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Consider the stationary Boltzmann equation in 2-dimensional convex domains with diffusive boundary
condition. We establish the hydrodynamic limits while the boundary layers are present, and derive the
steady Navier—Stokes—Fourier system with nonslip boundary conditions. Our contribution focuses on
novel weighted W' estimates for the e-Milne problem with geometric correction. Also, we develop
stronger remainder estimates based on an L*>"-L* framework.
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1. Introduction

1A. Problem presentation. Consider the stationary Boltzmann equation in a 2-dimensional smooth
convex domain Q 3 X = (x1, xo) with velocity v = (v, v2) € R%. The density function F€ (¥, v) in the
phase space satisfies

—>‘ € __ € € 1 2
{ev Vi€ = O[5, §°1 in 2 x R%, (1-1)

€ (%o, V) = PE[F€](Xg, v) for X € 0 and v - 11(Xp) < O,
where 7(X() is the unit outward normal vector at X, the Knudsen number € satisfies 0 < € < 1, and the
diffusive boundary satisfies

P[§“1(Xo, V) = pj,(Xo, V) | (X0, Wi - ri(Xo) | dui. (1-2)

-7 (39)>0

The boundary Maxwellian

i (%o, B) = (1-3)

5 (Xo) exp(— v — ﬁb()_fo)|2>
05 (Xo)v/27 20, (Xo)
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is a perturbation of the standard Maxwellian

(V) : ( |6|2> (1-4)
up(v) = exp|—— ). -
b 2 P 2
It is normalized to satisfy
[ kGGG = [ @Gl =1 (1-5)
U-71(X0)>0 U-71(X0)>0

For simplicity, we just write u = j15,. We further assume that (o, uj, 6;) are perturbations of the standard
density, velocity and temperature (1, 0, 1), and can be expanded into power series with respect to €,

oo o o
Py o) =1+ € ppiFo), ii5(Ro) =0+ eliipp(Ro), O5Go) =1+ O i(Fo). (1-6)
k=1 k=1 k=1

Consequently, we may also expand the boundary Maxwellian 1} into a power series with respect to e,

o0
.o . 1 Lo
w5 (Ko, U) = (@) + 12 (¥) (Z e* e (%o, v)). (1-7)
k=1
In particular, we have
.. 1 e L _ 9P =2
w1 (Xo, v) = 2 )| pp,1(X0) + tp,1(x0) - U+ 6p,1(X0) 5 . (1-8)

It is easy to check that
({5)1969\17\2 MZ—_M

— | < Colo, V)e (1-9)
,uj

forany 0 <o < }1 and integer ¥ > 3. We assume that the perturbations in pj, u§, and 6; are sufficiently
small such that Cy > 0 is also very small. Based on the expansion (1-7) and (1-5), we naturally have

[4 ) i (Xo, B)M%(ﬁ)lﬁ-ﬁ(ioﬂ dv=0 fork>1. (1-10)
3-11(%0)>0
Following the notation in [Glassey 1996], here we have the nonlinear collision term
O[F,G] = /RZ/SI q(@, |ii—U))(F ()G () — F)G (v)) do dii, (1-11)
with
U, =U4+o(0—1) ), U,=0—a(U—1) o), (1-12)

and the hard-sphere collision kernel
q (@, [u—70]) = gol@ - (v — )] (1-13)

for a positive constant gyg. We intend to study the behavior of §€ as € — 0.

Roughly speaking, the Boltzmann equation (1-1) and its evolutionary counterpart describe a rarefied
gas confined in a bounded domain €2, in contact with a surrounding gas reservoir modeled by (1-3) with
density pj, velocity u§ and temperature 6. It is well known that if the surrounding Maxwellian p§ is
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uniform on 9€2, then the system has an equilibrium solution wj,. Also, such an equilibrium is reached
exponentially fast, provided the initial state is sufficiently close to the above Maxwellian.

However, when the surrounding Maxwellian is not uniform, the procedure is much more complicated.
There might be heat transfer, velocity exchange, or even the in-flow or out-flow of particles within €2
(e.g., a hotter place on 92 might transfer heat to a colder place on 9€2, so there is steady heat flow in 2).
The analysis itself may involve convection, oscillation, etc. Here there are mainly two issues to consider:

o The well-posedness of stationary solutions: This problem is not obvious now and we must analyze the
effect of the nonuniform boundary Maxwellian on the interior solution.

o The asymptotic behavior of the solution when the Knudsen number € shrinks to zero: € — 0 roughly
indicates that the gas undergoes more and more collisions (possibly denser and denser), so the overall
behavior of the system may be modeled by classical fluid equations. Using expansion methods, it can be
formally shown that the leading-order term is a local Maxwellian and the next-order evolution follows
macroscopic equations, like the Navier—Stokes equations. Our main goal is to justify such an asymptotic
convergence.

1B. Linearization. The solution §€ can be expressed as a perturbation of the standard Maxwellian,
T, B) = Mo (D) + u? (D) £, D), (1-14)

where My is a constant. Then due to the conservation of mass, without loss of generality, we require that
f€ satisfies the normalization condition

// FE@E, By (¥) dv dx =0, (1-15)
Q JR2

Following the notation in [Glassey 1996], f€ satisfies the equation

{ea-vxfe +LIf1=TIfe, £, (116
f€(Xo, V) = PE[f€](Xp, V) for Xg€ dQ and v-n(Xp) <O,
where
LUf= =202 0L, w2 f€1,  TLFS, fl=p 2 0lus £€, u? £€] (1-17)
and
PELF1 (o, D)
= pfGo. DpTI@) | ()G, Wi Fo) | dii + w2 (D) (1h Fo. D) — (D). (1-18)

1-1(Xp)>0

Hence, in order to study F, it suffices to consider f€.

1C. Previous results.

1C1. Asymptotic analysis. Hydrodynamic limits are central to connecting the kinetic theory and fluid
mechanics. Since early 20th century, these types of problems have been extensively studied in many
different settings: stationary or evolutionary, linear or nonlinear, strong solution or weak solution, etc.
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The early result dates back to 1912 by Hilbert himself, using the so-called Hilbert’s expansion, i.e.,
an expansion of the distribution function §€ as a power series of the Knudsen number €. Since then, a
lot of works on the Boltzmann equation in R” or T” have been presented, including [Golse and Saint-
Raymond 2004; de Masi et al. 1989; Bardos et al. 1991; 1993; 1998; 2000], for either smooth solutions
or renormalized solutions.

The general theory of initial-boundary-value problems was first developed in [Grad 1963], and then
extended in [Darrozes 1969; Sone 1969; 1971; 1991; Sone and Aoki 1987], for both the evolutionary
and stationary equations. The classical books [Sone 2002; 2007] provide a comprehensive summary of
previous results and give a complete analysis of such approaches.

For the stationary Boltzmann equation where the state of gas is close to a uniform state at rest, the
expansion of the perturbation f€ consists of two parts: the interior solution F, which is based on a
hierarchy of linearized Boltzmann equations and satisfies a steady Navier—Stokes—Fourier system, and the
boundary layer .%, which is based on a half-space kinetic equation and decays rapidly when it is away
from the boundary.

The justification of hydrodynamic limits usually involves two steps:

(1) Expanding F =Y ;o € F; and # = > 22| €K7 as power series of € and proving the coefficients
Fy and .%; are well-defined. This is doable by inserting the above expansion ansatz into the Boltzmann
equation to compare the order of € and get a hierarchy of equations for F; and .%;. Traditionally, the
estimates of interior solutions F are relatively straightforward. On the other hand, boundary layers %
satisfy 1-dimensional half-space problems which lose some key structures of the original equations. The
well-posedness of boundary layer equations is sometimes extremely difficult, and it is possible that they
are actually ill-posed (e.g., certain types of Prandtl layers).

(2) Proving that R = f€ — e F| — € %] = o(€) as € — 0. Ideally, this should be done just by expanding
to the leading-order level F; and .#;. However, in singular perturbation problems, the estimates of
the remainder R usually involve negative powers of €, which require expansion to higher-order terms
Fy and #y for N > 2 such that we have a sufficient power of €. In other words, we define R =
fe- Z,Icvzl e“F — Z,vazl ek Z for N > 2 instead of R = f€ — € F; — €.7] to get better estimate of R.

The above formulation is for the convergence in the L™ sense. If instead we consider L? convergence for
1 < p < oo, then the boundary layer .%; is of order €!/? due to rescaling, which is negligible compared
with F;. In [Esposito et al. 2018] the authors justify the L? convergence under the same formulation
as ours without taking boundary layer expansion into consideration. On the other hand, the effect of
boundary layers constitutes the major upshot of our paper.

1C2. Classical approach. The classical construction of boundary layers requires the analysis of the flat
Milne problem. In the following, when we refer to the normal (tangential) variable (direction) without
other specification, it usually means the variable (direction) in space. In detail, let  denote the rescaled
normal variable with respect to the boundary, i.e., n = 91/€ for O the distance to the boundary 92, let
6 denote the tangential variable, and let b = (v,, v,) denote the normal and tangential velocities. The



BOUNDARY LAYER OF THE BOLTZMANN EQUATION IN 2-DIMENSIONAL CONVEX DOMAINS 1367

boundary layer .# satisfies
o>

0.7
u,,a—nl+£[91]:0, (1-19)

where L is the linearized Boltzmann operator in (1-17).

Although a rigorous proof of such expansions has not been presented, it is widely believed that the
motivation of this approach is natural and the difficulties are purely technical. Besides the fact that this
idea is an intuitive application of Hilbert’s expansion, it is strongly supported by [Bardos et al. 1986],
which justifies the well-posedness and decay of the above flat Milne problem.

This idea is easily adapted to other kinetic models. As a linear prototype of the Boltzmann equation,
the case of the neutron transport equation was carefully investigated. In particular, the hydrodynamic limit
was proved in the remarkable paper [Bensoussan et al. 1979] by Bensoussan, Lions and Papanicolaou.
This is widely regarded as the foundation of rigorous analysis of boundary layers in kinetic equations.

Unfortunately, in [Wu and Guo 2015], we demonstrated that both the proof and results of this formulation
in [Bensoussan et al. 1979] are invalid due to a lack of regularity in estimating 9.#7/06. Similarly,
counterexamples were proposed in [Wu 2016] that this idea is also invalid in the Boltzmann equation. The
solution to (1-19) cannot correctly characterize the boundary layer, even when €2 is a unit disk. Basically,
this pulls the whole study back to the starting point and any later results based on this type of boundary
layer should be reexamined.

In detail, in order to show the hydrodynamic limits, we need 9.%,/906 € L* since it is part of the
remainder (3-43). However, though .%| € L as is shown in [Bardos et al. 1986], we do not necessarily
have 8.7 /dn € L*. The bad behavior occurs near the grazing set v, = 0 and X € 3. If L[.#] # 0 as
v, — 0, then solving from (1-19), we have 9.%;/dn — oo. Furthermore, the singularity 0.7 /9n ¢ L™
will be transferred to 9.%/06 ¢ L°°. This singularity was rigorously shown in [Wu and Guo 2015]
through a careful construction of the boundary data; i.e., the chain of estimates

3T 0.7
R=o0(e) = FHel® a—eleLoo — 8—]eL°° (1-20)
n

is broken since the rightmost estimate is wrong.

1C3. Geometric correction. While the classical method breaks down, a new approach with geometric
correction to the boundary layer construction has been developed to ensure regularity in the cases of the
disk and annulus in [Wu and Guo 2015; Wu et al. 2016; Wu 2016; 2017]. The new boundary layer .#;
satisfies the e-Milne problem with geometric correction,

0.7 0.7 0.7
vyt = (227 0, S ) L1 =0, (1-21)
an R. —e€n vy, Vg

where R, is the curvature on the boundary curve. We proved that the solution recovers the well-posedness
and exponential decay as in the flat Milne problem, and the regularity in 6 is indeed improved, i.e.,
0.71/060 € L.

However, this new method fails to treat more general domains. Roughly speaking, we have two
contradictory goals to achieve:
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(1) To prove hydrodynamic limits, the remainder estimates for R require higher-order regularity estimates
of the boundary layer.

(2) The geometric correction

€ 2 0.F 1 0.7 1
Vg — VpUp ——
R.—en vy vy
in the boundary layer equation is related to the curvature of the boundary curve, which prevents higher-
order regularity estimates.

In other words, the above improvement of regularity is still not enough to close the proof. To be more
specific, the discussion of domains is as follows:

o In the domain of the disk or annulus, when R, is constant, as in [Wu 2016], 9.%, /96 is bounded, since
the tangential derivative d/06 commutes with the equation, and thus we do not need the estimate of the
singular term 0.%,/07.

 For general 2-dimensional smooth convex domains, when R, is a function of 8, d/96 does not commute
with the equation since it might hit R,. Then 9.%; /96 relates to the normal and even velocity derivatives,
which have been shown to be possibly unbounded in [Wu 2016]. Therefore, we get stuck again at the
regularity estimates.

1D. Novel contribution of this paper. In this paper, we will push the above argument from both sides
(remainder estimates and regularity estimates) and prove the hydrodynamic limits for the nonlinear
Boltzmann equation in 2-dimensional smooth convex domains.

1D1. Remainder estimates. We first prove an almost optimal remainder estimate and reduce the regularity
requirement of the expansion. Denote the remainder by R(X, v) = f€ — F — % for the interior solution
F (X, v) and the boundary layer

F(1,6,9) ~ eF1(1,60,0) + 521, 6, V). (1-22)
Then the remainder equation is actually a nonhomogeneous linearized Boltzmann equation

€v-V,R+L[R]=S. (1-23)
The estimate in [Wu 2016] is

1
IR~ S 3 | S| 2 + higher-order terms. (1-24)

Here the power 3 depends on the physical dimension of €2 and a standard energy argument. We intend to
show that || R||z~ = o(€) as € — 0. Since S in (3-43) contains the term related to 3.%,/96 with order €2,
the coefficient € =3 is also a singularity.

Consider the general troublemaker (1/€9) (S| .r@xr2) for some p, g € [1, 00]. It is easy to see that
the smaller g is, the better estimate we get. On the other hand, a less obvious but key observation here is



BOUNDARY LAYER OF THE BOLTZMANN EQUATION IN 2-DIMENSIONAL CONVEX DOMAINS 1369

that due to the rescaled normal variable n = 91/e,

||S<n>||u5(/0 Sp(n)dm>”~ei</0 SP(n)dn)". (1-25)

Therefore, the smaller p is, the better the estimate || S| .» will be. We might improve the estimates in
both directions.

Compared with [Wu 2016] which uses the so-called L>-L> framework, we employ a more general
method, the L?"-L°° framework for any m € N. This approach consists of two steps:

e Define

1 R Dl
P[Rl=puz2la+v-b+ > c

to be the orthogonal projection of R onto the null space of £, and let (1 —P)[R] = R —P[R]. Multiplying
both sides of (1-23) by R, the direct energy estimates yield

10— PRI 5/

Qx

2RS + good terms. (1-26)
R

However, we do not have control of P[R]. Then in order to bound P[R], we use nonstandard energy
estimates in (1-23). We choose particular test functions like

¥ =u2 @ - )@ - Ve (X)), (1-27)

where —A,¢p = Y2m-1 (¥) satisfies Dirichlet’s boundary condition ¢ = 0 for Y = a, I;, c. Here, in the
weak formulation of (1-23), we can write

—/ R(ﬁ'vxlﬁ):—/ P[R](U-wa)—/ (I=P)RI@W - Vxy) =1+ 1I. (1-28)
QxR? QxR? QxR?

The first term [ is roughly ||T||%’§lm and the second term /I can be bounded as other terms in the weak

formulation using Holder’s inequality. In total, this implies
PRI L2n <1 (0= P)[R]] z2n + good terms. (1-29)

Note that we cannot directly insert (1-26) into (1-29) since (I — P)[R] are estimated in different norms.
Then we hire an interpolation argument for the L>" norm between the L? and L norms to bound

IA=P) Rl 20 S IHA=P)RIl 2 +o(Den [A= PRI~ < A= PRIl 2 +o(Den [ R| g, (1-30)

1/m

where o(1) denotes a sufficiently small constant and € /" is for the next step. In total, at this step, inserting

(1-30) into (1-29) and further (1-26), using Cauchy’s inequality, we obtain
1
PRI 2 < 0(1)6'”i | R oo + a IPLST| z2m/@n-1) + good terms. (1-31)

o Next, we bootstrap the L>" estimates to L> estimates. This is done through Duhamel’s principle.
Actually, we rewrite the solution along the characteristics, and rewrite the integrand in the nonlocal
operator L[ R] again tracking the characteristics. Then since the points on the characteristics never leave
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the domain €2, a highly nontrivial substitution from velocity variable to spacial variable and Holder’s
inequality lead to

1

1 2m 1

IRl S ( / —2|P[R1|2’") < 1 IPLR1 20 (1-32)
Q€ €m

where 1/€? is the Jacobian of this substitution. Here, actually the nonlocal operator £ saves us since it

contains a velocity integral. Then inserting (1-31) into (1-32), we obtain the desired estimates. In total,
we obtain

IR~ <

o | S| z2m/@m-1) + higher-order terms. (1-33)
€ "m

Definitely, this is much better than the estimate (1-24). In particular, the larger m is, the better estimate
we will get.

1D2. Well-posedness and regularity of boundary layers. Recall the boundary layer expansion
F(0,0,0) ~ eF1(n,0,0) +F2(n, 0, V). (1-34)

The diffusive boundary condition leads to an important simplification that .#; = 0, since w1 is in the null
space of £ and the interior solution F) can satisfy the boundary condition alone even without boundary
layer correction. Thus the next-order boundary layer .%#, must formally satisfy

0.%> € ( 505 0.9,
v

— — L[ 9] =0. 1-35
¢8v,, vnv¢8v¢)+ [#2] (1-35)

o an B R, —e€n
The remainder estimate requires the estimate of 0.%, /06, whose boundedness had remained open.
The key observation here is that the estimate of 0.7, /00 relies on v,0.%,/9n, not 3.%,/9dn itself. This
extra v, saves us and avoids singularity. Intuitively, just as in the failure of the classical approach, the
possible singularity occurs near the grazing set n = 0 and v,, = 0. Then directly solving (1-35) implies

0.%> € ( 2 0% 0.%)
v

= — e —ﬁ ﬁ . 1'36
Uy o~ R e\ 5o, Uy Vg 8v¢> [72] (1-36)

Here, it is possible that the right-hand side is nonzero when approaching the grazing set, but with the
help of v,, the left-hand side is always finite even if 0.%,/dn ¢ L.

Similar to the analysis in [Wu 2016], we can show that .%, decays exponentially fast in L*. However,
the regularity of .%, is much more delicate.

We cannot naively take 1 derivatives on both sides of (1-35) since the derivative might hit € /(R, —€n)
and we do not have bounds on the velocity derivatives. Instead, we design a delicate weight function

1
Re(®) —en\' 5\’
2, .2 2
(M, 0, vy, vy) = <(v,] +vy) — < R0 ) Vg | > (1-37)
which satisfies
0 0 0
vt - (2% 0,25 ) o (1-38)
an  R.—en v, vy
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Hence, we have the weighted equation for & = ¢(0.%,/9n)

6% ¢ L3l AT EA (139)
vy—— — v — — vy vy — — | =0. -
"o Re—en\ Pav, " "ov, I

At this stage, the nonlocal operator ¢ £[.<7 /] is a huge trouble since ¢ may be zero and create a singularity.
We cannot directly apply the well-posedness theorem for e-Milne problem. Instead, we use the mild
formulation and wrap the velocity integral of £ with another spacial integral along the characteristics.
An intuitive explanation is that the integral of a function is usually less singular than itself. After a very
delicate analysis, we obtain

ekn c @

Kn —
c M o0 =

<cC. (1-40)

LOO

Note that the weight function also has the good property that ¢ > |v,| (this is why we designed it this
way), so using (1-35), we actually show

kn, 372

<C
'7877

— ’

LOO

€ €

<C. (1-41)

LOO

0.7 0.F:
Kn__€ vi 2 —vnv¢—2
R, —e€n vy vy

Our ultimate goal is to bound 9.%,/06. Taking the 6-derivative of both sides of (1-35), noting that the
curvature R, might depend on 6, the 0.%,/00 equation is a nonhomogeneous e-Milne problem with
geometric correction, and the nonhomogeneous term is

9 R € 0.7 0.7
_ 0% V32 v ), (1-42)
R.—€n/) R,—¢€n vy vy

which can be shown to exponentially decay using (1-41). Then again by the well-posedness theorem of
€-Milne problem, we know 9.%,/06 decays exponentially fast.

1E. Main theorem.

Theorem 1.1. Let Q be C> and convex. For given My > 0 and wy, > 0 satisfying (1-7) and (1-9) with
0 < € K 1, there exists a unique positive solution F¢ = Mo + u'/? f€ to the stationary Boltzmann
equation (1-1) and (1-2), and f€ fulfills that for an integer ¥ > 3 and 0 < ¢ < 41'1’

15)7 @ "F (€ — e Pl < C(8)e* ™ (1-43)
forany 0 < § < 1, where

1 I O )
satisfies the steady Navier—Stokes—Fourier system

vx(p+9)=0» Vx‘l/-i:()»
ﬁ-Vle—)/]Axﬁ—}—VxP:O, ﬁ-VXQ—yzAx9=0, (1-45)
p(Xo) = pp,1(X0) + M(X0), u(Xo) =1iip,1(X0), 6(Xo) = 0p,1(Xo).
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Here y; > 0 and y, > 0 are constants, the pressure P can be solved from the system uniquely up to a
constant, M (Xo) is such that the Boussinesq relation

p + 0 = constant (1-46)

and the normalization condition

// F(F, D)p? (@) dvdi =0 (1-47)
Q JR?
hold.

Remark 1.2. Here the smoothness of 2 is to guarantee that the substitution (3-30) is valid in the
construction of boundary layers. The convexity is to avoid the singularity of the solution in the interior
of Q; see [Kim 2011].

Remark 1.3. Note that p, | and 6, ; do not necessarily satisfy the Boussinesq relation, which determines
M up to a constant, so that is why we need to introduce M. Then the normalization condition of F
eventually fixes the unique M.

Remark 1.4. The pressure P actually does not play a significant role at the leading order. It provides the
constant in the quasi-Boussinesq relation in the next order.

Remark 1.5. The case pp 1(Xo) =0, uip,1(Xo) = 0 and 6y 1 (X9) # O is called the nonisothermal model,
which represents a system that only has heat transfer through the boundary but has no work between
the environment and the system. Based on the above theorem, the hydrodynamic limit is a steady
Navier—Stokes—Fourier system with nonslip boundary condition. This provides a rigorous derivation of
this important fluid model.

1F. Notation and structure of this paper. Throughout this paper, C > 0 denotes a constant that only
depends on the parameter €2, but does not depend on the data. It is referred to as universal and can change
from one inequality to another. When we write C(z), it means a certain positive constant depending on
the quantity z. We write a < b to denote a < Cb.

This paper is organized as follows: In Section 2, we list some preliminary results on the linearized
Boltzmann operator and the weak formulation. In Section 3, we present the asymptotic analysis of (1-16).
In Section 4, we establish the L> well-posedness of the linearized Boltzmann equation. In Section 5,
we prove the well-posedness, decay and the weighted regularity of the e-Milne problem with geometric
correction. Finally, in Section 6, we prove the main theorem.

2. Preparation and discussions

2A. Preliminaries on linearized Boltzmann operator. Chapter 3 of [Glassey 1996] describes the lin-
earized Boltzmann operator £ as

LIf1=—2u"2 0, u? f1=v(@) f — KLf], @-1)

where

V(3) = / / 4@, [ — 3 (@) dé di, (2-2)
R2 JS!
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KLAI®) = KaLF1G) — KiLF15) = /R kG )/ di 2-3)
KiLf1() = 1 &) /R 2 /g 4@, i T ) f @ da di, (2-4)
KoL) = /I; 2 /S 4, [ B @ () F @) + ) £ () di di 2-5)

for some kernel k(1i, v).
Let (-, -) be the standard L? inner product in €2 x R?. We define the L” and L® norms in Q x R? as
usual:

P
it = ([ [ s ora dx) CMfle = swp G D)L 2-6)
(¥,0)eQxR?
Define the weighted L? norm as
1
I fll2 = llv2 fll 2. (27
Define the weighted L* norm as
- 712 - -
Iflliee, = sup  ((©)7e™| £, D). (2-8)
T F0)eaxRr?
Denote the Japanese bracket by
- N
(0) = (1+19°)2. (2-9)
Define the kernel operator P as
1 P Ul et
PLA = @) ap @) +7-5, () + —5—cr@). (2-10)
where P is the orthogonal projection onto the null space of £, and the nonkernel operator | — P as
C=O[fl=f-PLf], (2-11)
which satisfies
1
(—P)[f1] v | dv=0. (2-12)

RZ |->

Lemma 2.1. For the operator L =vI — K, we have the estimates

i <c (2-13)
ANl || e —
vo(1+13]) < v(@) < i (1 +3]), (2-14)
(f LLFN) = (A= P)Lf1, LI =P 1) = Clv> 0= P £1]13, (2-15)
ILIO =PI, = Cllvz (0 = P)LF112,, (2-16)
IPLANl2 < IWPLFNI 2 < CIPLATI 2 (2-17)

for vg, vi and C positive constants.

Proof. See [Glassey 1996, Chapter 3]. ]
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Lemma 2.2. There exists 0 < Cy < 1 such that for 0 <5 < Cy

RN 212131212
—8]ii—v|?—s IRL=TE
|u—1|

|k (1, V)| < Ce

Proof. See [Glassey 1996, Chapter 3] and [Guo 2010, Lemma 3].

(2-18)

0

Lemma 2.3. Let wg (V) = wg g (V) = (1 +£2|5]2)P/2el for £, B> 0and 0 < o < }1. Then there exists

0<Ci(o) <1 and Cy(0) > 0 such that for 0 <6 < C1(0)

f -k i 7) ws(f) di < Cz(QB’
R2 we (W) 14 |v|

I v)
/ e‘Slu_vlzvk(u, V) wg(g) du < C2(o0),
- [ii] we ()

/ -y i, 1) Y i < (o),
R2 we (1)

For m € N, we have
KL/ M pzn < CNSf Nl p2m-

Proof. See [Guo 2010, Lemma 3].

Lemma 2.4. We have

IK[flllzz, =C

%o — ’

o0
L%

IVuK LAy, < Cllf s,

E

Proof. Consider the fact that for ¢ = 8, we have

C1(3)?e?” < uy < G ()7 0P

(2-19)

(2-20)

(2-21)

(2-22)

O

(2-23)

(2-24)

(2-25)

for some constant C, C; > 0. Then this is a natural corollary of Lemma 2.3. See [Guo 2010; Guo et al.

2017].

Lemma 2.5. The nonlinear term I satisfies, for § > 0and 0 <o < le’

H U'Lf f]
Vv

2
=CIfI,

o0
Ly%

/ . CLf glh = Cllall 2 (L f N2 ligliey, + g2l llzs,)
QxR

/ CLf glh < Clikll2 (g2l fllzg, + 1Az ligll2)-
QxR2 ’

Proof. See [Guo 2002, Lemma 2.3] and [Glassey 1996, Chapter 3].

0

(2-26)

(2-27)

(2-28)
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Based on the flow direction, we can divide the boundary y = {(Xo, V) : Xo € 32, v € R?} into the
in-flow boundary y_, the out-flow boundary y, and the grazing set 3, where

y_ ={(Xo, V) : Xop € 0, v -71(xXp) < 0}, (2-29)
v+ = {(Xo, V) : Xo € 32, U -71i(Xo) > 0}, (2-30)
yoz{(fo,ij)IfoeaQ, ﬁﬁ(zo)IO} (2—31)

It is easy to see y = y4+ U y_ U . Also, the boundary condition is only given on y_.
Define dy = |v - 71| deo dv on the boundary 92 x R? for @ as the curve measure. Define the L” and
L norms on the boundary as

fler = (//mf, ﬁ>|f’dy)p, |fle = sup |f(¥, D), (2-32)
14 (x,v)ey

|f|Li=(/ |f<£,ﬁ)|f’dy)”, [flee = sup [f@&E, D). (2-33)
Vi (x,v)€ys

2B. Discussion on the 3-dimensional problem. Physically, the more relevant case is when €2 is a 3-
dimensional domain. We note that the 3-dimensional case actually has many differences from the
2-dimensional one. Based on our formulation, there are three key difficulties:

» Remainder estimates: The embedding theorem is much worse in three dimensions than in two. For
example, the result (4-14) is only true when 1 < m < 3. This restricts our choice of m and makes it hard
to further improve the remainder estimates. The estimates in 3-dimensional neutron transport equation
are provided in [Guo and Wu 2017b], and we can clearly see the loss of powers in €.

« Boundary layer formulation: If @ C R? is a smooth convex domain, then 32 is a 2-dimensional
manifold. For each point on 0€2, there are two orthogonal principal directions corresponding to two
principal curvatures. The e-Milne problem with geometric correction actually depends on the detailed
form of curvature. As [Guo and Wu 2017b] reveals, even the well-posedness of solution to the e-Milne
problem is highly nontrivial, let alone the regularity estimates.

« Singular kernel: A more serious issue is that 3-dimensional collision kernel k(v, v") contains the
singularity 1/|v — v’| which is absent in two dimensions (which can be derived much as in [Glassey 1996,
Chapter 3]). Then the preliminary results in the previous section may not hold any more. In particular,
for Lemma 2.3 in three dimensions, only the first inequality still holds (see [Guo 2010, Lemma 3]),
and the other two are invalid now. Hence, the arguments in (5-78), (5-79) and (5-92), which highly
depend on this lemma and cannot be easily adapted to a more singular operator k, must be replaced by
new ones.

The 3-dimensional problem requires many more techniques, and it is not a natural generalization of the
2-dimensional proof.
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3. Asymptotic analysis

In this section, we will construct the asymptotic expansion of the equation

€0 Vo fC+ LU T=TL/, [, 1)
f€ (X0, V) = PE[f€1(%p, V) for Xg€ dQ and v-1(Xp) <O,
with the normalization condition
/ / FEF, D)2 (3) dv dF = 0. (3-2)
QJR?
3A. Interior expansion. We define the interior expansion
3
FE )~ Y e F(¥, ). (3-3)
k=1
Plugging it into (3-1) and comparing the order of €, we obtain
L[F] =0, (3-4)
L[F)=—v -V F| +T[F, Fi], (3-5)
LIF3)=—v -V F, +4T[F, F2]. (3-6)

The following analysis is standard and well known. We mainly refer to the method in [Sone 2002; 2007].
The solvability of

LIF]=S (3-7)
requires that
/ Sy @)dv=0 (3-8)
R2
for any  satisfying L[] = 0. Then each Fj consists of three parts:
Fi (X, 0) = Ag(X, V) + Bi (X, 0) + Ci (X, ). (3-9)
Here
- 1o - - - (182 =2
Ar(x, v) = pn2 (V)| Ag,0(x) + Ag, 1 (X)v1 + Ag 2(X)v2 + Ag 3(X) 5 (3-10)

is the macroscopic part which must be determined at each order separately, and

L . . . L[ IvF=2
By (X, V) = pu2(v) <Bk,o(x) + Bi1(xX)v1 + B 2(X)vp + Bk,3(x)<|v| > )) (3-11)

is the connection part, with By depending on A for 1 <s <k —1 as

k—1 k—1

Bio=0, Bii= Z Ai0Ak-i1,  Br2= Z Ai0Ak—i2,
i=1 i=1
k—1 k—1—i

B3 = Z(Ai,OAk—i,3 + A1 Ak—i1 +Ai2A—in+ Z Aio(Aj1Ak—i—j1+ Aj,ZAk—i—j,Z))~
i=1 j=1

(3-12)
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In other words, By only depends on the value of A from previous orders, and thus is not independent.
This term is present due to the nonlinearity in I'. Ci(X, v) is the orthogonal part satisfying

1
/M;(ﬁ)ck()_é,l_}) v | dv=0, (3-13)
# P2
with
k—1
LICK =~V ViF1+ Y TIF, Fil, (3-14)

i=1

which can be uniquely determined. Hence, we only need to determine A;. Traditionally, we write

1 . 19]* -2
Ap = 2| px +ug-v+6 > , (3-15)

where the coefficients pg, ux and 6 represent density, velocity and temperature in the macroscopic scale.
Then the analysis in [Sone 2002; 2007] shows that A satisfies the equations as follows:

First-order expansion:

Py —(p1+61) =0, (3-16)
VP =0, (3-17)
V-1 = 0. (3-18)
Second-order expansion:
Py — (p2+ 602+ p161) =0, (3-19)
iy - Vyl = y1Agiin + Vi Py =0, (3-20)
iUy - Vb — A0 =0, (3-21)
V, -y +iy-Vepr =0. (3-22)

Here P; and P, represent the pressure, and y; and y, are constants.

3B. Boundary layer expansion with geometric correction. We will use the Cartesian coordinate system
for the interior solution, and a local coordinate system in a neighborhood of the boundary for the boundary
layer.

Assume the Cartesian coordinates are X = (x, x2). Using the polar coordinates (r, 8) € [0, 00) x[—7, )

and choosing a pole in €2, we assume X € 9S2 is described by
xl,ozr(e)c‘ose, (3-23)
X20=r(0)sinb,

where r(0) > 0 is a given function describing the boundary curve. Our local coordinate system is a
modification of the polar coordinate system.
In the domain near the boundary, for each 6, we have the outward unit normal vector

. (r(@) cosO +r'(0)sinf r(0)sinh —r'(9) cos@)

TN e @ Jrerirer

(3-24)
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where 1/ (9) = dr/d#. We can determine each point X € Q as ¥ = X — O, where 91 is the normal distance
to the boundary point Xy. In detail, this means

r(0)cosd +r'(0)sind
rO?+r'©?
r(@)sind —r'(0) cos 6

r0) +1/(0)?

It is easy to see that 91 = 0 denotes the boundary a2 and 91 > 0 denotes the interior of Q2. Thus (), 0) is
the desired local coordinate system.

x1=r(@)cosd —MN
(3-25)
xp=r(@)sinf —N

Direct computations in [Guo and Wu 2017a] reveal that

a6 MP on N a6 NP M

Zo__ =2 2o =2 (3-26)
0x1 P34+ om 0x1 P dxy P34+ omn 0x2 P

where

P=(r +r’2)%, O=rr"—r>=2r'"2, M= —rsin0+r'cos, N=rcosd+r'sinf. (3-27)
Therefore, noting the fact that for C 2 convex domains the curvature satisfies

r2 428" —pr”
k()= ——————>0 (3-28)
(r2+r'?)2
and the radius of curvature satisfies
(rZ + r/Z)%

Re®) = k() ~ 2 4272 —pp”

>0, (3-29)

we define substitutions as follows:
Substitution 1: coordinate substitution. Let (x1, x2) — (I, 8) with 0 <D < Ry for Ry, = ming R, as
r(0)cosd +r'(0)sind

r0) +1/(0)

r(0)sin@ —r'(6) cos 6

r0) +1/(0)?

x1=r(@)cosd —MN

(3-30)

xp =r(f)sinf — N

and then (3-1) is transformed into
( —rcosf—r'sin6 —rsin9+r’cose)8f€
€l V1 T 1%) T
(r2+r/2)§ (r2+r/2)§ N

(v Sé‘:fﬁf;fos A Cijgj:ff)i“‘)) 0 _1Km) 8 yeifa=rise 9, G3D
£€0,6,7) = PL£1(0,0,7) forv-ii <O,
where ) )
B‘ﬁzvlrcose—l—r/sTn@ vzrsm@—r/ccl)s@ (3-32)
(,,2 +r/2)§ (rz +r/2)§
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and
P10, 6, V)

= 150, DI (@) - Oﬁ(ﬁ)ff«),9,ﬁ>|ﬁ-ﬁ(9)|dﬁw-%(ﬁ)(uz(e,6)—u<6)). (3-33)

Substitution 2: velocity substitution. Define the orthogonal velocity substitution ¥ = (vy, v2) — b =

(vy, vyp) as

—rcosf —r'sinf —rsiné +r’ cos 6
vy : V2 : = vy,
(r2+r/2)§ (r2_|_r/2)§ (3 34)
—rsinf +r’ cos 6 rcosf +r'sin6
V1 1 1%) 1 = Vgp.
(rz +r/2)§ (r2 +r/2)§
Then using chain rule, we have
— — 4 ——t —— = — - 1yp— 1y, —. 3-35
56 90 T 30 ou, T 90 av, ae U T ) ey, tRUTAT g (5-33)
The transport operator is
2
- 0 R d v 0 d
BVl e R 0 W0 w0
0N Re =N 24472y 00 R —MNdv;  Re —Navy
Hence, (3-1) is transformed into
2
afc Vg Ry af€ Up 9f€ Uyl Of€ € € fe
= - —e—2_L e n¢ 2L =T
UGN T RN agpyt 00 Re—Ndu, T Re—Nav, L I=TULS

£€(0,6,0) =PE[£<1(0,6,8) for v, >0,

where

P00, 6) = (0. ) 2 () | p2 Q) (0, 6, Ty iy | dii 1272 (B) (15 (6. 8) — 1 (5)). (3-38)

u, <0
Substitution 3: scaling substitution. We define the rescaled variable n = /€, which implies 9/9091 =
(1/€)(d/9n). Then, under the substitution 1 — 7, (3-1) is transformed into
2
f¢ vy Re  9ff Yp Of° UV Of€
Up——€ __6—_+6—_+£ € =F 67 67
T 9n R.—e€n (r2—|—r/2)% a0 R.—en dv, R, —en dvy L7*] FARRA (3-39)
£€0,0,0) = P[£€1(0,0,0) for v, >0,

where

P00, 6) =g 0. )2 (®) | w2 () (0, 0, Ty iy | dii+ 1272 (B) (1250, 5) — 1 (5)). (3-40)

u, <0

We define the boundary layer expansion as

2
F(0,6,8)~ Y " Fun,0,9), (3-41)
k=1



1380 LEI WU

where .%; can be defined by comparing the order of € via plugging (3-41) into (3-39). Thus, in a
neighborhood of the boundary, we have

0.7 € 0.7 0.7
vy (vé 5 l—vnv¢a—l>+£[%]=o, (3-42)
n €N Up Vg
9.7 0.7 0.7
vyt = (2222 0,0, 52 ) 4 L] = 4TIFy, 211+ T15, 7]
an R.—en vy vy Vg R, 3.7

. (343
+ Re—en (r2 1 pr2)s 36 (3-43)

3C. Expansion of boundary conditions. The bridge between the interior solution and boundary layer is
the boundary condition

F€(Go. 0) = PELS€1(Go. D). (3-44)
where
PLSE)Go. D)
= u (o, 2@ | g W (i) f€ o, )i -7 Fo) | dii + ™2 (8) (1 (Fo. D) — u(@)).  (3-45)
u-n(xp)>
Define
PLf1Go. 9) = 12 (D) w2 (i) f (o, )i - 7 (o) | di. (3-46)

U7 (Xp)>0

Plugging the combined expansion

3 2
fE~Y ER+) (3-47)
k=1 k=1
into the boundary condition and comparing the order of €, we obtain
Fi + .71 = PLF1 +.71] + 111 (Xo, 1), (3-48)
F>+ %5 = PLF> + F3] + 1 (o, ) pd @) (F) + F0)li - Go) | dil+ o (o, D). (3-49)
-1 (xg)>0

In particular, we do not further expand the boundary layer, so we directly require
S o 1. o
F3 =P[F3]+ pna(xo, v) [ nz (W) (F1+71)u-n(xo)| du
7i(%0)>0

> o L - oo - > >
+ m1(xo, v) | w2 (W) (F2 + . 72)u-n(xo)| du+ p3(xo, v).  (3-50)

u~ﬁ()'c'0)>0

These are the boundary conditions F; and .%; need to satisfy.

3D. Matching procedure. Define the length of boundary layer L = e¢~'/2. Also, set Zlvy, vp] =
(—vy, vy). We divide the construction of the asymptotic expansion into several steps for each k > 1:

Step 1: construction of F| and .%;. A direct computation reveals that F; = A; + By + C|, where
B1 = C; = 0. Based on our expansion,

o .- ]2 -2
=2 pp1+up1-v+0p 5 . (3-51)
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Define

F :Mé(mﬂ?] .6+91|6|22_2), (3-52)
satisfying the Navier—Stokes—Fourier system as (1-45) with the boundary condition
Fi (o, 0) = 11(0, 8) + M Fo)u* (0). (3-53)
Here M/ (Xy) is such that the Boussinesq relation
01 + 61 = constant (3-54)

is satisfied. Note that this constant is determined by the normalization condition
/ / A&, ) (3)didi =0, (3-55)
QJR?

and we are able to add M (Xo) freely since p!/? = P[u'/?].

Then based on the compatibility condition of 1, which is
1 o el oo g
[ o G Bl Gl i =0, (3-56)
-1 (xg)>0

we naturally obtain P[Fi] =M 1172, which means

Fi=P[Fi]+m onoS. (3-57)
Therefore, compared with (3-48), it is not necessary to introduce the boundary layer at this order and we
simply take .#; = 0.

Step 2: construction of F> and %#,. Define F, = A, + B, 4+ C,, where B, and C;, can be uniquely
determined following previous analysis, and

1 .. |9)> -2
Ay =p2({pr+uz-v+6; 5 , (3-58)

satisfying a more complicated fluid-type equation as in [Sone 2002, page 92]. On the other hand, .%,
satisfies the e-Milne problem with geometric correction

0.%> € ( 5 0% 8,?2) o f = 2
_ _ — LIx[— R
vy o0 Ro—en "’an Uy Vg Bv, +L[.F2]=0 for (n,0,0) €0, L]x[—m, m)xR~,
72(0,0,5)=h(0,5)—h(0.5) for v, >0, (3-59)
F>(L,6,0)=.%(L,6,Z[v)),
with the in-flow boundary data
- N 1 5 RN > > o
h(8, v) =1 (xo, v) w2 (W) (F1+71) wn(xo) | du+ua(xXo, v)—((B2+C2) —P[B2+C2]). (3-60)

111 (X0)>0
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Based on Theorem 5.1, there exists a unique

h(0.5) =p? (50(9) + D1(®)vy + D2(0)vy + D3(6) |B|22_ 2) (3-61)
such that (3-59) is well-posed and the solution decays exponentially fast. In particular, Dy =0. Then we
further require that A, satisfies the boundary condition

Ax(Fo. ) = h(8. ) + Ma(Go)u? (D). (3-62)
Here, the constant M;(X() is chosen to enforce the Boussinesq relation
Py —(p2+ 62+ p161) =0, (3-63)

where P, is the pressure in (1-45). Similar to the construction of F7, we can choose the constant to satisfy
the normalization condition

/ / (F> + 72)(F, D)p? (3) do d¥ = 0. (3-64)
Q Jr2
Also, the construction implies that at the boundary, we have

Ar+. %) = Mz,lL%-l-h
1 1, I -
= M2M2+M1/ w2 (W) (F1+71) [wn(xo) | du+u,—((B2+C2)—P[B2+C2]).  (3-65)

117 (%0)>0

Comparing this with the desired boundary expansion (3-49), i.e.,

Ar+ By +Cr+ 9 =P[Ar+ By +Cr+ %]+ / M%(ﬁ)(Fl + ZD)|u-n(Xo)| di+ po, (3-66)
-1 (Xp)>0
we only need to verify that
PlAs + F2] = Mou?. (3-67)
Equation (3-59) implies the zero mass-flux condition of .%; as
/ 17 (8). 75 (%, B) (i - /) dii = 0, (3-68)
R2
and we know w; and p, satisfy the compatibility conditions
| RN - - - -, - - N - - - -, -
ﬁ MZ(U)MI(XO»u)|u‘n(x0)|dU=/ w2 (W) (xo, wu-n(xp)| du=0. (3-69)
1-71(X9)>0 1-71(Xp)>0

Then based on (3-62), we have

PlAr+ %]l =p / )

u-n>0

1k (@) A R, 5) 7 i / 1k @)% R, ) @) di
un>0

u-n>0

w2 @A, ) @) dii- 2 / ARG DHEA . (3-70)

u-n>0
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Using (3-68) and (3-59), we know

PlAs+T2] = Mop 2 412 / ? (@)h(F, ) [i) dii—p 2 f 12 (6).7 (3, §) (i) dii

u-n>0 u-n<0
— Mo / k@R, ) @) dii— / 1A @) (=) G Ty ey dil. (3-71)
u-n>0 u-n<0

Then direct computation reveals that

Pzt 22l =Mad ot [ pd @GR )G i

u-n>0

—;ﬁ/ Mi(a)h(z,ﬁ)(ﬁ-ﬁ)duuif w2 ([@hE, B -7) di
u-n<0 u

u-n<0
= Myp? +u%/ (@) (E, ©) G - ) dﬁ—u%/ w2 (@) (E, ) @ - i) dil. (3-72)
R2 u-n<0
Finally, using (3-60), (3-69), and 51 = (0, we obtain
PlAs+ P = Mop? + Dy — 0= Mop?. (3-73)

F35 can be defined in a similar fashion that satisfies an even more complicated fluid-type system; see [Sone
2002, page 92].

4. Remainder estimates

We consider the linearized stationary Boltzmann equation

ev-Vif+L[f]=S(k,v) inQ, @1
f()_é(), 17) = 'P[f]()_éo, 1_5) —i—h()_c'o, 6) for )?0 €dQandv-n <0,
where
S o 1o Lol o alis o
PLf1(x0, v) = 2 (v) w2 W) f (xXo, wlu - n(xo)| du, (4-2)
1-71(Xg)>0
provided we have the compatibility conditions
/ SGE, D)z (@) di di =0, / h(E, D)2 () dy = 0. (4-3)
QxR2 y_

It is easy to see if f is a solution to (4-1), then f + Cu'/? is also a solution for arbitrary C € R. Hence,
we require that the solution satisfy the normalization condition

/ FE V) (@) dvdi =0. (4-4)
QxR2

Our analysis is based on the ideas in [Esposito et al. 2013; 2018; Guo 2010]. Since the well-posedness of
(4-1) is standard, we will focus on the a priori estimates here.
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4A. L*™ estimates.

Lemma 4.1. Define the near-grazing set of y4 or y—_ as

vi =[G 5 ey i@ 0l <80r 5] > 5 or 5] <5}, (4-5)

Then
11,02l <CEOU Sl + 18- Vi flig). (4-6)
Proof. See [Esposito et al. 2013, Lemma 2.1]. (I

Lemma 4.2 (Green’s identity). Assume f (X, v), g(X,v) € L>(2xR*) and v-V, f, v-V,g € L>(2 xR?)
with f, g € L*>(y). Then

// ((B-Vaf)g+ (- Veg) f)di di = / Fody — / fedy. 4-7)
QxR2 Vi Y-

Proof. See [Esposito et al. 2013, Lemma 2.2]. ]
Here we consider m € N and m > 2. Let o(1) denote a sufficiently small constant.

Lemma 4.3. The solution f (X, V) to (4-1) satisfies the estimate

ellPL 2 < C(el(X =PI Ay + 10 =P)f 2 + el @ =P)F U om + 1Sl 2 +€lhlzm).  (4-8)

Proof. Apply Green’s identity in Lemma 4.2 to the solution of (4-1). Then for any ¢ € L*(Q x R?)
satisfying v - V¢ € L?( x R?) and v € L?(y), we have

¢ fwdy—e/ fwdy—e/ (6-vxw>f=—/ wc[w—P)[f]Hf Sy, (49)
v- QxR? QxR2 QxR2

Y+

Since

(wr5:5+52
Plfl=u2la+v-b+ cl, (4-10)

our goal is to choose a particular test function ¥ to estimate a, b and c. The main idea is to design the
test function such that —e fQXRz(ﬁ - V) f is roughly the L¥" norm of a, b and c. Also, we try to use
the symmetry of v to eliminate other terms as much as possible.

Step 1: estimates of c. We choose the test function

W=Iﬂc=/L%(T))(ITJIZ—ﬁc)(ﬁ-Vmc(J?)), (4-11)
where

_ _ 2m-1/2 :
{ Aype =c""(X) inQ, (4-12)

¢.=0 on 0€2,
and B, is a real number to be determined later. Based on the standard elliptic estimates (see [Krylov
2008]), we have

e llwzmen-n < Clle®™ Ml pamen-n < Cliclm . (4-13)
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Also, we know

2m—1

IWellL2 < Cligellar = Cligellwzamen-n < Cllellys, (4-14)
2m—1

el Lamen-n < Cligellwiznen-n < Cllell 5 (4-15)

With the choice of (4-11), the right-hand side (RHS) of (4-9) is bounded by

RHS < Cllell25 (1@ = P)LA A 22 + 1Sl 2). (4-16)
We will choose . such that
f 12 @) (3] = B)v2ds =0 fori=1,2. (4-17)
RZ

The left-hand side (LHS) of (4-9) takes the form

2
LHS=e/BQ ) 1y+<1—P>[f]ué<a><|a|z_ﬁc)(zv,.a,.@)@.ﬁ)
- i=1
2
+€AQxR2 lth(ﬁ)(mz_ﬂC)(; ”i3i¢c)(17-fi)
ok

2
_EE/WM(TJ)IUAZ(ITJIZ_&) 2_2(15/90(3)3;'1'%()?) dz

2
—efQ ) (H—P)[f]uiw)uwz—ﬂc)(z viv,-aijfpc). (4-18)
xR i,j=1
Since
P 0> -2
/u(v)lvil (3P - g0 di=c, (4-19)
RZ
we have
¢ / Ao (B)e(E) di
Q
< CllelP2 (el =P FUln + 10 =P F1ll 2+ el Q=) F 1l n + 1S 2 +€lhlin),  (4-20)

where we have used the elliptic estimates, the Sobolev embedding theorem, Holder’s inequality L™/ Lm/em=1)
and the trace estimate

Vel i < C|Vaelwisemmon—n < ClIVidellwrmomn-n < Cllgellwzamenn < Cllel7h . (4-21)
Since — Ay ¢, = =1 we know
ellel?a, < Clicl?n (el =P)LA U + 1 A=P)LF 1l 2 + €l A= PYLF U 20 + 1Sl 2 +€lhlLn), (4-22)
which further implies

ellclzn < CelA=P)f ey + 1A =PIz + el =PIl g2 + SN2 +€llpm).  (4-23)

Step 2: estimates of b. We further divide this step into several substeps:
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Step 2.1: estimates of (9;; A;lbj)b,- fori, j =1,2. We choose the test function

L .
V=, = @) — Bp)d;d;.
where .
{—qusg =b""'(X) inQ,
¢y, =0 on 9%,

(4-24)

(4-25)

and B is a real number to be determined later. Based on the standard elliptic estimates (see [Krylov

2008]), we have

Il llw2zmen—n < ClIBT" || 2wen—n < CllbjlI75: "

Also, we know

i,j i,j i,j 2m—1
¥, Iz < Cligy” g < Cllgy” llw2amen—n < Cllb;lI75,

i, J i, J 2m—1
19, I 2men-n < Cligy” w1 amen-n < Cllbjll 5, -

With the choice of (4-24), the right-hand side (RHS) of (4-9) is bounded by

RHS < 11175 (1A= P)Lf 2+ 1Sl 2)-

We will choose B such that
/ w@(vi|>—Bp)dv =0 fori=1,2.
R2
Hence, the left-hand side (LHS) of (4-9) takes the form

LHszef i 1y+(1—P)[f]ﬂé(ﬁ)(viz_,Bb)aj@i(ﬁ‘fi)-l-éf
I xR2

2%
2
_EZ
=1

For such B8, and any i # [, we can directly compute

xR2

/Rz w(@)(|vi > — Bp)vi dv =0,

/Rz w@)(Jvi|* = Bp)v7 dv = C #0.

Then we deduce

2
e [ k@R~ paelh
= QxR2

=—e / W@ =B e | p@P O] — Brdydib
QxR I£i

QxR2

= cf (3 A 'bj)b;.
Q

(4-26)

(4-27)
(4-28)

(4-29)

(4-30)

N 1, hu? (5) (w2 — B3¢ (3 - i)

2
NAQUACEY ALTAEEDY /Q (1= P)Lf11e2 )W} — By)uidyhy.
=1

(4-31)

(4-32)

(4-33)
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Hence, by (4-23), we may estimate

€

f(ai,-A;‘b,obi
Q
< CIBIE (el (L =P F1ley + 10 =PI T2 + €l A= P)LF 2w + 1Sl z2 +€lhlin).  (4-34)

Step 2.2: estimates of (9;; A;lbi)bi for i # j. We choose the test function
¥ = ui @0 905, i # . (4-35)
The right-hand side (RHS) of (4-9) is still bounded by
RHS < ClI511227 (10— P)LF1ll 2 + 1511 2)- (4-36)

Hence, the left-hand side (LHS) of (4-9) takes the form

1 L. - i -
LHS:e/ 217,+(1—73)[f],u2(v)|v|2v,-vj8j¢>b(v-n)—i-ef
IQ2xR e

1 - - i = =
1, hu? ()02 vv;0;¢k (0-1)
IQxR2
2 1
—€ / (D) (5170707 (D;dpbj+0;dpbi)—€ Y f A—P)[f 12 @)D 001000 (4-37)
QxR2 = QxR2
Then we deduce
—e/ 2u(5)|6|2v$u§(aij¢;;b,+aj,¢;',b,-)=c(/ (aijA;Ibi)bj+/(ajjA;1b,~)b,~). (4-38)
QxR Q Q

Hence, we may estimate, for i # j,

€ < ClIBIZE (el A =P)Lf Ny + N A=P)LF Tl 2 +€ll Q= P)LF 1 20 + 1Sl 2 +€l ] )

/(a,-,-Axlbl-)bj
Q

/(ajjA;lbi)bi
Q

+ Ce , (4-39)

which implies

€

/(ajjA;‘bi)bi
Q
< CIIEIIi’ﬁ‘m‘l(el(l —P)f e + 1 A=P)f 2 +€ll@—=P)Lf Il 20 + Sl 2 + €[R|Lm).  (4-40)

Moreover, by (4-34), fori = j =1, 2,

€

/Q (0j;A7'b))b;
< C||l;||i'§’m_1(e|(1 =P + 1A= f 2 +€ll@=P)f Il g2m + 1Sl 22 +elhlpm). (4-41)

Step 2.3: synthesis. Summarizing (4-40) and (4-41), we may sum up over j = 1, 2 to obtain, for any
i=1,2,

ellbill?s, < ClIBIZE (€11 =P)L ALz + 1 A=P)LFIl 2+ el Q=PI 2n + 1S 2 +€lhln), (4-42)
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which further implies
ellbl22, < ClBIZE (el (1 =P Nen + 10 —P)LA 12+ el @—P)LF 1 2n + 1S 2 +€lhlgn). (4-43)
Then we have
ellbll gz < C(el( =P)LF1lr + 1A= PILFI 2 + €Nl Q= PILF U 2w + ISH 2 +€lhlrm).  (4-44)

Step 3: estimates of a. We choose the test function

LN - >
Y= =2 @)(0° — Ba) (@ - Veda (X)), (4-45)
where |
Ay =a?""' (@) - = | @"T'(F)dX inQ,
96 19l Je (4-46)
2 =0 ondx,
on
and B, is a real number to be determined later. Based on the standard elliptic estimates (see [Krylov
2008]) with
- 1 o =) -
/ <a2'"1(x) - f a® (@) dx) dx =0, (4-47)
Q 12 Jo
we have
Ipallw22mren-n < Clla* =l p2men-n < Cllall?m " (4-48)
Also, we know
Iallz2 < Cligallz < Cligallweomenn < Cllall?s, ™, (4-49)
1Wall p2nsen— < Cligallwrzmen—n < Cllal7s " (4-50)

With the choice of (4-45), the right-hand side (RHS) of (4-9) is bounded by

RHS < Cllal?% (10— P12 + 1]l 22). (4-51)

L2m
We will choose B, such that
|2

|v

/Rzué(ﬁ)(wlz—ﬁa) 2di=0 fori=1,2. (4-52)

The left-hand side (LHS) of (4-9) takes the form
| 2
LHS = ¢ fm =PI @ - m(Z via,-%)(ﬁ i)
xR i=1
2
+e/ lyhm(ﬁ)qmz—ﬂa><2viai¢a><ﬁ-ﬁ>
IQXR2 P
2
—Ze/ u<6)|v,-|2<|6|2—ﬂa>d6/ a(¥)djia(¥) d3

i-1 R @

2
c /sz Rz(l] ~P) I @) (5P — IBa)(Z Uinaij¢a)- (4-53)

ij=1
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Since
/Rz @)l PP - o) d = C, (4-54)
we have
e / Ao (D) di
Q
< Cllals (el =P Uy + 1A =P £z + €l 0= PYLFT 2w + 1Sl 2+ €lhlpn).  (4-55)

The normalization condition (4-4) implies
/ a(F) di = / F(E, D) (3) dvdx = 0. (4-56)
Q QxR2
Since —A ¢, = a* ' — (1/1]) [ a®™ ", we know
ellal?s, < CllallFs " (el =P+ 10=P)LA1l 2 +ell A= P)LF U 2w + 1Sl 2+ €l ). (4-57)
This implies
ellalizn < C(el(1 =P)f Ny +I1A=P)f 2 +ell@=P)LF U 2n + ISIlz2 +€lhlzm).  (4-58)
Step 4: synthesis. Collecting (4-23), (4-44) and (4-58), we deduce
ellPLAll2n < C(el(1=P)f ez + 1@ =PI flI 2 +€ll@—=P)Lf Ul 2n + ISl 2 +€lhlzm).  (4-59)
This completes our proof. O

Theorem 4.4. The solution f (X, V) to (4-1) satisfies the estimate

1 1
— A =P)[f1l2 + EII(U— PYL A2 + IPLA Tl 2w
€z

1 1 1 1
=< C(O(I)G"’(IlfllLoo +1flee) + Z”P[S]”Lz% + ISl + |hm + glhle)- (4-60)

Proof. We divide it into several steps:

Step 1: energy estimate. Multiplying by f on both sides of (4-1) and applying Green’s identity we get

€ rp _€ 2 ]
SR+ L) ) = SRR AR + [ s, (4-61)
Considering the fact that

122 = IPLAI, =10 =P)LAII, (4-62)

we deduce from the spectral gap of £ and Cauchy’s inequality that

1
§|<1 =P + 1A =PI, < ne’|PLAG, + (1 + 5) k17, + /Q LIS (4-63)

Step 2: estimate of |P[ f]|;2. Multiplying by f on both sides of (4-1), we have

€v-Vi(f?) = =2fLIf1+2fS. (4-64)
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Taking the absolute value and integrating (4-64) over Q x R2, we deduce
- 1
13- V() < = ||(”_P)[f]||iz+/ ). (4-65)
€ QxR2

On the other hand, by Lemma 4.1, for any y\y?® away from y,, we have

11,0, 5 <COSIF+ 17 V(D). (4-66)

Based on the definition, we can rewrite P f = z, (¥)!/? for a suitable function z, (X) and for § small,
and we deduce

it ni= [ e[
90 5-7(%)>8,6<|0]< %

zl( / |zy<z>|2dz) ( f u(ﬁ)lﬁ-ﬁ(f)ldﬁ) ~Lp, (4-67)
2 aQ R2 2

where we utilized the fact that

w@)|9- i) d?))d)?

/ @)V - (3)| dv < C8, (4-68)
[0-12(X)| <8
/ w@)|v-n(x)|dv < CS§. (4-69)
|B1<8 or [v]> §
Therefore, from
[Py fll2 = ClLy\y flo, (4-70)

we conclude

HPLAE < 1P, I3 < ClLys 3 < CO(ILFIZ + 10 Ve (FDh)

1 1
SC(Ilflliz+—|I(U—P)[f]||%z+—/ fS)- 4-71)
€ € JOxR2
Hence, we know

1 1
|7’[f]|§SC(IIfII%er—II(U—P)[f]IIinF—f f5>, (4-72)
€ € JoxR2

which can be further simplified as
2 2 1 2 1
IPLA = CUIPLANG: + - 1A =P)L Al + = fS). (4-73)
€ € JoxR2
Step 3: synthesis. Plugging (4-73) into (4-63), we obtain
1
el(1=P)f17: + 1A =P)LfZ; < C<ne2||ﬂﬂ>[f]||§z + (1 + 5) A7 +/ 2 fS). (4-74)
Y - QxR
We square on both sides of (4-8) to obtain

EIPL N7 = C(E1A =PIy +1A=PIS W +ENQ=PIS TN 20 + IS +€IRl7n). (4-75)
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Multiplying a small constant on both sides of (4-75) and adding to (4-74) with n > 0 sufficiently small to

absorb €2||P[ Lf 1117 Tom and ||(I — P)[f]llz2 into the left-hand side, we obtain

€l(1— 7>)[f]|Lz+ HIA=PLANZ: +EIPLI

sC<ez|(1—P)[f]@+e2||(u—uﬂ>>[f]||izm+||S||iz+62|h|im+|h|iz+/Q szS). (4-76)

Step 4: interpolation argument. By an interpolation estimate and Young’s inequality, we have

-2

I(I—P)[f]le<|(1—73)[f]| 2 1= P)[f]IL’"

-

m— m=2

I(l—P)[f]Iz )( - P)FIE

m=2
m2

m

m

1

m=2
m2

m

(1 =P f]l[i) +o(1)(e |(1_,P)[f]|L00)72

I/\
Q/\
m

|(1 =P)fl2 +o(en|(1=P)[f] L3

)
Q NF

I (L=P)fl2 +0(1)€m|f|L°° (4-77)

6 2m
Similarly, we have

:( oy P)[f]”Zz)(G’:#l||(|]—[P>)[f]||Z'g;o)
€ m?

1 LA™ m=1 m=l_
=< C( ] ||(U—P)[f]||z’z) Fo(D)(e» [(T=P)LAII 2 )T
€ m2

—P)[£1ll2 +o(Den |1 —P)[ 1]l 1. (4-78)

m

We need this extra €!/” for the convenience of the L estimate. Then we know for sufficiently small e,

11 =P) 10 < C 7|1 =PI 1+ oDt | f

< o(Del(1 = P)LFI: +o()e* 7 | £ . (4-79)
Similarly, we have
ENA=P) LU0 < €5 (A= P)LLIZ + 0(1)eX |3
< oA =P)LF12: + oD | £ 3. (4-80)

In (4-76), we can absorb €|(1 — 73)[f]|%2 and ||(I — [P’)[f]ll%2 into the left-hand side to obtain
€l =P)LSI72 +10=PILSZ, + € IPLAIZ,

2
sc(o(l)ezwnfn%w|f|if>+||S||iz+e2|h|irf+|h|’§z+f sz). (4-81)
- QxR
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We can take the decomposition

/ f§= // PLSIPLS] +// (I-=P)SA-MLf]. (4-82)
QxR?2 QxR? QxR2

Holder’s inequality and Cauchy’s inequality imply
C
f PISIPLA = P IPUA e < WPLSTIZonsan + 0D IPLA N (4-83)
QxR

and

/Q A=P)SA=P)f1= Clv™2 A= P)SI + o0 =PI, (4-84)

Hence, absorbing €2 |P[ f]]|? and [|(1 — P)[f1ll > into the left-hand side of (4-81), we get

L2m (Q X RZ)

el(1=P)Lf17: + IA=P)Lf17; +e ||P[f]||izm
< c(oa)e”m U f 7w +1f L)+ ||P[S]||L2m/<2m o+ ISI72 +€hlTn + A7 ) (4-85)
Therefore, we have

1 1
1A =P)f Nz + IO =P 2z + IPLA 2

€2
1
<C(O(l)em(llfllmc+|f|L°°)+ IPLSTH L2m/@m- 1)+_||S||L2+|h|Lm ;Ihm), (4-86)

completing the proof. U

4B. L estimates. We first define the tracking back through the characteristics and diffusive reflection.

Definition 4.5 (stochastic cycle). For a fixed point (X, v) with (X, V) ¢ yo, let (9, Xo, o) = (0, X, v). For
Uk+1 such that Ug 41 - 72(Xgy1) > 0, define the (k+1)-component of the back-time cycle as

(tht1s Xkt 1> Ukr1) = (B + 15 (K, O0)» X (Kis U0) s Ok (4-87)

where
(X, 0) =inf{r > 0:X —erv ¢ Q}, (4-88)
Xp(X, V) =X — €t (X, V)V ¢ Q. (4-89)

Set
Xa(s: %,0) = j Y Ajgesar) G — (e — ), (4-90)
k
Va(s: X, v) = Z g <s <ty k- (4-91)
k

Define V, = {0 e R?: v - (%) > O} and let the iterated integral for k > 2 be defined as

/ ]_[da, f(/ dok_l)---dal, (4-92)
1z Vi Vi1



BOUNDARY LAYER OF THE BOLTZMANN EQUATION IN 2-DIMENSIONAL CONVEX DOMAINS 1393

where do; = u(v)|v - 7(X;)| dv is a probability measure. We define a weight function scaled with the
parameter &

we () = we g (D) = (1 +E2[5]?) 262, (4-93)
and (o)
i—o)lv?
w2 (V)we (v) (1+&2|9)%)2

Lemma 4.6. For T > O sufficiently large, there exist constants Cy, Cy > 0 independent of Ty such that
fork = C1T05/4 and (X, V) € xQ x R?

k—1 NG
/k 1 L 5,51, 0 ) <To J€) l_[ doj < <§> . (4-95)
MV j=1
We also have, for B > 2,
k=1
. C(B,0)
i ., B0 [ doy < =52 (4-96)
k—1 Ie: T5/4
. CB,0) 1\
</l'[’;ivj l{tk(x,v,vl,...,vk_1)<To/e}(Ul)wé(vl)}:[l de =< 53 <§ . (4-97)
Proof. See [Esposito et al. 2013, Lemma 4.1]. O

Theorem 4.7. The solution f (X, V) to (4-1) satisfies the estimate for % >3 and 0 < o < le

- 1 (B)Pecli’g
10)” ™ £l oo < C< S IPISI 2o+ ISl + | ————
€ m € m L
1 1 - s
+——rlhlpz + |kl + (D) e hm_c). (4-98)
€ +o €m
Proof. We divide the proof into several steps:
Step 1: mild formulation. Define
g(x, ) = we (V) f (X, V), (4-99)
- - - g |- - ol o oy
Ky @)[g1(x, v) = wg(v)K[w—}(x, v) = /2 k) (v, wg(x, u) du, (4-100)
3 R
where @)
- - - - w v
K 5y (B, 1) = k(D, 1) —— = (4-101)
wg (1)
We can rewrite the solution of (4-1) along the characteristics by Duhamel’s principle as
- h -
g(X, V) = we (W)h(X —ety v, v)e " 4 f we (D) S (X —e€(t; —s)v, v)e” "= ds
0
f . e—v(ﬁ)ﬁ
+ / Ko, [glG—e(ti =)0, )"V ds+——— [ g(&1, U)W (V1) doy,  (4-102)
0 wé(v) Vi
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where the last term refers to P[ f]. We may further rewrite (4-1) along the stochastic cycle by applying
Duhamel’s principle k times as

- tl =
g(X, V) = we (W) (X — ety v, v)e "N 4 / we (D) S(X — €(t) — $)v, v)e” " @O~ ds
0

151 ]
+/ ng(ﬁ)[g]()_é - E(t] — S)l_} 1_)))67”(U)(117s) ds
0

U(D])(t]+l tj)
wg(v) Z// 0, U]+ H[x, v )wg(v1)<1_[e do)

j=1

k
g(-’_ék, ﬁk)lbéj(ﬁk)<l_[ e—v(ﬁj)(ljﬂ—tj) dO‘j), (4-103)

IZ)§ ) Mo v =1

where

41 -
G[x,v]=h(x — €t 1, ﬁl)wg ) +/ (S()_C'l —€(tjp1 — 5)Uy, ﬁl)wg (l_)'l)ev(vl)s) ds, (4-104)

I

Ii41 -
HIX, 7] = / (K, ) [81G1 — €(tie1 — )y, U)e" %) ds. (4-105)

1

Step 2: estimates of source terms and boundary terms. We set k = C TO5 /* and take the absolute value of
both sides of (4-103). Then all the terms in (4-103) related to the source term S and boundary term % can

be bounded as
) (4-106)
LOO

— < C(p. )8, (4-107)
We

wgS
Part 1 < C||wgh|p> + | ——
v

due to Lemma 4.6 and

The last term in (4-103) can be decomposed as follows:

k
Part 2 = 1 Xi, Up)We (D e V@NEGH—1) 4o
e @) Jrs_ v {tes1=To/e) & (Xk» Vi) We ( k)(l_[ j

=17 j=1

1
— L, 570718 (Kis U)W (vk>( e VN~ ‘f>da) (4-108)
we (V) mt_ v, i =iore] : ]1_[1

Based on Lemma 4.6, we have

1

a1/
T (v) . Vi <7y/6)8 (X, vk)wg (Ux) (1_[ e V@NEGH—) 4 > < C(Z) lgllpee.  (4-109)

=1V j=1

Based on Lemma 4.6 and vy(1 + |9]) < v(v) < v;(1+ |V]), we obtain

k

1 5 o o (@) (01—t — %o
—~—SC l{fk+1>T0/€}g(xk’vk)wé(vk)<l_[e v()(tj11—1)) dO'j) <e e
we (V) Jrk_ v, i1

(4-110)
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For Ty sufficiently large and € sufficiently small, we get

Part 2 < §||g]| Lo (4-111)
for ¢ arbitrarily small.

Step 3: estimates of Ky, terms. So far, the only remaining terms are related to K, . Define the back-time

stochastic cycle from (s, X (s; X, V), V') as (7], X!

/,v7). Then we can rewrite Ky, along the stochastic

cycle as
Koy, @) [8](X —€(t — )V, V)
= Kur 81X D) = [ o @ P)glXa, ) T
R

=

n B
/ f K, ) (U, 0) Ko o9 [] (Xt — €(t] — )V, ¥)e ™07 dr dv’
R2J0O
1 k—1 1 -
Ko, 3y (0, 0")H[ X1, 0100 (?/)( e‘”<"f)“f+1"ﬂdo<> dv’
=~ > () \Us cl» &
[ 3 I j

/ ks 5y (3. ) A 47
R2

=1+1T+1III. (4-112)

+

+

Here, A in the last term is Part 1 4+ Part 2 in Step 2. Now /II can be directly estimated as
T < C(lwgh|p> + lwg Sllzee + 8118l o). (4-113)

We may further rewrite / as

[; =/ ’
I = /2/2/ kwg(ﬁ)('l_j, 6/)kw5(17’)(17,, B//)g(Xcl — é(ti — I‘)ﬁ/, 5//)67‘)(1} ) —r) dr dv’ d” ’ (4_114)
R=JR=JO

which will estimated in four cases:
I=L+hL+1+14. (4-115)
Case I: |v| > N. Based on Lemma 2.3, we have

C
1+ |9

=

. t e oy i C
‘/ / ke @) (U, V)ky, ) (0, ") dv' dv”| < —. (4-116)
R2JR2 N
Hence, we get
C
L <— 0. 4-117
1< NIIgIIL ( )
Case II: || <N, |v/|>2N, or |v'| <2N, |v”| >3N. Notice this implies either |v'—v| > N or [v'—1"| > N.
Hence, either of the following is valid correspondingly:

S oS o2 Lo =
e 5y (@, 0] < Ce™N [y, 3y (@, 0)eV 0T, 4-118)

ke 5 (@, 0] < Ce™N [k, (3 (@, 50T, (4-119)
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Then based on Lemma 2.3,

/ Mg 3. eI di < oo, (4-120)
R
/ e iy @, 787 F 4 < oo (4-121)
RZ
Hence, we have
_sA2
L <Ce gl L. (4-122)

Case III: 1{ —r <8 and |[U] < N, |V'| <2N, [v"| <3N. In this case, since the integral with respect to r
is restricted in a very short interval, there is a small contribution as

I3 = lgllze = Collglize.  (4-123)

1 o
/ / / Jewe () (8, 0 Vw3 (@, 07)e V) dr dv' d”
rR2 JR2 Ji -5

CaseIV: t{ —r > 8 and || < N, |[V'| < 2N, [v”| < 3N. Note we always have X — €(t] — )V’ € Q.
Hence, we define the change of variable ¥ — ¥ as y = (y1, y2) = X — €(t] — r)v’ such that

dy
dv’

_ E(ti—r) 0 _
o 0 e@-r)||

Xt —r)? = 262 (4-124)

e/

In two dimensions, ky, 3 (U, V) does not have singularity of /|0 — v'| and is bounded. Also, [v'[, [v"|<3N.
We estimate

f .y
=€ / f Lixg—etj-niea)f Xa—e(—n)v', i")e™" 0 drdv’ dv”
[V'|<2N J[v"|<3N JO

2m—1

t; —v@)(] 2m
< ( / / 1{XC1 é(l;_”)l—jle }e v(v )(tlfr) dr d_U/ v//)
jiv1=2n Jiiri=an Jo Q d

tl/ N o R 2m
x( f / / l{xd_ea;—r)a/emcp[f]fm<Xcl—e<t{—r)ﬁ’,B”)e—”“’><’1—’>drdv’dv”>
|v/|<2N J|9"|<3N JO

1

1 o )
+C(/ / / I{Xclfe(t{*r)a/eg}e_”(”)(tl—’) dr dl/dv”)
[5/1<2N J[571<3n Jo

L

f Y o o\?2
x ( / / Lix et —npeay (=P)fD*(Xa—e (] —r)V', 1")e "0 dr dv/dv”)
|v/|<2N J|v”|<3N JO

L
2m

<C

ti 1 - - o / N
/ Er / / Lse) PLAD (3. 8)e @ dy ai” dr
0 [0"|<3N JQ

1
2

+C

i 1 - sus  —(B (1 — N
/ 6282/ /1{?69}((”—P)[f])2(y,v”)e P 45 dg” dr
0 [v"|<3N JQ

C C
:ﬁ”[p[f]||L2’”+5”(|]_[p)[f]“L2— (4-125)

E'"S’”

1
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Therefore, we’ve already proved
—_8N? C C
I=(Ce™ +0)lglee + T IPL Al + T = E)LA 2. (4-126)
€EmQm
Choosing § sufficiently small and then taking N sufficiently large, we have

() C
1= Colglles + T IPLfUlen + A= P)LF 2. (4-127)

EmQm
A similar technique can justify

C C
I <Céliglee +——IPLA M L2m + gll(ﬂ — D)l 2 (4-128)

1
EmSZ

All the terms related to Ky, can be estimated in a similar fashion.

Step 4: synthesis. Collecting all the above, based on the mild formulation (4-103), we have shown, for
any (X, V) € Q x R?,

C

L
4

€m

1g(X, V)| < CSligllr~ + + Clwgh|r>. (4-129)

C w;S
IPLA 2 + —IA=P)[f N2 +C | ——
€d V Lo

L
m

Let é be sufficiently small such that C§ < % Taking the supremum over (X, V) € y. in (4-129), we have

| C C we S
gL S§||g||LW+T||U:D[f]||L2m+:”(|]_P)[f]”L2+C - + Clwgh|r>. (4-130)
€m L
Based on Theorem 4.4, we obtain
lglese < 5lglie+ C(O(l)(llglle +1glLe) + ol IPPLSTH 2/ 2m—1) + e ISl 2
weS 1 1
+ Hi + Ikl + — ke + |wsh|L°°>- (4-131)
Lo € m €m

Absorbing o(1)|g| LY into the left-hand side, we have

1
gl < 5llgli~+ C(O(l)llglle + — T IPISH zzmen-n + —— IS 12
€ m € m
we S 1 1
+‘i +_1|h|L2_+_1|h|L"’+|wSh|L°°>- (4-132)
Vv Lo>® €1+ﬁ €m

On the other hand, taking the supremum over (X, v) €  x R2 in (4-129), we have

+ Clweh| . (4-133)

c C we S
lghe < 3lglles + - IPL U + 1@ P2 +CH%
LOO

€m
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Based on Theorem 4.4, we obtain

1
lgllze < 3ligllz~+ C(O(l)(llglle +1glLe) + —— T IIP[S]II o Y 15172
6 m
we S
+|—— +—=lhlp +—1|hIL1" + lwghlp> ). (4-134)
Inserting (4-132) into (4-134), we get
1
lgllze < 3ligllz~ + C(0(1)||8||L°° + —— IPLSTIl L2m/em-v + ﬁ”S”LZ
€ mn € m
we S
+ ‘ == Il il + |w;h|Lw>. (4-135)
Vv Loo € +o €m

Absorbing %H gllze and o(1)||g|| L~ into the left-hand side, we have

lgllze < C( o IPLSH p2men—n 4+ == |ISll 2
€ mn € m
we S 1
+‘ LS Ll e + |wgh|Loo> (4-136)
v l+
L* € €m
It is easy to see for ¥ =  we have
C1 ()" < w; < Cy(B)7 el (4-137)

for some constant C;, C, > 0. Then we must have

({})ﬂeQIﬁIzS

- 2 1
1) £l < C< y

1
IPLST| z2m/@m-1) + _L”S”LZ + ‘
€7 'm €

I+,

LOO
=12
s I 1(6) e hmo), (4138)
6 m €m
completing the proof. (I

5. e-Milne problem with geometric correction

5A. Well-posedness and decay. We consider the €-Milne problem with geometric correction for g(1, 6, b)
in the domain (, 6, v) € [0, L] x [—7, w) x R? as

a8 € 208 g _
"877 Rk_én(gi)av UnVp g =~ )+£[8]— .
2(0,6,0)=h(,v) forv, >0, (>-D
g(L,6,0)=g(L,6, Z[v)),
where Ry is defined in (3-29), Z[0] = (—v,, vy) and L =€ ~1/2, For simplicity, we temporarily ignore the

dependence of 6; i.e., consider the e-Milne problem with geometric correction for g(, b) in the domain
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(n, v) € [0, L] x R? as

dg__ e (09 08 _
””an R.—en (U"’av,, Unv¢8v¢ +LIgl =0,
g(0,0) =h(v) for v, >0,

g(L, ) =g(L, Z[v]).

(5-2)

The null space of the operator £ is spanned by N = /{1, v,, vy, 3 (61> —2)} = (Y0, ¥1. Y2, ¥3}. Our
main goal is to find

3
h(v) = Z Div; €N, (5-3)
i=0

with 51 = 0 such that the e-Milne problem with geometric correction for G(n, v) in the domain (1, b) €
[0, L] x R? as

09 e (209 _,,09) g
Y190 T Re—en ”¢au,7 U"U¢8v¢ +LI61=0.

G(0,b) = h(v) — h(d) for v, > 0,
G(L, ) = G(L, Z[5])

is well-posed, and G decays exponentially fast as n becomes larger and larger. The estimates and decaying

(5-4)

rate should be uniform in €.
Let G(n) = —€/(R, — €n). We define a potential function W (n) as G(n) = —dW/dn with W(0) = 0.
It is easy to check that

W) =Inf 5-3
(n)—n<R ) (5-5)

kT €N

In this section, we introduce some special notation to describe the norms in the space (7, ) €[0, L]x R2.
Define the weighted L°° norm as

If )i, = sup (8)" ™ | £ (n, D)), (5-6)
veR?
I llsrz, = sup (®)"e™F £ o). (5-7)

(n,0)€[0, L]xR2

Since the boundary data /() is only defined on v, > 0, we naturally extend the above definitions on this
half-domain as

- 212 -
1hll s, = sup ((6)” el | (B))). (5-8)
' vy, >0
We assume
Ihllzy, < C (5-9)

for some C > 0 uniform in €.
Here, we mainly refer to the procedure in [Cercignani et al. 1998; Wu 2016], where 1 € [0, 00). The
proof is similar with obvious modifications, so we only present the main results.
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Theorem 5.1. There exists h satisfying the condition (5-3) such that there exists a unique solution G(1, v)
to the e-Milne problem (5-4) satisfying for 0 > 0 and an integer v > 3

NG ooy = C. (5-10)

Theorem 5.2. For sufficiently small K, there exists a unique solution G(1), ©) to the e-Milne problem
(5-4) satisfying for o0 > 0 and an integer ¥ > 3

el o2 < C. (5-11)
5B. Wefght function. Now we begin to study the regularity of the solution G to (5-4). Let p(b) =
h(v) — h(b).

Define a weight function

Re—en\> ,\?
c(n, vy, vg) = ((v§+v£)— (R—E"> vé) : (5-12)

It is easy to see that the closer a point (1, v,, vg) is to the grazing set (1, v, vy) = (0, 0, vy), the smaller
¢ is. In particular, at the grazing set, ¢(0, 0, vg) = 0.

3 8 3
vn—c—LGi—{—vn%—C) —o. (5-13)
on Ry —en vy, vy

Lemma 5.3. We have

Proof. We may directly compute

3 1R, — P 1 3 1 R, —en\’
K odmceng KLU (B2
in ¢ R vy ¢ dvg ¢

Then we know
a¢ € , 0C a¢
Vg — |\ Uy — UnVp o —
an R,—e€n vy vy

1(Rc—en € ( ) ) Z(R,(—en>2))
=— evpv; — —— v, v —vv5 +vpv =0, (5-15
C( R, e R, —e€n e e e R,

completing the proof. ([l

5C. Mild formulation. Consider the e-transport problem for o7 = {(0G/dn) as

o LN Ya SO
Uy on +G(n)<v¢avn vnvd,a% +ve =+ Sy,
(0,8) = py(®) forv, >0, (5-16)
(L, v) = o/ (L, Z[v)),
where p., and S, will be specified later with
~ . ,0) o
T80 = [ Sk by (n, ) i (5-17)

r2 C(, 1)
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Here we utilize Lemma 5.3. We need to derive the a priori estimate of 7. Define the energy
E| =v; +vj, (5-18)
Ey=vge VM, (5-19)

We can easily check that the weight function satisfies { =V E| — E%. Along the characteristics, where
E\, E; and ¢ are constants, (5-16) can be simplified as follows:

4 ~
vnaJr%:»@“-Sw- (5-20)
Let

vy (0, 03 1) = vge™ TV, (5-21)

For E| > v¢ , define
o (0, 0) =V Ey — (1. 5 1), (5-22)
o' (n, 8: ') = (v}, (n, 05 1), vy (. 0: ")), (5-23)
Z10' (1, 05 1)1 = (=vy (1, 05 17'), vy (n, B ). (5-24)

Basically, this means (7, vy, vy) and (7', v v¢) n, _Un’ v¢) are on the same characteristics. Also, this
implies v,7 > (. Moreover, define an 1mphclt function n*(n, b) by the equation

Ei(n,%) = v (n, 5; n). (5-25)

We know (n™, 0, v;,) at the axis v, = 0 is on the same characteristics as (n, 0). Finally put

7 y(6'(n, v;
Hy = / 2w, 5:5) (nﬁ ) dy, (5-26)
00,5 y)
7 V([0 (0, 0; y)])
R Hy.y) = f . dy. (5-27)
=L T sy

Actually, since v only depends on |b|, we must have H, = %[H, 1. This distinction is for the purpose
of clarity and does not play a role in the estimates. We can define the solution along the characteristics as

o (1,0) = K[po+ T + S/, (5-28)
where:
Region I: For v, > 0,
Klps]= pos(0'(n, b; 0) exp(—H, ), (5-29)
(4 S, 0 (0, B3 )

TI7+5.1= [ exp(—Hy ) d. (5-30)
0

v, (1, 05 17')
Region II: For v, <0 and v + v¢ > v/z(n, v; L),

Klps1= pos(0'(n, 8;0)) exp(—Hy o — Z[HL ), (5-31)
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~ L JZ?-’-S /,B/ ,B; ! /
T[%+SM]=< (T AN OO0 1)) oy — FUH 1) dy
0 v, (0, 05 17')
L+ S, Z[6 (1, 0; 1 )
2 S, 20, Bi 1)) eXP(%[Hn,n/])dﬁ)- (5-32)
n vn(nv U7T])

Region III: For v, < 0 and v; + vé < vg(n, o; L),

K[pos1= ps(0'(n,0; 0)) exp(—Hy+ o — Z[Hy+ 41), (5-33)

~ T (A + S B (0. 81 1))
TI + Sl = (/ e = exp(—Hy+ yy — Z[Hyt 1) diff
0 v, (1, 05 1) o o
+/n+ (& + S) (', 210" (n, 05 )]
. vy (n, 05 17)

exp(Z[H, 1) dn/). (5-34)

The different regions are based on whether the characteristics touch n = L and v, = 0 before tracking
back to the boundary. In Region I, the characteristics do not touch any of them; in Region II, it touches
n = L first; in Region III, it touches v, = 0O first. This distinction marks different estimating methods
since the expression highly depends on the value of v, and whether it is reflected at n = L. Then we
need to estimate X[ p,/] and 7'[@7 + S./] in each region. We assume 0 < 6 « 1 and 0 < §p < 1 are small
quantities which will be determined later.

SD. Region I: v, > 0. Based on [Wu 2016, Lemmas 4.9 and 4.10], we can directly obtain

IKIp Ly, < lIparliLs,, (5-35)

S,
ITIS Ly, < ‘ 27 . (5-36)

’ VollLers,
Hence, we only need to estimate
~ [T W B (@, B n))

I =Tlo] =[ —— exp(—H,,,y) dn'. (5-37)

0 vy (n, 03 7)

Since we always assume that (1, v) and ', v’) are on the same characteristics, in the following, we will
simply write o' (1) or even v’ instead of v’(7, b; ) when there is no confusion. We can use this notation
interchangeably when necessary.

We divide it into several steps:

Step 0: preliminaries. We have
R
Ex(n', vy) = ———vy. (5-38)

Then we can directly obtain

- 1 1
C0 ) = VR + 1) = (Re = en)vp)® = oV R + (R = (Re — en'))ug
K K

1 1 o
< VR + V(R = (Re = en))v < Cj +ven'v) < Cu(®) (5-39)
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and
t(n, o) = = < VRV + o ¢<R2 — (R —en)))vj; ) > C(v) +ven'vy) = Cy/en'[v].

Also, we know for 0 <n’ <,

R, —¢€
=+ +v¢—v$_\/v2+v¢ 77)

— 2
¢ R, —en/

V(R —€n)*v2 + (2R, —en —en)(en — en)v
R.—en ’

Since
0 < 2R —en—en)(en—en')vy < 2Rce(n —n")vg,
we have

vy S Uy < 2\/v$ +en—n')vg,

which means
1 1

1
< — < —.
v

2«/v%+e(n—n/)vi Uy Yy

Therefore,

! 1 ! 1 1 2 N2
— ———=——dy<— 5 zdy:—z(vn—\/vn+€(77—77)v¢)
w Vp(m,05y) n 24 v, +e(n—y)vg €V,
n—1n - n—1
vn+«/v5+e(n—n/)v5) B 2x/v$+e(n—n’)v¢2)

Define a cut-off function x € C*°[0, oo) satistying

1 for |v,| <6,
X(vr/)=
0 for |v,| > 26.

1403

(5-40)

(5-41)

(5-42)

(5-43)

(5-44)

(5-45)

(5-46)

In the following, we will divide the estimate of I into several cases based on the values of v, v , €n’ and

€(n —n’). Let 1 denote the indicator function. Take the dummy variable 1 = (uy, ugp). We wrlte

n n n
1=/0 1{v,,zso}+/o 1{0§vn§50}1{x(un)<1}+/0 Lo<v, <so lix =11 {yarivy 1zv;)
n
+/0 Lozv, sl ixap=ndvarivy <o Lz <em-nnd)

n
+ /O Lo<v,s0) L =ndierivg <o Lpzze i)
=h+hLh+L+14+1s.

(5-47)

Step 1: estimate of /1 for v, > §y. In this step, we will prove estimates based on the characteristics of G

itself instead of «7. Here, we rewrite (5-4) along the characteristics as

(5-48)



1404 LEI WU

In the following, we will repeatedly use simple facts (SF):

» Based on the well-posedness and decay theorem for G, we know ||G|| Ly, = C.
« Based on Lemma 2.4, we get | K[G]l[ry, < 9]y, = C and [V, K[G]llLy, < I9]lLy, = C.

Since E; is conserved along the characteristics, we must have |o] = |v/].

/ /
For " < n, we must have v; > v, > do.

Using the substitution y = H,, ,s, we know

/” v(©'(n, 05 1))
o vy(n,0;1)

exp(_Hn,n’) dﬂ/‘ =

oo
/ e ” dy’ =1 (5-49)
0

For v, > 8§y, we do not need the mild formulation for 7. Instead, we directly estimate

S z - =20
(572 1y < | (o) 70" 29 | (5-50)
an
We rewrite (5-4) along the characteristics as
- - " K[GI(', 0 (n, 03 1))
Gg(n, v) =exp(—H,,0) <p(0/(77, v; 0)) +/ = exp(Hy0)dn’ ), (5-51)
0 vy (1, 05 17')
where (1, ") and (1, b) are on the same characteristic with v; >0, and
"u(©' (1,05 )
Hp, = / 2 gy (5-52)
s vy(n,05y)
for any s, 1 > 0.
Taking the n-derivative of both sides of (5-51), we have
0
£=X=X1+X2+X3+X4+X5+X6, (5-53)
where
OHpo( -, - " K[GI(n',0'(n, 0: 7))
X1 = —exp(—Hy,0)— (p(v’(n, v 0)) +f — exp(Hy.0)dn'), (5-54)
an 0 vy (1)
ap(©'(n, 0 0))
X; = exp(—Hn,o)pT, (5-55)
K ,0
X3 = [G1(n )’ (5-56)
Uy
1 5, o 1 v, (n, 0; ')
X4=— eXp(—Hn,o)/ (K[Q](n/, o' (1, 05 1)) exp(Hyy 0) ——=——— dn’), (5-57)
0 v,7 (1, 051') an
" K[Gl(n', ' (n,0; 7)) dH,y 0
X5 = CXP(—Hn,o)/ PRI exp(H,y 0)——= dn’, (5-58)
0 vy, (1,05 17') an

1 - -,
m (VU’K[Q](U/, v'(n,0;1))
"’] 9 9

v’ (n, v; 1)

n
X6 = exp(—H, ,o)f
" o an

) exp(Hy 0)dn'.  (5-59)
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We need to estimate each term. Note that
dH; _f’i(%ﬁ/(n, y)))
an s O\ vp(n,0;y)
t 1 () 1 . v (n,01y) L 0vj(n, 05 y)
=/ - = T/(v/( , )"—+v;(n,b;y)¢—)dy
. v, 5y y) 0] [0 o o
L (n, 03 y)) O, (0, 85 y)
_/ (/2(77 9 Y)) Ot dy. (5-60)
S vn (717 U’ y) 877
Considering
> n_ R —€n
U(;(’?,U;)’):U(pew(n) W(n)zvlzsﬁ, (5-61)
R —€n
v (n, v —\/v +v2 —vE= [v2+v2 -2 5-62
n (1,03 ) ¢¢\/ ¢¢R_En (5-62)
we know
Qe 5:y) _ evy 0uy(n,8;y) _ 2ev5 R —en 5-63)
an R —en'” an v, (1,05 y) R —en’”
This implies
v (1, 03 y) Celo| _ Celo I, (1, 05 y) B,
n ' ol | |, ¢ < Celo). (5-64)
v (77,0 y) o on

The method to estimate X; is standard and we simply use the facts (SF) and direct computation, so we

omit the details and only list the result:

N C
()7 x| < 8—||g||m

()72 X, | < (SC—O(‘

H vy |, >

- - C
1(B)?e7 X, < Z[1Gl s fori=3,....6.
50 e

vy ||

In summary, we have

_t ||g||LOOL§Q)-

o} Qlulzl < —
I®)7 "—50 av,7 3U¢

Step 2: estimate of /; for 0 < v, <4Jp and x(u,) < 1. We have

g, v 1
12=/0 ( 5 ;(77, )(1—x<un)>k<u ). (1, u)du)v—nexp( Hy ) dnf

n /e
:/ (/ (1 — x (w))k(, *’)g(g’ )dﬁ>§(”ju)exp(—H,,,n/)dn/.
0 R2 77 v

n

(5-65)

(5-66)

(5-67)

(5-68)

(5-69)
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Based on the e-Milne problem with the geometric correction of G as

ag /9 u 12 ag /7 u ag ,5 u /2 /o
n
we have
GG T 1 [, (8601, 3G (. i . .
Wrw ——(G(n >(u§>M : unu¢m) +vG07 @ — K917 u)>. (571)
n Uy, ouy, dug
Hence, we have
A;:/ (1 — x (up)k(i, REAURL
R? an’

| ;o ) oy o
= —/I; (I = x(uy)k(u, v )u—(vg(n ,u) — K[G](n ,u)) du
2 n
ogar',u) 89(77’,31))61fl
ouy, e ug

|
- / (1= x (wy)k (i, 8)—G () (ui
R2 u,

i
= Al + Az. (5-72)

Using G estimates and [u,| > §, we may directly obtain

S Lolv|? 1— k*"/iv " — K ') dii
(0))"e R2( X (uy)) (u,U)u (vG(n', 1) [G1(n', 1)) dui

n

- 212~
|(v)7eel 1" 4| <

C
< E”g”LWLgf’Q- (5-73)
On the other hand, an integration by parts yields

n d ui / = 2 /= >
Azzf . —G(n)(l—x(un))k(u,n))g(n,u)du
R2 u,, u,7
] R ) o 4o
—/ 3—(u¢G(n’)(1—X(un))k(u,b))g(n,u)du, (5-74)
R2 u¢

which further implies

- o2 o~ C
(6)7e?" 1 As| < S5 11GlLegs, - (5-75)

As before we can use substitution to show that
"¢, 0 (n,0; 1)

— exp(—H, ) dn’
o U5 "

exp(—H, ) dn'| <1, (5-76)

=<

f” v(®'(n, ;1))
o vy(n,0;n)

and || is a constant along the characteristics. Then we have
- z C
|6)"e2" 1] < S1G N ez,
Step 3: estimate of I3 for 0 < v, <y, x(u;) =1 and «/en/vfp > ”;7' Based on (5-39), this implies

t(n', ") < Cyen’vy,
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Also, we know that
¢’ ) = Cy/en/il.

Then we may take the decomposition

e /5 B/ > oy ;) - -
A= Mx(un)k(u, v)e/(n', u)du
re (0, w)
/ /
=/ AN v -5 - ;o =
E/ 2 X k@, 87 (7', 1) du+/ 2 X k(i 8 (', 1) dit
lij>vs Ul lij<v5 Ul
=) (A1 + Ay). (5-77)

Using Lemma 2.3, we directly estimate

- 252~
[(v)7eel" Ay < C

- 22 1 - - - -
) [ ke D di
[ul=

-

C s - - - -
@ [ k@ B < VI, 678)
8 I, | <26 *

Also, based on Lemma 2.3, we obtain

- 22 o~ N ] 1 N - -
(8?2 Ay < C| (572" / —k (W, 8)/ (', 1) dii| < C817 || oo 5. (5-79)
lij<vs Ul @
Hence, since |b| is a constant along the characteristics, we have
=\ 9 212 " v(/p
|(8)" e 3] < CV8 ) sy ( / — exp(—Hy,y) dn/)
,0 0 v]{} ’
(') ,
< V8|l ||y, o eXp(—Hy ) dn') < OV 1o, (5-80)
0 n ‘

Step 4: estimate of I4 for 0 < v, <&y, x(uy) =1, «/en’véb < v;] and v,2] <e(n— n’)vé. Based on (5-39),
this implies
(', v) < CU;' (5-81)

Based on (5-45), we have

" (o) v(©)(n—1) C'v(v) [n—1
Hyy=— [ Sy <- . (5-82)
1 o v,’7(y) 2upa/€(n—1') Vg €
Hence, since |b| is a constant along the characteristics, we know
oy i U o v - o\ 1
@76ty =€ [(@)7e® [ S G 80970 8 ) - exp(—Hy )| i
0 re $(n', ) vy ’
/
<C f n (<B/>%Q'5"2 L k(@ B (7, T) dﬁ)”—?exp(—Hn,no dn’
0 R2 A/€n'(u] vy
=C / ! ()7 eel®'” / é X (W)k(@, ) (1, 1) dui ! exp(—H, )|dy.  (5-83)
0 R [ul Ve ’
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Using an argument similar to that in Step 3, we obtain

- el 1 - - - -
CORC / = x (k@ 8/ (', 1) diil| < CV8 )|/ [l (5-84)
Hence e |
’ e o
|<U>ﬂeglnl I4| = C\/SH%HLOOL?Q (/ 677/ exp(_Hn,n’) d’?’)
' 0

o1 C'v(v) [n—n'
< CV8|| o || Lo exp(— dn'.
e xp( SR ) o
Define z = n’/e, which implies dnp’ = € dz. Substituting this into the above integral, we have
|(6)7 €2 1y
n

| C'v(v
SC\/gllﬂllLooLgogf —6XP<— ®) Q—Z>dz
< Jo N2 Vg €
n

B I Cc'v(®) [ 1 C'v(®) [n
_C«/Suﬂum%(/o ﬁexp<— " E—z)dz+fl ﬁexp(— o E—z)dz). (5-85)

We can estimate these two terms separately:

I C'v(®) [n oo
/Oﬁexp<— ” E_Z>dZS/0 ﬁdz—l (5-86)

n

N C'v(® ‘ C'v(®
/ —exp(— v(©) Q—Z)dZS/ exp(— v(®) Q—Z)dz
1 ﬁ Vg € 1 Vg €

Nl

t2:g_z o0 _C’v(ﬁ)t U¢ 2
< 2/ te " dt<C< (B)) <C. (5-87)
V
Therefore, we know 0
N 212
|6)”e?" L] < CVBI| oL, (5-88)

Step 5: estimate of /5 for 0 < v, <8y, x(u,) =1, Je_rﬂvéb < v; and v% >e(n— n’)vé. Based on (5-39),
this implies

t(n',v') < Cuy.
Based on (5-45), we have

(5-89)

7 v(v') Cv(®)(n—1)
_Hnn/z—/ 7 dy<——
7’]’ vr](y) vi’]

Hence, we know

- =12
|(6)” e [5]

7 210 olv? 5(77/’ E/) e llind] AN T 1 ’
<c / ©)7e" [ 225 k(@ B G T) di ) — exp(— o) | di
0 R C(' 1) vy
/!
<c ["|( @)t ! k(@i, 87 (', ) it )2 exp(—H, )| diy
< (v')"e —— X (upk(u, 0)/ (', u) du ) — exp(—Hy,,y) | dn
0 R £(', w) vy

[A

C/
0

<<6’>’9e@'7’"2 / L X )k (i, B’)%(#,ﬁ)dﬁ) exp(—w)‘dn’. (5-90)
R2 é‘(nlv u) Un
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Using Holder’s inequality, we obtain

- 5/ 1 - - - -
(6)7eeF /Rz For X kB G B i
1

=@’ [ | Y
Rl ¢ T (/) ST (' 1)

C o = 1 1 5 - N
< —— (07l / k(@ 8) (', B)
(en) T+ R2[ ¢ T (i, 1) |u¢|l+s

du

x (uk(, 0).e/ (1, 1)

du

C N = 1 1 1 N N R
e [y g PTG B (0 )|
(en) T R T (), 1) [ug| ™ Jug | T2
- 1 1
C{o\T+5 1 1 A\
< T (f — X ) du)
(en) T r2| ¢ (', ) |u¢|s+1+25
. T+2s 1+s ﬁ
- 22 14s > - N s N s
x (<<n/>l’e@“' ) f e ki, 8 (1) du) ., (5-91)
R2| (p/) +25

where 0 < s <« 1. Note the fact that in two dimensions, k(ii, b’) does not contain the singularity of
it —v’|~!. Using an argument similar to that in Step 3, we may directly compute

(<<6/>1’e95/'2>‘? /
R2

1
s

T+25 N =
S ki, ¥ (1, 1) dﬁ)

(B/) 1+12x

O Lts s
-, s 1+2s N o s o 1+s
< (((B/We@'“ Py / W @ B ) du)
R2 <E/) T+2s
< Cll =i, (5-92)

Then we estimate

f 1 1 s )d*</(/5 1 wd ) Ly (5-9%)
= —x " (uy)du < ————x (uy) du,) | ———— duy. -
R § (', 1) |y |+ e ! rR\Jos €O " e ’

We may directly compute

——== d d
/a ¢(n',w) 1 (ty) ity < fa VRZ(u)? + (R2— (R, — en/)l)(uqs)zX(un) .

b
<C d 5-04
- /_5 )2+ r2(ug)? (>-94)

where

R2

K

R2_ RK_ "2
r:\/ «ZRe €n)” o ey (5-95)



1410 LEI WU

We may further compute

s 8
f ! du, = 2/ : du
—5 /()% + 1% (up)? 0/ (uy)?+7%(uy)?
= 2(In(uy + Vr2(ug)? + (u,)?) = In(ruy)) g
=2(In(8 + vV r*(up)* + 8%) — In(ruy))

<C+In(r) +1In(uy)). (5-96)

Then considering s + (1 +s)/(1 +2s) > 1, we know

1 1 R 1
- —X ‘(u)duSC/(l+ln(r)+ln(u ) ———du
,/RZ (', w) |u¢|~“+11++zr ! R ¢ |u¢|S+ffzs ¢
< C(1+|In(e)| + [In (n"))]). (5-97)
Hence, we can obtain
N 1
- = 1 . - o Cclh)TE
()7 0P / k@) (| < S e (LG I (). (5-98)
r2 $(n' ) (en)) T+ ©
Thus, we know
o 1 5
. - C " (o) T+ Cv(o(n—1n'
152 5] < ot e / OV (1 )]+ ey exp(~ ST - (5.99)
€’ e 0 n/1+s Uy
Then we first estimate
- 1 -
n n/ 125 C U/ _ /
/ ( /> i |ln(n/)|exp(—M) dry|. (5-100)
0 n T+ Uy
If 0 < n < 2, using Holder’s inequality, we have
RGO Cv@) -\
[ o )|exp<——) dn
0 n 1+s vn
2s - 1
] § [ no 142 o)C(n—1n' 25
0 77’7 0 Uy
I
v’ T+2s 1 1
< C(UU(%[))) < UT;+2.Y < C801+2x < \/% (5_101)
v

If n > 2, it suffices to estimate

/ O ) exp(——c"(“ A ) dy’
2 T+s %

77 I+s n

<In(L)

/”@/)H'b exp(_CV(U ) —n )) df
2

Uy
< ClIn(e)|v, < ClIn(e)|dp. (5-102)
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With a similar argument, we may justify

7 by Cv()(n—n'
/ (1+|1n(e)|)< ,L exp(—M) < C (/80 + [In(e)|80). (5-103)
0 n T+s l)n
Hence, we have
- = C
18)” 2™ 15| < (/50 + In(©)180) 1 115, (5-104)

Step 6: synthesis. Collecting all the terms in previous steps, we have proved
- g2 C
1(6)" ™11 = = (1 + (@D VS0l 7l erze, + CV8I 15,

+ S Gl + (| 2
e O A F IS

ap

LY, H IV

+ ||g||LooLng>. (5-105)

o0
Ly

SE. Region II: v, < 0 and v,zl + vdz) > v"j)z(n, v; L). Based on [Wu 2016, Lemmas 4.9 and 4.10], we can
directly obtain

IKlpall = I perliLs (5-106)

0,0 ’

S

T[] < (5-107)

L*LE,
Hence, we only need to estimate

L .1 2 S
~ (', 0 (n,v;
11 ——7'[42?]—_/ (77/ (Z /77))
0 v, (n, 05 17')

exp(—Hy y — Z[Hy »]) dn’

+/L (', 210 (9, 8, 7)])
0 vy (1, 05 17)

exp(Z[H, 1) dn’.  (5-108)

In particular, we can take the decomposition

- ”g} /,"/ "'; /
T = / . 000 )) o Hy = BLHy ) d
0

vy (1,05 17)
L', o' (n,%; 1))
9 _}7 9 _H /_% H d /
+[] U;](T],U, n/) exp( L,T] [ L,T]]) 77
L', &6 (n,0; 10
+ f @ 7 [ En . (Rl exp(Z[H,,y1) dn'. (5-109)
n vy (n, 03 1")

The integral [, part can be estimated as in Region I, so we only need to estimate the integral fnL part.
Also, noting that fact that

exp(—Hpr,y — Z[HL,y]) < exp(—=Z[Hy »]), (5-110)
we only need to estimate
L, 6 (. 8: )
p V(.0

exp(—H,y ) dy'. (5-111)

Here the proof is almost identical to that in Region I, so we only point out the key differences.
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Step O: preliminaries. We need to update one key result. For 0 <n <7/,

—VE -} _\/El ”>v§)<v,, (5-112)

R —en’

Then we have

i

" r_
_/ ~_gy<-121 (5-113)
n Up(y) Uy

In the following, we will divide the estimate of /I into several cases based on the values of v, v;? and €7,

‘We write

L L
11 =/ l{vni—50}+/ 159 <v, <0t L{x (<1}
n n L

L
+ / Li—so<v, <01 L wp =1L yemo zop) + / Li—so<v, <01 L wp =11 yemuy <up)
n n
=1L+ 1+ 115+ 114. (5-114)
Step 1: estimate of /I for v, < —38y. We first estimate v;. Along the characteristics, we know

e WDy, = e Wiy, (5-115)

which implies
|U(/p| _ eW("’)_W(”)|v¢| < eW(L)—W(0)|U¢| < WD-WO /El _ 53. (5-116)

Then we can further deduce that

I\)h—‘

-1
EARS <1 — —) VE| 8. (5-117)

K

=

Then we have

12
€2 1 30
vy, = \/El (1—R—) (El—sg)zao—c€4>3, (5-118)

K

when e is sufficiently small. Then this implies that for | E (1, 0)| > v} (1, 0; L)|, for € sufficiently small,
we know min v,’7 > 8o, where (1, v) is on the same characteristics as (17, b) with v;] > 0.

Similar to the estimate of /;, in this step, we will prove estimates based on the characteristics of G
itself instead of «7. Here, we rewrite (5-4) along the characteristics as

dg
d——i-vg K[g]. (5-119)

Also, we will still use simple facts (SF):

» Based on the well-posedness and decay theorem for G, we know ||g||Lg°g <C.
e Based on Lemma 2.4, we get ||K[g]||L§?Q < ||g||% < C and ||V,)K[g]||L§?Q < ||g||L§g <C.

« Since E is conserved along the characteristics, we must have o] = |0/].
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 For n’ <7, we must have v; > |vy,| > 8.

o Using substitution y = H,, ,7, we know

/L v(©'(n, B; 1))
n

= <
vy, (n, 03 1') B

0
/ e’ dy‘ —1. (5-120)

—0o0

exp(Hy, ) dn’

For v, < —§p, we do not need the mild formulation for 7. Instead, we directly estimate

1(8)% e 11y | < (B)%@B'Z% : (5-121)
We rewrite the equation along the characteristics as
G(1,8) = p(v'(n, v: 0)) exp(—Hy 0 — Z[HL.y])
N
. /L KIg10r %[fl"(n; L0) 5.122)
n vy, (1, 05 1')

where v’ (1) = v/(n, b; ') satisfying (1, ©') and (57, b) are on the same characteristic with v, >0, and

"' (7, 05 y))
e [ MEED
s vp(m,03y)
for any s, > 0.
Then taking the n-derivative of both sides of (5-122) yields

g
a—n:Y:Y]—|—Y2+Y3+Y4+Y5+Y6+Y7+Y8+Y9, (5-123)
where
ap(©'(n, 0 0))
vy = PN exp(—Hy o — #LHL ). (5-124)

n

.. dH 0% H
Ys = —p@'(n, 5; 0)) exp(—HL,o—%[HL,n])( a;’°+ E,ML’"]>, (5-125)
L KIGI(', 8 (n, ;) 3v, (0, B3 1) /
Y3:/ 2 *.n ; L ! exp(—Hr v — Z[HL »)) dn’, (5-126)
0 v (m, 05 1') an
L KIG10', v'(n, b5 1)) OHL,y OZ[HL,\ .,
Y4=—/ /" JI - n exp(—HL,,,/—%[HL,n])< L 4 Lo )dn, (5-127)
0 vy (1, 05 1') an an
oo L e o) L
Y5=/ — exp(_HLJi/_%[HL,n])(Vv’K[g](U/,U/(ﬂ,m7]))#> dn', (5-128)
o vy(m,031) on
L K191, 218 (n, B; ")) v, (n. B: ') ,
Ye =/ n/Z _’.n/ 1 ! exp(%[Hn,n’]) dn, (5-129)
n Un (7], Dv 77) an
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" KIG10n', 718 (n, 8 D) R Hy ] |
= R Hy ) ———dn, 5-130
/11 vy, (1, 05 17') exp(ALHy.y D= == dn (5-130)
L . R 8"/ ,"; 1 ,
= [ e e, ])(%K[@(n’,n’(n,n; n’))%)dn, (5-131)
n Uy
Yo = _w, (5-132)
Uy

We need to estimate each term. Since the techniques are very similar to the estimate of 1, without
introducing new tricks we just list the results here:

1
odily | < (1 5-133
(6)"e 1l ( +80 an 8% - ( )
ol !
|(8)7e?"l "y, < € 1+ Ipllzs,, (5-134)
e o2 1
1(8)7eelly;| < C(l + 5_) G Lo, fori=3,...9. (5-135)
. ,
In summary, we have
oll? p
(6)"e Hl|§_ + Gl Lerse |- (5-136)
80 avn Loo 3v¢ L;?g @

Step 2: estimate of II; for —§p < v, <0 and x (u,) < 1. This is similar to the estimate of /> based on

the integral
L o S
v'(n, v;
fwexp(—fln,,n)dn’gl. (5-137)
n Uy, 0:1")
Then we have

- Mk C
|(B) el 11| < 8—2||g||L°°L3?g'

Step 3: estimate of I3 for —6g < v, <0, x(u,;) =1and «/en/v(;5 > v,’7. This is identical to the estimate
of I3; we have

16)7e? " 113] < CVBI7 Nl (5-138)

Step 4: estimate of /14 for —8p < v, <0, x(u,) =1 and /en’ v¢ < v . This step is different. We do not
need to further decompose the cases. Based on (5-113), we have

—Hn,;,/ < _U(U)(U _77). (5_139)
Uy

Then following the same argument in estimating /s, we know

L ( )1+123

Cv(©)( - n/)> a. (5-140)

- ) C
|(0)7 @ I1y| < = ||/ || oo 2 /
€ Iy Uy

= (1+|ln(6)l+lln(n)l)exp<
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L /3 i /
) V&) =)\ .
/ lInGr') | ex ( Cw)n—1) )d
n nl s vr’
If n > 2, we have

L H}Zs i —n L o’ —
/ (v) ()] ex ( Cv(v)(n n)) , / ) exp( Cv(v)(n n))d
n 77‘“ Uy n Up

< ClIn(¢)|v, < C|In(e)|8p. (5-142)
If 0 < n < 2, using Holder’s inequality, it suffices to estimate

2 1+2s 27 o
/0 (v) |1n(n)|ep( Cv(n)v(n n))d/

17 1+r n

2 lerSZS 2 e e ﬁ
5(/ L ingyy % dn) (/ <B/>exp(—(1+2s)”(°)c(" n)>dn/)
0 772 0 Uy

N 1
o)\ T+ 1 1
< C<v”£ >> <uy <08 < /8. (5-143)

v(v’)

Hence, we first estimate

(5-141)

<In(L)

With a similar argument, we may justify

e Cv(E)(n—n'
/ (1+|1n<e)|>< ) exp(—%) < C(V/8o + lIn(€)|80). (5-144)
1 T 1
Hence, we have
- = C
18)” ™ 114] < = (1 + (@) DV/bo | |1, (5-145)
and
- - C
1(8)” e 15| < = (/b0 + lIn(e) |80} | 15, (5-146)

Step 5: synthesis. Collecting all the terms in previous steps, we have proved

- 3P C
(B)" e 11 < =1+ |1n(€)|)\/(%||427||L°°L°° + VB iy,

C 8p ap
IIGIIL oLy — +1GllLersy, ). (5-147)
8 31),7 Loo 8U¢ Lgo e
S0
SFK. Region III: v, < 0 and v + v¢ < v&z(n, v; L). Based on [Wu 2016, Lemmas 4.9 and 4.10], we
still have
IKlpall < llperliLg,, (5-148)
S
TSl < | =2 (5-149)

L®LY,
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Hence, we only need to estimate

™, (
vy, (1,

v; 1))
n

Il =T[F] = /
0 "

exp(—Hy+ ,y — Z[Hy+ ;1) dn’
N /"7+ (', Z[0' (n, 0; 1))
; vy, (n, 05 17')

n,
v;

exp(Z[Hyy D dn'.  (5-150)

Here n is defined in (5-25). In particular, we can take the decomposition

~ " (', 0 (1, 0; 1))
Tle] =/ = exp(—Hy+ ,y — Z[Hy+ 1) dn/
AU N0 o o

G, 6 (1,05 1))
+ / 4 /
n vy, (n, 05 1')
+/n+ (', 210 (1, ©; 1')])
0 vy (n, 05 17)

exp(—Hy+ ,y — Z[Hy+ 1) dn’

exp(Z[H, y]) dn'. (5-151)

Then the integral fO"(- -+) is similar to the argument in Region I, and the integral fn'fr(- -+) is similar to
the argument in Region II. The only difference is in Step 1 when estimating the fn" (- --) part for n < —3dy.
Here, we introduce a special trick.

We first estimate v, in terms of vy. Along the characteristics, we know

e By (L) =7V My, (5-152)
which implies
1 -1
_ _ €2
vy (L) = eV B =Wy, < ME-WO ) = (1 - R-) lugl. (5-153)
K
Then we can further deduce that
AN €3\
2, .2 2 2
v, + v, < <1 — R_K> Vg < <1 — R_K) V- (5-154)
Then we have
E% -2 1
'””'5\/(1_17) v} — 03 < €3 lug| < olvgl. (5-155)

when € is sufficiently small.

o Therefore, if |vy| < 1, then Step 1 is not necessary at all since we already have |v,| < y. We directly
apply the argument in estimating /I to obtain

> P C C
(372 111 < Z(1+ In@DVool 7 iy, + CVBI liwsg, + 516 ierg,. (5-156)

» However, if vy > 1, let (1, v, vg) and (77, —8o, Vg) be on the same characteristics. Then we have the
mild formulation

2 ~ - K L. B
g(n»t’)=Q(n,—80,v¢)exp(_Hﬁ’n)+/ [G1(n', v'(n, v; 1))

. exp(H,y ) dn. (5-157)
: v (0. B; 1) m
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In other words, we try to use a mild formulation and avoid going through the n* point. Then similar to
the estimate of /I, taking the n-derivative in the mild formulation, we obtain

ag ag(ﬁv _809 ﬁ(b)

=9 0lv* 77
e
W) an

()7 £ (77, =80, Tg)

1
= C<1 + )”g||L°°L°° +C

Also, we may directly verify that

()70 e 5, — 8, )27 T —00: Tp) '

8g(ﬁ9 _50’ ‘D(ﬁ) %

N =12 - - - =12 ~ ~
< ()7 ¢ (77, —80, Ug) + [(0)7 e ¢ (77, —80, Tg) 750 an

8g(ﬁ9 _50’ f)‘(ﬁ) 8_ﬁ
on an
<1(3) e F (i, 80, Ty, (5-158)

since dvg/dn = 0. The estimate of |(17)19eg|5|2,c?(ﬁ, —&0, Ug)| 1s achieved since now |[v,| < §p.

Hence, we have
1) 111) = S (1+IODVBo 7 15,4+ OV 5,4 51T i+ G i, (5-159)
=5 0 L®LE, LoLg, T gz S loens, a9 lory,.
5G. Estimates of normal derivative. Combining the analysis in these three regions, we have for 0 < s <« 1

/Il ooy, <—<1+|1n<e)|>f||w||moo +CVB | || Lo 5 ||9||L oL

5 (i W e

Then we choose these constants to perform an absorbing argument. First we choose 0 < § <« 1 sufficiently

S

+||g||Lngfg>+||ng||Lgfg+“T (5-160)

L°°L§f’0
small such that
CVs <. (5-161)
Then we take 8y = +/3¢*|In(e)|~! such that
—(1 +IIn(e))/do <2C8 < 3 (5-162)

for € sufficiently small. Note that this mild decay of g with respect to € also justifies the assumption in
Cases II and III that

=

€1 <8y (5-163)

for € sufficiently small. Here since § and C are independent of €, there is no circular argument. Hence,
we can absorb all the terms related to ||.& ]| 1« Ly, on the right-hand side of (5-160) to the left-hand side
to obtain the desired result.

Lemma 5.4. We have

0
+H_P
1y, 10V

9
)—i—CIln(e)Ies(H—p
L¥LY, Jvy

S.
Il ||, < C(”Pﬂ”L?@‘*’H T”f +||g||LooLoo) (5-164)

LOO
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5H. Estimates velocity derivative. Consider the general e-Milne problem with geometric correction for
P =(0G/0vy) as

0% B 0P ~
Uy an +G(n )(Ud)a vnv¢m)+v<%’:,93+599,

#(0,0) = pxp(0) for v, >0, (5-165)
B(L,v) =B(L, %[v)),
where pg and Sy will be specified later with
B, ) = /2 ¢(n, ©)0y, k(i, ©)G(n, 1) dii. (5-166)
R

This is much simpler than a normal derivative, since % does not contain % directly. Then by an argument
similar to one before, we obtain the desired result.

([
L®LY, ) duy i

In a similar fashion, consider the general e-Milne problem with geometric correction for ¢ =

£(3G/dvy) as

Lemma 5.5. We have

B <C Sz
12l iz, = € (I1palog,+| =

+||Q||L°°L§?Q>- (5-167)

v,,a +Gm) (v vnv¢m)+u%=%+&g,

(0, 0) = pcg(t)) for v, > 0, (5-168)
¢ (L,v) =% (L, Z[v]),
where py and Sy will be specified later with
Cg(’?v b) = /2 ¢(n, B)3v¢k(ﬁ, B)Q(n, u) dut. (5-169)
R

This is also much simpler than a normal derivative, since % does not contain ¢ directly. Then by an
argument similar to one before, we obtain the desired result.

Lemma 5.6. We have
S¢

i) rellan
LOCL;?Q) dvy

0
+H_P

+
8U¢

1€ Loy, < C( Pe
, .
e

+ ||g||L°°L§f’g>- (5-170)

v L3, L3,

51. Estimates of tangential derivative. In this subsection, we combine above a priori estimates of normal
and velocity derivatives.

Theorem 5.7. We have

g
{—

< C|In(e)|e”* (5-171)
an

L°°L°O

¢ 9 H;
L®LY, H dvy L®LY, Vg

for some 0 < s < 1.
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Proof. Collecting the estimates for </, %, and ¥ in Lemmas 5.4, 5.5, and 5.6, we have

Sy _
I ||y, < C(”PQ/”Lg"Q ::/ ) + Colln(e) e, (5-172)
L®LE
S
1211, < C( Ip2lloz, + +Co, (5-173)
’ ’ V L[>
Sz
1% s, < C( pelley, + |~ +Co, (5-174)
’ ’ V LooLoo
where
Co=llpl o + 1G] (5-175)
0= p Ll?g av Loo a ¢ Loo LOOLI?.Q'
Taking derivatives on both sides of (5—4) and multiplying by ¢, we have
, Op op
P = ¢8v — Uy, ¢8 +vp — K[G](0, b), (5-176)
8p
2= Uy——o, 5-177
P# = Uy avn ( )
op (5-178)
o —= _—, -
Pw n 8U¢
G
Sy = —(v¢<@ — VU E), (5-179)
Sz =9 — GuyE, (5-180)
S¢ = GQRupHB — vy¢). (5-181)
We can directly verify that
Ipelleg, + Ipalis, +lpeliy, < Co. (5-182)
Since |G(n)| +0G/dn| <€, from (5-181), we obtain
vy B v, ¢
1€ L, < Co+ Coe| | —— —
’ VollLers, VollLerss,
< Co+Coe(I1 2l ery, + 1% oLy, (5-183)
which further implies
€1 Lo, < Co+ Co€ll BllLrs, - (5-184)
Plugging (5-184) into (5-180), we obtain
o 'U¢<5
128l L=Lse, < Co+ Col | — te|—
Vlery, 1V g,
o
<Co+Col |— + €l oLy,
Vg, |
o 2
=Co+Co " + e BllL=ry, ), (5-185)

L®LY,
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which further implies

of
[BlL~Ly, < Co+ Co| — ; (5-186)
L®LY,
€N Lo, < Co+ Coe | — . (5-187)
' L¥LY,
Plugging (5-186) and (5-187) into (5-179), we get
2
_ re VU €
|/l L1, < Colln(e)]e S+Co€( L= A )
’ L®LY, Voo llery,
V2o of
< C0|1n(e)|e_s+Coe< ¢2 +e % )
v e, v ey,
< Colln(e)|e™ + Coell [l L>L, (5-188)
which implies
[l oo e, < Colln(e)]e™". (5-189)
Hence, we derive
o, B, ¢ <Cline)|e", (5-190)
completing the proof. U

The above theorems only provide a priori estimates. The rigorous proof relies on a penalty method
and an iteration argument. This step is standard as in [Guo and Wu 2017a], so we omit it here.

Theorem 5.8. For K¢ > 0 sufficiently small, we have

ag g
an vy

g

+ 3U¢

LC’OL°C

KO’I;- +

KO’?;

KO’I;

< ClIn(e)|e”® (5-191)

LC’OL°O L""L°O

for some 0 < s K 1.

Proof. This proof is almost identical to Theorem 5.7. The only difference is that S, is added by Kov,.<7,

S is added by Kov, %, and S¢ is added by Kov,%. When K| is sufficiently small, we can also absorb

them into the left-hand side. Hence, this is obvious. |
Now we pull the 6-dependence back and study the tangential derivative.

Theorem 5.9. We have
ag

a0

Ko')

—,0,9)

< C|ln(e)|e™™ (5-192)
L®LE

9,0

for some 0 < s < 1.
Proof. Let # = 0G/0d0. Taking the 0-derivative of both sides of (5-4), we have that # satisfies

o 20 o R, < 2 0G 39)
97 -K = &
Uy an +G(n )( vnv¢av¢>+v7/ [#] R G( ) U"U¢8v¢ ,

7(0,0,0) = g—g(e, n) for sing > 0, (5-193)

w(L,0,0)=%(L,6,2%Z[v]),
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where R, is the -derivative of R,. For n € [0, L], we have

/

£ — <CmaxR, <C. (5-194)
R, —e€n 0

Since ¢ (1, v) > vy, based on Theorem 5.8 and (5-4), we know

o
eK"”vn— < C|In(e)|e™, (5-195)
0 sy,
which further implies
o oW
eXonG(n) vi— — vnvd,—) < ClIn(e)|e”® (5-196)
31),7 3v¢ LDQL?Q

for some 0 < s <« 1. Therefore, the source term in (5-193) is in L* and decays exponentially. By
Theorem 5.2, we have

leXomw (n, 6, P lery, < Clln(e)le™ (5-197)
for some 0 < s < 1. U

6. Proof of the main theorem

Now we turn to the proof of the main result, Theorem 1.1. The asymptotic analysis already reveals that
the construction of the interior solution and boundary layer is valid. Here, we focus on the remainder
estimates. We divide the proof into several steps:

Step 1: remainder definitions. Define the remainder as

1 1
R= E—S(ff —(eFi+ R+ F) — (e +€27)) = E—S(fe -0-9), (6-1)

where
Q=cF +FR+EF;, (6-2)
D =T+ P, (6-3)

In other words, we have
ff=0+2+¢€R. (6-4)

We write . to denote the linearized Boltzmann operator,

ZLIfl=€v-Vou+ L[f]

"9n  R.—en\ v, n¢8v¢ Re —e€n (52 4 p12)2 ¢ 96

+L[f] (6-5)

Step 2: representation of .Z[R]. Equation (1-16) is actually
LI 1=TLfC, £, (6-6)

which means
ZIQ+2+ERI=T[Q+2+€R, Q+2+€R]. (6-7)



1422 LEI WU

Note that the nonlinear term can be decomposed as
T[Q+2+€R, Q+2+€ R =¢T[R,RI+2'T[R, 0+ 214+ T[Q0+2,0+2].  (68)
The interior contribution can be represented as
Z1Q1=€V-Vi(€F 1+ Fy+ € F3) + LI Fi + € Fy + € F3]
= *5 -V, F3 4+ €T [Fy, Fi11426°T[F), Fil. (6-9)

The nonlinear term will be handled by I'[ Q 4+ 2, O + 2]. On the other hand, we consider the boundary
layer contribution. Since .#; = 0, we may directly compute

0T € 3.7 0.F € R 0.F
212] = (v, == — R ey C _py 2 4 L[]
on R¢—¢€n v, vy R¢ —e€n (r2+7r'2)2 a0
3 R 0.7
€ £y 2, (6-10)
RK —€n (r2+r/2)§ 00
Therefore, we have
ZIR]1=€T'[R, R1+2T[R, QO+ 2]+ 81 + S1, (6-11)
where
R 1 R 3.7
S| = —€i-V,F3+ € 2 (6-12)

T Vg
Ry —en 24,2y~ 06
Sy = 2T [Fi, Z2]+ 2€T[Fy, F3]+ €U [.%, 2] +2€T[Fa, 11+ 2€*T [ Fa, F3]+ €’ T[F3, F3]. (6-13)
Step 3: representation of R — P[R]. Since

€ Go. D) = i Fo. D2 (@) | W @) £ (R, W)+ 7 (Fo) | dii 4 122 () (11§, (Fo, D) — 1 (B)),

-1 (xg)>0

where both sides are linear, we may directly write

R(Xo, V) — P[R](X0) = H[R](Xo, V) + h(Xo, V), (6-14)
where
> o > o > 1 5 1 5 ol o oo -
H[R](Xo, v) = (uj (X0, V) =@ 2(0) | > @R, wu-n(xo)| du (6-15)
u-n(xg)>0
and
5> o N > _1 LI S5 oy o oo -
h(Xo,0) = (1,(X0, V) —p (V) ™2 (V) w2 () F3 (Xo, 1) [ (Xo) | dut
171 (0)>0
> - > > o 1 5 1. _ _ N T N -
+ (5, (Ko, V) — (V) —€ 1 (X0, V) ) ™2 (D) w2 (W) (e Fate ™ Fo+ F3) (Xo, 1) |17 (Xo) | dii

1-71(Xp)>0
N N - o > o _1 .
+ (1§, (%o, 0) — (V) —€ 1 (X0, 0) —€* ua (X0, 1) ) ™2 (D)
X f 107 (e (Q+2) (Fo. 1) |- (%) | di
1-71(X9)>0

1 - - - - - - - - - -
€2 12 (V) (1 (Ko, V) — (D) —€ 1 (Ko, V) —€ (X0, 0) —€ 143 (X0, V). (6-16)
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Step 4: L>™ estimates of R. Using Theorem 4.4, we have the L?" estimate of R

1
;II( P)I R]||L2+ |(1 = P)RIl> + IPLR]]l L2
1 1
=< C(O(l)ém IRz + 6—2IIP[f[R]]||L2m/<2m—1> + glliﬂ[R]llL2 + IR —PIR]|L» + ;IR - P[R]|L2)

! 1
< C<0(1)€’" ||R||L°° —||P[Sl]||L2m/(2m—1>
(||6 T[R, Rlllz2 +I2T[R, O + 2112 + IS1ll 22 + 1521 12)

+IH[R]|Lm + |kl + —IH[R]|L2+—|h|L2) (6-17)

Note that here we do not have other source terms in the L2/~ norm because for any f, g € L?

PI(f, &)]1=0. (6-18)
We need to estimate each term. It is easy to check

lev - Vi F3]l 12 < Ce, (6-19)
“E‘B N Vx F3 ||L2m/(2m—l) S CG, (6'20)

and also by Theorem 5.9, using the rescaling and exponential decay, we have

mme
| ([ ]
Cx x
mme / é
([ ] d"cw)
- Lg,og
| F Rmin57 %
Cez< / / e 2K In(e)[Pe ™ dnd9>
—mJ0

< Cer~*|In(e)| (6-21)

1 R, a,%
Vg
Re—e€n 2 4 r/z)%

0.7

dn d@)

I/\

—(77, 6)

IA

for some 0 < s < 1. Similarly, we can prove that

H R, i677 (r? fl;/Z)i . 835;2 L2m/@m—1) = Cel_ﬁ—sun(e”. (6-22)

In total, we have
IS1ll,2 < Cex~*|In(e), (6-23)
IPLS 1 2 < Ce'™ 2~ [In(e)]. (6-24)

On the other hand, by Lemma 2.5, we know

I2C[R, O+ 212 < C(IRN21Q + 2l + RN 210 + 2] ). (6-25)
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Based on the smallness assumption (1-9) on the boundary Maxwellian, it is easy to check that
IR 219 4 2Ly, < o(Del|R]| 2.
Also, we may take the decomposition
IR 2119 + 2~ < [|(T=P)RIN 21 Q + 2z~ + P[R]lI 211 Q + 2l >
<o(De|| I =P)[R]ll 2 +o(De[P[R]] L2-
Then we may derive that
I2T[R, Q 4+ 2]lI;2 < o(De(IPLRIIl 2 + |0 = P)[RI 12)-
Also, using the smallness assumption (1-9) again, we can directly estimate
|H[R]|Lm < o(1)€|R[pm < o(De||R| =,
|H[R]|2 = o(D)elPIR]I2 .
Using Lemma 2.5, it is easy to check
1521122 < Ce>~*lInGe)l,
|hlLm < Ce,
|hl;2 < Ce.
Summarizing, we have proved that
1
—
€2

< C(O(l)G% IRl L=+e =3 |In(e)|+€2|T[R, Rl 2+o(DIP[R]ll 240 (D[ (I-P)[R]] 2

1
E||(|]_P)[R]”L%+ (I=P)[R]l 2 +IP[R]l| L2

+€—%—S|1n(e)|+e_%_s|1n(€)|+0(1)€||R||L°°+€+0(1)|7)[R]|Li+1)~

Absorbing [|(I — P)[R]|| .2 into the left-hand side, we obtain

1 1
EII(ﬂ —P)RI 2 + — (A =PRIl 2 + IPIR]Il 2
€z

< C(o(Der || Rl +€~ 72~ [In(€)| + €| T[R, Rll| 2 + o(DIPLR]| 2 + o(DIPIRI| 2 ).

Here, we apply the estimate (4-72) to bound
1

1 1 2
IPLRI|2 < C(IIP[R]IILz + 1A =P)[RI 2+ ( /Q N Rf[R]) )

€2 €2

1 1 1
< C(IIUJ’[R]IIL2 + I =P)RI2 + — 1T =P)LIRI > + EIIP[X[R]]Hu)-

€2 €2

Then using L? version of Lemma 4.3 (see [Wu 2016; Guo and Wu 2017a]), we obtain

1 1
IPRI]llz2 = C(I(l —P)RIl2 + ;II(U — )R]z + ZIZIR 2 + R —P[R]le_).

(6-26)

(6-27)

(6-28)

(6-29)
(6-30)

(6-31)
(6-32)
(6-33)

(6-34)

(6-35)

(6-36)

(6-37)
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Therefore, we have

1

PRI,z < C(||P[R]||Lz+€i;||<H—P)[R]||Lz+€ié( fg . Rz[R])Q)
< c<|(1—7>>[R]|L3+§||<u—P>[R]||Lz
+é”(|]_|p)[$[R]]”L2+é”H:D[E[R]]||L2+|R_7D[R]|L2>' (6-38)
Note that the right-hand side of (6-38) has been estimated in (6-17) and (6-35), so we obtain
PRIl

< CoMen IR~ +€ 173 [In(e)] + €T IR, Rlll 2 +o(DIPIRIl L2 +0(DIPIRI|2).  (639)

Absorbing |P[R]] L2 into the left-hand side, we obtain

PRIz < C(o()em IRl + €' 7% ~*|In(e)| + XITR, Rl 2+ o(DIPIRI2).  (6-40)

Plugging (6-40) into (6-35), we have

1 1
SIO=PRIll; + — 11 =PRIz + IPLRII 2n
€2
< C(o()en | Rl + €72 |In(e)| + €2 T[R, R1ll 12 + o(D[IPIR]Il2). (6-41)

Note that the estimate of ||[P[R]||;2 has been incorporated in above analysis for |P[R]| 12+ SO we may
further simplify

1 1

NA=P)RII; + 10 = P)IRIl; + PRI an
€2

< C(o(en || Rz +€ " |In(e)| + €| T[R, R1ll ). (6-42)

Step 5: L estimates of R. Based on Theorem 4.7, we have
R 52 o =12
1(9)” e Rl +1(0) """ R
1 1
= C\ —TIIP[R]llz2n + EII([| —P)[R]Il .2
€Em

(B)?eC"’T[R, 0 + 2]
V

(T)? e3[R, R

v

<5>ﬁeglﬁlzsl

v

+

LOQ

- =12
(1) e,

L L

+1(B)? e H[R]| = + |<6>’9eg"7'2h|m). (6-43)
LOO
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Hence, using (6-42), we know
1(9)? €27 Rl + 1(3)” P R| 1
—1—-L —4s 8 2
SC(O(I)IIRIILOO+E " In(e)|” + €[TR, R]| 12

(B)?eC"’'T[R, 0 + 2]
V

(T)? PP S3T[R, R
V

- 512

(5)7 el
+ N
V

+

LOO
- =12
(v)ﬂeglvl S,
+ R —
v

L L

LDO
We can directly estimate
I€2T[R, R]ll,2 < CEX(|(5) e R .
5| (B)P e TR, R]
v
(0)?e?’T'[R, Q + 2]
v

€

- =12
< Ce|()? e R||Z ,
LOQ

N =12
< Cel|(9)"e? " R 1.
LOO

Also, we know

(9)7 s,
v

<5>ﬁegli|252
v

=C,
LOO

1(5)? e HR]| 1o < €](3)" eV R e,

N =02
()7 e R~ <e.

Hence, in total, we have

N =2 N =12
1) @V Rl o + ()" @V R 0

N =12 N =2 =02
< C(o(II(B)” e Rl 1 + 0(1)[(3)” e R + €173~ In(e)| + € () e? ™ R||2 ).

Absorbing o(1)|(3)? 2"’ R|| .~ and 0(1)|(5)’9e9‘5‘2R|Lo+o into the left-hand side, we obtain
13)? €277 Rl 1w + 1(8) el Rl e < Ce™! 35 In(e)| + €21 (3) e R||2 ),
which further implies
1(3)? €27 Rl 1 + 1(8) el Rl oo < Ce™' =2~ |In(e)|

for € sufficiently small. This means we have shown

—|| ) eelil’ (f€—(eFi+ P+ F3) — (€71 +€))| < Ce 1" m 5 In(e)).

+1(3) e H[R]| = + |<6>”e@'5'2h|m). (6-44)

(6-45)

(6-46)

(6-47)

(6-48)

(6-49)

(6-50)
(6-51)

(6-52)

(6-53)

(6-54)

(6-55)
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Therefore, we know
1(3)? 2P (€ — e Fi — e2) Il 100 < Ce>~ 35 [In(e)]. (6-56)
Since #| = 0, we naturally have for F = F)
1(3)? e (€ — € )|l < Ce>~ 3% [In(e)]. (6-57)
Here 0 < s < 1, so we may further bound
1(3)7 e (£ — e )|l < C(8)€>™ (6-58)

for any 0 < § « 1. Also, this justifies that the solution f€ to (1-16) exists and is well-posed. The
uniqueness and positivity follow from a standard argument as in [Esposito et al. 2013].
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