deceleration rate needed to be 
applied by a vehicle to avoid the collision with another conflicting vehicle. In the case of a car 
following scenario, the preceding vehicle (𝑛 − 1) is responsible for initiating action such as 
braking, lane changing, etc. while the following vehicle (𝑛) has to react to this action by braking. 
For this rear-end interaction, the DRAC for the following vehicle 𝑛 can be expressed as follows:  

𝐷𝑅𝐴𝐶𝑛
𝑅𝐸𝐴𝑅 =

(𝑣𝑛(𝑡) − 𝑣𝑛−1(𝑡))
2

2[(𝑥𝑛−1(𝑡) − 𝑥𝑛(𝑡)]
                                                                                                         (6) 

Where 𝑣, 𝑥 denote the speed and position of the corresponding leading (𝑛 − 1) and following (𝑛) 
vehicles, respectively. Several studies have recognized the relevance of DRAC to measure crash 
risk and crash severity. They have also introduced different severity levels based on a different 
range of DRAC values. The American Association of State Highway and Transportation Officials 
(AASHTO) (A Policy on Geometric Design of Highways and Streets, 2011) recommends that the 
maximum comfortable deceleration rate for most of the drivers is 3.4 𝑚/𝑠2. Archer (Jeffery 
Archer, 2005) suggested that if, for a given vehicle interacting with a preceding vehicle, the 
maximum DRAC value is greater than 3.35 𝑚/𝑠2, the vehicle is assumed to be in a collision with 
the preceding vehicle. In this study, we use the threshold values for TTC as 1.5 sec and for 
maximum DRAC as 3.30 𝑚/𝑠2. 

4. Results 
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To estimate the surrogate safety assessment measures, we equip the vehicles with SSM (surrogate 
safety measures) (“Simulation of Urban Mobility: Simulation/Output/SSM Device,” 2019) 
devices. Each SSM device provides an estimate of time to collision (TTC) and maximum 
deceleration rate to avoid a collision (maximum DRAC) value for the study corridor. To identify 
the number of conflicts that can lead to potential traffic collisions, based on previous studies, we 
choose threshold values for TTC and maximum DRAC as 1.5 sec and 3.30 𝑚/𝑠2, respectively. 
This means that if TTC and maximum DRAC value between the leading and preceding vehicle is 
less than the threshold value of TTC and greater than the threshold value of maximum DRAC we 
identified it as a potential collision.  

Fig. 4 and 5 illustrate the distributions of maximum DRAC and TTC values for the base condition 
and 25% MPR of ACC vehicles for a single simulation run. Fig. 4 shows that maximum DRAC 
values for the evacuation traffic mostly vary from 3.2 to 4.5 m/sec2 and TTC values vary from 
0.5 to 1.5 sec. It is reasonable to choose 3.30 m/sec2 as the threshold value of maximum DRAC 
and 1.5 sec as the threshold value of TTC to assess the impact of ACC vehicles. Considering these 
thresholds, we observe a significant number of potential collisions (TCC value less than 1.5 sec, 
while the maximum DRAC value greater than 3.30 𝑚/𝑠𝑒𝑐2) for the base condition (i.e., without 
ACC vehicles). However, after we introduce the ACC vehicles (25% MPR), most of the cases the 
TCC values increase while the maximum DRAC values decrease, indicating improvement in 
overall safety condition.   

 
(a)                                                                      (b) 

Fig. 4. Distribution of (a) maximum DRAC values (greater 1 𝑚/𝑠𝑒𝑐2) (b) TTC values (less than 
4 sec) for base condition; red line indicates the critical values for DRAC = 3.30 𝑚/𝑠𝑒𝑐2and  
TTC = 1.5 sec 
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(a)                                                                      (b) 

Fig. 5. Distribution of (a)maximum DRAC values (greater 1 𝑚/𝑠𝑒𝑐2) (b) TTC values (less than 
4 sec) at 25% MPR of ACC vehicles (time headway =1.3 sec); red line indicates the critical 

values for maximum DRAC = 3.30 𝑚/𝑠𝑒𝑐2and  TTC = 1.5 sec 

To estimate the variation in result, we run the final simulation 10 times with random seeds to 
eliminate any random effect. For each simulation run, we estimate the number of potential 
collisions and report the average value aggregating all the results for different simulation runs. 
From simulation results, we find that the average number of conflicts leading to potential collisions 
for the base condition is 264. We follow the same procedure to estimate the number of potential 
collisions for different levels of market penetration of ACC-equipped vehicles.  

 
Fig. 6. Variation of Number of potential collisions for different values of desired time headway  

In an ACC system, the controlling parameters allow a vehicle to maintain a constant gap with the 
preceding vehicle. Hence, by fixing the desired headway, the ACC-equipped vehicle can maintain 
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a safe cruising distance. Moreover, the reaction time for the ACC equipped vehicle (0.1 sec) is less 
than a manually driven vehicle, consequently desired time headway (1.1 to 1.6 sec) is also less 
than manual vehicle (1.5 sec) (Porfyri et al., 2018). In this experiment, we choose 4 levels of 
market penetration of ACC-equipped vehicles and use 4 values of desired time headway. At a 
given market penetration, we run the simulation with four different values of desired time 
headway, and for each case, we estimate the TTC and maximum DRAC values. The experiment 
result shows that if we fix the desired time headway greater than 1.2 sec, the number of potential 
collisions decrease with the increase in the penetration rate of ACC equipped vehicle (see Fig. 6). 
When the desired time headway is 1.2 sec, the result shows some discrepancies. For instance, the 
number of conflicts leading to potential collisions decreases with the increase in MPR of ACC 
equipped vehicles up to 50%, but after that it increases with the increase of ACC equipped vehicles. 
However, the number of potential collisions always remains less than the base condition.     

To measure the difference between the base conditions with the other scenarios we perform a two-
sample t-test and report the significance of these differences (p-value). In Table 6, we present the 
t-test results for ACC equipped vehicles with the desired headway of 1.3 sec. From the result, we 
observe that with only 25% market penetration rate of ACC vehicle we can achieve about 49.7% 
reduction in the number of potential collisions. Further improvement can be achieved at 75% 
market penetration rates of ACC equipped vehicles. Reduction in the number of potential 
collisions is almost the same (around 80%) for both 75% and 100% MPR. We have also conducted 
the same analysis with different values of the desired headway, and for each case, we have seen 
similar outcomes.  

Table 6 

Percentage change in the number of potential collisions averaged over 10 simulation runs 
(desired time headway is 1.3 sec)  

 Estimate Value Mean 
Difference 

% 
Change 
in mean 
value 

p-value Lower 
bound 

Upper 
bound 

Base (no 
ACC) 

mean 264 
--- --- --- --- --- standard 

deviation 51.29 

Base + 
25% 
ACC 

mean 132.6 
131.4 49.7% <0.0001 119.53 208.06 standard 

deviation 23.02 

Base + 
50% 
ACC 

mean 81.6 
182.4 69% <0.0001 145.00 227.79 standard 

deviation 12.39 

Base + 
75% 
ACC 

mean 50.2 
213.80 81% <0.0001 179.12 248.47 std standard 

deviation 9.64 
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100% 
ACC 

mean 47.4 
216.60 82% <0.0001 181.43 251.76 standard 

deviation 13.06 

 

Moreover, we performed a sensitivity analysis to understand the impact of gap control parameters 
of the ACC vehicles over the changes in potential collision. We experimented with different 
combinations of gap control gain space (k2) and gap control gain speed (k3) values. Table 7 
presents the percentage change in the number of potential collisions for different combinations of 
gap control parameters. We observe that increasing the value of k2  from 0.1 to 0.5 decreases the 
number of potential collisions. However, in case of k3, the changes are rather irregular. Overall, 
for each combination of gap control parameters, the number of potential collisions is significantly 
lower than the base condition. Although we experimented with different combination of gap 
control parameter, selecting the optimal gap control parameters is challenging which requires 
individual vehicle level data such as acceleration, deceleration, gap acceptance etc. However, we 
do not have such information, hence we use the existing parameters which are practically possible 
based on field experiments to run the model (Table 2).    

Table 7 

Sensitivity analysis to demonstrate the changes in the number of potential collisions for different 
combinations of gap control parameters (Gap Control Gain Space [k2] and Gap Control Gain 
Speed [k3]); the number of potential collisions is averaged over 10 simulation runs, each 
simulation includes 25% MPR of ACC vehicles with desired time headway of 1.3 sec. 

  

Estimates Gap Control Grain Speed (k3) 

0.05 0.06 0.07 0.08 0.09 

G
ap

 C
on

tro
l G

ai
n 

Sp
ac

e 
(k

2
) 

   

0.1 Number of potential collisions  114.0 137.7 125.8 114.0 134.6 

Standard deviation 17.9 30.51 17.8 10.3 17.3 

Percentage change compared to 
base condition  

56.8 % 47.8 
% 

52.4 
% 

56.8% 49.1% 

0.2 Number of potential collisions  114.0  131.1 133.8 131.0 114.0 

Standard deviation 14.4 19.5 25.2 23.2 12.4 

Percentage change compared to 
base condition 

56.8 % 50.3% 49.3% 50.4% 56.8% 

0.3 Number of potential collisions  112.4 123.7 113.8 128.6 121.4 

Standard deviation 16.7 25.8 15.4 18.4 16.0 

Percentage change compared to 
base condition  

57.4% 53.2% 56.9% 51.3% 54.0% 

0.4 Number of potential collisions  111.4 113.5 109.9 116.4 112.8 
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Standard deviation 10.9 16.8 20.5 22.1 20.6 

Percentage change compared to 
base condition 

57.8% 57.0% 58.4% 59.9% 57.3% 

0.5 Number of potential collisions  105.4 109.8 101.0 109.4 109.3 

Standard deviation 16.7 26.9 16.6 23.2 17.9 

Percentage change compared to 
base condition 

60.2% 58.4% 61.7% 58.6% 58.6% 

 

 
Fig. 7. Travel Time Variation at Different Market Penetration Rate of ACC vehicles 

We have also collected the average travel time for the base scenario as well as for different MPR 
of ACC equipped vehicles. We have observed that, with the increase in the percentage of ACC 
equipped vehicles, average travel time reduces from the base condition. However, for 75% or 
100% MPR of ACC, the travel time increases (Fig.7) The average travel time for the base condition 
is 9.7 minute, whereas at 100% MPR of ACC equipped vehicles average travel time is 10.8 
minutes. This variation can be attributed to the fact that the ACC system decreases the sudden 
changes in the rate of acceleration, which reduces the sharp changes in traffic speed. Consequently, 
the overall speed reduces to adapt to the traffic stream.  

5. Discussion 

This study has certain limitations. Our findings rely on simulation experiments that do not fully 
mimic real-world evacuation traffic conditions. In this study, we only calibrated the simulation 
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model with real evacuation traffic data, which shows a disperse distribution for speed. It is 
challenging to select an accurate distribution of speed to match the speed variation of the simulated 
vehicles with real-world data. To check the performance of our model, we have used GEH statistics 
and absolute speed difference. We find that for 72.9% of the observations the GEH score is less 
than 5, whereas existing standards recommend for 85% of the data points the GEH value should 
be less than 5 in normal operating condition. During evacuation we observe an abrupt change in 
traffic flow due to the large volume of evacuation traffic from surrounding areas, hence in some 
portion of the roadway segment (mostly entry ramps) we observe significantly higher traffic 
volume compared to average traffic volume of the entire roadway segment. However, in the 
simulation environment the roadway capacity remained similar for all the segments, hence, in 
some portion of the roadways the simulated traffic volume fails to match with actual traffic 
volume. That is why the GEH test fails to achieve the recommended result. One of the possible 
ways to overcome this issue could be breaking down the model into smaller roadway segment to 
see if it generates more reliable results in terms of calibration.  Moreover, recommended standards 
for these metrics are very conservative and are generally suitable only for normal traffic conditions. 
We, therefore, believe that new guidelines should be developed to calibrate traffic simulation 
models for evacuation traffic scenarios. 

Although existing microsimulation models are more advanced, they rely on collision free models. 
Thereby, they fail to simulate collisions and generate features to assess the safety of different 
simulated traffic scenarios (Essa and Sayed, 2020). As a solution to this problem, following 
existing literature, we have utilized surrogate safety measures (SSM) such as time to collision 
(TTC) and deceleration rate to avoid a collision (DRAC) to assess the safety impacts of evacuation 
traffic. However, these methods have some limitations. First, obtaining reliable conflict results 
requires a rigorous calibration of the simulation model. Second, simulation models may fail to 
accurately represent actual driving behavior during evacuation, hence they may fail to generate 
near misses. A two-stage calibration process involving a rigorous calibration of the simulation 
model and safety-oriented calibration ensuring collisions are correctly generated can improve the 
representativeness of the simulated data (Papadoulis et al., 2019). However, it is challenging to 
obtain high resolution data related to traffic conflicts (i.e., minimum gap, near miss) from real-
world sources, particularly during hurricane evacuation.    

The results of this study are intuitive and based on the data collected from a real-world evacuation 
scenario (Hurricane Irma). We found that during evacuation scenario the roads operate near 
capacity for a long period of time due to heavy traffic demand. For similar evacuation traffic 
condition, we anticipate that these results will be representative. However, data from multiple 
hurricanes are needed to study the transferability of the results. Future studies can analyze 
evacuation data from multiple hurricanes across different regions to confirm the transferability of 
these results. 

6. Conclusion 
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Managing evacuation traffic is an enduring transportation challenge due to uncertainty and drastic 
changes in traffic states (Murray-Tuite and Wolshon, 2013). During evacuation, drivers have to 
face stop-and-go traffic conditions. These types of irregularities and oscillatory traffic behavior 
increase the chances of driver’s perception related errors. In this study, we calibrated a microscopic 
traffic simulation model to analyze driving behavior during evacuation. The model has been 
calibrated using real-world evacuation traffic data collected during Hurricane Irma. For the 
calibrated model, the values of maximum acceleration and deceleration were found to be 4.5 𝑚/𝑠2 
and 6.5 𝑚/𝑠2, respectively. These values are quite greater than those in typical car-following 
models calibrated under regular traffic conditions. Also, larger acceleration and deceleration 
values indicate abrupt speed variation, which is the most common scenario for evacuation traffic.  

Using the calibrated micro-simulation model, we evaluated the safety impacts of ACC equipped 
vehicles on crash risks. Adopting two surrogate safety measures TTC and maximum DRAC, we 
have found that ACC-equipped vehicles can significantly reduce the number of potential collisions 
during evacuation. The experiment results also indicated that the safety impact of the ACC system 
largely depends on its parameter settings of ACC controllers. By fixing the desired time headway 
at a value greater than 1.2 sec, the number of potential collisions can be reduced by 49.7%. At the 
same time, we have also found that if we keep the MPR of ACC vehicles below 50%, then average 
travel time improves over the base condition. This is a promising result considering that an MPR 
of 25% to 50% of ACC vehicles is more likely in the future compared to 75% to 100% MPR of 
ACC vehicles.   

Our study has several implications. First, using real-world evacuation traffic data, we have 
established that typical parameters of car-following models should be adjusted to account for an 
evacuation condition. Researchers and practitioners should consider our findings when using 
micro-simulation tools for modeling evacuation traffic. Second, this study evaluates the safety 
impact of different driving assistance systems on crash occurrence during evacuation. The findings 
are promising as it was shown that the ACC system could potentially reduce the number of crashes 
during evacuation. It is worth noting that most modern cars are equipped with an ACC system. 
However, the lack of public knowledge on how to use them as well as the high level of mistrust in 
such emerging technology discourage drivers from using this type of vehicle driving assisting 
system (Kamalanathsharma et al., 2015). Transportation and emergency management agencies 
should take necessary steps to acquaint drivers with new in-vehicle technologies and their potential 
benefits in an emergency situation such as hurricane evacuation.  

Moreover, this study opens new directions for future research. For instance, future work should 
assess the safety and mobility impact of connected vehicles with platooning and cooperative 
adaptive cruise control systems. Studies should also investigate the impact of vehicle to vehicle 
(V2V) and vehicle to infrastructure (V2I) communication technologies on reducing potential crash 
risks during an emergency evacuation. Finally, as we have identified the limitations of simulation 
experiments, field experiments are necessary before deploying our recommendation in a real-
world hurricane evacuation scenario. 
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Appendix A. car-following model for ACC equipped vehicles 

Speed Control Mode  

The speed control mode is activated when there are no preceding vehicles  (n) in the range covered 
by the sensors, or preceding vehicles exist in a spacing larger of 120 m (Liu et al., 2018; Xiao et 
al., 2017). This mode aims to eliminate the deviation between the vehicle speed and the desired 
speed and is given as:  

αn−1(t + 1) = k1(vd(t) − vn−1(t)), k1 > 0                                                                                (7) 

Where αn−1(t + 1), represents the acceleration for the following vehicle for the next time step 
(t + 1) recommended by the speed control mode; vd(t) and vn−1(t) denotes the desired cruising 
speed and the speed of the follower (n − 1) at the current time step (t); k1 is the control gain 
parameter determining the rate of speed deviation for acceleration, which varies in between 0.3 −

0.4s−1 (Xiao et al., 2017); in this study we choose 0.4s−1.  

Gap Control Mode  

When the gap control mode is activated, the acceleration in the next time step t + 1 is represented 
as a second-order transfer function based on the gap and speed deviations with respect to the 
preceding vehicle, which can be defined as follows,  

αn−1(t + 1) = k2en−1(t) + k3(vn − vn−1), k2, k3 > 0                                                               (8) 

Here, en−1(t) is the gap deviation of the following vehicle at the current time step t, and, vn(t) 
and vn−1(t) are the current speed of the preceding and following vehicles; k2 and k3 are the control 
gains on both the positioning and speed deviations, respectively. Xiao et al (Xiao et al., 2017) 
proposed values for the control gains, k2 = 0.23s−2 and  k3 = 0.07s−1. The gap control mode is 
activated when the gap and speed deviations are concurrently smaller than 0.2 m and 0.1m/s 
respectively (Xiao et al., 2017). The gap deviation of follower vehicle (en−1(t)) is defined as, 

en−1(t) = xn(t) − xn−1(t) − τdvn−1(t)                                                                                       (9) 

According to Equation (9), the gap deviation is calculated by the current position of the preceding 
vehicle xn(t), the current position of the following vehicle is xn−1(t) and the desired time gap τd 
of the ACC controller.  
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Gap-closing Control Mode  

The initial ACC car-following models developed by (Milanés and Shladover, 2016) do not 
consider the ACC longitudinal vehicle response under gap closing mode. Later, Xiao et al. (Xiao 
et al., 2017) overcome this shortcoming introducing a gap-closing controller by tuning the 
parameters of the existing gap controller. In this study we also adopt the gap-closing control mode, 
which is triggered when the spacing to the preceding vehicle is smaller than 100m. For gap closing 
control, the control gains of Equation (8) are set as k2 = 0.04s−2 and k3 = 0.8 s−1 (Mintsis, 
2018). If the spacing between leading and following vehicle is between 100m and 120m, the 
controlled vehicle retains the previous control strategy (Gap Control mode) to initiate hysteresis 
in the control loop performing smooth transfer between the two strategies (Gap control and gap 
closing control)  (Liu et al., 2018; Xiao et al., 2017).  

Collision Avoidance Mode  

TransAID (Mintsis, 2018) introduced the collision avoidance mode into the ACC car-following 
model to prevent rear-end collisions occurring during simulations. These control model activated 
when safety critical conditions arise which means low time-to-collision (TTC) values, or a 
follower’s speed significantly higher than its leader’s. Collision avoidance controller is derived by 
tuning the parameters of the existing gap controller and it get activated when the spacing to the 
preceding vehicle is lower than 100m, the gap deviation is negative, and the speed deviation is 
smaller than 0.1m/s. Based on (Mintsis, 2018) we set the gain values as k2 = 0.8s−2 and k3 =

0.23s−1 to ensure that ACC vehicles break hard enough to avoid an imminent collision. Similar 
to previous case the controlled vehicle retains the gap control strategy when the spacing between 
leading and following vehicle is between 100m to 120m, to provide hysteresis in the control loop 
and perform a smooth transfer between the two strategies (Gap control and collision avoidance 
control) (Liu et al., 2018; Xiao et al., 2017). 

 

Appendix B. Traffic Speed vs. Flow relationship for different traffic conditions 
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(a) Traffic Data for both Evacuation and Non-evacuation Condition (September 4, 2017 
to September 9, 2017) 

 

 

(b) Evacuation Traffic Condition ((September 07, 2017 to September 08, 2017) 

Stable Condition 

Unstable Condition 

Stable Condition 

Unstable Condition 
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Fig. 8. Traffic Speed vs. Flow Relationship for different Traffic Condition, the dashed dark 
line indicates optimal flow condition (for all three lane) 
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