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ABSTRACT
Relativistic jets launched by rotating black holes are powerful emitters of non-thermal radiation. Extraction of the rotational
energy via electromagnetic stresses produces magnetically dominated jets, which may become turbulent. Studies of magnetically
dominated plasma turbulence from first principles show that most of the accelerated particles have small pitch angles, i.e. the
particle velocity is nearly aligned with the local magnetic field. We examine synchrotron self-Compton radiation from anisotropic
particles in the fast cooling regime. The small pitch angles reduce the synchrotron cooling rate and promote the role of inverse
Compton (IC) cooling, which can occur in two different regimes. In the Thomson regime, both synchrotron and IC components
have soft spectra, νFν ∝ ν1/2. In the Klein–Nishina regime, synchrotron radiation has a hard spectrum, typically νFν ∝ ν, over
a broad range of frequencies. Our results have implications for the modelling of BL Lacertae objects (BL Lacs) and gamma-ray
bursts (GRBs). BL Lacs produce soft synchrotron and IC spectra, as expected when Klein–Nishina effects are minor. The
observed synchrotron and IC luminosities are typically comparable, which indicates a moderate anisotropy with pitch angles
θ ! 0.1. Rare orphan gamma-ray flares may be produced when θ " 0.1. The hard spectra of GRBs may be consistent with
synchrotron radiation when the emitting particles are IC cooling in the Klein–Nishina regime, as expected for pitch angles θ ∼
0.1. Blazar and GRB spectra can be explained by turbulent jets with a similar electron plasma magnetization parameter, σ e ∼
104, which for electron–proton plasmas corresponds to an overall magnetization σ = (me/mp)σ e ∼ 10.

Key words: plasmas – radiation mechanisms: non-thermal – turbulence – BL Lacertae objects: general – gamma-ray bursts.

1 IN T RO D U C T I O N

Relativistic jets from accreting black holes are powerful emitters of
non-thermal radiation. Examples include gamma-ray bursts (GRBs;
e.g. Piran 2004; Kumar & Zhang 2015) and blazars (e.g. Urry &
Padovani 1995; Blandford, Meier & Readhead 2019).

Relativistic jets may be launched by a universal physical process,
in which the rotational energy of the black hole is extracted through
electromagnetic stresses (e.g. Blandford & Znajek 1977; Komissarov
et al. 2007; Tchekhovskoy, Narayan & McKinney 2011). This
process produces magnetically dominated jets, where the magnetic
energy density exceeds the rest mass energy density of the plasma.
Since there is a huge separation of scales between the transverse
scale of the jet and the kinetic scales of the plasma, turbulence is a
natural candidate to dissipate the magnetic energy and accelerate a
population of non-thermal particles.

Since GRBs and blazars convert a similarly large fraction of the
jet energy into gamma-rays (e.g. Nemmen et al. 2012), it is natural
to consider fast cooling conditions, i.e. the emitting particles radiate
their energy on short time-scales compared with the dynamical time
of the jet expansion. When most of the jet energy is stored in the
magnetic fields, synchrotron emission is usually expected to be the
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dominant cooling channel. Then fast cooling particles produce a
soft synchrotron spectrum, νFν ∝ να with α = 1/2. For GRBs, this
prediction of the synchrotron model is problematic, as the observed
bursts show harder spectra with α ∼ 1 (e.g. Preece et al. 2000; Kaneko
et al. 2006; Nava et al. 2011; Gruber et al. 2014).

The hard GRB spectra generally favour photospheric emission
models, where the peak of the spectrum is formed by multiple
Compton scattering during the opaque stage of the jet expansion (for a
review, see e.g. Beloborodov & Mészáros 2017). Some GRBs appear
to have a clear photospheric origin (e.g. Ryde et al. 2010). However,
for many other GRBs the emission mechanism is not established. It is
possible that in many GRB jets the dissipation occurs in the optically
thin zone, and synchrotron dominates the observed emission (e.g.
Oganesyan et al. 2019; Burgess et al. 2020). Polarization of the
prompt radiation may help discriminate between different emission
models (e.g. Lundman, Vurm & Beloborodov 2018; Gill, Granot &
Kumar 2020), however observations using different instruments are
not yet conclusive (e.g. Yonetoku et al. 2011, 2012; Burgess et al.
2019; Chand et al. 2019; Chattopadhyay et al. 2019; Sharma et al.
2019; Zhang et al. 2019; Kole et al. 2020).

The observed spectral slopes remain an important constraint
for GRB and blazar models. For blazars, the emission is almost
certainly due to synchrotron and inverse Compton (IC; e.g. Maraschi,
Ghisellini & Celotti 1992; Sikora, Begelman & Rees 1994). The
spectrum is softer than for GRBs, and the typical slope, α ∼ 1/2,
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may be consistent with the standard fast cooling scenario. Although
a common dissipation process in blazars and GRBs is an attractive
possibility, one immediate challenge for such a model is to explain
the spectral difference.1 This issue is investigated in this paper.

In recent years, increased computational capabilities made it
possible to study non-thermal particle acceleration in magnetically
dominated turbulence from first principles (e.g. Zhdankin et al. 2017,
2018, 2020; Comisso & Sironi 2018, 2019; Comisso, Sobacchi &
Sironi 2020; Nättilä & Beloborodov 2020; Sobacchi, Nättilä & Sironi
2021). Particle acceleration proceeds in two stages (e.g. Comisso &
Sironi 2018, 2019). First, particles experience an impulsive accel-
eration event that is powered by reconnection in large-scale current
sheets. Since the reconnection electric field is nearly aligned with the
local magnetic field, the distribution of the accelerated particles is
strongly anisotropic (particles move nearly along the direction of the
local magnetic field). Second, particles may be further accelerated by
stochastic scattering off the turbulent magnetic fluctuations, similar
to the original picture of Fermi (1949). Stochastic acceleration is
suppressed in fast cooling conditions since the acceleration time-
scale is comparable with the light crossing time of the system (e.g.
Nättilä & Beloborodov 2020; Sobacchi & Lyubarsky 2020; Zhdankin
et al. 2020; Sobacchi et al. 2021). Impulsive acceleration is practically
unaffected by cooling since it operates on extremely short time-
scales.2

Motivated by these results, we study synchrotron self-Compton
emission from anisotropic particles.3 The anisotropy has an im-
portant impact on the properties of the emitted radiation. Since
particles move nearly along the direction of the local magnetic field,
the rate of synchrotron cooling is strongly reduced. As a result,
even in a magnetically dominated plasma, IC scattering can become
the dominant cooling channel and shape the particle distribution
function, in particular in the fast cooling regime. Then the radiation
spectrum depends on the IC scattering regime. Particle cooling in the
Thomson regime leads to soft synchrotron and IC spectra, νFν ∝ ν1/2,
while cooling in the Klein–Nishina regime leads to hard synchrotron
spectra, typically νFν ∝ ν. Then the difference between blazars and
GRBs could be explained if the IC scattering regime is different.

Several authors argued that hard GRB spectra may be due to IC
cooling in the Klein–Nishina regime (e.g. Derishev, Kocharovsky &
Kocharovsky 2001; Bošnjak, Daigne & Dubus 2009; Nakar, Ando &
Sari 2009; Daigne, Bošnjak & Dubus 2011). However, these authors
did not consider the effect of particle anisotropy. Then IC cooling
can have a strong effect on the particle distribution only in weakly
magnetized plasmas. A basic point of this paper is that strong particle

1Several authors argued that magnetic energy dissipation in GRB jets provides
a continuous source of heating, which may prevent particles from cooling
down by radiative losses (e.g. Zhang & Yan 2011; Beniamini & Piran 2014;
Beniamini, Barniol Duran & Giannios 2018; Xu, Yang & Zhang 2018). The
resulting synchrotron spectrum is harder than in the standard scenario where
the heating/acceleration process is impulsive.
2Even though we focus on simulations of magnetically dominated plasma
turbulence, anisotropic particle distributions may be produced in any system
where particle injection is governed by reconnection in the strong guide field
regime, and where fast cooling prevents further particle energization. This
may happen in the non-linear stages of the kink instability (Davelaar et al.
2020) and of the Kelvin–Helmholtz instability (Sironi, Rowan & Narayan
2021).
3In synchrotron self-Compton emission, the synchrotron photons are IC
scattered to higher energies by the non-thermal electrons within the jet. We
neglect IC scattering off any photon field that is produced outside the jet.

Table 1. Energy density of the synchrotron and IC photons emitted by
particles with Lorentz factor γ , particle cooling time, and optical depth for
pair production, for pitch angles θ ! θKN (see Section 3.1). The synchrotron
photon energy is εs % (θ/θKN) (γ 2/σ 3

e ) mec
2. The IC photon energy is εIC %

(θ /θKN)(γ 2/σ e)mec2. We assume fast cooling conditions, i.e. tcool ! tdyn.
The magnetic compactness (B and the critical pitch angle θKN are defined in
equations (14) and (19), respectively.

γ ! σ e

Us[εs] = θ
(

γ
σe

)
UB

UIC[εIC] =
(

γ
σe

)
UB

tcool[γ ] =
( 1

θ

)( 1
γ

)
tdyn
(B

τγ γ [εIC] = 0

Table 2. Same as Table 1, for pitch angles θKN " θ " θ
1/3
KN (see Sec-

tion 3.2.2). The synchrotron photon energy is εs % (θ/θKN) (γ 2/σ 3
e ) mec

2.
The IC photon energy is εIC % (θ /θKN)(γ 2/σ e)mec2 if γ ! (θKN/θ )σ e, and
εIC % γ mec2 if γ ! (θKN/θ )σ e.

γ "
(

θKN
θ

)
σe

(
θKN
θ

)
σe " γ " σe

Us[εs] = (θθKN)1/2
(

γ
σe

)
UB Us[εs] =

(
θ3

θKN

)1/2 (
γ
σe

)2
UB

UIC[εIC] =
(

γ
σe

)
UB

tcool[γ ] =
(

θKN
θ3

)1/2 (
1
γ

)
tdyn
(B

tcool[γ ] =
(

1
θθKN

)1/2 (
1
σe

)
tdyn
(B

τγ γ [εIC] = 0 τγ γ [εIC] =
(

σγ γ

σT

)
(θθKN)1/2σe(B

anisotropy allows magnetically dominated jets to emit in the IC-
dominated regime, with hard synchrotron spectra.

This paper is organized as follows. In Section 2, we discuss the
general properties of our model. In Section 3, we describe the emitted
radiation spectrum. We refer the reader not interested in the technical
details of the derivation to Tables 1–6, where we summarize the
properties of the radiation spectrum. In Section 4, we discuss the
astrophysical implications of our results.

2 PH Y S I C A L M O D E L

We consider a turbulent plasma in the jet rest frame. The plasma
may be roughly described as a cloud of some density ne and size
l ∼ R/*, where * is the jet Lorentz factor at a radius R. The jet
carries magnetic field B, and we assume that turbulence is strong,
with fluctuations δB ∼ B on scale l. It is convenient to introduce the
‘electron magnetization’ parameter,

σe = UB

nemec2
, (1)

where UB = B2/8π is the magnetic energy density, me is the electron
mass, and c is the speed of light.4 In electron–proton plasmas, the
overall magnetization (normalized with respect to the proton rest
mass energy) is σ = (me/mp)σ e, where mp is the proton mass. In pair
plasmas, the overall magnetization is σ = σ e. The magnetization
parameter σ e is defined as the available magnetic energy per unit
electron rest mass energy.

4If electrons are initially relativistically hot, the electron magnetization in
equation (1) is usually normalized to the electron enthalpy density.
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Table 3. Same as Table 1, for pitch angles θ
1/3
KN " θ " θ

1/5
KN (see Section 3.2.3). The synchrotron photon energy is εs % (θ/θKN) (γ 2/σ 3

e ) mec
2.

The IC photon energy is εIC % (θ /θKN)(γ 2/σ e)mec2 if γ ! (θKN/θ )σ e, and εIC % γ mec2 if γ ! (θKN/θ )σ e.

γ "
(

θKN
θ

)
σe

(
θKN
θ

)
σe " γ " θ2σe θ2σe " γ "

(
θKN
θ3

)1/2
σe

(
θKN
θ3

)1/2
σe " γ " σe

Us[εs] = θ2
(

γ
σe

)
UB Us[εs] =

(
θ5

θKN

)1/2 (
γ
σe

)3/2
UB Us[εs] =

(
θ3

θKN

)1/2 (
γ
σe

)2
UB Us[εs] =

(
γ
σe

)
UB

UIC[εIC] =
(

γ
σe

)
UB UIC[εIC] =

(
θKN
θ3

)1/2
UB

tcool[γ ] =
(

1
γ

)
tdyn
(B

tcool[γ ] =
(

θ
θKN

)1/2 (
1

γ σe

)1/2 tdyn
(B

tcool[γ ] =
(

1
θθKN

)1/2 (
1
σe

)
tdyn
(B

tcool[γ ] =
( 1

θ

)2
(

1
γ

)
tdyn
(B

τγ γ [εIC] = 0 τγ γ [εIC] =
(

σγ γ

σT

)(
θKN
θ

)1/2
(γ σe)1/2 (B τγ γ [εIC] =

(
σγ γ

σT

)
(θθKN)1/2σe(B

Table 4. Same as Table 1, for pitch angles θ
1/5
KN " θ " θ

1/7
KN (see Section 3.2.3). The synchrotron photon energy is εs %

(θ/θKN) (γ 2/σ 3
e ) mec

2. The IC photon energy is εIC % (θ /θKN)(γ 2/σ e)mec2 if γ ! (θKN/θ )σ e, and εIC % γ mec2 if γ !
(θKN/θ )σ e.

γ "
(

θKN
θ

)
σe

(
θKN
θ

)
σe " γ " θ2σe θ2σe " γ "

(
θKN
θ3

)1/2
σe

Us[εs] = θ2
(

γ
σe

)
UB Us[εs] =

(
θ5

θKN

)1/2 (
γ
σe

)3/2
UB Us[εs] =

(
θ3

θKN

)1/2 (
γ
σe

)2
UB

UIC[εIC] =
(

γ
σe

)
UB

tcool[γ ] =
(

1
γ

)
tdyn
(B

tcool[γ ] =
(

θ
θKN

)1/2 (
1

γ σe

)1/2 tdyn
(B

tcool[γ ] =
(

1
θθKN

)1/2 (
1
σe

)
tdyn
(B

τγ γ [εIC] = 0 τγ γ [εIC] =
(

σγ γ

σT

)(
θKN
θ

)1/2
(γ σe)1/2(B τγ γ [εIC] =

(
σγ γ

σT

)
(θθKN)1/2σe(B

(
θKN
θ3

)1/2
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σe " γ " σe
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)1/2
UB UIC[εIC] =

(
θKN
θ

)1/4 (
γ
σe

)1/4
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e
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Table 5. Same as Table 1, for pitch angles θ
1/7
KN " θ " θ

1/9
KN (see Section 3.2.1). The synchrotron photon energy is εs % (θ/θKN) (γ 2/σ 3

e ) mec
2. The IC photon

energy is εIC % (θ /θKN)(γ 2/σ e)mec2 if γ ! (θKN/θ )σ e, and εIC % γ mec2 if γ ! (θKN/θ )σ e.

γ "
(

θKN
θ

)
σe

(
θKN
θ

)
σe " γ "

(
θKN
θ5

)
σe

(
θKN
θ5

)
σe " γ "

(
θ9

θKN

)
σe

(
θ9

θKN

)
σe " γ " σe

Us[εs] = θ2
(

γ
σe

)
UB Us[εs] =

(
θ5
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)1/2 (
γ
σe

)3/2
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(
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)
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(

γ
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)
UB UIC[εIC] =
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θ
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γ

)
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tcool[γ ] =
(
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)1/2 (
1

γ σe

)1/2 tdyn
(B

tcool[γ ] =
( 1

θ

)2
(

1
γ

)
tdyn
(B

τγ γ [εIC] = 0 τγ γ [εIC] =
(

σγ γ

σT

)(
θKN
θ

)1/2
(γ σe)1/2 (B τγ γ [εIC] =

(
σγ γ

σT

)(
θ7θKN

)1/4 (
γ σ 3

e
)1/4

(B

Table 6. Same as Table 1, for pitch angles θ
1/9
KN " θ " 1 (see Section 3.2.1). The synchrotron photon energy is

εs % (θ/θKN) (γ 2/σ 3
e ) mec

2. The IC photon energy is εIC % (θ /θKN)(γ 2/σ e)mec2 if γ ! (θKN/θ )σ e, and εIC %
γ mec2 if γ ! (θKN/θ )σ e.

γ "
(

θKN
θ

)
σe

(
θKN
θ

)
σe " γ "

(
θKN
θ5

)
σe

(
θKN
θ5

)
σe " γ " σe

Us[εs] = θ2
(

γ
σe

)
UB Us[εs] =

(
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θKN

)1/2 (
γ
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)3/2
UB Us[εs] =

(
γ
σe

)
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(

γ
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)
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(
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)1/2 (
γ
σe

)1/2
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tcool[γ ] =
(

1
γ

)
tdyn
(B
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(

θ
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)1/2 (
1

γ σe

)1/2 tdyn
(B

tcool[γ ] =
( 1

θ

)2
(

1
γ

)
tdyn
(B

τγ γ [εIC] = 0 τγ γ [εIC] =
(

σγ γ

σT

)(
θKN
θ

)1/2
(γ σe)1/2(B
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In the magnetically dominated regime σ & 1, the magnetic energy
is dissipated on a time-scale

tdyn = l

c
(2)

and generates a population of non-thermal particles (e.g. Comisso
& Sironi 2018, 2019). The conservation of energy suggests that the
impulsive acceleration by reconnection can be described as injection
of energetic particles with Lorentz factors γ ∼ σ e. We assume that
the injected particles have pitch angles θ (θ is the angle between the
particle velocity and the local magnetic field).

First principles simulations of magnetically dominated turbulence
mostly focused on pair plasmas. When the plasma has a proton
component, we assume that impulsive acceleration by reconnection
transfers a large fraction of the magnetic energy to the electrons.
Our assumption is supported by studies of relativistic reconnection
in electron–proton and electron–positron–proton plasmas (e.g. Ball,
Sironi & Özel 2018; Werner et al. 2018; Petropoulou et al. 2019).
Then the energized electrons have Lorentz factors γ ∼ σ e, indepen-
dent of the plasma composition.

The pitch angle remains constant while the particles cool since the
synchrotron and IC photons are emitted nearly along the direction of
the particle motion. We consider pitch angles 1/γ ! θ ! 1, so that the
particle momentum transverse to the magnetic field is relativistic. The
regime of extremely small pitch angles, θ ! 1/γ , has been discussed
by Lloyd & Petrosian (2000) and Lloyd-Ronning & Petrosian (2002).

2.1 Electron energy distribution shaped by radiative cooling

The particle injection rate per unit volume may be written as
(ne/tdyn)δ[γ − σ e], where δ[· · · ] is the Dirac delta function. Particles
injected with γ ∼ σ e cool on a time-scale tcool " tdyn and form a
steady distribution dne/dγ described by

d
dγ

(
γ̇

dne

dγ

)
+ ne

tdyn
δ[γ − σe] = 0, (3)

where γ̇ is the rate of change of γ due to radiative losses. We are
neglecting the effect of pair creation via two-photon annihilation (we
discuss this assumption in Section 4.2.2). Integrating equation (3),
one finds
dne

dγ
= − ne

tdynγ̇
. (4)

The particle distribution extends from γ = σ e down to γ = γ cool,
where γ cool is defined by the condition that the particle cooling time
is equal to the dynamical time, i.e. tdyn = −γ /γ̇ . By definition, in
the fast cooling regime we have γ cool " σ e.

The particle loses energy via synchrotron and IC emission with
rate γ̇ mec

2 = −Ps[γ ] − PIC[γ ]. The synchrotron power is

Ps[γ ] % cσTθ2UBγ 2, (5)

where σ T is the Thomson cross-section. We have taken into account
that the synchrotron power is suppressed by a factor sin 2θ ∼ θ2 when
the energized particles have small pitch angles θ . The IC power is

PIC[γ ] % cσTUs,avγ
2, (6)

where Us,av is the ‘available’ energy density of the synchrotron
photons, i.e. the energy density of the synchrotron photons with
energies smaller than the Klein–Nishina threshold,5 mec2/γ . The net

5When the spectrum of the target photons is described by a power law, i.e.
νFν ∝ να , IC losses are dominated by scattering of photons near the Klein–

cooling rate of the particle is then

γ̇ = −σTγ 2

mec
(θ2UB + Us,av). (7)

Note that we have assumed the synchrotron radiation field to be
approximately isotropic. This assumption relies on the fact that
the magnetic field is tangled on the scale of the emitting cloud,
as expected for strong turbulence with δB ∼ B.

2.2 Synchrotron and IC radiation

Electrons with Lorentz factor γ radiate synchrotron photons of
energy,

εs[γ ] % θγ 2
(

B

Bq

)
mec

2, (8)

where Bq = m2
ec

3/!e = 4.4 × 1013 G (! is the reduced Planck con-
stant and e is the electron charge), and θ is the pitch angle. Each
particle radiates a synchrotron spectrum that peaks at εs, has a
slope of 4/3 below the peak, and an exponential cut-off above the
peak. When the spectrum is convolved with an electron distribution,
the net result is similar to what would be obtained if each particle
emits all synchrotron photons with εs[γ ]. This approximation is used
throughout this paper.

Most of the synchrotron energy is carried by photons with energy
εs,pk = εs[σ e]. The photons with energies εs,pk are the main targets
for IC scattering by an electron with Lorentz factor γ as long as their
scattering can occur in the Thomson regime, i.e. γ ! mec2/εs,pk. The
resulting IC photons have energies εIC % γ 2εs,pk. In the opposite case,
γ !mec2/εs,pk, the electron mainly scatters photons with εs % mec2/γ
above which IC scattering is suppressed by the Klein–Nishina effects.
Then, the IC photons carry a significant fraction of the electron energy
γ mec2. The two regimes may be summarized as

εIC[γ ] % min
[
γ 2εs,pk, γmec

2] . (9)

We define U[ε] as the radiation energy density of photons per unit of
log ε. Our goal is to evaluate Us[εs] and UIC[εIC] for the synchrotron
and IC radiation. We assume that the current sheets are uniformly
distributed throughout the plasma cloud. Then the radiation energy
density is also approximately uniform. Since photons escape from
the plasma cloud on a time-scale tesc = tdyn = l/c, the energy density
of radiation generated by electrons with Lorentz factors ∼γ is Us +
UIC = γ (dne/dγ ) (Ps + PIC) tdyn, which gives

Us + UIC =
(

γ

σe

)
UB. (10)

Since we assumed that the magnetic energy converts to heat on the
light crossing time l/c, and the heat quickly converts to radiation,
energetic electrons with γ ∼ σ e emit a total radiation energy density
Us + UIC ∼ UB.

The synchrotron fraction fs = Us/(Us + UIC) = Ps/(Ps + PIC) =
θ2UB/(θ2UB + Us,av) gives

Us[εs] = θ2UB

θ2UB + Us,av

(
γ

σe

)
UB, (11)

where εs[γ ] is given by equation (8). When IC scattering occurs
in the Thomson limit, and therefore Us,av is independent of γ ,
from equations (8) and (11) we recover the familiar result that

Nishina threshold for α ! 3/2 (e.g. Moderski et al. 2005). This condition is
always satisfied by target synchrotron photons since α ! 4/3.
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42 E. Sobacchi, L. Sironi and A. M. Beloborodov

Us ∝ γ ∝ ε1/2
s . The synchrotron spectrum reaches the peak at εs,pk

and is exponentially suppressed at εs ! εs,pk. The IC fraction fIC = 1
− fs gives

UIC[εIC] = Us,av

θ2UB + Us,av

(
γ

σe

)
UB, (12)

where εIC[γ ] is given by equation (9). When the IC scattering occurs
in the Thomson limit, and therefore Us,av is independent of γ , from
equations (9) and (12) we recover the familiar result that UIC ∝ γ ∝
ε

1/2
IC .

2.3 Electron cooling time and electron energy density

Using equations (7) and (11), the particle cooling time, tcool[γ ] =
−γ /γ̇ , can be conveniently expressed as

tcool[γ ] = Us

UB

σe

θ2γ 2

tdyn

(B
, (13)

where

(B = σTUBtdyn

mec
(14)

is the magnetic compactness. When particles are isotropic, i.e. θ ∼
1, cooling is dominated by synchrotron, and then Us = (γ /σ e)UB. In
this case, equation (13) gives tcool = tdyn/γ (B. Within a dynamical
time, electrons cool down to Lorentz factors γ cool % max [1/(B, 1].

Using equations (4) and (11), the energy density of the electrons
with Lorentz factors ∼γ , Ue[γ ] = (γ mec2) [γ (dne/dγ )], can be
expressed as

Ue[γ ] = Us

γ θ2(B
= tcool

tdyn

(
γ

σe

)
UB. (15)

The electron energy density is smaller than the energy density of
the emitted radiation by the factor tcool/tdyn " 1. When a significant
fraction of the magnetic energy is dissipated, the ratio of magnetic
and electron energy densities is UB/Ue ∼ tdyn/t

pk
cool, where we have

defined t
pk
cool = tcool[σe].

2.4 Optical depth for pair production

IC photons of energy εIC may annihilate with target synchrotron
photons of energy εs ! εthr % m2

ec
4/εIC, and create an electron–

positron pair. There are targets for photon–photon collisions if εthr !
εs,pk. This occurs if the IC photon was emitted in the Klein–Nishina
regime with εIC % γ mec2. Since εthr % mec2/γ , the number density
of the target synchrotron photons is nthr % (γ /mec2)Us,av. The optical
depth for pair production is τ γ γ = σγγ ctdynnthr where σγγ depends
on the spectrum of the target synchrotron photons, and is a fraction
of σ T (e.g. Svensson 1987).

The optical depth for pair production, τ γ γ , can be conveniently
expressed as a function of Us and UIC. When Us,av ! θ2UB, from
equation (12) we may estimate Us,av = θ2(σ e/γ )UIC. Then the optical
depth for pair production is

τγ γ [εIC] = σγγ

σT

UIC

UB
θ2σe(B. (16)

When instead Us,av ! θ2UB, from equation (11) we may estimate
Us,av = θ2(γ /σ e)(UB/Us)UB. Then the optical depth is

τγ γ [εIC] = σγγ

σT

UB

Us

θ2γ 2

σe
(B. (17)

In this case, we see that τ γ γ = (σγγ /σ T)(tdyn/tcool), which may exceed
unity in fast cooling conditions (however, note that σγγ ! σ T).

When τ γ γ ! 1, a full Monte Carlo simulation of the pair cascade
may be needed to model the radiated spectrum (see Beloborodov,
Hascoët & Vurm 2014, where such simulations are performed for IC
cascades in shock-heated plasma). In this paper, we limit our analysis
to the regime where synchrotron radiation from the secondary pairs
does not dominate the emitted spectrum. This condition is further
discussed in Section 4.2.2.

3 R A D I AT I O N SP E C T RU M

In this section we describe the spectrum of synchrotron and IC
radiation. We refer the reader not interested in the technical details
of the derivation to Tables 1–6, where we summarize our results. We
use analytical estimates, neglecting numerical factors of order unity,
to identify the possible emission regimes, and evaluate the spectral
slope of the produced radiation in each regime.

The radiation spectrum depends on the electron distribution
function dne/dγ , which is shaped by cooling. Depending on the
parameters of the problem (in particular the particle pitch angle θ ),
the cooling may be dominated by synchrotron or IC losses, and the IC
losses may occur in Thomson or Klein–Nishina regimes. Scattering
occurs in the Thomson regime for electron Lorentz factors γ ! γ KN,
and in the Klein–Nishina regime for γ ! γ KN. The Lorentz factor
γ KN is determined by the condition γ KNεs,pk = mec2, which gives

γKN =
(

θKN

θ

)
σe, (18)

where we have defined

θKN = 1
σ 3

e

(
Bq

B

)
. (19)

When θ ! θKN (and therefore σ e ! γ KN), IC scattering occurs in the
Thomson regime for all the particles in the system. When θ ! θKN,
IC scattering occurs in the Thomson regime for γ ! γ KN, and in the
Klein–Nishina regime for γ KN ! γ ! σ e.

Electrons with γ ! γ KN IC scatter any synchrotron photons (with
energies εs up to the maximum εs,pk) in the Thomson regime. Since
photons of energy εs,pk carry most of the synchrotron energy, Us,av %
Us[εs,pk], so equations (11) and (12) become

Us[εs] = θ2UB

θ2UB + Us[εs,pk]

(
γ

σe

)
UB (20)

and

UIC[εIC] = Us[εs,pk]
θ2UB + Us[εs,pk]

(
γ

σe

)
UB. (21)

Electrons with γ ! γ KN IC scatter photons of energy εs,pk in the
Klein–Nishina regime. Since IC losses are dominated by scattering of
photons near the Klein–Nishina threshold, the available synchrotron
radiation is Us,av = Us[ε0], where we have defined

ε0[γ ] = mec
2

γ
. (22)

Equations (11) and (12) now become

Us[εs] = θ2UB

θ2UB + Us[ε0]

(
γ

σe

)
UB (23)

and

UIC[εIC] = Us[ε0]
θ2UB + Us[ε0]

(
γ

σe

)
UB. (24)

Particle cooling is dominated by synchrotron when Us[ε0] ! θ2UB

[in this case, we find that UIC ! Us % (γ /σ e)UB]. Particle cooling
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Figure 1. Cooling regime for particles with Lorentz factor γ and pitch angle
θ . Yellow: synchrotron-dominated cooling. Green: IC-dominated cooling
(Klein–Nishina regime). Blue: IC-dominated cooling (Thomson regime).
Particles are injected with γ ∼ σ e, and cool down at constant θ .

is dominated by IC when Us[ε0] ! θ2UB [in this case, we find
that Us ! UIC % (γ /σ e)UB]. Since Us[ε0] is a decreasing function
of γ , IC cooling generally dominates for small Lorentz factors, and
synchrotron cooling dominates for large Lorentz factors. The cooling
regimes for particles with Lorentz factor γ and pitch angle θ are
summarized in Fig. 1.

The Lorentz factor γ 0 of the electrons that emit synchrotron
photons of energy ε0 is determined by solving

εs[γ0] = ε0[γ ], (25)

which gives

γ0[γ ] =
(

θKN

θ

)1/2 (
σe

γ

)1/2

σe. (26)

In the formulas for radiation spectra given below it will be convenient
to use the Lorentz factor γ ∗ defined by γ ∗ = γ 0[γ ∗], which gives

γ∗ =
(

θKN

θ

)1/3

σe. (27)

Particles with γ = γ ∗ IC scatter at the Klein–Nishina threshold the
synchrotron photons that they themselves emit. For these particles
Us[ε0] = Us[ε∗], where we have defined ε∗ = εs[γ ∗]. Then substi-
tuting γ = γ ∗ into equation (23) gives

Us[ε∗] = 2 (θKN/θ )1/3

1 +
√

1 + 4(θKN/θ7)1/3
UB. (28)

Equations (20)–(21) and (23)–(24) can be used to find the radiation
spectrum in all possible regimes.

3.1 Thomson regime

The synchrotron and IC spectra are easily determined in the Thomson
regime,

θ " θKN. (29)

In this regime, even the most energetic particles in the system, with
Lorentz factors γ = σ e, IC scatter photons of energy εs,pk in the
Thomson regime.

Electrons with γ = σ e emit synchrotron photons of en-
ergy εs,pk, and IC photons of energy εIC,pk = σ 2

e εs,pk. Substi-
tuting γ = σ e into equation (20) we find that Us[εs,pk] =[(√

θ4 + 4θ2 − θ2
)/

2
]

UB. Then UIC[εIC,pk] = UB − Us[εs,pk] =
[(

2 + θ2 −
√

θ4 + 4θ2
)/

2
]
UB.

When particles are isotropic, i.e. θ ∼ 1, the above expressions give
Us[εs,pk] ∼ UIC[εIC,pk] ∼ UB. When particles are strongly anisotropic,
i.e. θ " 1, the expressions give Us[εs,pk] ∼ θUB, and UIC[εIC,pk] ∼ UB.
A simple approximation is then Us[εs,pk] = θUB and UIC[εIC,pk] =
UB. Then the synchrotron spectrum is

Us[εs] = θ

(
γ

σe

)
UB ∝ ε1/2

s , (30)

and the IC spectrum is

UIC[εIC] =
(

γ

σe

)
UB ∝ ε

1/2
IC (31)

for all Lorentz factors γ ! σ e. Note that Us/UIC ∼ θ . Our results are
summarized in Table 1.

3.2 Klein–Nishina regime

3.2.1 Large pitch angles

First, we consider the regime of large pitch angles,

θ
1/7
KN " θ " 1. (32)

In this regime synchrotron dominates the cooling of the most
energetic particles. Equation (28) gives Us[ε∗] = (θKN/θ )1/3UB. Then
particles with γ = γ ∗ have Us[ε0] = (θKN/θ )1/3UB ! θ2UB. Since
Us[ε0] is a decreasing function of γ , also particles with γ = σ e have
Us[ε0] ! θ2UB. Then Us[εs,pk] = UB, where εs,pk = εs[σ e].

The synchrotron spectrum has two breaks. A low energy break
occurs when IC cooling transitions from the Thomson regime (for γ

! γ KN) to the Klein–Nishina regime (for γ ! γ KN). A high energy
break occurs when cooling transitions from the IC-dominated regime
(for γ ! γ b) to the synchrotron-dominated regime (for γ ! γ b). The
Lorentz factor γ b is determined by the condition that Us[ε0] = θ2UB.
Since Us[ε0] = (θKN/θ )1/3UB ! θ2UB for γ = γ ∗, and Us[ε0] = UB

! θ2UB for γ = γ KN, we have γ KN ! γ b ! γ ∗. Below we show that
γ b = (θKN/θ5)σ e.

The synchrotron spectrum is easily determined when γ ! γ KN,
and when γ ! γ b. When γ ! γ KN, IC scattering occurs in the
Thomson regime. Since Us[εs,pk] % UB, equation (20) gives

Us[εs] = θ2
(

γ

σe

)
UB ∝ ε1/2

s . (33)

When γ ! γ b, IC scattering occurs in the Klein–Nishina regime.
However, synchrotron is the dominant cooling channel since Us[ε0]
! θ2UB. Then equation (23) gives

Us[εs] =
(

γ

σe

)
UB ∝ ε1/2

s . (34)

When γ KN ! γ ! γ b, IC scattering occurs in the Klein–Nishina
regime, and IC is the dominant cooling channel since Us[ε0] !
θ2UB. Then equation (23) gives Us[εs] = (θ2UB/Us[ε0])(γ /σ e)UB,
which can be easily calculated once Us[ε0] is known. Since γ ! γ b

! γ ∗, we have γ 0[γ ] ! γ ∗ ! γ b. Then equation (34) gives Us[ε0] =
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(γ 0/σ e)UB = (θKN/θ )1/2(σ e/γ )1/2UB. Then

Us[εs] =
(

θ5

θKN

)1/2 (
γ

σe

)3/2

UB ∝ ε3/4
s . (35)

Equations (34) and (35) should match at γ b, which gives

γb =
(

θKN

θ5

)
σe. (36)

One can easily verify that Us[ε0] = θ2UB for γ = γ b. Then particle
cooling is dominated by IC for Lorentz factors γ ! γ b, and by
synchrotron for γ ! γ b.

The IC spectrum has a low energy break when IC scattering
transitions from the Thomson regime (for γ ! γ KN) to the Klein–
Nishina regime (for γ ! γ KN). Another break occurs when cooling
transitions from the IC-dominated regime (for γ ! γ b) to the
synchrotron-dominated regime (for γ ! γ b). In the synchrotron-
dominated regime (for γ ! γ b), additional breaks occur when the
Klein–Nishina threshold energy, ε0 = mec2/γ , passes through a break
of the synchrotron spectrum.

When γ ! γ b, cooling is dominated by IC, and equation (24)
immediately gives

UIC[εIC] =
(

γ

σe

)
UB. (37)

Then UIC ∝ γ ∝ ε
1/2
IC for γ ! γ KN, and UIC ∝ εIC for γ KN ! γ ! γ b.

When γ b ! γ ! σ e, cooling is dominated by synchrotron, and IC
scattering occurs in the Klein–Nishina regime. Since Us[ε0] ! θ2UB,
equation (24) gives UIC[εIC] = (Us[ε0]/θ2UB)(γ /σ e)UB, which can
be easily calculated once Us[ε0] is known. There are two cases: (i)
if γ b ! γ ! (θ9/θKN)σ e, we have γ b ! γ 0[γ ] ! σ e. Then equation
(34) gives Us[ε0] = (γ 0/σ e)UB = (θKN/θ )1/2(σ e/γ )1/2UB, and

UIC[εIC] =
(

θKN

θ5

)1/2 (
γ

σe

)1/2

UB. (38)

Then UIC ∝ γ 1/2 ∝ ε
1/2
IC . On the other hand, (ii) if γ ! (θ9/θKN)σ e,

we have γ KN ! γ 0[γ ] ! γ b. Then equation (35) gives Us[ε0] =
(θ5/θKN)1/2(γ 0/σ e)3/2UB = (θ7θKN)1/4(σ e/γ )3/4UB, and

UIC[εIC] =
(

θKN

θ

)1/4 (
γ

σe

)1/4

UB. (39)

Then UIC ∝ γ 1/4 ∝ ε
1/4
IC . Our results are summarized in Tables 5 and

6.
Our results significantly simplify in the standard case of an

isotropic pitch angle distribution, i.e. θ ∼ 1. The synchrotron
spectrum is Us = (γ /σ e)UB. The IC spectrum is UIC = (γ /σ e)UB for
γ ! γ KN, and UIC = θ

1/2
KN (γ /σe)1/2UB for γ KN ! γ ! σ e. Then one

recovers the familiar result that Us ∝ ε1/2
s , and UIC ∝ ε

1/2
IC .

3.2.2 Small pitch angles

Next, we consider the regime of small pitch angles,

θKN " θ " θ
1/3
KN . (40)

As we show in the following, in this regime IC dominates the cooling
for all the particles. Then synchrotron is radiatively inefficient, i.e.
Us[εs,pk] ! UB.

The synchrotron spectrum has one break. The break occurs when
IC cooling transitions from the Thomson regime (for γ ! γ KN) to
the Klein–Nishina regime (for γ ! γ KN).

When γ ! γ KN, IC scattering occurs in the Klein–Nishina regime,
and Us[ε0] ! θ2UB. Then equation (23) gives

Us[εs]
UB

= θ2γ

σe

UB

Us [ε0]
. (41)

For γ KN ! γ ! σ e, we have γ KN ! γ 0[γ ] ! σ e. Then equation (41)
has a power-law solution, Us[εs] ∝ εα

s ∝ γ 2α , and Us[ε0] ∝ εα
0 ∝

γ −α . Then γ 2α ∝ γ 1+α , and therefore α = 1. The normalization
of the spectrum can be determined from equation (28), which gives
Us[ε∗] = (θ5θKN)1/6UB when θ " θ

1/7
KN . Then

Us[εs] =
(

θ3

θKN

)1/2 (
γ

σe

)2

UB ∝ εs. (42)

Substituting γ = σ e into equation (42), we see that that synchrotron
is radiatively inefficient when θ " θ

1/3
KN .

When γ ! γ KN, IC scattering occurs in the Thomson regime, and
Us[εs,pk] = (θ3/θKN)1/2UB. Then equation (20) gives

Us[εs] = (θθKN)1/2
(

γ

σe

)
UB ∝ ε1/2

s . (43)

Since cooling is dominated by IC, equation (24) immediately gives

UIC[εIC] =
(

γ

σe

)
UB. (44)

Then UIC ∝ γ ∝ ε
1/2
IC for γ ! γ KN, and UIC ∝ εIC for γ KN ! γ !

σ e. Our results are summarized in Table 2.

3.2.3 Intermediate pitch angles

Finally, we consider the regime of intermediate pitch angles,

θ
1/3
KN " θ " θ

1/7
KN . (45)

In this regime synchrotron dominates the cooling of the most
energetic particles, i.e. Us[ε0] ! θ2UB for γ = σ e. Substituting γ =
σ e into equation (23) gives Us[εs,pk] = UB. However, IC dominates
the cooling of particles with γ = γ ∗, i.e. Us[ε0] ! θ2UB for γ = γ ∗.
Then radiation has a different spectrum with respect to the case of
large pitch angles, i.e. θ

1/7
KN " θ " 1.

The synchrotron spectrum has three breaks. A low energy break
occurs when IC cooling transitions from the Thomson regime (for γ

! γ KN) to the Klein–Nishina regime (for γ ! γ KN). A high energy
break occurs when cooling transitions from the IC-dominated regime
(for γ ! γ b) to the synchrotron-dominated regime (for γ ! γ b). In
this regime of pitch angles, we have γ b ! γ ∗. An intermediate
energy break appears at γ = γ i, when the Klein–Nishina threshold
energy, ε0[γ ] = mec2/γ , passes through the high energy spectral
break, εs[γ b]. Then ε0[γ i] = εs[γ b], which gives γ b = γ 0[γ i]. In the
following we show that γ b = (θKN/θ3)1/2σ e, and γ i = θ2σ e.6

The synchrotron spectrum is easily determined when γ ! γ KN,
and when γ ! γ b. When γ ! γ KN, IC scattering occurs in the
Thomson regime, and Us[εs,pk] = UB. Then equation (20) gives

Us[εs] = θ2
(

γ

σe

)
UB ∝ ε1/2

s . (46)

6When the pitch angle is θ = θ
1/7
KN , we have γ b = γ ∗. The high energy break

merges with the intermediate energy break, i.e. γ b = γ i = γ ∗. For larger
pitch angles, θ ! θ

1/7
KN , we have only one break at γ b ! γ ∗.
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When γ ! γ b, IC scattering occurs in the Klein–Nishina regime, and
Us[ε0] ! θ2UB. Then equation (23) gives

Us[εs] =
(

γ

σe

)
UB ∝ ε1/2

s . (47)

When γ KN ! γ ! γ i, IC scattering occurs in the Klein–Nishina
regime, and Us[ε0] ! θ2UB. Then equation (23) gives Us[εs] =
(θ2UB/Us[ε0])(γ /σ e)UB, which can be easily calculated once Us[ε0]
is known. Since γ ! γ i, and γ 0[γ i] = γ b, we have γ 0[γ ] ! γ b. Then
equation (47) gives Us[ε0] = (γ 0/σ e)UB = (θKN/θ )1/2(σ e/γ )1/2UB.
Then

Us[εs] =
(

θ5

θKN

)1/2 (
γ

σe

)3/2

UB ∝ ε3/4
s . (48)

When γ i ! γ ! γ b, we have γ i ! γ 0[γ ] ! γ b. The same arguments
used to derive equation (42) give

Us[εs] =
(

θ3

θKN

)1/2 (
γ

σe

)2

UB ∝ εs. (49)

The Lorentz factors γ b and γ i can be determined by requiring that
Us is a continuous function of γ . Then

γb =
(

θKN

θ3

)1/2

σe (50)

and

γi = θ2σe. (51)

The IC spectrum is easily determined when γ ! γ b. Since cooling
is dominated by IC, equation (24) immediately gives

UIC[εIC] =
(

γ

σe

)
UB. (52)

Then UIC ∝ γ ∝ ε
1/2
IC for γ ! γ KN, and UIC ∝ εIC for γ KN ! γ ! γ b.

When γ b ! γ ! σ e, cooling is dominated by synchrotron, and IC
scattering occurs in the Klein–Nishina regime. Since Us[ε0] ! θ2UB,
equation (24) gives UIC[εIC] = (Us[ε0]/θ2UB)(γ /σ e)UB, which can
be easily calculated once Us[ε0] is known. There are two cases: (i) if
γ b ! γ ! (θKN/θ5)σ e, we have γ i ! γ 0[γ ] ! γ b. Then equation (49)
gives Us[ε0] = (θ3/θKN)1/2(γ 0/σ e)2UB = (θθKN)1/2(σ e/γ )UB, and

UIC[εIC] =
(

θKN

θ3

)1/2

UB. (53)

Then UIC ∝ γ 0 ∝ ε0
IC. On the other hand, (ii) if γ ! (θKN/θ5)σ e,

we have γ KN ! γ 0[γ ] ! γ i. Then equation (48) gives Us[ε0] =
(θ5/θKN)1/2(γ 0/σ e)3/2UB = (θ7θKN)1/4(σ e/γ )3/4UB, and

UIC[εIC] =
(

θKN

θ

)1/4 (
γ

σe

)1/4

UB. (54)

Then UIC ∝ γ 1/4 ∝ ε
1/4
IC . Our results are summarized in Tables 3 and

4.

4 A S T RO P H Y S I C A L I M P L I C AT I O N S

We now apply our results to the modelling of blazars and GRBs.
In Section 3, we neglected factors ∼1, and below for numerical
estimates we will use better approximate coefficients in Ps, PIC, εs,
and εIC:

Ps % 2cσTθ2UBγ 2, (55)

PIC % 4
3
cσTUs,avγ

2, (56)

εs % 1
2
θγ 2

(
B

Bq

)
mec

2, (57)

εIC % max
[

4
3
γ 2εs,pk,

1
2
γmec

2
]

. (58)

Then θKN is changed from equation (19) by a factor of 3/4: θKN =
(3/4) (1/σ 3

e ) (Bq/B).

4.1 Blazars

Blazar spectra are characterized by two broad non-thermal com-
ponents, the first one peaking at infrared (IR)–optical–ultraviolet
(UV) frequencies, and the second one peaking in the gamma-
rays. Spectra follow a well-known sequence, with fainter objects
peaking at higher frequencies (e.g. Fossati et al. 1998; Ghisellini
et al. 2017). We focus on the faintest blazars in the sequence, i.e.
BL Lacertae (BL Lac) objects, where the two spectral components
are likely emitted by the same population of non-thermal electrons
via synchrotron self-Compton (e.g. Maraschi et al. 1992; Tavecchio,
Maraschi & Ghisellini 1998; Tavecchio et al. 2010).7

We argue that synchrotron self-Compton emission from a popu-
lation of fast cooling electrons in a magnetically dominated plasma
can naturally explain the common features of typical BL Lac spectra
(for a large compilation of BL Lac spectra, see e.g. Tavecchio et al.
2010). First, at frequencies below the peak both synchrotron and
IC spectra are well described by a power law, νFν ∝ να , with a
soft spectral slope α ∼ 1/2. Such a slope is naturally produced by a
population of fast cooling electrons when Klein–Nishina effects are
minor. Second, the luminosities of the UV and gamma-ray peaks are
comparable (typically within an order of magnitude). In fast cooling
magnetically dominated plasmas, the magnetic energy is converted
into synchrotron radiation on the light crossing time of the system.
Since the radiation escape time is equal to the dissipation time, the
radiation energy density is equal to the magnetic energy density. If
the pitch angle is not too small (see equation 66 below), particles
radiate a comparable amount of energy via synchrotron and IC.8 A
similar explanation for the common features of BL Lac spectra has
been discussed by Sobacchi & Lyubarsky (2020). The spectrum is
sketched in Fig. 2.

Two basic observed properties of synchrotron self-Compton emis-
sion of blazars are (i) the ratio between the IC and the synchrotron
peak energies, ζ = EIC,pk/Es,pk ∼ 109, and (ii) the isotropic equivalent
total luminosity, Liso = Ls + LIC ∼ 1045 erg s−1. The quoted values
are meant to represent a ‘typical’ BL Lac (e.g. Tavecchio et al. 2010).
We also normalize the bulk Lorentz factor of the emitting plasma to
a typical value of * ∼ 10 (e.g. Hovatta et al. 2009; Lister et al. 2009).
We consider dissipation radii R ! 1016 cm, consistent with a variabil-
ity time-scale of the light curve tvar ∼ R/2c*2 ∼ 2 × 103R16*

−2
10 s.

Hereafter we use the notation ζ 9 ≡ ζ /109, L45 ≡ Liso/1045 erg s−1,
R16 ≡ R/1016 cm, and *10 ≡ */10.

7The two spectral components are emitted by the same electrons also in the
brightest blazars, i.e. flat-spectrum radio quasars (FSRQs). However, gamma-
rays in FSRQs are likely produced by IC scattering off an external photon
field (e.g. Sikora et al. 1994, 2009; Ghisellini & Tavecchio 2009).
8Alternatively, comparable UV and gamma-ray luminosities may be produced
also in weakly magnetized plasmas, i.e. in the regime Ue & UB. Producing
comparable luminosities requires that Us ∼ UB. Then particles should radiate
only a small fraction ∼UB/Ue of their energy. This requires an undesirable
fine-tuning of the cooling time, i.e. tcool ∼ (Ue/UB)tdyn.
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Figure 2. Sketch of the synchrotron self-Compton spectrum of BL Lacs (see
also Table 1). Solid line: particle pitch angles θ ∼ 1, producing the typical
emission, with comparable synchrotron and IC luminosities. Dotted line:
particle pitch angles θ " 1, producing orphan gamma-ray flares. The ratio
between the synchrotron and IC luminosities is Ls/LIC ∼ θ (see equation 66).
The ratio between the peak frequencies is νIC,pk/νs,pk ∼ σ 2

e . In the simple
model we consider (i.e. δ-function injection) the spectrum would cut off
exponentially above the peak.

Below we describe the parameters of our model that would
give the observed blazar spectra. Since in the fast cooling regime
the dissipated magnetic energy ∼UB is promptly converted into
radiation, the total luminosity is Liso ∼ c*2B2R2. Then the magnetic
field in the rest frame of the plasma is

B ∼ 2 L
1/2
45 *−1

10 R−1
16 G. (59)

Soft blazar spectra may be produced when the electrons are cooling
due to IC scattering in the Thomson cooling regime, with θ ! θKN.
The properties of the emitted radiation are summarized in Table 1.
Since EIC,pk/Es,pk % (4/3) σ 2

e , we find that

σe ∼ 3 × 104ζ
1/2
9 (60)

and

θKN ∼ 0.9 L
−1/2
45 *10R16ζ

−3/2
9 . (61)

Then the condition that θ ! θKN may be satisfied even for large
pitch angles. Note that in electron–proton plasmas the overall
magnetization is σ = (me/mp)σ e ∼ 10.

The cooling time-scale for electrons with Lorentz factor γ = σ e

is given by t
pk
cool/tdyn = (1/2) θ−1σ−1

e (−1
B , where (B = σ TUBtdyn/mec.

Since the dynamical time in the rest frame of the plasma is tdyn =
R/*c, we have

(B ∼ 10−4L45*
−3
10 R−1

16 . (62)

Then

t
pk
cool

tdyn
∼ 0.2 L−1

45 *3
10R16ζ

−1/2
9 θ−1. (63)

Note that the ratio of magnetic and electron energy densities is
UB/Ue ∼ tdyn/t

pk
cool (see equation 15). The condition for fast cooling,

t
pk
cool " tdyn, can be satisfied if dissipation occurs at relatively small

radii, R ∼ 1016 cm. At these radii, the inferred t
pk
cool/tdyn may be

further reduced if the bulk Lorentz factor of the jet is smaller
than its asymptotic value * ∼ 10. Imaging of radio emission from
extragalactic jets suggests that the bulk acceleration may be still in
progress on sub-parsec scales (e.g. Boccardi et al. 2016; Mertens
et al. 2016).

The peak energy of the observed synchrotron radiation is Es,pk =
*εs,pk % (1/2)*θσ 2

e (B/Bq) mec
2, which gives

Es,pk ∼ 80 L
1/2
45 R−1

16 ζ9θ eV. (64)

The peak energy of the observed IC radiation is EIC,pk = *εIC,pk %
(1/2)*θσ 4

e (B/Bq) mec
2, which gives

EIC,pk ∼ 80 L
1/2
45 R−1

16 ζ 2
9 θ GeV. (65)

Then the synchrotron radiation peaks in the UV, and the IC radiation
peaks in the gamma-rays, as observed.

The ratio between the synchrotron luminosity and the IC luminos-
ity is

Ls

LIC
∼ θ. (66)

The typical BL Lac spectra are characterized by comparable UV
and gamma-ray luminosities (within a factor of 10). This naturally
occurs if the emitting particles have a nearly isotropic pitch angle
distribution, i.e. θ ! 0.1. The effects that control the pitch angle
distribution are discussed in Section 4.1.1.

Fitting the spectra of individual BL Lacs under the assumption of
isotropic particles, one typically infers a low ratio of the magnetic
and electron energy densities, UB/Ue ∼ 0.01 (e.g. Tavecchio &
Ghisellini 2016). Since the synchrotron frequency and power depend
on the component of the magnetic field perpendicular to the particle
velocity, Bsin θ , this result is very sensitive to the anisotropy of the
emitting particles. For pitch angles θ ∼ 0.1, the inferred value of
UB/Ue would increase by a factor of θ−2 ∼ 100, becoming of order
unity. In turn, for θ ∼ 0.1 our model gives UB/Ue ∼ tdyn/t

pk
cool ∼ 1

(see equation 63) and Ls/LIC ∼ 0.1 (see equation 66). Then pitch
angles θ ∼ 0.1 may be consistent with observational constraints.

In our discussion, we have neglected Klein–Nishina effects on
IC scattering. Since in the Klein–Nishina regime the IC power is
suppressed, one finds that Ls > θLIC. Then the synchrotron and IC
luminosities may be comparable (within a factor of 10) even for pitch
angles θ < 0.1. IC scattering occurs deep into the Klein–Nishina
regime in the so-called hard-TeV BL Lacs (e.g. Costamante et al.
2018; Biteau et al. 2020). Interestingly, in these objects the ratio of
magnetic and electron energy densities inferred from the spectral
modelling under the assumption of isotropic particles is very low,
UB/Ue ∼ 10−3–10−4. Testing our model on hard-TeV BL Lacs is an
interesting direction for future work.

4.1.1 Orphan gamma-ray flares

Since UV and gamma-rays are emitted by the same particles, one
expects the light curves in the two bands to be correlated. This picture
is challenged by the rare occurrence of orphan gamma-ray flares, i.e.
flares lacking a luminous low energy counterpart (e.g. Krawczynski
et al. 2004; Błażejowski et al. 2005).

We argue that orphan gamma-ray flares may be associated with
rare events when the emitting particles have very small pitch angles.9

When θ " 0.1, the IC luminosity is much larger than the synchrotron
luminosity, i.e. LIC & Ls ∼ θLIC (see equation 66). Then the gamma-
ray emission may have a suppressed UV counterpart. For a luminous
flare with LIC ∼ 1046 erg s−1, particles with a small pitch angle θ ∼
0.02 are in the fast cooling regime (see equation 63). The spectrum
is sketched in Fig. 2. A detailed study of orphan gamma-ray flares
has been presented elsewhere (Sobacchi et al. 2021).

9Ghisellini et al. (2009) also suggested that orphan gamma-ray flares are
produced by particles accelerated along the magnetic field lines. These authors
argued that anisotropic particle distributions are produced via magnetocen-
trifugal acceleration.
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The pitch angle distribution of the emitting particles may be
regulated by the level of magnetic field fluctuations (as compared
to the mean field) from which turbulence develops. Larger initial
fluctuations produce more isotropic particle distributions (Comisso
et al. 2020; Sobacchi et al. 2021). A complementary possibility, yet
to be tested with first principles simulations, is that the pitch angle
distribution depends on the plasma composition. In electron–proton
plasmas, the pitch angle distribution may be isotropized by a kinetic
instability that is absent in electron–positron plasmas (Sobacchi &
Lyubarsky 2019).

4.2 Gamma-ray bursts

At frequencies below the peak, the spectrum of the gamma-ray burst
(GRB) prompt emission is well described by a power law, νFν ∝ να ,
with a typical spectral slope α ∼ 1 (e.g. Preece et al. 2000; Kaneko
et al. 2006; Nava et al. 2011; Gruber et al. 2014). The spectral slope
is significantly harder than α = 1/2, which is the slope produced
by fast cooling electrons when synchrotron is the dominant cooling
channel.

The typical spectral slope of the GRB prompt emission spectra can
be produced by synchrotron if the emitting electrons radiate most of
their energy via IC, and the scattering occurs in the Klein–Nishina
regime (e.g. Derishev et al. 2001; Bošnjak et al. 2009; Nakar et al.
2009; Daigne et al. 2011). If the particle pitch angle distribution is
isotropic, this requires the radiation energy density to be much larger
than the magnetic energy density, i.e. Us & UB (otherwise cooling
would be dominated by synchrotron, and α = 1/2). Then such a
scenario is not viable in magnetically dominated plasmas, where
necessarily Us ! UB. By contrast, if the pitch angle θ is small, the
condition for the IC cooling dominance becomes Us & θ2UB. This
condition may be easily satisfied even in magnetically dominated
plasmas.

In the following we discuss the parameters of the emitting plasma
that could give synchrotron emission with two observed properties:
(i) the peak energy of the observed radiation, Es,pk ∼ 1 MeV, and (ii)
the isotropic equivalent of the GRB luminosity, Liso ∼ 1052 erg s−1.
The quoted values are meant to represent a ‘typical’ GRB. We
also normalize the bulk Lorentz factor of the emitting plasma to
a typical value of * ∼ 300 (e.g. Lithwick & Sari 2001). We consider
sufficiently large dissipation radii R ! 1015 cm, outside the jet
photosphere. At these radii, the expected variability time-scale of the
light curve is tvar ∼ R/2c*2 ∼ 0.2 R15*

−2
300 s. Hereafter we use the

notation E6 ≡ Es,pk/1 MeV, L52 ≡ Liso/1052 erg s−1, R15 ≡ R/1015 cm,
and *300 ≡ */300.

Assuming that a large fraction of the available electromagnetic jet
energy is converted into synchrotron radiation (this is expected if the
pitch angle is not too small, see equation 70 below), the observed
luminosity is Liso ∼ c*2B2R2. Then the magnetic field in the rest
frame of the plasma is

B ∼ 2 L
1/2
52 *−1

300R
−1
15 kG. (67)

The peak energy of the observed radiation is Es,pk = *εs,pk %
(1/2)*θσ 2

e (B/Bq) mec
2, which gives

σe ∼ 2 × 104L
−1/4
52 R

1/2
15 E

1/2
6 θ−1/2. (68)

Note that in electron–proton plasmas the overall magnetization is
σ = (me/mp)σ e ∼ 10.

The IC scattering regime is determined by the critical pitch angle
θKN = (3/4) (1/σ 3

e )(Bq/B). For the typical parameters of GRBs, we

find

θ

θKN
∼ 300 L

−1/4
52 *−1

300R
1/2
15 E

3/2
6 θ−1/2. (69)

One can see from this equation that θ & θKN for any θ ! 1.
Hence, IC scattering occurs in the Klein–Nishina regime.10 Cooling
is dominated by synchrotron if θ ! (2θKN/3)1/3, or

θ ! 0.02 L
1/6
52 *

2/3
300R

−1/3
15 E−1

6 . (70)

For smaller pitch angles, synchrotron is radiatively inefficient.
We illustrate the effect of the pitch angle anisotropy on the

synchrotron spectrum assuming that (2θKN/3)1/3 ! θ ! (4θKN/9)1/5,
which is the regime described in Table 3. This condition re-
quires 0.02 L

1/6
52 *

2/3
300R

−1/3
15 E−1

6 " θ " 0.3 L
1/14
52 *

2/7
300R

−1/7
15 E

−3/7
6 . In

this regime of pitch angles, most of the magnetic energy is converted
into synchrotron radiation, and IC losses in the Klein–Nishina regime
harden the synchrotron spectrum below the peak.

The cooling time-scale for electrons with Lorentz factor γ = σ e

is given by t
pk
cool/tdyn = (1/2) θ−2σ−1

e (−1
B , where (B = σ TUBtdyn/mec.

Since the dynamical time in the rest frame of the plasma is tdyn =
R/*c, we have

(B ∼ 0.4 L52*
−3
300R

−1
15 . (71)

Then

t
pk
cool

tdyn
∼ 2 × 10−3L

−3/4
52 *3

300R
1/2
15 E

−1/2
6 θ

−3/2
−1 , (72)

where θ−1 ≡ θ /0.1. The fast cooling condition t
pk
cool " tdyn is satisfied

at radii of interest R ! Rcool,1, where

Rcool,1 = 2 × 1020L
3/2
52 *−6

300E6θ
3
−1 cm. (73)

The synchrotron spectrum depends on whether electrons with
intermediate Lorentz factors, (3/2)θ2σ e ! γ ! (2θKN/3θ3)1/2σ e, are
fast cooling. These electrons have tcool/tdyn = (8θθKN/3)−1/2σ−1

e (−1
B ,

i.e.
tcool

tdyn
∼ 9 × 10−3L

−7/8
52 *

5/2
300R

3/4
15 E

1/4
6 θ

−3/4
−1 . (74)

Note that tcool/tdyn is independent of γ . The condition tcool ! tdyn for
the intermediate γ is stronger than t

pk
cool " tdyn, and it is satisfied at

smaller radii R ! Rcool,2, where

Rcool,2 = 6 × 1017L
7/6
52 *

−10/3
300 E

−1/3
6 θ−1 cm. (75)

The expected spectrum in the two cases R ! Rcool,2 and Rcool,2 ! R
! Rcool,1 is sketched in Fig. 3. For our fiducial parameters, we have
R ! Rcool,2. Then the synchrotron spectrum has two spectral breaks
at Eb = (2θKN/3θ3)Es,pk and Ei = (9/4)θ4Es,pk,

Eb ∼ 70 L
1/4
52 *300R

−1/2
15 E

−1/2
6 θ

−3/2
−1 keV, (76)

Ei ∼ 0.2 θ4
−1E6 keV. (77)

The spectral slopes are α = 1 for Ei ! E ! Eb, when cooling is
dominated by IC in the Klein–Nishina regime, and α = 1/2 for Eb ! E
! Es,pk, when cooling is dominated by synchrotron (note that Es,pk/Eb

10It is easy to see why the scattering occurs in the Klein–Nishina regime.
In the rest frame of the plasma, the energy of the photons at the peak of
the spectrum is Es,pk/* ∼ 3 E6*

−1
300 keV. This energy is much larger than

mec
2/σe ∼ 40 L

1/4
52 R

−1/2
15 E

−1/2
6 θ1/2 eV.
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Figure 3. Sketch of the synchrotron spectrum of GRB prompt emission,
assuming particle pitch angles θ ∼ 0.1 (see also Table 3). Solid line:
dissipation radii R ! Rcool,2, where the cooling break occurs at a frequency
νcool ! νi. Dotted line: dissipation radii Rcool,2 ! R ! Rcool,1, where νb !
νcool ! νs,pk. Since νs,pk/νb ∼ 15, and νb/νi ∼ 350 (see equations 76 and
77), the hard part of the spectrum, νFν ∝ ν, extends over a broad range of
frequencies. In the simple model we consider (i.e. δ-function injection) the
spectrum would cut off exponentially above the peak.

∼ 15, and Eb/Ei ∼ 350). If particles cool down to Lorentz factors γ

! (θKN/θ )σ e, a low energy break appears at EKN = (θKN/θ )2Es,pk,

EKN ∼ 1 L
1/2
52 *2

300R
−1
15 E−2

6 θ−1 eV. (78)

The synchrotron spectral slopes are α = 1/2 for E ! EKN, and α =
3/4 for EKN ! E ! Ei. The spectral break at EKN may be replaced by
a cooling break if particles do not cool completely.

Large dissipation radii Rcool,2 ! R ! Rcool,1 may be relevant for
GRBs with large bulk Lorentz factors. For * ∼ 1000, we find that
Rcool,1 ∼ 1017 cm, and Rcool,2 ∼ 1016 cm. If Rcool,2 ! R ! Rcool,1, the
synchrotron spectrum has a cooling break at Ecool = (tpk

cool/tdyn)2Es,pk.
Then

Ecool ∼ 50 L
−3/2
52 *6

1000R16θ
−3
−1 keV, (79)

where we have defined *1000 ≡ */1000, and R16 ≡ R/1016 cm. Note
that Ecool is much larger than in the isotropic case θ ∼ 1. The spectral
slopes are α = 1/2 for Ecool ! E ! Es,pk, and α = 4/3 (as usual for
synchrotron radiation below the cooling break) for E ! Ecool. The
soft part of the spectrum extends over a relatively narrow range of
frequencies since Es,pk/Ecool ∼ 20 for the fiducial parameters of the
model (the dependence of Es,pk/Ecool on the parameters is strong).
Interestingly, many GRB spectra may be consistent with a broken
power law with slopes α = 4/3 at low frequencies, and α = 1/2 close
to the peak (e.g. Oganesyan et al. 2017, 2018, 2019; Ravasio et al.
2018, 2019).

We remark that synchrotron emission cannot produce very hard
spectral slopes, α ! 4/3.11 Fitting GRB spectra with empirical
functions (e.g. Band et al. 1993) suggests that a significant fraction
of GRBs have a low frequency slope α ! 4/3, which violates the
so-called synchrotron line of death (e.g. Preece et al. 1998). Another
challenge for a synchrotron model is reproducing the sharpness of
the Band function (e.g. Axelsson & Borgonovo 2015; Yu et al.
2015). However, these results have been recently questioned by fitting
GRB spectra directly with synchrotron models (e.g. Burgess 2019;
Oganesyan et al. 2019; Burgess et al. 2020).

11The regime of extremely small pitch angles, θ ! 1/γ , is an exception to this
general behaviour (e.g. Lloyd & Petrosian 2000; Lloyd-Ronning & Petrosian
2002). However, in this regime synchrotron radiation is extremely inefficient,
making it difficult to produce the large luminosity of GRBs.

4.2.1 IC emission

The total IC luminosity in the Klein–Nishina regime relevant for
GRBs is a fraction η = (2θKN/3θ3)1/2 of the synchrotron luminosity
(see Table 3). We have

η ∼ 0.3 L
1/8
52 *

1/2
300R

−1/4
15 E

−3/4
6 θ

−3/4
−1 . (80)

If all the IC radiation escapes the system, the spectrum peaks at
EIC,pk = *εIC,pk % (1/2)*σ emec2, i.e.

EIC,pk ∼ 4 L
−1/4
52 *300R

1/2
15 E

1/2
6 θ

−1/2
−1 TeV. (81)

The spectrum has two spectral breaks at EIC,b = (2θKN/3θ3)1/2EIC,pk

and EIC,KN = (θKN/θ )EIC,pk, i.e.

EIC,b ∼ 1 L
−1/8
52 *

3/2
300R

1/4
15 E

−1/4
6 θ

−5/4
−1 TeV, (82)

EIC,KN ∼ 4 *2
300E

−1
6 GeV. (83)

The spectral slopes are α = 1/2 for E ! EIC,KN, α = 1 for EIC,KN !
E ! EIC,b, and α = 0 for EIC,b ! E ! EIC,pk. The spectral break at
EIC,KN may be replaced by a cooling break if the particles do not cool
completely.

In the next section we show that IC photons with energy EIC !
EIC,KN may easily annihilate and produce secondary pairs. Then only
a small fraction EIC,KN/EIC,b ∼ 4 × 10−3 of the total IC luminosity
escapes the system directly. Instead, most of the IC luminosity is
transformed into kinetic energy of the secondary pairs.

4.2.2 Pair production

The optical depth for pair production via photon–photon collisions
is τ γ γ = (σγγ /σ T)(8θθKN/3)1/2σ e(B (see Table 3). For a α = 1
spectrum of the target synchrotron photons, the cross-section for
photon–photon collisions is σγγ = (7/12)σ T (e.g. Svensson 1987).
Then

τγ γ ∼ 60 L
7/8
52 *

−5/2
300 R

−3/4
15 E

−1/4
6 θ

3/4
−1 . (84)

Pair production can be neglected if τ γ γ ! 1, which gives R ! Rγ γ ,
where we have defined

Rγγ = 3 × 1017L
7/6
52 *

−10/3
300 E

−1/3
6 θ−1 cm. (85)

Note that Rγ γ is a fraction (σγγ /σ T)4/3 ∼ 0.5 of Rcool,2 (compare
equations 75 and 85). At radii R ! Rγ γ , the IC component should be
efficiently reprocessed by the cascade of secondary electron–positron
pairs, softening the spectrum of the IC component.

The secondary pairs also tend to soften the spectrum of the
synchrotron component. This effect depends on the ratio f sec

s /f prim
s ,

where fs = Ps/(Ps + PIC) is the synchrotron fraction of the radiation
emitted by the primary and secondary particles. If f sec

s ! f prim
s ,

the synchrotron spectrum emitted by the primary particles may be
softened significantly. The ratio f sec

s /f prim
s is controlled by the pitch

angle of the secondary pairs (f sec
s may be larger than f prim

s if the
secondary pairs have a pitch angle θ sec > θ ).

Since IC photons annihilate after travelling a distance l! =
ctdyn/τ γ γ along the direction of the magnetic field, the pitch angle of
the secondary pairs may be estimated as θ sec = max [θ , (δB/B)[l!]],
where (δB/B)[l!] is the amplitude of turbulent fluctuations at the
scale l!. Assuming that the amplitude of turbulent fluctuations is
δB/B ∝ l

1/3
⊥ ∝ l

1/2
‖ (e.g. Goldreich & Sridhar 1995; Thompson

& Blaes 1998), we have (δB/B)[l‖] = s(l‖/ctdyn)1/2 = sτ−1/2
γ γ (the

scaling constant s is equal to the amplitude of the fluctuations at
the scale of the largest turbulent eddy). Then θsec = max[θ, sτ−1/2

γ γ ].
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The secondary pairs have pitch angles comparable to the primary
particles, i.e. θ sec ∼ θ , if sτ−1/2

γ γ " θ . For τ γ γ ∼ 60 and θ ∼
0.1, this condition is practically satisfied even for strong turbulent
fluctuations, with s ∼ 1. A lower level of fluctuations, s < 1, is
expected if turbulence develops from global instabilities of the jet
(e.g. Davelaar et al. 2020).

5 C O N C L U S I O N S

In this paper, we investigated the synchrotron self-Compton radiation
from magnetically dominated turbulent plasmas in relativistic jets.
Since observed relativistic jets have a high radiative efficiency,
we considered fast cooling conditions, when particles radiate their
energy on short time-scales compared with the dynamical time of
the jet expansion. Our model is motivated by recent first principles
simulations of magnetically dominated plasma turbulence, which
show that electrons are impulsively accelerated to Lorentz factors
γ ∼ σ e by reconnection in large-scale current sheets (σ e is the
plasma magnetization, defined with respect to the electron rest mass
energy density). Since the reconnection electric field is nearly aligned
with the local magnetic field, the accelerated particles are strongly
anisotropic.

The anisotropy has a strong impact on the spectrum of the emitted
radiation. Since particles move nearly along the direction of the
local magnetic field, synchrotron emission is suppressed. Then IC
scattering may be the dominant cooling channel, even in magnetically
dominated plasmas. The synchrotron and IC spectra emitted by fast
cooling particles are described by broken power laws (see Tables 1–
6). The slope of the power-law segments is determined by the cooling
regime (see Fig. 1). The most important features are summarized
below.

(i) When the emitting electrons IC scatter the synchrotron radia-
tion in the Thomson regime, the synchrotron and IC cooling times
are inversely proportional to the particle Lorentz factor, i.e. tcool,s ∝
γ −1 and tcool,IC ∝ γ −1. The number of cooled particles per unit
Lorentz factor is dne/dγ ∝ γ −2, independent of the dominant cooling
channel. Then synchrotron and IC radiation components have soft
spectra, νFν ∝ ν1/2. In this regime, the ratio of the synchrotron and IC
luminosities is Ls/LIC ∼ sin θ ∼ θ , where θ is the particle pitch angle
(i.e. the angle between the particle velocity and the local magnetic
field).

(ii) When the emitting electrons IC scatter the synchrotron ra-
diation in the Klein–Nishina regime, the IC cooling time tcool,IC

typically approaches a constant independent of particle energy. For
small particle Lorentz factors, IC is the dominant cooling channel.
Then dne/dγ ∝ tcool,IC/γ ∝ γ −1, and synchrotron radiation has a hard
spectrum, νFν ∝ ν. For large particle Lorentz factors, IC cooling is
strongly suppressed due to Klein–Nishina effects, and synchrotron
becomes the dominant cooling channel. Then dne/dγ ∝ tcool,s/γ ∝
γ −2, and synchrotron radiation has a soft spectrum, νFν ∝ ν1/2.

We remark that the particle anisotropy is essential for the hardening
of the synchrotron spectrum in magnetically dominated plasmas.
If particles are isotropic, synchrotron emission is inevitably the
dominant cooling channel. Then both synchrotron and IC spectra
are soft, νFν ∝ ν1/2.

We have applied our results to BL Lacs and GRB prompt emission,
and found that synchrotron self-Compton emission from anisotropic
particles may be consistent with the observed spectra. Estimating the
required conditions inside the jet from the observed peak frequency
and luminosity, we found that (i) the magnetic field strength in the
plasma rest frame is B ∼ 1 G in BL Lacs, and B ∼ 1 kG in GRBs; (ii)

electrons are accelerated to similar Lorentz factors, γ ∼ σ e ∼ 104.
For electron–proton plasmas, σ e ∼ 104 corresponds to an overall
magnetization σ = (me/mp)σ e ∼ 10.

In BL Lacs, electrons heated by magnetically dominated turbu-
lence IC scatter the synchrotron radiation in the Thomson regime.
Then under fast cooling conditions synchrotron and IC components
have soft spectra, νFν ∝ ν1/2. For pitch angles θ ! 0.1, the syn-
chrotron and IC luminosities are comparable (within a factor of 10),
consistent with the properties of non-thermal radiation from BL Lacs.
An exception to this general behaviour may be represented by
orphan gamma-ray flares, i.e. IC flares with a negligible synchrotron
counterpart. Since the ratio of the synchrotron and IC luminosities
is ∼θ , orphan gamma-ray flares may be produced when the particle
distribution is extremely anisotropic (strongly anisotropic particles
may produce orphan gamma-ray flares also in flat-spectrum radio
quasars; see Sobacchi et al. 2021). The pitch angle anisotropy may
be regulated by (i) the level of the magnetic fluctuations from which
turbulence develops. Larger fluctuations produce more isotropic
particle distributions (Comisso et al. 2020; Sobacchi et al. 2021); (ii)
the plasma composition. In electron–proton plasmas, the anisotropy
may be erased by kinetic instabilities that are absent in electron–
positron plasmas (Sobacchi & Lyubarsky 2019).

In GRBs, electrons heated by magnetically dominated turbulence
IC scatter the synchrotron radiation in the Klein–Nishina regime. For
a peak frequency of the observed spectrum hνpk ∼ 1 MeV, we find
that IC is the dominant cooling channel for particles with a pitch angle
θ ∼ 0.1 emitting at frequencies 0.2 ! hν ! 70 keV. Then under fast
cooling conditions the synchrotron radiation has a hard spectrum
νFν ∝ ν, consistent with a typical GRB. Synchrotron becomes
the dominant cooling channel for particles emitting at frequencies
70 keV ! hν ! 1 MeV. Then the synchrotron spectrum softens close
to the spectral peak. The break frequency, hνb ∼ 70 keV, moves close
to the spectral peak when either νpk or θ decrease (we find that hνb

∼ 130 keV for hνpk ∼ 300 keV, and hνb ∼ 200 keV for θ ∼ 0.05).
There are aspects of our model that deserve further investigation.

In GRBs, IC photons escaping from the emitting region may be
observed at TeV energies. However, IC photons easily annihilate
and produce electron–positron pairs. Although synchrotron radiation
from the secondary pairs may be neglected under certain conditions
(see Section 4.2.2), it is unclear whether these conditions occur in
real GRB jets. We did not consider the reduction of the plasma mag-
netization due to pair creation. A detailed study of this complicated
issue is left for future work.

The peak energy and luminosity of the GRB prompt emission
follow a well-known correlation, Epk ∼ 0.3 L1/2

iso MeV (e.g. Wei &
Gao 2003; Yonetoku et al. 2004; Ghirlanda et al. 2012). In our model,
we find that Epk ∝ L1/2

iso σ 2
e θ/R, where R is the dissipation radius

(see equation 68). Since variations of σ 2
e θ/R tend to smear out the

Epk–Liso correlation, this quantity would need to be approximately
constant among different bursts to reproduce a tight correlation.
Similar issues regarding the origin of the Epk–Liso correlation in
magnetically dominated GRB jets have been discussed by other
authors (e.g. Lyutikov 2006; Zhang & Yan 2011). On the other hand,
the Epk–Liso correlation may arise more naturally in photospheric
emission models (e.g. Beloborodov 2013).

Our model describes the emitted spectrum only below the spectral
peak, which is produced by particles injected with γ ∼ σ e. Since
we assumed that the acceleration time-scale is a step function, tacc

" tdyn for γ ∼ σ e and tacc ∼ tdyn for γ ! σ e, fast cooling produces
an exponential cut-off in the particle distribution for γ ! σ e. In a
more realistic scenario, tacc may have a smooth dependence on γ .
Then particles can be accelerated up to a cut-off Lorentz factor γ co
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! σ e, which is determined by the condition that the acceleration
time is equal to the cooling time (e.g. Nättilä & Beloborodov 2020).
Particles with σ e ! γ ! γ co may be injected with a power-law
distribution dne/dγ ∝ γ −p, with p ∼ 3 (e.g. Comisso & Sironi 2018,
2019). This scenario may be consistent with the fact that BL Lac
and GRB spectra are often described by a power law at frequencies
larger than the peak frequency.

We assumed that the pitch angle is independent of the particle
energy. This assumption is supported by first principles simulations
in fast cooling electron–positron plasmas (Nättilä & Beloborodov
2020; Sobacchi et al. 2021). In electron–proton plasmas, pitch angle
scattering due to kinetic instabilities may be more efficient for
particles with small Lorentz factors, which has implications for the
detailed modelling of BL Lac spectra (Sobacchi & Lyubarsky 2019;
Tavecchio & Sobacchi 2020). Simulations are needed to investigate
the anisotropy of particles with Lorentz factors γ ! σ e in fast cooling
electron–proton plasmas.
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