
Adversarial Attack Mitigation Approaches Using
RRAM-Neuromorphic Architectures

Siddharth Barve
University of Cincinnati
Cincinnati, Ohio, USA

Sanket Shukla
George Mason University
FairFax, Virginia, USA

Sai Manoj Pudukotai Dinakarrao
George Mason University
FairFax, Virginia, USA

Rashmi Jha
University of Cincinnati
Cincinnati, Ohio, USA

ABSTRACT
The rising trend and advancements in machine learning has re-
sulted into its numerous applications in the field of computer vi-
sion, pattern recognition to providing security to hardware devices.
Eventhough the proven achievements showcased by advancement
in machine learning, one can exploit the vulnerabilities in those
techniques by feeding adversaries. Adversarial samples are gener-
ated by well crafting and adding perturbations to the normal input
samples. There exists majority of the software based adversarial
attacks and defenses. In this paper, we demonstrate the effects of
adversarial attacks on a reconfigurable RRAM-neuromorphic archi-
tecture with different learning algorithms and device characteristics.
We also propose an integrated solution for mitigating the effects of
the adversarial attack using the reconfigurable RRAM architecture.

CCS CONCEPTS
• Hardware → Hardware reliability; • Security and privacy
→Malware and itsmitigation; •Computer systems organiza-
tion → Embedded systems; Redundancy; Robotics; • Networks
→ Network reliability.

KEYWORDS
datasets, neural networks, gaze detection, text tagging

ACM Reference Format:
Siddharth Barve, Sanket Shukla, SaiManoj Pudukotai Dinakarrao, and Rashmi
Jha. 2021. Adversarial AttackMitigationApproaches Using RRAM-Neuromorphic
Architectures. In Proceedings of the Great Lakes Symposium on VLSI 2021
(GLSVLSI ’21), June 22–25, 2021, Virtual Event, USA. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/XXXXXX.XXXXXX

1 INTRODUCTION
Machine learning is an emerging technique and is extensively used
in various fields like computer-vision, pattern-recognition, natural
language processing, computer security etc. where the massive

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GLSVLSI ’21, June 22–25, 2021, Virtual Event, USA.
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8393-6/21/06. . . $15.00
https://doi.org/10.1145/XXXXXX.XXXXXX

volume of data is generated regularly. Among several machine
learning classifiers, the neural network class especially deep neu-
ral networks (DNNs) and convolutional neural networks (CNNs)
have tremendously transformed the capabilities and computational
power of the computer systems. Some of the machine learning
applications in the aforementioned fields includes self-driving cars
[26]. Advancements and progress in the field of computer-vision
has anticipated the development of self-driving cars without any
human intervention [7]. Similarly, machine learning has shown
promising results to secure computer systems against malware and
stealthy malware using image recognition [25] and pattern recogni-
tion [24] techniques. Despite the benefits and results showcased by
advancements in machine learning, the existing vulnerabilities tend
to exploit by impacting the performance of the machine learning
classifier.

Although the machine learning techniques tend to be robust to
the noise, the exposed vulnerabilties has shown that the output of
machine learning classifier can be easily manipulated by crafting
perturbations to the input data [6, 20, 27]. The data generated by
crafting perturbations is generally known as Adversarial samples.
These adversarial samples are constructed by perturbing the input
data in one or multiple cycles iteratively under certain constraints
in order to escalate the classification error rate.

(b) BIM (c) DF(a) Original digit (d) FGSM (e) MIM

Figure 1: (a) Original MNIST digit "7"; (b) BIM generated
adversarial image; (c) DF generated adversarial image; (d)
FGSM generated adversarial image and (e) MIM generated
adversarial image

Figure 1 illustrates a simple adversarial sample generated from
the MNIST digit dataset [13] for digit ‘7’. The Figure 1(a) is the
orgiginal image which is classified as 7 by the neural network
classifier. The images in Figure 1(b), 1(c), 1(d), 1(e) are generated
by the basic iterative method (BIM), Deepfool attack (DF), fast
gradient sign method (FGSM), and momentum iterative method
(MIM) respectively. It can observed from the Figure 1(a), 1(c) and
1(e) that the normal and adversarial samples look similar for human
observation. It needs to be noted that the noise in Figure 1(c) and

https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX

1(e) can be increased or reduced by tuning the parameters of the
attack. With the change in attack parameters, the classifier output
and it’s confidence will be modified. More details on generating the
adversarial attacks are presented in Section 2.

The adversarial attacks can be broadly classified into two cat-
egories: (a) poisoning attacks and (b) evasion attacks. Poisoning
attacks are attacks on the ML classifier during the training phase
[2, 17, 18, 22], and the evasive attacks are targeted for inference
stage of machine learning techniques. Poisoning attacks are appro-
priate for online environments because they focus on attacking the
classifiers during the training phase. Therefore, in this work we
focus on the evasive attacks, as many of the existing machine learn-
ing works are primarily offline learning based and are constrained
by resources and the computational time requirements.

Rise in the types of adversarial attacks led to development of ad-
versarial defense techniques. Some of the prominent software based
adversarial defenses includes adversarial training [6, 27], defensive
distillation [21] and MagNet [14]. Even though these adversarial
defense show some robustness against adversarial samples, they
also have major drawbacks and weaknesses. More details over the
adversarial defenses is presented in Section 2.

As the aforementioned defense is developed based on software,
researchers have started to shift the focus from software to hard-
ware. There have been a new research trending which comprises
of leveraging neuromorphic computing to provide a robust defense
against the adversaries. In [1] authors demonstrate the advantage
conferred by the non-idealities present in analog crossbars in terms
of adversarial robustness. Authors in the paper [11] propose a neu-
romorphic approach based on sparse coding. These neuromorphic
based techniques are designed specifically for a targeted attack
such as one-pixel attack and FGSM attack. The interoperability of
these defense against other pool of adversarial attacks still remains
a concern.

In this work, we first provide an overview of evasive attacks on
the ML classifiers. Further, we present different existing defense
techniques for the adversarial attacks. As FGSM is one of the fastest
evasive attacks, an in-depth discussion regarding the FGSM adver-
sarial attack is provided. In this work, we look at initially introduced
defense against adversarial samples, Adversarial training is one of
the defense techniques introduced for adversarial attacks. Further,
in this paper we explore the potency of adversarial attacks on a
reconfigurable RRAM-based Neuromorphic Architecture. We also
propose a method for mitigating adversarial attacks in deployed
IoT devices combining precise software training algorithms and
the reconfigurable RRAM-based Neuromorphic architecture.

2 BACKGROUND
Adversarial samples are generated by introducing crafted pertur-
bations into the normal input data generated. This makes the ad-
versarial data look similar to the normal input data, but still the
machine learning model mispredicts the class with a high proba-
bility. These adversarial samples can be considered as an optical
illusion for the ML classifiers. In this section, we present different
techniques widely used for generating the adversarial samples, and
review some of the popular defense techniques deployed.

2.1 Adversarial Attacks
Here we present an overview of some of the adversarial attacks
that are effective against machine learning classifiers.

2.1.1 Fast Gradient Sign Method (FGSM)
. The most common technique to perform adversarial attack is to
perturb the imagewith gradient of the loss with respect to the image
or input. Then gradually increase the magnitude of the perturbation
until the image is misclassified.

Fast Gradient Sign method (FGSM) [6] is one of the first known
adversarial attacks. The complexity to generate FGSM attack is
lower compared to other adversarial attacks, even against deep
learning models. This technique features low complexity and fast
implementation. Consider a ML classifier model with 𝜃 as the pa-
rameter, 𝑥 being the input to the model, and 𝑦 is the output for a
given input 𝑥 , and L(𝜃 , 𝑥 ,𝑦) be the cost function used to train the
neural network. Then the perturbation with FGSM is computed
as the sign of the model’s cost function gradient. The adversarial
perturbation generated with FGSM [6] is mathematically given as

𝑥𝑎𝑑𝑣 = 𝑥 + 𝜖𝑠𝑖𝑔𝑛(∇𝑥𝐿(𝜃, 𝑥,𝑦)) (1)
where 𝜖 is a scaling constant ranging between 0.0 to 1.0 is set

to be very small such that the variation in 𝑥 (𝛿𝑥) is undetectable.
One can observe that in FGSM the input 𝑥 is perturbed along each
dimension in the direction of gradient by a perturbation magnitude
of 𝜖 . While, a small 𝜖 leads to well-disguised adversarial samples, a
large 𝜖 , is likely to introduce large perturbations.

2.1.2 Basic Iterative Method (BIM)
. From previous discussion it can be observed that, FGSM adds
perturbation in each of the dimension, however, no optimization on
perturbations are performed. In [12] Kurakin proposed an iterative
version of FGSM, called as Basic iterative method (BIM). BIM is
an extension of FGSM technique, where instead of applying the
adversarial perturbation once with 𝜖 , the perturbation is applied
multiple times iteratively with small 𝜖 . This produces a recursive
noise on the input and optimized application of noise. It can be
mathematically represented as follows:

𝑥𝑎𝑑𝑣0 = 𝑥

𝑥𝑎𝑑𝑣𝑁+1 = 𝐶𝑙𝑖𝑝𝑥,𝜖 (𝑥𝑎𝑑𝑣𝑁 + 𝜖𝑠𝑖𝑔𝑛(∇𝑥𝐿(𝜃, 𝑥𝑎𝑑𝑣𝑁 , 𝑦)))
(2)

In the above mathematical expression,𝐶𝑙𝑖𝑝𝑥,𝜖 represents the
clipping of the adversarial input magnitudes such that they are
within the neighborhood of the original sample 𝑥 . This technique
allows more freedom for the attack compared to the FSGM method
because the perturbation can be controlled and the distance of the
adversarial sample from the classification boundary can be carefully
fine-tuned. The experimental results presented in [12] have shown
that BIM can cause higher misclassifications compared to the FGSM
attack on the Imagenet samples.

2.1.3 Momentum Iterative Method
. The momentum method is an accelerated gradient descent tech-
nique that accumulates the velocity vector in the direction of the
gradient of the loss function across multiple iterations. In this tech-
nique, the previous gradients are stored, which aids in navigating
through narrow valleys of the model, and alleviate problems of

getting stuck at local minima or maxima. This momentum method
also shows its effectiveness in stochastic gradient descent (SGD) to
stabilize the updates. This MIM principle is applied in [4] to gen-
erate adversarial samples. MIM has shown a better transferability
and shown to be effective compared to FGSM attack.

2.1.4 DeepFool Attack. DeepFool (DF) is an untargeted adversarial
attack optimized for 𝐿2 norm, introduced in [16]. DF is efficient and
produces adversarial samples which are more similar to the original
inputs as compared to the discussed adversarial samples generated
by FGSM and BIM attacks. The principle of the Deepfool attack is
to assume neural networks as completely linear with a hyper-plane
separating each class from another. Based on this assumption, an
optimal solution to this simplified problem is derived to construct
adversarial samples. As the neural networks are non-linear in re-
ality, the same process is repeated considering the non-linearity
into the model. This process is repeated multiple times for creating
the adversaries. This process is terminated when an adversarial
sample is found i.e., misclassification happens. Considering the
brevity and focus of the current work, we limit the details in this
draft. However, the interested readers can refer to the work in [16]
for exact formulation of DF.

2.2 Adversarial Defenses
So far, the different adversarial attack techniques are discussed.
Here, we discuss some of the prominent existing defenses against
the above discussed attacks.

2.2.1 Adversarial Training
. Adversarial training is one of the preliminary solutions for making
the ML classifiers robust against the adversarial examples, proposed
in [23]. The idea is to train the ML classifier with the adversarial
examples so that the ML classifier can have adversarial information
[6, 27] and adapt its model based on the learned adversarial data.
However, one of the major drawbacks of this technique is to antici-
pate the type of attack and train the classifier based on those attacks
and determining the criticality of the adversarial component.

2.2.2 Defensive Distillation
. Defensive distillation is another defense technique proposed in
[21]. The idea is to train the classifier using the distillation training
techniques and hides the gradient between softmax layer and the
presoftmax layer. This makes it complex to generate adversarial
examples directly on the network [3], as the knowledge is imparted
from a bigger network during the training process. However, [9]
shows that such a defense can be bypassed with one of the follow-
ing three strategies: (1) choosing a more proper loss function; (2)
calculation of gradients from pre-softmax layer rather than soft-
max layer; or (3) attack an easy-to-attack dummy network first
and then transfer to the distilled network, similar to the distillation
defense. The generation of adversaries can be simpler if the attacker
knows the parameters and architecture of the defense network i.e.,
whitebox attack.

2.2.3 MagNet. MagNet is proposed in [14], where a two-level strat-
egy with detector and reformer is proposed. In the detector phase(s),
the system learns to differentiate between normal and adversarial
examples by approximating the manifold of the normal examples.

This is performed with the aid of auto-encoders. Further, in the
reformer, the adversarial samples are moved close the manifold of
normal samples with small perturbations. Further using the diver-
sity metric, the MagNet can differentiate the normal and adversarial
samples. MagNet is evaluated against different adversarial attacks
presented previously and has shown to be robust in [14].

2.2.4 Detecting Adversaries. Another defense technique is to de-
tect adversarial examples with the aid of statistical features [8] or
separate classification networks [15]. In [15], for each adversarial
technique, a DNN classifier is built to classify whether the input is
a normal sample or an adversary. The detector was directly trained
on both normal and adversarial examples. The detector shows good
performance when the training and testing attack examples were
generated from the same process and the perturbation is large
enough. However, it does not generalize well across different attack
parameters and attack generation processes.

subcaption

3 RRAM-BASED NEUROMORPHIC
ARCHITECTURE

The Internet of Things (IoT) continues to expand and there is
increasing interest in computing at the edge of the network es-
pecially in machine learning applications. Many current imple-
mentations of machine learning, and more specifically Deep Neu-
ral Networks (DNNs), have large power and computational re-
source requirements. The high memory bandwidth and power
requirement prevent implementation in low-power real-time appli-
cations. Neuromorphic architectures have been explored for near-
memory and in-memory computing to for low-power high memory
bandwidth implementation of neural networks. Particularly, two-
terminal RRAM devices in crossbar arrays have been extensively
investigated to storeweightmatrix and perform in-memory comput-
ing. The RRAM-based weight matrix crossbar of neural networks
can be visualized in Figure 3. The input vector gets multiplied by
the weight matrix to produce the composition of the neurons at the
output. A winner-take-all or softmax activation function can then
be used to determine the winning neuron and thus the classification.
In spite of tremendous progress in this area two-terminal RRAM
devices suffers from issues such as high write current, convoluted
read and write strategies, and need for a selector diode to mitigate
sneak currents. Recently reported gated-RRAM devices offers to
solve these issues and provide opportunities for simultaneous read
and write which will be very beneficial for adjusting the weights
as needed.

Gated-RRAM have been investigated as memristive synaptic de-
vices for in-memory computing of the multiply-accumulate (MAC)
behavior of neurons. Additionally, integrating multi-state gated-
RRAM allows for a more dense memory crossbar since each gated-
RRAM device can store multiple bits. The weight matrix crossbar
of neural networks can be visualized in Figure 2. The input vector
gets multiplied by the weight matrix to produce the composition of
the neurons at the output. A winner-take-all or softmax activation
function can then be used to determine the winning neuron and
thus the classification. Similarly in a neuromorphic gated-RRAM
crossbar, the product of the input voltage and gated-RRAM con-
ductance produces a current at each synaptic branch of a neuron.

Figure 2: Feed-forward neural network crossbar performing
MAC operation on input vector and weight matrix

Figure 3: Gated-RRAM neuromorphic crossbar perform-
ing MAC operation on voltage-encoded input vector and
conductance-encoded weight matrix

The summation amplifier at the output then computes the multiply-
accumulate function of the input vector, applied as voltages and
the weight vector of gated-RRAM conductances of the neuron as
shown in Figure 3.

Figure 4: (a)Weightmap of keras-trainedweights onMNIST;
(b) Weight map of STDP-based training on MNIST

Figure 5: Gated-RRAM devicemodel with top electrode (TE),
bottom electrode (BE), gate, and channel oxide

Figure 6: Conductance curves of gated-RRAM tuned
through gated-synaptic model in [10]

The reconfigurability of gated-RRAM allows for synaptic weights
to be programmed into the neuromorphic crossbar. The gated-
RRAM device can be potentiated or depressed by applying a pos-
itive or negative bias at the gate respectively. We were able to
train weights using the keras package in Python 3.9 on the MNIST
dataset and then write them to the neuromorphic crossbar. How-
ever, the conductance curve of the gated-RRAM devices influences
how the off-chip trained weights are mapped to the RRAM con-
ductance space. This may effect the behavior of the neuromorphic-
implemented model depending on the non-linearity of the conduc-
tance curve of the RRAM devices. Additionally, on-chip training
directly on the RRAM crossbar has been explored and has demon-
strated competitive training accuracy [28]. In Bailey et al. [28], a
spike-timing dependent plasticity-based (STDP) algorithm is used
to tune the weights of neuromorphic architecture. This training
algorithm results in different weight map, thus a different trained
model, than the keras-trained weights as shown in Figure 4.

Gated-resistive random-access memory (gated-RRAM) has been
recently report and investigated as a gated-synaptic device for neu-
romorphic architectures [5]. Gated-RRAM is a memristive device
consisting of a top and bottom electrode connected to an oxide
channel as shown in Figure 5. A gate terminal is coupled to the
channel oxide through an insulating layer allowing for a bias to be
applied across the channel oxide while simultaneously applying
a bias across the top and bottom electrode. This behavior allows
for simultaneous reading and writing the gated-RRAM device and
allows minimal programming circuitry. The gated-RRAM device

Adversarial attack Parameter No Attack With Attack
FGSM 𝜖 = 0.3 98.25 % 8.54
BIM 𝜖 = 0.3 98.25 % 1.34
MIM 𝜖 = 0.3 98.25 % 1.28
DF MI = 50 98.25 % 1.13

Table 1: Accuracy of neural network before and after adver-
sarial attack

can be potentiated by applying a positive bias to the gate to cause
the oxygen defects to drift toward the top and bottom electrode
increasing the conductance of the channel. The device can then
be depressed by applying a negative bias to the gate to cause the
oxygen defects to diffuse back towards the channel oxide lowering
the conductance of the channel. The conductance states or curve a
device follows as it is potentiated and depressed is material depen-
dent. The conductance of these devices has been shown to follow
sigmoidal, linear, or inverse exponential trends as shown in Figure
6 [10]. These conductance curves can determine the distribution
of the conductance states of the gated-RRAM device and are con-
trolled by 𝑔𝑐 in the gated-synaptic device model [10]. Similar to
the two-terminal RRAM crossbar arrays, in a neuromorphic gated-
RRAM crossbar, the product of the input voltage and gated-RRAM
conductance produces a current at each synaptic branch of a neuron.
The summation amplifier at the output then computes the multi-
plyaccumulate function of the input vector, applied as voltages and
the weight vector of gated-RRAM conductances of the neuron as
shown in Figure 3.

4 RESULTS
In this section, we evaluate and present the performance on the
MNIST digit dataset [13]. The adversarial attacks are generated
using Cleverhans library [19].

Table 1 reports the performance of the employed neural network
on MNIST Digits dataset. Normal Classification Accuracy: In the
absence of adversarial samples, the classifier achieves an accuracy
of 98.25%, loss of 0.088, precision of 0.98, and recall of 0.98. We also
report the accuracy of neural network in the presence of adversarial
attacks in Table 1. The number of adversarial samples are 10,000 in
each case, and one can observe that in the presence of adversaries
the classification accuracy falls to as low as 1.13%. With the increase
in 𝜖 , the accuracy decreases in case of FGSM, MIM and BIM.

We present the effect of adversarial training by training neural
network with adversarial data generated using different adversarial
attacks and present the accuracy results in Table 2. The results
show that after performing adversarial training, the accuracy of the
neural network to classify data improves as reported in the Table 2.
However, the accuracy can further degrade if the attack parameters
(𝜖 in this case) are modified.

We then loaded the keras-trained weights to the RRAM neu-
romorphic architecture and tested it on the MNIST dataset and
the various adversarial attacks. Additionally, we also tested the
performance of the on-chip STDP-trained weights on the same
datasets. Table 3 report the accuracy of both the keras-trained and
STDP-trained weights with RRAM devices with completely linear
conductance curve and no write variability. In the absence of ad-
versarial samples, the off-chip keras-trained network outperforms
the on-chip STDP-trained weights but both training methods yield

Attack BIM MIM FGSM DF
Parameter 𝜖 = 0.3 𝜖 = 0.3 𝜖 = 0.3 MI=50

Tr
ai
ni
ng

FGSM 79.1 78.2 77.1
DF 53.40 54.25 41.04
MIM 78.2 73.7 77.1
BIM 78.1 69.3 78.2

Table 2: Accuracy (%) of MNIST Classification under Differ-
ent Adversarial Attacks on Different Adversarial Trained
Networks

Adversarial Attack
Training No Attack FGSM BIM DF MIM
Keras 90.44% 8.74% 8.95% 9.60% 8.91%
STDP 71.22% 13.09% 11.98% 11.69% 12.15%

Table 3: Accuracy (%) of MNIST classification of RRAM neu-
romorphic architecture on MNIST dataset and different ad-
versarial attacks. The conductance curve of the gated-RRAM
devices is linear and there is no write variance present.

Adversarial Attack
Training RRAM 𝑔𝑐 No Attack FGSM BIM DF MIM
Keras 0.0 85.53% 9.54% 9.63% 10.43% 9.59%
Keras 0.5 90.44% 8.74% 8.95% 9.60% 8.91%
Keras 1.0 65.21% 4.96% 5.12% 5.77% 4.97%
STDP 0.0 72.29% 9.67% 9.08% 7.62% 9.15%
STDP 0.5 71.22% 13.09% 11.98% 11.69% 12.15%
STDP 1.0 72.00% 11.36% 10.44% 9.64% 10.50%

Table 4: Accuracy (%) of MNIST classification of RRAM neu-
romorphic architecture, with varying conductance distribu-
tions, on MNIST dataset and different adversarial attacks.
Additionally, there is no write variance present.

Adversarial Attack
Training RRAM 𝜎2 No Attack FGSM BIM DF MIM
Keras 0 90.44% 8.74% 8.95% 9.60% 8.91%
Keras 10−6 90.42% 8.75% 8.96% 9.60% 8.92%
Keras 10−5 90.38% 8.84% 9.00% 9.64% 8.99%
Keras 10−4 90.41% 8.80% 9.09% 9.70% 9.01%
STDP 0 71.22% 13.09% 11.98% 11.69% 12.15%
STDP 10−6 71.2% 13.08% 11.98% 11.68% 12.16%
STDP 10−5 71.19% 13.10% 12.00% 11.70% 12.20%
STDP 10−4 70.74% 13.26% 12.09% 11.75% 12.27%

Table 5: Accuracy (%) of MNIST classification of RRAM neu-
romorphic architecture, with varying device variance, on
MNIST dataset and different adversarial attacks. Addition-
ally, the RRAM devices have a linear conductance distribu-
tion.

above 70% accuracy. However, with the introduction of adversar-
ial samples, the accuracy is suddenly reduced to below 10% for
keras-trained weights and below 20% for STDP-trained weights.
Additionally, we tested the two networks with varying conductance
curves, as shown in Table 4, and varying device write variability,
as shown in Table 5. In all cases, the accuracy of the RRAM archi-
tecture was reduced to below 20% once adversarial samples were
introduced.

Figure 7: Integrated architecture of neuromorphic architec-
ture with adversarial attack detection and mitigation

5 PROPOSED METHOD OF MITIGATION AND
FUTURE WORK

In this work, we demonstrated that the gated-RRAM neuromorphic
architecture serves as a versatile implentation of a hardware neural
network. The weights can be trained off-chip using software models
and programmed during run-time. Additionally, more biologically
inspired algorithms can be applied to train the synaptic devices
on-chip. The gated-RRAM architecture is able to tune is learned
model through different training algorithms and through different
device characteristic such as conductance distribution and noise
from device write variance. However, we observed that this versatile
model is still susceptible to an unknown adversarial attack.

We would like to investigate an integrated system as shown
in Figure 7. Our results in 2 demonstrate the ability of software
networks to train on adversarial attacks for future mitigation of
adversarial attacks. We have also demonstrated the ability to load
(write) pre-trained weights to the RRAMneuromorphic architecture
model. Therefore, a software network trained on adversarial models
can be implemented using the RRAM neurormorphic architectures
allowing it to be deployed in low-power real-time applications
while mitigating attacks from adversaries. Additionally, as shown
in 7, we would like to explore methods for the chip to detect un-
known adversarial attacks so that it may later train on them and
identify adversarial inputs or sources. Our goal is to develop a re-
configurable architecture that is robust to adversarial attacks and
with the capabilities to be integrated in low-power IoT devices or
applications.

6 ACKNOWLEDGEMENT
Authors Siddharth Barve’s and Rashmi Jha’s efforts pertaining to
gated-RRAM based neuromorphic architecture is supported by
National Science Foundation under award no: CCF - 1718428.

REFERENCES
[1] Abhiroop Bhattacharjee and Priyadarshini Panda. 2020. Rethinking non-idealities

in memristive crossbars for adversarial robustness in neural networks. arXiv
preprint arXiv:2008.11298 (2020).

[2] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning attacks against
support vector machines. arXiv preprint arXiv:1206.6389 (2012).

[3] Nicholas Carlini and David A. Wagner. 2017. Towards Evaluating the Robustness
of Neural Networks. 2017 IEEE Symposium on Security and Privacy (SP) (2017),

39–57.
[4] Y. Dong, Fangzhou Liao, Tianyu Pang, H. Su, J. Zhu, Xiaolin Hu, and J. Li. 2018.

Boosting Adversarial Attacks with Momentum. 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2018), 9185–9193.

[5] T. Bailey E. Herrmann, A. Rush and R. Jha. April 2018. Gate Controlled Three-
Terminal Metal Oxide Memristor. IEEE Electron Device Letters vol. 39, no. 4, pp.
500-503 (April 2018).

[6] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[7] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. 2019.
A survey of deep learning techniques for autonomous driving. Journal of Field
Robotics (11 2019).

[8] Kathrin Grosse, P. Manoharan, Nicolas Papernot, M. Backes, and P. Mc-
Daniel. 2017. On the (Statistical) Detection of Adversarial Examples. ArXiv
abs/1702.06280 (2017).

[9] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[10] A. Jones and R. Jha. [n.d.]. A Compact Gated-Synapse Model for Neuromorphic
Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 10.1109/TCAD.2020.3028534 ([n. d.]).

[11] Edward Kim, Jessica Yarnall, Priya Shah, and Garrett T Kenyon. 2019. A neu-
romorphic sparse coding defense to adversarial images. In Proceedings of the
International Conference on Neuromorphic Systems. 1–8.

[12] Alexey Kurakin, I. Goodfellow, and S. Bengio. 2017. Adversarial examples in the
physical world. ArXiv abs/1607.02533 (2017).

[13] Yann LeCun and Corinna Cortes. 2010. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/. (2010). http://yann.lecun.com/exdb/mnist/

[14] Dongyu Meng and Hao Chen. 2017. Magnet: a two-pronged defense against
adversarial examples. In Proceedings of the 2017 ACM SIGSAC conference on
computer and communications security. 135–147.

[15] J. H. Metzen, Tim Genewein, Volker Fischer, and B. Bischoff. 2017. On Detecting
Adversarial Perturbations. ArXiv abs/1702.04267 (2017).

[16] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and P. Frossard. 2016. Deep-
Fool: A Simple and Accurate Method to Fool Deep Neural Networks. 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2016), 2574–2582.

[17] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin
Wongrassamee, Emil C Lupu, and Fabio Roli. 2017. Towards poisoning of deep
learning algorithms with back-gradient optimization. In Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Security. 27–38.

[18] Blaine Nelson, Marco Barreno, F. J. Chi, A. Joseph, Benjamin I. P. Rubinstein,
Udam Saini, Charles Sutton, J. Tygar, and Kai Xia. 2008. Exploiting Machine
Learning to Subvert Your Spam Filter. In LEET.

[19] Nicolas Papernot, Fartash Faghri, Nicholas Carlini, I. Goodfellow, Reuben Fein-
man, Alexey Kurakin, Cihang Xie, Yash Sharma, T. Brown, Aurko Roy, Alexander
Matyasko, Vahid Behzadan, Karen Hambardzumyan, Zhishuai Zhang, Yi-Lin
Juang, Zhi Li, Ryan Sheatsley, Abhibhav Garg, Jonathan Uesato, W. Gierke, Y.
Dong, David Berthelot, P. Hendricks, Jonas Rauber, Rujun Long, and P. McDaniel.
2016. Technical Report on the CleverHans v2.1.0 Adversarial Examples Library.
arXiv: Learning (2016).

[20] Nicolas Papernot, PatrickMcDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. 2016. The limitations of deep learning in adversarial
settings. In 2016 IEEE European symposium on security and privacy (EuroS&P).
IEEE, 372–387.

[21] Nicolas Papernot, P. McDaniel, Xi Wu, S. Jha, and A. Swami. 2016. Distillation
as a Defense to Adversarial Perturbations Against Deep Neural Networks. 2016
IEEE Symposium on Security and Privacy (SP) (2016), 582–597.

[22] Benjamin IP Rubinstein, Blaine Nelson, Ling Huang, Anthony D Joseph, Shing-
hon Lau, Satish Rao, Nina Taft, and J Doug Tygar. 2009. Antidote: understanding
and defending against poisoning of anomaly detectors. In Proceedings of the 9th
ACM SIGCOMM Conference on Internet Measurement. 1–14.

[23] Uri Shaham, Yutaro Yamada, and Sahand Negahban. 2015. Understanding adver-
sarial training: Increasing local stability of neural nets through robust optimiza-
tion. arXiv preprint arXiv:1511.05432 (2015).

[24] S. Shukla and et al. 2019. Stealthy malware detection using rnn-based automated
localized feature extraction and classifier. In ICTAI. IEEE.

[25] S. Shukla and et al. 2019. Work-in-Progress: MicroArchitectural Events and Image
Processing-based Hybrid Approach for Robust Malware Detection. In CASES.

[26] Jack Stilgoe. 2017. Machine learning, social learning and the governance of
self-driving cars. Social Studies of Science (11 2017).

[27] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199 (2013).

[28] S. Barve J. Wells T. J. Bailey, A. J. Ford and R. Jha. [n.d.]. Development
of a Short-Term to Long-Term Supervised Spiking Neural Network Proces-
sor. IEEE Transactions on Very Large Scale Integration (VLSI) Systems doi:
10.1109/TVLSI.2020.3013810 ([n. d.]).

http://yann.lecun.com/exdb/mnist/

	Abstract
	1 Introduction
	2 Background
	2.1 Adversarial Attacks
	2.2 Adversarial Defenses

	3 RRAM-based Neuromorphic Architecture
	4 Results
	5 Proposed Method of Mitigation and Future Work
	6 Acknowledgement
	References

