
Learned discretizations for passive scalar advection in a 2-D turbulent flow

Jiawei Zhuang,1, 2 Dmitrii Kochkov,2 Yohai Bar-Sinai,1, 2 Michael P. Brenner,1, 2 and Stephan Hoyer2

1School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
2Google Research, 1600 Amphitheatre Pkwy, Mountain View, CA

The computational cost of fluid simulations increases rapidly with grid resolution. This has given
a hard limit on the ability of simulations to accurately resolve small scale features of complex
flows. Here we use a machine learning approach to learn a numerical discretization that retains
high accuracy even when the solution is under-resolved with classical methods. We apply this
approach to passive scalar advection in a two-dimensional turbulent flow. The method maintains
the same accuracy as traditional high-order flux-limited advection solvers, while using 4× lower grid
resolution in each dimension. The machine learning component is tightly integrated with traditional
finite-volume schemes and can be trained via an end-to-end differentiable programming framework.
The solver can achieve near-peak hardware utilization on CPUs and accelerators via convolutional
filters. Code is available at https://github.com/google-research/data-driven-pdes.

I. INTRODUCTION

A key problem in the numerical simulation of complex
phenomena is the need to accurately resolve spatiotem-
poral features over a wide range of length scales. For
example, the computational requirement for simulating
a high Reynolds number fluid flow scales like Re3, imply-
ing that a tenfold increase in Reynolds number requires
a thousand fold increase in computing power. Over the
past decades, the extra computing power made available
through Moore’s law has been used to increase grid res-
olution dramatically, leading to breakthroughs in turbu-
lence modeling [1], weather prediction [2], and climate
projection [3]. Nonetheless, there is still a formidable
gap towards resolving the finest spatial scales of inter-
est [4], especially with the recent slow-down of Moore’s
Law [5, 6]. Machine learning has given a potential way
out of this conundrum, by training low-resolution models
to learn the rules from their high-resolution counterparts
[7–10]. The learned models aim to produce high-fidelity
simulations using much less computational resources. In-
corporating machine learning into numerical models also
facilitates the adoption of emerging hardware, consider-
ing that the fastest growth in computing power now re-
lies on domain-specific architectures like Graphical Pro-
cessing Units (GPUs) [11] and Tensor Processing Units
(TPUs) [12, 13] that are optimized for machine learning
tasks.

Recently we introduced data driven discretizations [14]
to learn numerical methods that achieve the same ac-
curacy as traditional finite difference methods but with
much coarser grid resolution. These methods are equa-
tion specific, and require training a coarse resolution
solver with high resolution ground truth simulations.
Since the dynamics of a partial differential equation is
entirely local, the high resolution simulations can be
carried out on a small domain. We demonstrated the
method with a set of canonical one-dimensional equa-
tions, demonstrating a 4 ∼ 8× upscaling of effective res-
olution [14]. Here we extend this methodology to two-
dimensional advection of passive scalars in a turbulent

flow, a canonical problem in physics [15] and a classic
challenge in atmospheric modeling [16]. We show that
machine-learned advection solver can use a grid with 4×
coarser resolution than classic high-order solvers while
still maintaining the same accuracy.

II. DATA-DRIVEN SOLUTION TO
ADVECTION EQUATION

A. Advection equation

We consider the advection of a scalar concentration
field C(~x, t) under a specified velocity field ~u(~x, t):

∂C

∂t
+∇ · (~uC) = 0 (1)

If the prescribed velocity field is divergence-free

∇ · ~u = 0, (2)

then, Eq. (1) reduces [17]

∂C

∂t
+ ~u · ∇C = 0. (3)

A classical Eulerian scheme uses discretizations of the
spatial derivative ∂C

∂x , often in a form of:

∂C

∂x

∣∣∣∣
x=xi

=

k∑
j=−k

αjCi+j (4)

where {x1, .., xN} is the spatial grid points, Cj is the con-
centration at point xj , and {α−k, ..., αk} are predefined
finite-difference coefficients. For example, a first-order

forward difference Ci+1−Ci

∆x (where Ci+1 is in the upwind-
ing direction) leads to the upwind scheme. Sophisticated
high-order methods with flux limiters will choose differ-
ent coefficients depending on local fields [18]. Extension
to two-dimensions can be done by either operator split-
ting (solve for each dimension separately) [19] or a true
two-dimensional discretization [20].

https://github.com/google-research/data-driven-pdes
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Although high-order Eulerian schemes are highly ac-
curate under idealized flows [21], their accuracy breaks
down to first-order under turbulent or strongly sheared
flows, resulting in significant numerical diffusion [16].
Adaptive mesh refinement can reduce such numerical
diffusion [22], but increases software complexity. La-
grangian methods avoid numerical diffusion [23], but
have inhomogeneous spatial coverage and also difficulties
in dealing with nonlinear chemical reaction [24]. Semi-
Lagrangian approaches involve remapping from a dis-
torted Lagrangian mesh to a regular Eulerian mesh [25],
and such remapping step exhibits similar numerical dif-
fusion as Eulerian methods. Flow-map approaches [26]
can achieve Lagrangian-like accuracy on a Eulerian mesh,
but need to solve for the advection trajectory over multi-
ple steps and requires a special treatment to incorporate
additional terms (e.g. chemical reaction) between advec-
tion steps. Different from existing methods, here we aim
to develop an ultra-accurate advection solver under the
requirements of: (1) a strictly Eulerian framework on a
fixed grid, (2) explicit time-stepping, and (3) only relying
on the current state to predict the next time step.

B. Learning optimal coefficients

Instead of using predefined rules to compute finite-
difference coefficients (Eq. 4), our data driven discretiza-
tions [14] predict the local-field-dependent coefficients
~α = {α−k, ..., αk} via a convolutional neural network:

~α = f(C, ~u;W ) (5)

The coefficients ~α|x=xj
depend on the local environ-

ment around xj , with the inputs to the neural net-
work being the neighboring fields {Cj , Cj±1, ...} and
{~uj , ~uj±1, ...}. For simplicity of presentation, here we
use 1-D indices {j, j ± 1, ...} to denote spatially adjacent
points. For 2-D advection problems, this computation in-
volves 2-D convolution across both x and y dimensions.
We learn the neural network weights W by minimizing
the difference between the machine learning prediction
and the true solution.

Fig. 1 shows the forward solver workflow and train-
ing framework. During the forward solve, we replace the
computation of finite-difference coefficients with a convo-
lution neural network, while still using classic approaches
for the rest of the steps (computing the advection flux
and doing the time-stepping). During training, we accu-
mulate the forward solver prediction results over 10 time
steps and then compare to the reference solution over
this time period, by computing the mean absolute error
(MAE) over the entire spatial domain between the two
time series:

MAE =
1

N ·M

N∑
i=1

M∑
j=1

∣∣∣Cpredict
j (ti)− Ctrue

j (ti)
∣∣∣ (6)

The MAE is used as the loss function for neural net-
work training [27]. We find that using this multi-step
loss function (as opposed to a single time step) stabilizes
the forward integration, similar to the findings by [28]. In
our experiments, we found using MAE resulted in slightly
more accurate predictions than using mean square error
(MSE), but the difference was not large.

The training of a neural network inside a classic numer-
ical solver is made possible by writing the entire program
in a differentiable programming framework [29], which
allows efficient gradient-based optimization of arbitrary
parameters in the code using automatic differentiation
(AD) [30]. AD tools have a long history, dating back
to Fortran 77 [31]. Recent developments of AD frame-
works, such as TensorFlow [32], PyTorch [33], JAX [34],
Flux.jl [35], and Swift [36], are even easier to program
and support hardware accelerators like GPUs and TPUs.
Those developments make it easier to incorporate ma-
chine learning into scientific computing code (e.g. [37]).
We implemented our advection solver in TensorFlow Ea-
ger [38].

C. Baseline solver and reference solution

As a baseline method, we use the second-order VanLeer
advection scheme with a monotonic flux limiter [39]. To
obtain the reference “true” solution, we run the baseline
advection solver at sufficiently high resolution to ensure
the solution has converged. We then down-sample the
high-resolution results using conservative averaging, to
produce the training and test datasets for our machine-
learning-based model on a coarse grid.

We remark that although higher-order schemes with
more advanced limiters would be more accurate, any flux-
limited high-order schemes break to first-order under tur-
bulent flows in order to ensure monotonicity [16]. Start-
ing from second-order, increasing the spatial resolution is
generally more effective than further improving the solver
order or the limiter [40, 41].

D. Physical constraints

There is growing emphasis on embedding physical con-
straints into the design of machine learning methods.
This is typically done either either by adding “soft” con-
straints as terms the loss function [42, 43], or “hard”
constraints in the model architecture [14, 44–48]. Since
here we only replace a small component in the numerical
solver with machine learning, we can impose arbitrary
physical constraints before and after the neural network
components. Using hard constraints allows the machine
learning algorithm to focus on approximation problems,
by imposing physical consistency requirements by con-
struction. In particular, we require:

(1) Finite-volume representation for mass conserva-
tion. We compute the flux across grid cell boundaries,
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FIG. 1. End-to-end learning framework with differential programming. During training, the model is optimized to
predict future concentrations across multiple time steps, based on a precomputed dataset of snapshots from high resolution
simulations. During inference, the optimized model is repeatedly applied to predict time evolution. The neural network
component contains a stack of 2-D convolutional layers with ReLU activation functions (degraded to 1-D convolution for 1-D
problems.). Physical constraints are imposed before and after the convolutional layers (Section II D). In the “Time-stepping”
block, H is the advection operator that computes the concentration update based on the machine-learning estimate of spatial
derivatives.

and then apply the flux to update the concentration fields
Ci. This ensures that mass is exactly conserved. The
machine-learning estimate of spatial derivatives ∂C

∂x is
used for obtaining the optimal interpolation values Ci+ 1

2

at cell boundaries, which is then used for calculating the
flux via ui+ 1

2
Ci+ 1

2
.

(2) Polynomial accuracy constraints. Following [14],
we can force the machine-learning-predicted coefficients
to satisfy an m-th order polynomial constraint, so that
the approximation error decays as O(∆xm). This ensures
that if the learned discretization is fit to solutions that
are smooth on the scale of the mesh, we will recover clas-
sical finite-difference methods. In our experiments, we
find that a first-order constraint gives the best result on
coarse grids. This preserves a balance between accuracy
constraints and model flexibility that may be particu-
lar valuable in non-monotonic regions, where higher or-
der advection schemes often revert to first-order upwind-

ing [18]. First-order accuracy requires
∑k

j=−k αj = 0,
and can be enforced by applying an affine transforma-
tion to the original neural network output (our imple-
mentation), or by having the neural network only output
{α−k, ..., αk−1} and solving for the last αk. We choose
the constant vector in the affine transformation to match
a centered, first order scheme (equal weight on the two
nearest grid cells). Accordingly, our randomly initialized
neural net at the start of training produces interpolation
coefficients that are very close to a centered, first order
scheme.

(3) Input feature normalization. Before feeding the
current concentration field C to the neural network, we
normalize it globally to [0, 1]. This ensures that the over-

all magnitude of the concentration does not affect the
prediction of finite-difference coefficients, and thus our
solver satisfies the “semi-linear” requirement for advec-
tion schemes that H(aC + b) = aH(C) + b where H is
the advection operator and {a, b} are constants (Eq 2.12-
2.13 of [19]). Without such normalization, we find that
the trained model diverges quickly during the forward
integration.

E. Other choices of learned terms

Our training framework can be easily adapted to learn
other parameters besides the finite-difference coefficients.
In this section, we describe other approaches that we
experimented with but did not choose.

Numerical methods introduce artificial numerical dissi-
pation, so it is natural to consider adding explicit correc-
tions to diffusion. One of the earliest flux-correct trans-
port (FCT) algorithms [49] includes an anti-diffusion co-
efficient of 1/8 as a correction term, though the choice
of 1/8 was subjective and it was later acknowledged
that such correction should better be velocity- and
wavenumber- dependent [50]. We considered learning dif-
fusive correction directly, in the form:

∂C

∂t
+∇·(~uC)+

(
Dxx

∂2C

∂x2
+Dxy

∂2C

∂x∂y
+Dyy

∂2C

∂y2

)
= 0,

(7)

where the (anti-)diffusion coefficients ~D =
{Dxx, Dxy, Dyy} are computed by a convolutional

neural network ~D = f(C, ~u;W ), while the advection-
diffusion equation itself is still solved by a traditional
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high-order finite volume method. The idea resembles
learning the Reynolds stress tensor [10] in a Reynolds
averaged Navier Stokes (RANS) simulation. As in
Section II B, here the neural network is trained by
minimizing the difference between the model prediction
and the reference solution. In practice, we found that
this learned diffusion model achieves about 3× upscaling
compared to the second-order baseline solver, but
performs slightly worse than our original approach of
learning finite-difference coefficients (Section II B) that
can achieve 4× upscaling.

We also experimented with other learned terms, in-
cluding (1) a pure machine learning approach, by hav-
ing the neural network directly predict the concentration
at the next step C(t + ∆t) based on the current state
C(t) and ~u(t); and (2) having the neural network directly
predict the spatial derivative ∂C

∂x instead of the finite-
difference coefficients ~α that need to be further multi-
plied with the concentration field C to obtain the spatial
derivative. We found those methods to be unstable due
to the lack of physical constraints (Section II D).

III. NUMERICAL RESULTS

We apply the data driven discretization to one- or
two- dimensional advection. Two-dimensional advection
is highly relevant for atmospheric modeling, as the ver-
tical dimension can be decoupled from the horizontal di-
mensions and solved independently [19].

The performance of our learned advection solver (the
“neural network model” hereafter) depends on the hyper-
parameters of the convolutional neural network compo-
nent. For simplicity, this section only presents the results
with the default hyperparameter configuration. For 1-D
problems, we use 4 convolutional layers and 32 filters in
each layer; For 2-D problems, we use 10 convolutional
layers and 128 filters in each layer. All cases use a 3-
point finite difference stencil (k = 1 in Eq. 4). The
impact of hyperparameters on model accuracy and com-
putational speed is further examined in Section IV. We
use the Adam optimizer [51] with default parameters for
neural network training. Our simple convolutional neu-
ral network achitecture already achieves a high accuracy,
without additional operations like residual connections
and batch normalization.

A. 1-D advection under constant velocity

We first show that our neural network model can
achieve near-perfect result for a canonical test problem:
1-D advection constant velocity [39]. We consider a pe-
riodic 1-D grid of 32 grid points. The concentration field
is shifted by a constant distance per time step, deter-
mined by the Courant–Friedrichs–Lewy (CFL) number
u∆t
∆x . We set CFL = 0.5 (∆x = 1, ∆t = 0.5, u = 1),

so that the concentration field is shifted by half grid box
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FIG. 2. One test sample for 1-D advection under con-
stant velocity. The concentration field is advected by half
grid box every time step, and returns to the original position
after every 64 time steps because the domain is periodic. Our
neural network model is able to maintain the initial shape
indefinitely, while traditional solvers accumulates numerical
diffusion over time.

every time step, and returns to the original position after
every 64 time steps.

To generate training data, we initialize 30 square waves
with heights randomly-sampled from [0.1, 0.9] and widths
from 2 ∼ 8 grid points. Test data are randomly sampled
from the same range of width and height. The refer-
ence “true” solution is generated by the baseline solver
at 8× resolution (256 grid points) and down-sampled to
the original coarse grid.

Fig. 2 shows one test sample during the forward in-
tegration. The first-order upwind scheme exhibits large
numerical diffusion, due to its second-order spatial dis-
cretizaion error [52]. The second-order VanLeer scheme
(our baseline) is more accurate but stills accumulates dif-
fusion over time. In contrast, our neural network model
closely tracks the reference “true solution” obtained by
the 8× resolution baseline. When a slight numerical dif-
fusion occurs at one step, the next step applies a slight
anti-diffusion to correct it. Intuitively, the solver learns
that the optimal solution in one-dimensional advection is
to maintain the initial shape.

Fig. 3 shows the mean absolute error over time, aver-
aged over all test samples. The error indicates the devi-
ation from the reference solution obtained by the base-
line solver at 256 grid points. The neural network model
achieves a factor of 8 less error than the baseline second-
order VanLeer scheme.

We further investigate this intriguing behavior of our
neural network model using out-of-sample test data. As
shown in Fig. 4, when the model (trained on square
waves) is applied to Gaussian initial conditions, it grad-
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FIG. 3. Error for 1-D advection on test data. Here
we only plot even time steps (0, 2, 4, ...) for a smooth curve,
because the error oscillates between odd and even time steps
(a result of CFL=0.5).
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FIG. 4. Neural network prediction on out-of-sample
data. The neural network model is only trained on square
waves, but applied to Gaussian initial conditions. The model
gradually turns Gaussian waves into squares, and then main-
tains the squares indefinitely.

ually turns Gaussian waves into squares, which are the
only shape in the training data. Then, the model can
maintain the squares indefinitely. Such phenomenon of
“turning other shapes to squares” also exists in manually-
designed schemes that are overly-optimized for square
waves [50]. The over-fitting problem here can be eas-
ily fixed by adding Gaussian shapes into training data;
after that the neural network model can track both Gaus-
sian and square shapes perfectly. Given that the input
features for convolutional neural networks are localized
in space, covering representative input patterns only re-
quires limited amounts of training data.
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FIG. 5. Result on 2-D deformational flow. The flow re-
verses at t = 2.5 and returns to the initial condition at t = 5.
The neural network model is able to maintain a sharp gradi-
ent, while the baseline model incurs large numerical diffusion.
The spatial domain is [0, 1]× [0, 1] (not plotted on axis).

B. 2-D deformational flow

We next demonstrate that our neural network model
can also achieve near-perfect result for a 2-D deforma-
tional flow test, originally proposed by [17] and later ex-
tended to spherical coordinates as a standard test for
atmospheric advection schemes [53, 54]. The spatial do-
main is a square [0, 1] × [0, 1], and the velocity field is a
periodic swirling flow:

u(x, y, t) = sin2(πx) sin(2πy) cos(πt/T ) (8)

v(x, y, t) = sin2(πy) sin(2πx) cos(πt/T )

where the period T = 5 in our setup. The direction of
this flow reverses at t = (n− 1

2 )T for any positive integer
n. The exact solution at t = nT is identical to the initial
condition.

The initial concentration field is a blob centered at
[1/4, 1/4]:

C(x, y) =
1

2
[1 + cos(πr)] (9)

r(x, y) = min(1, 4
√

(x− 1/4)2 + (y − 1/4)2)

The model is not directly trained on this deformational
flow, but instead on an ensemble of periodic, divergence-
free, random velocity fields, implemented as superpo-
sitions of Sinusoidal waves as described by [55]. The
trained model is able to generalize across different flows
as long as the training data contain representative local
patterns.

Fig. 5 shows the advection under deformational flow
for the baseline and the neural network models, both on
64× 64 grid points. The time step is chosen so that the
maximum CFL number is 0.5. The neural network model
is able to maintain a sharp concentration gradient, while
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FIG. 6. Entropy for advection under 2-D deforma-
tional flow. Entropy is conserved under pure advection and
increases under diffusion. Traditional monotonic solvers are
only allowed to increase entropy, while our neural network
model is allowed to decrease entropy and and thus minimizes
diffusion error over a long time.

the baseline VanLeer scheme incurs large numerical dif-
fusion when the initial blob is stretched to a thin filament
[16].

To quantify the numerical diffusion, we use the entropy
S as a metric [56]:

S = −β
∑
i

Ci · log(Ci) (10)

where the concentration C is scaled such that the initial
conditions falls in the range [0, 1], and β is a normaliza-
tion factor so that the initial entropy is 1. Entropy is
conserved under pure advection and increases under dif-
fusion. To avoid an undefined answer if any Ci < 0, we
use first set negative values in the concentration to zero,
and evaluate C = 0 via the limit x log x = 0 as x→ 0.

Fig. 6 shows the entropy over time. Any monotonic
advection solver can only increase entropy; any entropy
decrease indicates nonphysical anti-diffusion, which often
occurs due to numerical instability. Strikingly, the neural
network model can decrease entropy, while still remain-
ing numerically stable. Although such behavior seems to
be nonphysical, it is indeed the best possible solution on
such a coarse grid. On a grid that perfectly resolves the
concentration field, the entropy remains constant under
the deformational flow. Yet on a coarse grid view, the
computed entropy increases when the initial blob turns
into filament due to conservative averaging, and then
decreases when the filament reverts back into a blob.
Our neural network model can disobey the commonly-
used constraint of non-decreasing entropy, and thus more
closely matches the exact solution, when compared to
traditional monotonic solvers.

C. 2-D turbulent flow

As the final test, we use the velocity fields from freely-
evolving, decaying 2-D turbulence simulations in pyqg
(https://github.com/pyqg/pyqg). The spatial domain

is [0, 2π]× [0, 2π] with periodic boundary condition. We
use a 256 × 256 grid for generating the reference solu-
tion using the baseline solver, and a 32 × 32 coarse grid
for model evaluation. As in previous cases, here the ad-
vection time step is chosen so that the maximum CFL
number is 0.5.

The training and test velocities are generated from dif-
ferent random seeds. We start with the McWilliams-84
random initial condition [57] and let the turbulence decay
with time. We discard the initial 4 seconds of the sim-
ulation so that the velocity field can be resolved on the
coarse grid. For the initial concentration field, we use an
ensemble of 10 blobs with width 0.5 at random locations.
Note that the spatial scale of the concentration field un-
der turbulent advection can become much smaller than
the scale of the velocity field [15, 58], making it challeng-
ing for traditional advection solvers to resolve the con-
centration gradient. We use 20 random initial conditions
for training data and 20 for test data. The actual sample
size for the training dataset is much larger, as each initial
condition is integrated into a time series of 1024 steps on
the fine grid or 128 steps on the coarse grid, which is fur-
ther broken into many 10-step time series for calculating
the multi-step loss function.

Fig. 7 shows one test sample under the 2-D turbulent
flow, for both the initial condition (the left column of
Fig. 7) and the integration results after 256 time steps
(the middle and right columns of Fig. 7). Note that
this is twice the maximum number of time-steps used
for model training. The initial blobs are stretched into
thin filaments under the turbulent flow. The baseline
solver (second-order VanLeer scheme) can resolve such
filaments on the fine-resolution grid, but incurs large nu-
merical diffusion on the coarse grid and loses the sharp
concentration gradient. However, when the fine-grid so-
lution is directly resampled to the coarse grid, most sharp
features can actually be preserved. Thus, the inability to
resolve sharp gradients is not due to the coarse grid it-
self, but instead due to the numerical error in the baseline
advection solver. Our neural network model, trained to
track the optimal reference solution on the coarse grid,
is able to preserve sharp features during the forward in-
tegration. The model performs well on all test samples,
with more shown in Appendix.

Fig. 8 shows a variety of error metrics for advection un-
der turbulent flow, averaged over all test samples. The
error is computed as the deviation from the reference so-
lution obtained by the baseline solver at 256× 256 grid.
We also compare the baseline solver at intermediate grid
resolutions (64× 64 and 128× 128). All solutions are re-
sampled to the 32 × 32 coarse grid for error calculation.
We use two measurements of accuracy, mean absolute
error (our training loss) and the coefficient of determi-
nation R2, which means the goodness of fit for linear
regression models for to reference solution. Based these
metrics, our neural network model achieves roughly the
same accuracy as the baseline method at 4× resolution
(128 × 128). We also evaluate the entropy for all so-

https://github.com/pyqg/pyqg
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FIG. 7. One test sample under 2-D turbulent flow. The initial blobs (first column) are stretched into thin filaments
under the turbulent flow (last column), illustrated by the vorticity ω = ∂xuy−∂yuv. The baseline solver (second-order VanLeer
scheme) can resolve such filaments on the fine-resolution grid, but incurs large numerical diffusion on the coarse grid. The
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FIG. 8. Error for 2-D turbulent advection on test
data. The neural network model achieves the same accuracy
as the second-order VanLeer baseline scheme at 4× resolution,
and entropy similar to the baseline at 8× resolution.

lutions based on Eq. (10), which suggests that from a
statistical perspective our neural net model almost per-
fectly matches the reference simulation on which it was
trained.

Figure 9 illustrates the limitations of stability and
generalization for our neural net model by integrating
for far longer than the 128 time steps used for train-
ing data. After 1000 time integration steps, our neural
net model shows obvious numerical artifacts (checker-
board patterns) and very poor accuracy for about 10%
of random seeds. Unlike the baseline models, our neural
net model does not guarantee properties such as mono-
tonicity, and when presented with examples outside of its
training data it occasionally extrapolates poorly. Figur-
ing out how to guarantee stability for neural net models,
either by training on more comprehensive datasets or by
imposing architecture constraints, is an important topic
for future work.

Finally, to get a glimpse into the inner workings of the
trained model, Fig. 10 examines predicted interpolation
coefficients for x component of the velocity field. We
see that similar to hand-crafted methods, the learned in-
terpolation depends on both velocity and concentration.
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FIG. 9. Limitations of long time stability under 2-
D turbulent flow. (a) Ten randomly chosen examples of
concentrations fields from the neural net model after 1024
time steps. One field (first row, fourth column) is entirely
covered by “checkerboard” artifacts, and two others (top left
and bottom right) show checkerboard artifacts in limited re-
gions. (b) Empirical distribution function for absolute error
across all models after 256 and 1024 time steps. The neu-
ral net performance suffers significantly, with about 10% of
solutions having an absolute error greater than 1.

While some of the symmetries have been clearly learned
from the data, we believe that incorporating such priors
could improve the results further.

IV. COMPUTATIONAL PERFORMANCE AND
ACCURACY WITH DIFFERENT

HYPERPARAMETERS

There is a tradeoff between accuracy and speed for our
neural network model, as using a larger convolutional
neural network increases both the accuracy and the run
time. We performed a grid search on model hyperpa-
rameters, for the number of layers ranging from [4, 6, 8,
10], the number of convolutional filers ranging from [16,
32, 64, 128], and the finite-difference stencil size ranging
from [3, 5], with each case replicated 3 times with dif-
ferent random seeds. The model accuracy is evaluated
on the 2-D turbulence case in Section III C, and the run
time is measured on a single Nvidia V100 GPU.
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FIG. 10. Interpolation coefficients for 2D advection.
Illustration of how prediction of the interpolation coefficients
changes for different combinations of concentration (top row)
and velocity field (left column) inputs. Concentration values
represented by color; velocity field has unit magnitude and
changes direction as shown in the plot. The target location
for the interpolation is marked by a red bar on the concen-
tration plots. The model predominantly interpolates along
the velocity field and concentration edges, rediscovering the
upwinding-like methods at the corner cases of the facet. While
the model learned some general symmetries, we expect even
better results for models that incorporate symmetries by con-
struction.

Fig. 11 shows the model accuracy and speed using dif-
ferent hyperparameters. The performance of the base-
line solver at intermediate grid resolutions (64 × 64 and
128× 128) is overlaid on for comparison. A large neural
network (8 ∼ 10 layers and 128 filters) achieves compa-
rable accuracy and speed as the baseline solver at 4×
resolution, while a small neural network (4 layers and 32
filters) performs similarly to the baseline solver at 2×
resolution. Fig. 12 shows that using 64 filters and 10 lay-
ers achieves a good balance between accuracy and speed,
in which case the model achieves similar accuracy as the
4× resolution baseline while being 80% faster.

The model speed largely depends on the code imple-
mentation and software configuration. Our current im-
plementation of the neural network model has a lot of
room for performance optimization. For example, our
code still requires unnecessary, large memory allocation,
and does not use the reduced-precision Tensor Cores in
the V100 GPU. With more performance tuning as well as
techniques like model compression and quantization [59],
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model. Each data point is a neural network model with dif-
ferent hyperparamters (detailed in Fig. 12). The performance
of the baseline solver at intermediate grid resolutions (64×64
and 128 × 128) is overlaid for comparison. The model accu-
racy is evaluated on the 2-D turbulence case after 256 time
steps (Section III C), and the run time is measured on a single
Nvidia V100 GPU. The x-axis shows the wall-clock time per
advection time step on the coarse grid, which requires 2 or 4
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trained with different random seeds.

the neural network model may significantly outperform
the baseline in terms of computational performance.

Incorporating neural networks into numerical meth-
ods also allows better utilization of current and emerg-
ing hardware. It is reported that “current (Earth sys-

tem) models running on next generation architectures
use less than 2% of peak performance” [60]. This is
because classic numerical methods (e.g. finite differ-
ence, finite volume) are limited by memory bandwidth
rather than processor speed [61] [62]. In contrast, neural
networks mostly consist of dense matrix multiplications
with a high compute-to-memory ratio, and therefore can
achieve near-peak performance on both CPUs and hard-
ware accelerators (see the Roofline charts [63] in [64]).
We measure the machine utilization using Perf on CPU
and NVProf on GPU, and find that the neural network
model achieves 80% of peak FLOPs (floating point op-
erations per second), while the baseline solver only uses
1 ∼ 2% of peak FLOPs. Clever use of neural network
emulations inside existing models may provide a way to
squeeze out “free compute cycles” that are currently not
utilized.

V. CONCLUSION

We developed a data-driven discretization for solving
passive scalar advection in one- or two- dimensions. In-
stead of using pre-defined coefficients to compute the spa-
tial derivatives in the partial differential equation (PDE),
we used a convolutional neural network to learn the opti-
mal finite difference coefficients, so that the solution best
matches the “true” result obtained by high-resolution ref-
erence simulations.

Our neural-network-based model is able to obtain near-
perfect results for idealized 1-D and 2-D test problems,
while a traditional high-order solver incurs significant dif-
fusion error. Under a 2-D turbulent flow, the neural net-
work model running on a coarse grid can achieve the
same accuracy as a traditional high-order solver running
on a 4× higher resolution grid. The model learns local
features of the flow, which enables it to generalize far
beyond the velocity fields where they are trained. The
learned discretizations act locally, and so the training
data needs to cover the range of local velocity gradients
that exist in the flow. This means that by training the
the model on periodic, divergence free random velocity
fields we were able to create a model that accurately re-
produced a standard test problem [17] very far from this
training data.

It is worth noting that the results in this paper ac-
celerate the Eqn. 1, which neglects diffusion. Dissipa-
tion is an intrinsic feature of multi dimensional flows.
Nonetheless, equations of this form are routinely stud-
ied by fields such as atmospheric chemistry, where the
diffusivity is much smaller than the numerical diffusion
even on very fine meshes. Indeed, the test problem we
used in Fig. 5 is a standard test problem originally
proposed by Leveque [17] in the atmospheric chemistry
community[53, 54], where practitioners routinely study
a pure advection equation on the sphere. In general if
a passive scalar has a diffusivity D and a velocity field
induces a stretching rate γ, there is a length scale

√
D/γ
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where diffusion balances stretching. The pure advec-
tion problem sends D → 0 so that this scale vanishes.
When this occurs, this dissipative scale is set by numer-
ical diffusion. The important point from the standpoint
of this manuscript is that nonetheless, the algorithms we
present are able to accurately reproduce resolved dynam-
ics on coarser grids. As long as the underlying numerical
method that the model is trained to reproduce is conver-
gent in the sense of classical numerical analysis, then the
resulting solutions will be accurate.

The neural network model exhibits several interesting
behaviors that may help explain its unusual accuracy.
Our learned models have been specifically optimized for
modeling specific class of flows used as training data,
which limits their range of validity. For example, in 1D
the model converts unseen shapes into known shapes,
and on 2D turbulent flows the model occasionally fails
entirely when asked to make predictions for much longer
times than were used in training. An important chal-
lenge for future work is identify techniques that can en-
sure learned discretizations are robust even to such out-
of-distribution inputs. Alternatively, it may be able to
identify training datasets that cover the full range of phe-
nomena of interest, e.g., in the context of weather or pol-
lution forecasts where the same equations are solved day
after day.

At the same accuracy, the speed of our neural network
model is comparable to the baseline high-order solver
(that runs at 4× higher resolution). There is a lot of
room for further optimizing the neural network perfor-
mance in our code implementation. Notably, the neural
network model can achieve a much higher machine uti-
lization than traditional finite-difference methods, and
will better utilize emerging hardware accelerators.

An open question is how to apply our method in
existing computational fluid dynamics (CFD) or cli-
mate/weather models, which tend to be implemented in
large codebases of C++ or Fortran. Although past work
has successfully replaced one component in a model with
neural networks [65], our approach works best in an end-
to-end differentiable program. Recent efforts in imple-
menting models in Julia [66] and JAX [37] should ease the
integration of scientific computing and machine learning.

Code and tutorials for this work are avail-
able at https://github.com/google-research/
data-driven-pdes.
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APPENDIX: SAMPLE RESULTS FOR 2-D
TURBULENT ADVECTION

Figure S1 shows more test samples for the 2-D turbu-
lent advection problem in Section III C. In all test sam-
ples, the neural network model is able to maintain a sharp
gradient that closely matches the reference true resolu-
tion, while the baseline model incurs significant numeri-
cal diffusion error.

https://github.com/google-research/data-driven-pdes
https://github.com/google-research/data-driven-pdes
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