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Abstract—This work reports a compact behavioral model for 

gated-synaptic memory. The model is developed in Verilog-A for 
easy integration into computer-aided design of neuromorphic 
circuits using emerging memory. The model encompasses various 
forms of gated synapses within a single framework and is not 
restricted to only a single type. The behavioral theory of the model 
is described in detail along with a full list of the default parameter 
settings. The model includes parameters such as a device’s ideal 
set time, threshold voltage, general evolution of the conductance 
with respect to time, decay of the device’s state, etc. Finally, the 
model’s validity is shown via extensive simulation and fitting to 
experimentally reported data on published gated-synapses.  
 

Index Terms—Computer Aided Design of Gated-synaptic 
memory, neuromorphic circuit design, synapse model, Verilog-A. 
 

I. INTRODUCTION 

EEP learning has re-kindled interest in artificial neural 
networks in recent years [1]-[4]. Neuromorphic 

computing, the hardware implementation of neural networks, 
has also become an important research topic [5]-[8]. In the past 
decade a popular method of implementing synapses within 
neuromorphic hardware has been via two-terminal memristive 
or hysteretic devices [9]-[11]. More recent research shows a 
growing interest in gated-synaptic devices (GSDs) due to its 
capabilities not available in two-terminal devices such as 
simultaneous read/write [12]-[18]. A typical GSD usually 
possesses input/output terminals along with some form of gate 
as shown in Fig. 1. A programming bias is applied to the gate 
to control the conductance between input and output terminals.  

Despite GSDs becoming an increasingly popular topic of 
research in recent years, no generic behavioral model exists yet 
to describe them in a SPICE/Verilog-A compatible framework 
for computer-aided design and simulation. The lack of such a 
model prohibits a broader community of circuit designers to 
implement GSDs into their designs. By developing a generic 
model that can encapsulate defining behaviors such as 
input/output conductance configurability via a gate bias, non-
linear temporal conductance behavior, and dynamic state 
retention and volatility will allow for more accurate transient 
analysis of GSDs and the networks they inhabit.  

Previous studies have shown how the transient dynamics of 
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neural networks can affect a network’s accuracy and learning 
capability [19]-[22]. Work done by Tyasnurita et al. 
demonstrated the use of time delay within a neural network to 
extract hyper-heuristic features from data for open vehicle 
routing [19]. Some have developed and verified (against 
MNIST) complete tools to simulate neuromorphic architectures 
within the transient domain such as Shahsavari and Boulet’s 
N2S3 framework [20]. Other work within the time dynamics of 
neural networks has focused on topics such as noise vs. 
information. Boerlin and Denève approached this topic by 
studying the time-dynamic interplay between synapses and 
neurons [21]. Others have studied the realm of biological 
systems such as Abbott and Regehr whose work focused on 
how the timing of pre- and post-synaptic signals to a synapse 
affected the potentiation of the synapse [22].  

This continual study of transient properties within neural 
networks and neuromorphic architectures demonstrates the 
need for a behavioral model for a GSD that can handle the 
transient domain. If a generic device model can be developed 
to capture the various behaviors of previously published GSDs 
[12]-[18] in addition to potential behavior of future GSDs, it 
could assist in the development of new and exciting neural 
networks and neuromorphic architectures that rely on time 
dynamics for learning. The following work will propose such a 
model for GSDs that emulates both previously seen and 
potential future device behavior and dynamics. 
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Figure 1. Diagram of a gated-synaptic device (GSD). The device is normally 
programmed via the gate terminal, while vin and vout act as pre-synaptic and 
post-synaptic analysis terminals, respectively. 
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II. DEVICE FEATURES AND BEHAVIOR 
In order to develop a behavioral GSD model, published work 

done on experimentally proven devices that qualify as GSDs 
should be studied in order to observe critical behavioral 
characteristics that exist within each device. In order to be 
classified as a GSD, the device must possess the following:  

• A primary device channel between two terminals that 
can qualify as input and output nodes for current 
analysis. 

• A gate terminal which can be used to either potentiate 
or depress the device. 

• Some degree of non-volatile behavior when 
programming the device via the gate terminal. 

Over the past few years, multiple publications have been 
made on various designs of devices that would qualify as GSDs. 
In order to create this work’s behavioral model, these recently 
published devices were studied [12]-[18]. Each device studied 
has temporal behavior useful in neuromorphic applications. 
    The devices that appear in [12]-[18] vary greatly in design 
and core operational mechanisms. This device spectrum varies 
from highly CMOS-compatible device designs such as Lim et 
al. [15] to Bao et al.’s device that relies on liquid electrolytes 
for its device channel [12]. Two of the devices studied rely on 
a pseudo-gate to potentiate/depress the device in the form of 
light being applied to one end of a two-terminal device from 
Murdoch et al. [16] and Tan et al. [17]. These devices still 
qualify as GSDs since the applied light programs the device 
whilst voltage applied to the same terminal has either a lesser 
or no effect. The remaining devices studied for this model lie in 
the regime of more traditional oxide-based devices such as 
resistive RAM, but with a gate added to the device’s design 
[13], [14], [18].  

Within the wide range of GSDs studied for this model many 

different behaviors can be seen, but with a core of universal 
traits. If one studies all seven previously published devices, 
there is a set of properties that appear to within each one. 

• A “general shape” of a conductance curve when 
being potentiated. 

• An amount of time is required for the device to 
reach its highest conductive state. 

• Minimum and maximum conductance values. 
• Some sort of state-based short-term decay when no 

potential is being applied to the gate of the GSD. 
• Some degree of long-term plasticity. 

Among the universal properties observed across all devices, 
there are certain properties that appear in one or more of the 
devices, but not all. For example, certain devices such as 
Herrmann et al. [14] possess a gate threshold voltage where the 
device is only potentiated/depressed if the gate voltage exceeds 
the threshold voltage value. The model shown in this work also 
alludes to Bao et al. [12] possessing this property. Other devices 
are more sensitive to negative gate voltage that can more 
quickly depress the device [15], or some can simply be reset via 
assistance from device channel bias [16], [17]. Devices can also 
possess diode-like behavior when the GSD’s I/O channel is 
placed into reverse bias [15], [16]. Finally, the device shown in 
[13] has a unique property where the redox reaction required to 
potentiate/depress the device requires negative voltage to 
potentiate and positive voltage to depress (instead of vice 
versa). Despite this final property only being visible in a single 
device, the nature of the property is critical to the device’s 
operation, and therefore should be considered as an option 
within the behavioral model. 

In order to encapsulate all the features observed in the 
devices studied in this work, the behavioral GSD model 
includes an array of 14 user-defined parameters that describe 

TABLE I 
USER-DEFINED MODEL PARAMETERS 

Parameter Default 
Value Range Description 

gc 0.0 0 to 1 Central fitting parameter that controls the device’s overall transient conductance curve shape. 

brev 1.0 0 to 1 Defines whether the behavior during reverse bias is that of a memristor/resistor (brev=1) or diode (brev=0), or in between 
(0<brev<1). 

gmin 1e-11 S <gmax Minimum conductance value. 
gmax 1e-6 S >gmin Maximum conductance value. Acts as an asymptote for inverse exponential/sigmoid portion of conductance equation. 
tset 1e-6 s >0 Ideal set time of device (assuming no decay and potentiation @1V above threshold voltage on vgate). 
vt 0.0V ≥0 Threshold voltage for potentiation/depression. 

namp 1 >0 Controls amplified depression when negative bias is applied to vgate. The higher the value of namp, the higher the 
amplification. 

oc 0.0 0 to 1 Dictates control of how much the bias across the device channel (vin-vout) influences the effective voltage applied to the 
device via vgate. oc=0 means it has no influence, and oc=1 means the channel bias is fully included in calculating Veff. 

tc 0.0 0 to 1 Dictates control of how much vt emphasis occurs when calculating the change in x and xmin. tc=0 is none, while tc=1 is a 
perfect difference between vgate and vt. 

rstp 0.0 ≥0 Rate of decay for short-term plasticity. Magnitude often inversely proportional to set time (tset). 

qltp 0.0 0 to 1 Controls the quality of the long-term potentiation rate of the device. The higher the value of qltp, the closer the long-
term potentiation conductance value is to gmax as the device is programmed. 

rltp 0.0 ≥0 Controls the rate of decay for long-term plasticity. The higher the value, the sharper the rate of decay for the long-term 
plasticity state. 

f 1 1, -1 Indicates if the polarity at which the device is potentiated/depressed is flipped or not. f=1 means it’s not flipped, while 
f=-1 means it is. 

xstart 0.0 0 to 1 Parameter that defines the initial conductance state of the device. xstart=0 means the device is in its lowest conductance 
state, and xstart=1 means it's in its highest conductance state. 
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each behavioral feature in some way and can be seen in Table 
I. Each of these terms is described in greater detail in Section 
III. The only term that captures a behavior not mentioned 
previously is the term, xstart. This final term can be used to help 
define a GSD in a pre-potentiated or virgin conductance state. 
This parameter can also assist neural network designers looking 
to utilize the GSD model in initializing an array of devices with 
random initial conductance values to obtain initially random 
weights within their network. Other device-to-device variance 
can also be implemented via randomly generated values for the 
parameters in Table I for each defined instance of a GSD. 

From a conceptual perspective, if a GSD is potentiated via 
gate bias for a period of time, then left to have its state decay to 
some intermediate conductive state, and then finally has its state 
reset by a bias of opposite polarity, each device would 
experience a curve similar the one shown in the diagram in Fig. 
2 (when in forward bias). Several parameters from Table I 
would have a degree of influence on this curve, which can be 
seen via the labels in Fig. 2. Other parameters such as oc, tc, f, 
and xstart would influence this curve in more nuanced fashion. 
Parameters such as brev would hold influence in a situation 
where the device is in reverse bias.  

III. MODEL DESCRIPTION 
In order to utilize the user-defined parameters described in 

Table I, the model uses a series of equations in order to 
encapsulate all the behavior seen in studied devices. 

A. Device Current and Conductance 
The current (Isyn) through the GSD is defined by  

𝐼𝑠𝑦𝑛 = {
𝑔𝑠𝑦𝑛∆𝑉, ∆𝑉 ≥ 0

𝑏𝑟𝑒𝑣𝑔𝑠𝑦𝑛∆𝑉 + (1 − 𝑏𝑟𝑒𝑣)𝑔𝑠𝑦𝑛(𝑒∆𝑉 − 1), ∆𝑉 < 0
 (1), 

where gsyn is the conductance of the device and ΔV is the voltage 
difference across the device channel given by  
                                         ∆𝑉 = 𝑣𝑖𝑛 − 𝑣𝑜𝑢𝑡                              (2). 
The brev term within (1) varies between 0 and 1 and dictates how 
the device behaves during reverse bias (as described in Section 
II). brev is the primary reason why the equation is a piecewise 
function with respect to ΔV. When under reverse bias (ΔV<0) 

and when brev<1, a pseudo-diode equation starts to take control 
of the device’s current (fully taking control when brev=0). This 
part of the equation is kept simple in order to still embody the 
behavioral nature of the model. This diode portion of the 
equation is limited by the device’s conductance (gsyn), as the 
only device that shows a wide range of reverse bias behavior 
(Lim et al. [15]) shows the device in reverse bias still increasing 
in conductance as it is being programmed. Other devices might 
exhibit diode behavior in reverse bias that does not change as 
the device is programmed and might rely on other limiting 
terms (e.g. gmin). The devices studied here do not possess such 
behavior, however. 

The reverse bias nature of an unprogrammed GSD can be 
seen in Fig. 3. As brev is varied from 0 to 1 within the Verilog-
A module, the IV curve changes from a linear memristive curve 
to a curve that resembles a diode in reverse bias.  The forward 
bias component of the IV curve is fully linear as it does not 
include the diode component due to the diode behavior not 
being the primary current-limiting factor in forward bias.   

In order to model the conductance of the device, several 
factors must be considered regarding the GSDs that have been 
developed. One of the primary factors that must be considered 
is the user-defined parameter, gc. This parameter is responsible 
for describing the overall shape of a device’s conductance curve 
with respect to time. All devices studied in [12]-[18] normally 
either possess either an inverse exponential, linear, or sigmoidal 
curve shape (or somewhere between). This curve shape can be 
influenced by other things than gc (as shown in Fig. 2), but gc 
acts as the primary fitting parameter in order to ensure the 
device potentiates as expected. Most devices lie in the spectrum 

Figure 2. Diagram of a typical potentiation/decay/reset curve for a GSD. 
The conductance of the synapse increases with time when being 
potentiated, with the state beginning to quickly decay once potentiation 
ceases. The device can be fully reset with a negative gate bias if desired. 
Many of the user-defined parameters within the model can visibly 
manipulate the shape of this curve as shown in the diagram. 

Figure 3. IV curve of an unpotentiated GSD (gsyn=1e-11S) showing how the 
term brev manipulates the current behavior during reverse bias. The device can 
either exhibit diode-like or linear-like behavior (along with a range of 
intermediate behavior) while under reverse bias. The brev term is not considered 
when the device is in forward bias due to the diode component of the device 
channel not being the limiting factor in current while in the forward bias state.  
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between inverse exponential and linear [12]-[18]. A select few 
devices lie between linear and sigmoidal [13], [18], but they can 
appear as exponential curve-fits. This model assumes that the 
conductance of the device has a limit and must saturate at some 
point, and therefore uses a sigmoidal curve instead of 
exponential. The assumption being made is that if an 
exponential conductance curve is being seen, that is the bottom 
half of a sigmoidal curve, and that if the device were to be 
further potentiated, its conductive state would saturate with 
time. 

To model this spectrum of conductance curves, gsyn is 
governed by the following equation  
𝑔𝑠𝑦𝑛 = max(1 − 2𝑔𝑐, 0) (𝑔𝑟𝑎𝑛𝑔𝑒(1 − 𝑒−𝑝𝑥))

+ (−𝑎𝑏𝑠(2𝑔𝑐 − 1) + 1)(𝑔𝑟𝑎𝑛𝑔𝑒𝑥 + 𝑔𝑚𝑖𝑛)

+ max (2𝑔𝑐 − 1,0)
𝑔𝑚𝑎𝑥

1 + 𝑒−𝑚𝑥+𝑠
             (3). 

Within this equation, the two max functions and the absolute 
value component create a linear combination spectrum to guide 
the general shape of the conductance curve with respect to time 
(Fig. 4). The other three components are responsible for getting 
the conductance from its minimum to maximum value in the 
desired fashion (inverse exponential, linear, or sigmoidal). 
These components are all guided by a single unitless state 
variable, x, that can range in value from 0 (initial value for xmin) 
and 1 (value for xmax). 

B. Normalization Constants 
In order to universally bound gmin and gmax to x’s 0 to 1 range, 

the inverse exponential and sigmoidal components of (3) must 
include pre-calculated normalization terms. These terms within 
(3) are s, m, and p. The first of these terms, s, is calculated by 

                       𝑠 = ln(𝑔𝑚𝑎𝑥/𝑔𝑚𝑖𝑛 − 1)                              (4). 

The term, s, is used both within the sigmoidal component of (3) 
and the calculation of the other sigmoidal normalization 
constant, m, which is given by 
                           𝑚 = ln(1/𝑔𝑟𝑎𝑛𝑔𝑒 − 1) + 𝑠                         (5). 
Within (5) the grange term is simply the difference between the 
maximum and minimum conductance values, 
                                𝑔𝑟𝑎𝑛𝑔𝑒 = 𝑔𝑚𝑎𝑥 − 𝑔𝑚𝑖𝑛                             (6). 
Finally, in order to properly normalize the inverse exponential 
component of (3), p is introduced which is given by 

𝑝 = −ln(𝑔𝑚𝑖𝑛/𝑔𝑟𝑎𝑛𝑔𝑒)                            (7). 

C. Controlling the State Variable 
The unitless state variable, x, is responsible for creating the 

model’s memristive behavior. In order to first determine the 
scale at which x can change between two timesteps, a term 
named xscale is calculated by 

                                  𝑥𝑠𝑐𝑎𝑙𝑒 = ∆𝑡/𝑡𝑠𝑒𝑡                                 (8), 
where Δt is simply the difference in time between the current 
and previous time stamps within the transient simulation where 
the model is evaluated. Another component key to calculating 
x is determining the effective voltage applied to the model’s 
gate terminal. This voltage is defined as Veff and given by 
                                 𝑉𝑒𝑓𝑓 = 𝑓𝑣𝑔𝑎𝑡𝑒 − 𝑜𝑐∆𝑉                           (9). 
As a reminder the parameter, f, is often 1, and therefore can be 
largely ignored. The only exception to this rule would be if the 
device being modeled exhibits behavior where it requires 
inverted potential applied to its gate in order to 
potentiate/depress it (e.g. Burgt et al. [13]). The other user-
defined parameter within this equation, oc, can be used to model 
devices such as [16], [17] where potentials applied to different 
ends of the primary device channel can influence the conductive 
state of the device. If both f and oc are kept at their default values 
(1 and 0, respectively), (9) can be read as Veff=vgate. 
 If the absolute value calculated from (9) is greater than the 
user-defined threshold voltage for the device (vt), an update to 
the state variable, x, can occur. Prior to the update to x (defined 
as Δx), the polarity of Veff is first checked. If Veff<0V, the user-
defined parameter namp is applied to Veff.  
  𝑉𝑒𝑓𝑓 = 𝑛𝑎𝑚𝑝𝑉𝑒𝑓𝑓   (𝑖𝑓 𝑉𝑒𝑓𝑓 < 0 𝑎𝑛𝑑 𝑎𝑏𝑠(𝑉𝑒𝑓𝑓) > 𝑣𝑡)    (10). 
At namp’s default value (namp=1), this equation changes nothing 
about Veff’s value. If namp>1 however, it will exaggerate the 
negative bias applied to the device in order to more quickly 
reset the device (e.g. [15]-[17]).  

At the start of each simulation, x begins as 0 (unless 
otherwise initialized by the user-defined parameter, xstart). 
Whenever the model is evaluated and abs(Veff)>vt, Δx is 
calculated by the equation 

                 ∆𝑥 = {
0, 𝑥𝑚𝑖𝑛 ≥ 𝑥 ≥ 1

𝑥𝑔𝑎𝑡𝑒 − 𝑑𝑠𝑡𝑝 , 𝑥𝑚𝑖𝑛 < 𝑥 < 1                   (11), 

where xgate represents 
                 𝑥𝑔𝑎𝑡𝑒 = 𝑥𝑠𝑐𝑎𝑙𝑒(𝑉𝑒𝑓𝑓 − 𝑠𝑖𝑔𝑛(𝑉𝑒𝑓𝑓)𝑡𝑐𝑣𝑡)            (12). 
The sign function used in (12) exists in order to ensure x is 
increased/decreased correctly when the proper potential is 
applied to the device when vt>0V. The parameter, tc, can be 
used to tune the defined vt’s effect on Δx and determine if it is a 
hard- or soft-threshold value.  

Figure 4. Figure showing how gc changes the general shape of a 
conductance curve during constant potentiation over time (vgate=1V) where 
vin=1V. Most devices lie in the inverse exponential to linear range 
(0≤gc≤0.5), while a select few lie in the linear to sigmoidal range 
(0.5≤gc≤1.0). 
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D. Short- and Long-Term Plasticity 
As defined in both Section II and Table I, the model must 

include forms of both short- and long-term plasticity in order to 
properly model a GSD. Within this model, short-term plasticity 
is modeled as a decay term on x at each timestep while long-
term plasticity is modeled as change in the minimum value x 
can obtain (xmin) at any given time. 

Short-term plasticity is created within the model by 
introducing a decay term, dstp, that is taken from x every time 
the model is evaluated.  This decay term is state based in nature, 
and is given by the equation 
                           𝑑𝑠𝑡𝑝 = 𝑟𝑠𝑡𝑝𝑡𝑠𝑒𝑡(𝑥 − 𝑥𝑚𝑖𝑛)∆𝑡                    (13).  

In order to implement long-term plasticity into the model, a 
term that has so far remained at 0, xmin, must be given capability 
to be changed. In devices such as [16], [17], long-term plasticity 
does exist, but this plasticity can be quickly erased via a 
depression or reset signal applied to the device due to de-
trapping. This evidence shows that long-term plasticity can be 
potentiated/depressed in a very similar fashion to the primary 
state variable, x. Therefore, the change in xmin (Δxmin) can be 
executed via a very similar equation to (11) under the same 
condition that abs(Veff)>vt in order to calculate Δxmin. 

            ∆𝑥𝑚𝑖𝑛 = {
0, 0 ≥ 𝑥𝑚𝑖𝑛 ≥ 1  

𝑞𝑙𝑡𝑝𝑥𝑔𝑎𝑡𝑒 − 𝑑𝑙𝑡𝑝 , 0 < 𝑥𝑚𝑖𝑛 < 1           (14). 

The key difference in the setup of (14) to (11) is that Δxmin 
possesses the user-defined parameter, qltp. At qltp’s default value 
of zero, no change in xmin will ever occur. When qltp is given a 
value greater than zero, long-term plasticity will begin to appear 
within the device over time at a rate dictated by qltp.  
 Just like x, xmin can experience decay over time. This can be 
seen in the long-term plasticity demonstrated in devices such as 
[11], [16], [17] where the device appears to eventually settle to 
a final state, but still decays very slowly over time. This decay, 
dltp, is always removed from xmin at every simulation timestep 
(just like dstp) and is defined by 
                                        𝑑𝑙𝑡𝑝 = 𝑟𝑙𝑡𝑝𝑡𝑠𝑒𝑡∆𝑡                            (15). 
The decay of xmin defined in (15) is modeled as a linear decay 
instead of the state-based decay that is used for dstp. This linear 
modeling of dltp is primarily due to the often-low magnitude 
long-term decay normally possesses along with the lack of 
study on how long-term decay operates in the devices studied 
[12]-[18]. Linear modeling of dltp for the work done here proved 
sufficient in modeling any case where long-term decay 
appeared. 
 To calculate the energy dissipated by the device, the simple 
equation 
                                𝐸 = 𝐼𝑠𝑦𝑛(𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡)𝑡                           (16), 
can be used, where t is the amount of time voltage is applied to 
the device channel. The model does not inherently calculate this 
value however, seeing as a SPICE simulator can perform this 
calculation. 

IV. FITTING MODEL TO EXPERIMENTAL DATA 
In order to fully encapsulate the model described in Section 

III, a Verilog-A module was developed. The structure and flow 
of this module can be seen in Algorithm 1. The behavioral block 

portion of module is the section that is executed at each time 
step of the simulation, while everything prior to the behavioral 
block is initialized at the start of the simulation.   

The module within Algorithm 1 was used to replicate 26 
experimental curves reported in [12]-[18] in order to determine 
if the model described in this work is robust enough to properly 
model the types of devices mentioned within each previously 
published study. The experiments chosen are of various forms 
including potentiation tests, potentiation/depression curves, 
potentiation/decay curves, potentiation/decay/reset curves, IV-
sweeps on the gate terminal, and IV-sweeps on the input 
terminal. The results of these 26 replicated experiments can be 
seen in Fig. 5, while the user-defined parameters used for the 
module to achieve each test replication can be found in Table 
II. The values from Table II were obtained by manual 
adjustment of unknown parameters in order to fit the curves 
within each simulation as close to the original experiment as 
possible around maximum/minimum values and inflection 
points. Other values defined or shown in the original 
publications (e.g. vt, gmin, gmax, etc.) were used as well.  

V. RESULTS AND DISCUSSION 
While each experimentally reported curve was being 

replicated in Fig. 5 using the proposed model, the device being 
presented within each individual publication was assumed to be 
a single type of device unless otherwise specified. Ideally under 
this assumption, one would expect to use the same set of model 
parameters to replicate all experimentally reported 
characteristics pertaining to a specific publication. As can be 
seen in Table II, this is not always the case due to several 
reasons. The first of these reasons is that the study focuses on 
devices of different sizes or designs such as in [18]. Other 
reasons for these variances include potential measurement or 
experiment-specific factors not mentioned in the specific 
publication or minor secondary effects occurring within a 
device such as non-uniform transport that the model doesn’t 
capture. 

Algorithm 1 GSD_module (vin, vout, vgate) 
1: Define User-Defined Parameters (vt, brev, gmin, gmax, tset, rstp, gc, namp, 

oc, tc, qltp, rltp, xstart, f) 
2: Define/Calculate Parameters (grange, s, m, p, xmax) (Eqs. 4-7) 
3: Define Variables (veff, x, gsyn, tcurr, tpast, xscale, xmin) 
4: Begin Behavioral Block 
5:      Calculate xscale and veff (Eqs. 2, 8, 9) 
6:           if abs(veff)>vt 
7:                if veff<0 
8:                     Apply namp to veff (Eq. 10) 
9:                Calculate x and xmin (Eq. 12, Eqs. 11, 14 bottom condition) 
10:           if x>xmin                     
11:                Calculate dstp and Apply to x (Eq. 13) 
12:           if xmin>0      
13:                Calculate dltp and Apply to xmin (Eq. 15) 
14:           Bound xmin between 0 and xmax (Eq. 14 top condition) 
15:           Bound x between xmin and xmax (Eq. 11 top condition) 
16:           Calculate gsyn (Eq. 3) 
17:           if vin-vout≥0 
18:                Calculate Isyn (do not include diode component) (Eq. 1) 
19:           else 
20:                Calculate Isyn (include diode component) (Eq. 1) 
21: End Behavioral Block 
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In Figs. 5a-d, work from Bao et al. [12] is replicated. The 
device used in this study uses an unconventional device channel 
in the form of a liquid electrolyte. The device also has an extra 
body terminal which is assumed to be grounded/ignored in the 
replication simulations performed in this work. The model can 
exhibit similar behavior to the original experiments when a 
threshold voltage of vt=0.7V is introduced into the device. 
Though Bao et al.’s work did not mention a specific threshold 
voltage for its gate terminal, including the threshold voltage 
proved key in obtaining similar behavior within Fig. 5a. Long 
term potentiation was also achieved in Fig. 5c thanks to qltp. 

 Figs. 5e-i show five different experiments performed by 
Burgt et al. [13] on a device that requires inverted potential 
applied to its gate (i.e. f=-1). Fig. 5e shows an experiment where 
the device starts in a semi-potentiated state and then can be 
potentiated/depressed between five different conductance 
levels. The remainder of the experiments are typical 
potentiation/depression or potentiation/decay curves. The one 
experiment that should be mentioned of these four is the 
experiment conducted in Fig. 5g. In the original experiment, it 
is stated that the stimulus provided to the gate in this specific 
experiment is current, not voltage.  All other experiments 
replicated from Burgt et al.’s work use voltage to program the 
device. As previously mentioned, the model developed here 
does not specifically use current bias applied to the gate to 
program the device, but instead only voltage. Fig. 5g also is the 
only experiment that uses a gc value greater than 0.5, meaning 
it lies in the sigmoidal conductance range. This shows that using 
current instead of voltage to program the device from Burgt et 
al. might cause it to exhibit a different form of potentiation at a 
physics-level, and this change in behavior can be replicated by 
varying gc. 

The next device studied is one developed by Herrmann et al. 
[14], which can be seen in Figs. 5j-m. The device in Herrmann 
et al.’s work is a gated resistive-RAM device that uses a device 
channel made of strontium titanate (SrTiO4) with a defined 
threshold voltage of vt=0.788V [14]. The experiments 
conducted in this work primarily focus on sweeping or 
potentiating voltages rather than pulse testing. Extremely 
similar results to Herrmann et al.’s original work were obtained 
in Figs. 5j and 5l. Similar results were also obtained during the 
experiments in Figs. 5k and 5m, although a couple small 
behaviors were not successfully captured from these two 
experiments. In Fig. 5k, the original experiment showed 
plateauing of the synaptic current as it reached higher values of 
vin. This could be accomplished via the GSD model, but not 
without severely compromising the current values while 
vin<0V. One potential issue with the original experiment that 
Fig. 5k replicates is the programming time and length of the 
device are not specifically mentioned for the gate voltages 
shown. The original experiment Fig. 5m replicates also saw 
very slight decay prior to plateauing at the lower gate voltages 
of vgate=1V and 2V, which was not able to be replicated with the 
GSD model. 

Within Figs. 5n-p experiments replicated from Lim et al. [15] 
can be seen. The device uses a set of gated diodes within CMOS 
in order to create memristive behavior. The device possesses 
highly linear potentiation/depression behavior while in forward 
bias (Figs. 5o and 5p), albeit with a high namp value (namp=40) 
that creates a very asymmetric potentiation/depression curve. 
The device also experiences diode-like behavior while under 
reverse bias conditions (Fig. 5n) since diodes are core to the 
device’s functionality. 

  

TABLE II 
USER-DEFINED PARAMETERS FOR EXPERIMENT REPLICATIONS (FIG. 5) 

Paper Figure Fig. 5 
Subfigure gc vt brev gmin gmax tset rstp namp oc tc qltp rltp f xstar

t 

Bao et al. 
[12] 

2c a 0.40 0.700 1 3.000e-11 2.10e-6 1800 3.5e-3 1 0.0 1 0.040 7.0e-9 1 0.0 
3a b 0.40 0.700 1 9.000e-10 2.60e-6 100 3.5e-3 1 0.0 1 2.5e-3 7.0e-8 1 0.0 
3b c 0.40 0.700 1 7.000e-10 2.60e-6 100 3.5e-3 1 0.0 1 2.5e-3 7.0e-8 1 0.0 
3d d 0.40 0.700 1 3.000e-11 1.00e-7 4600 2.0e-6 1 0.0 1 2.5e-3 7.0e-8 1 0.0 

Burgt et 
al. [13] 

1d e 0.00 0.000 1 5.750e-4 1.35e-3 4 2.0e-3 1 0.0 0 0.400 1.0e-6 -1 0.2 
2a f 0.00 0.000 1 5.250e-4 1.60e-3 1 2.0e-3 1 0.0 0 0.400 1.0e-6 -1 0.0 
2b g 0.60 0.000 1 7.500e-4 3.00e-3 33 1.0e-4 1 0.0 0 0.400 1.0e-6 -1 0.0 
2c h 0.00 0.000 1 5.250e-4 1.60e-3 1 3.0e-2 1 0.0 0 0.100 1.0e-7 -1 0.0 
3c i 0.00 0.000 1 1.725e-3 7.00e-3 1 1.0e-2 1 0.0 0 0.400 1.0e-6 -1 0.0 

Herrmann 
et al. [14] 

2a j 0.45 0.788 1 6.000e-12 6.00e-9 90 2.0e-2 1 0.0 1 0.010 7.0e-8 1 0.0 
2b k 0.45 0.788 1 6.000e-12 6.00e-9 90 2.0e-2 1 0.0 1 0.010 1.0e-8 1 0.0 
3 l 0.45 0.788 1 6.000e-12 6.00e-9 90 1.0e-3 1 0.0 1 0.010 1.7e-6 1 0.0 
4a m 0.45 0.788 1 6.000e-12 6.00e-9 90 2.0e-2 1 0.0 1 0.010 1.7e-6 1 0.0 

Lim et al. 
[15] 

2a n 0.45 0.000 0 1.000e-12 2.00e-9 5.5e-3 1.0e-1 40 0.0 0 0.000 0.0 1 0.0 
2b o 0.45 0.000 0 1.000e-12 2.00e-9 5.5e-3 1.0e-1 40 0.0 0 0.000 0.0 1 0.0 
5 p 0.45 0.000 0 1.000e-12 2.00e-9 5.5e-3 1.0e-1 40 0.0 0 0.000 0.0 1 0.0 

Murdoch 
et al. [16] 

4c q 0.05 2.000 0 2.500e-10 1.40e-9 5 1.2e-1 1 1.0 1 0.020 3.0e-4 1 0.0 
4d r 0.05 1.990 0 3.000e-9 1.15e-8 3 4.5e-1 40 1.0 1 0.040 3.0e-4 1 0.0 
5a s 0.05 2.000 0 2.800e-9 1.00e-8 3 8.5e-1 40 1.0 1 0.100 7.0e-3 1 0.0 

Tan et al. 
[17] 

1c t 0.05 1.400 1 5.000e-12 4.00e-8 5500 1.0e-8 345 0.0 1 0.010 1.0e-6 1 0.0 
1d u 0.05 1.400 1 5.000e-12 4.00e-8 2500 6.0e-4 345 1.0 1 0.175 2.0e-8 1 0.0 
1e v 0.00 0.800 1 1.000e-13 4.00e-8 5500 7.0e-5 345 0.5 1 0.250 1e-10 1 0.0 

Tang et al. 
[18] 

2 w 0.85 0.000 1 1.000e-9 2.40e-9 1175 2.0e-7 1 0.0 0 0.000 0.0 1 0.0 
9 x 0.00 0.000 1 2.040e-9 4.50e-9 50 4.0e-5 1 0.0 0 0.600 1.0e-8 1 0.0 
14 y 1.00 0.000 1 5.000e-12 6.00e-8 10 9.5e-5 1 0.0 0 0.000 0.0 1 0.0 
15 z 1.00 0.000 1 5.000e-11 3.00e-9 150 2.0e-7 1 0.0 0 0.000 0.0 1 0.0 
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Figure 5. Replicated experiments from previously published papers. Critical data points from previously published experiments are depicted as stars. (a) Fig. 2c 
from [12] where bias is applied to the gate for 100ms when t=1sec at five different gate voltages. (b) Fig. 3a from [12]. (c) Fig. 3b from [12]. (d) Fig. 3d from [12] 
showing three consecutive highly linear potentiation/depression curves. (e) Fig. 1d from [13]. (f) Fig. 2a from [13] showing two consecutive 
potentiation/depression curves. (g) Fig. 2b from [13] showing 1.5 potentiation/depression curves. (h) Fig. 2c (inset) from [13]. (i) Fig. 3c from [13] showing ten 
consecutive potentiation/depression curves. (j) Fig. 2a from [14] where the gate voltage is swept at two different velocities. (k) Fig. 2b from [14] where the input 
voltage is swept after the device has been pre-programmed for a fixed period (2000s) with six different gate voltages. (l) Fig. 3 from [14]. (m) Fig. 4a from [14] 
where the device was potentiated over time with five different constant gate voltages. (n) Fig. 2a from [15] where the device undergoes a reverse bias sweep on 
its input node between 64 separate programming pulses to its gate. (o) Fig. 2b from [15] showing three consecutive potentiation/depression curves. (p) Fig. 5 from 
[15] showing one potentiation/depression curve. (q) Fig. 4c from [16]. (r) Fig. 4d from [16] where the device is reset with its output node when t=14sec and 
t=30sec. (s) Fig. 5a from [16]. (t) Fig. 1c from [17] where the device is potentiated by four different constant gate voltages over time. (u) Fig. 1d from [17] showing 
an IV curve before and after “light” (i.e. a voltage pulse in the replication) is applied to the gate. (v) Fig. 1e from [17] where the device is reset using its input 
terminal at the four points specified. (w) Fig. 2 from [18] showing one potentiation/depression curve. (x) Fig. 9 from [18] showing two potentiation/depression 
curves. (y) Fig. 14 from [18] showing one potentiation/depression curve. (z) Fig. 15 from [18] showing one potentiation curve using voltage pulses.   
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The experiments modeled in Figs. 5q-s are from a device 
developed by Murdoch et al. [16] and is the first of two light-
gated synaptic devices studied in this work. Instead of light to 
potentiate the device, the GSD model simply uses a substitute 
voltage of 5V as a gate programming voltage. The experiments 
for Murdoch et al.’s device primarily revolve around 
potentiate/decay tests with the experiment in Fig. 5r including 
a reset signal that is applied on the device’s output node. This 
behavior means that this device has an oc value of 1. The 
Murdoch et al. device also had a low tset value with respect to 
some of the other devices studied but possessed a very low 
ON/OFF ratio between its gmin and gmax values.  

Figs. 5t-v show the second light-gated device that was 
studied in this model’s development. Developed by Tan et al. 
[17], this light-gated device also possesses a low ON/OFF ratio 
between the gmin and gmax values for the device (similar to 
Murdoch et al.’s device), but with a much higher tset value. 
During experiment replication, a 5V gate bias is used once 
again to imitate light stimulation to the device. In Fig. 5t, a 
range of voltages were used to mimic the same range of light 
intensities used in the original experiment.  The range of 
voltages follows the same ratio the light intensities follow with 
respect to the highest light intensity used. Like Murdoch et al.’s 
device, this device can be reset via a bias applied on the primary 
device channel. This behavior means that a non-zero value for 
oc was needed during tests where resets occur (such as Fig. 5v). 
In Fig. 5u, a pair of IV curves are shown before and after a pulse 
of “light” is exposed to the device (or in the replication a voltage 
pulse to the gate). In the original experiment (Fig. 1d in [17]), a 
phenomenon known as negative differential resistance (NDR) 
can be seen where conductance of the device continues to 
increase despite the voltage applied to the input node 
decreasing. The GSD model in Fig. 5u was only able to 
replicate this phenomenon to a very minor degree, and not to 
the level seen in the original experiment. This failure of 
replicating NDR is primarily due to how decay of both short- 
and long-term plasticity works within the GSD model.  

The final device studied and shown in Fig. 5 is the one 
developed by Tang et al. [18] shown in subfigures w-z. This 
device, dubbed an “electro-chemical RAM” (ECRAM) device, 
uses a simple device gate for potentiation/depression. Most 
experiments on the ECRAM device focus on current bias 
programming pulses instead of a voltage bias. Within Tang et 
al.’s work, multiple different sized devices were also studied, 
with some showing different behavior than others. Within the 
experiments replicated for Tang et al., voltage pulses were used 
at similar ratio levels with respect to the ratio levels of the 
current pulses used in the original experiments. The maximum 
current pulse magnitude in the original experiments was 1mA, 
and the maximum voltage amplitude in the replicated version 
of each experiment was 1V (i.e. if an original experiment used 
current pulses of 1µA, the replicated experiment would use 
voltage pulses at 1/1000th the magnitude of the highest voltage 
used, 1V). Some of the ECRAM devices shown in [18] possess 
more sigmoidal conductance curve behavior (Figs. 5w, y, and z 
where 0.5<gc≤1.0), while others possess inverse exponential 
behavior (Fig. 5x where 0.0≤gc<0.5). Device sizing on the 

ECRAM device could be responsible for these different 
behaviors seen but cannot be stated for certain due to the 
original work not stating the size of each device studied in every 
figure. 

With all seven devices studied, the GSD model can 
encapsulate most critical elements of each device’s behavior 
with a few exceptions. Some of the plateauing seen in 
Herrmann et al.’s device [14] was not able to be encapsulated 
(Fig. 5k) along with negative-differential resistance 
phenomenon seen in Tan et al.’s light-gated device [17] (Fig. 
5u). Other than those exceptions, the model can robustly 
replicate GSD behavior in any of the studied devices.   

VI. CONCLUSION 
A comprehensive model for gated-synaptic devices has been 

proposed and simulated using SPICE/Verilog-A for the first 
time. Through verification against previously published device 
experiments, the GSD model shows that it encapsulates critical 
behaviors such as proper thresholding, short- and long-term 
plasticity, symmetric and asymmetric potentiation/depression, 
user-defined conductance ranges, device channel bias 
influence, and other more specific features. Through this wide 
range of behavior, the model demonstrates it can provide a great 
baseline for circuit, architecture, and systems engineers looking 
to utilize some form of GSD within their design. The model will 
allow GSDs to be more widely used within neuromorphic 
hardware that relies on temporal-based behaviors or generic 
memory architectures that are looking to utilize a different type 
of non-volatile memory. The ease-of-use of this model can 
assist in spurring the creation of more neuromorphic 
architecture designs such as the ROLLS chip [23], IBM’s 
TrueNorth architecture [24], Intel’s Loihi chip [25], or 
Stanford’s Braindrop [26]. As neuromorphic hardware 
becomes easier to develop and create, neural networks can run 
more efficiently on hardware; reducing the resource overhead 
that often plagues neural network simulation. Models like the 
one shown here can help a broad community of researchers in 
the area of near memory or neuromorphic computing tackle the 
challenge of jumping into the next decade and start developing 
more powerful alternatives to Von Neumann architectures.  
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