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Progress and Potential 
As human researchers, we are trained to reduce the number of variables to make experiments 
manageable. This limits the depth and kinds of phenomena we can study. High-dimensional 
iterative search empowers us to investigate richer, more complex materials phenomena.   
  
Importantly we envisage network effects for the globally integrated autonomous experimentation 
systems, where beyond the tipping point, the size and degree of interconnectedness greatly 
multiply the impact of each research robot's contribution to the network. 
 
However, to truly exploit the potential of autonomous research, we must build substantial 
programmatic investments to develop a workforce comfortable working with artificial 
intelligence. 
 
Summary 
Solutions to many of the world's problems depend upon materials research and development. 
However, advanced materials can take decades to discover and decades more to fully deploy. 
Humans and robots have begun to partner to advance science and technology orders-of-
magnitude faster than humans do today through the development and exploitation of closed-loop, 
autonomous experimentation systems. This review discusses the specific challenges and 
opportunities related to materials discovery and development that will emerge from this new 
paradigm. Our perspective incorporates input from stakeholders in academia, industry, 
government laboratories, and funding agencies. We outline the current status, barriers, and 
needed investments, culminating with a vision for the path forward. We intend the article to 
spark interest in this emerging research area and to motivate potential practitioners by illustrating 
early successes. We also aspire to encourage a creative reimagining of the next generation of 
materials science infrastructure. To this end, we frame future investments in materials science 
and technology, hardware and software infrastructure, artificial intelligence and autonomy 
methods, and critical workforce development for autonomous research.  
 
Keywords: autonomy, artificial intelligence, machine learning, algorithmic development, 
research methods, human–machine teaming, workforce development, materials discovery, 
carbon nanotubes, additive manufacturing 
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1. INTRODUCTION 
 
Materials science and technology are at the core of society, and the development of new 
materials defines our history. Indeed, specific materials technologies give appellation to the 
Stone, Bronze, and Iron Ages, to the Industrial Revolution (steel), and to our modern Information 
Age (silicon).1 Future advances in quantum computation2 and synthetic biology3 will similarly 
arise from advancements in materials research. However, while the pace of technological 
advancement is ever increasing, the rate of materials development remains slow, with decades 
typically needed to transition a new material from discovery to commercial use.4, 5 This slow 
development directly impedes humanity's ability to solve existential problems such as climate 
change, and to generate new technologies that fuel economic growth.6 Indeed, the futurist 
Hiroaki Kitano has said, “Scientific discovery is at pre-industry revolution level."7 The 
importance of artificial intelligence (AI) in augmenting research and autonomous 
experimentation (AE) is becoming recognized as a solution to these needs. Former US Secretary 
of Defense M. Esper recently remarked, “…AI is advancing automated chemistry… These 
advances free up time for our scientists and researchers to focus on next-generation innovation, 
rather than countless tests and experiments.”8 
 
Materials AE uses advanced decision algorithms to plan and execute a series of materials 
experiments iteratively towards human-directed research outcomes.6, 9-19 More precisely, an 
iterative research loop of planning, experiment, and analysis is carried out autonomously (see 
Figure 1). Once human researchers have provided the necessary information (e.g., campaign 
objectives; constraints; relevant data from previous experiments, and in general, prior 
knowledge), the AE campaign is initialized, and the AE system plans the first group of 
experiments. These experiments—which are broadly defined to encompass physical tests, 
modeling/simulation, or data mining—are conducted via automation without human intervention 
to generate experimental outputs from supplied inputs. Next, the results are analyzed 
automatically and incorporated into an updated understanding of the series of experiments in the 
framework of a knowledge representation.20 Finally, a decision algorithm employing AI once 
again plans the next experiment phase and generates a new set of experimental inputs by 
considering the research campaign objectives and the value of a particular next experiment 
towards furthering the objective. The system autonomously advances through the iterations of 
planning, experiment, and analysis. Iterations continue until the campaign objective is achieved 
or other exit criteria are met, concluding the AE campaign. The hundreds or perhaps thousands 
of iterations that may comprise an experimental campaign form the powerful core of AE 
systems. 
 
As many of the terms have multiple interpretations, note that we will use automation to refer to a 
system that can execute experimental actions without human intervention. An example is using 
robotics to mix chemicals and measure results. In contrast, autonomy is distinguished by the 
independence of action, integration of delegated decision-making, and complexity of operations. 
The AE (autonomous experimentation) system described above uses automation to execute 
experiments, and it critically has the additional capability to incorporate new knowledge derived 
from these experiments and to reason over and make decisions on subsequent iterations. AE 
systems can incorporate new knowledge and design appropriate experiments towards the 
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research objective using AI and machine learning (ML). While AI and ML are often used 
interchangeably, we will use the broader term AI to emphasize algorithms used for decision-
making in experiments; ML will refer to a subset of methods that include interpolation, 
classification, and statistical inference.  
 
Previous efforts to speed research include high-throughput and combinatorial (HT/Combi) 
approaches,21 integrated computational materials engineering (ICME),22 and the use of AI and 
ML methods to mine existing databases to identify potential compounds and processes.23-26 
While these efforts are powerful for exploring materials parameter spaces and producing and 
analyzing large amounts of data, they have low iteration rates (related to the “Analysis 
Bottleneck”27), where interpreting results and planning further iterations are the rate-limiting 
factor. In contrast, AE systems can execute tens or hundreds of iterations without human 
intervention, making exceptional speed and high fidelity in research results possible. Indeed, the 
value proposition of AE lies in the advantages of the autonomous iterative loop; when properly 
designed, the loop can advance research progress much faster than current methods, make better 
use of human researcher time and effort, allow for novel unanticipated findings, and enable a 
better understanding of a system—all while expending fewer resources. Highly autonomous 
systems also facilitate experiments to be performed remotely,28 making AE highly accessible to 
the broad community.  
 
The intent of this review is to inform the broad materials community about the current status and 
future directions of materials AE from researchers active in the area. After presenting some 
concepts to help the general readership appreciate AE campaigns, we will briefly look at 
previous attempts to speed research. We will then illustrate the state of the art of AE systems for 
materials using select examples, describe how AI technologies are being applied to materials AE, 
and consider the impact of AE on materials research. Lastly, we will set out a future vision for 
how to expand and exploit AE. 
 
2. MORE ABOUT AUTONOMOUS EXPERIMENTATION 
 
For those less familiar with autonomy research, we will explain additional concepts to 
complement the AE campaign described in the Introduction and Figure 1; further background 
theory can be found in the literature.11, 19, 25, 29 We will also look at how AE can enhance the 
efforts of human researchers.  
 
2.1 Campaign Objective 
 
The campaign objective is the goal of the iterative search process, which comprises a series of 
experiments termed an experimental campaign. The campaign objective is designed by human 
researchers in the first step of developing an AE system. In its most basic form, the objective can 
be the optimization of a property,30 testing a hypothesis,31 or the prediction of a result (e.g., in an 
early campaign, an AE system was tasked with closely predicting the growth rate of carbon 
nanotubes using prior experiments).10  
 
2.2 Analysis and Understanding (Knowledge Representation) 
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In our AE schema, the initial results and raw data from experiments are analyzed, or processed 
into information that can be exploited for decision-making. This could be, for example, 
translating force–displacement data to a material stiffness. During analysis, AI and other 
statistical methods may be used to identify trends or anomalies in data, categorize regions where 
experiments are prone to fail, detect fundamentally different system responses, or build beliefs 
into hyperparameters for models. The results of the analyses are captured into a knowledge 
representation, which is a machine-interpretable model of the information gained from past 
experiments, including the mapping from inputs to outputs.20, 32 As the campaign advances, the 
internal knowledge representation, capturing understanding of the system under study, evolves to 
include newly observed data. The term "knowledge representation" is used for both the model of 
understanding and for how new data is captured by the model. The difference between the 
experimental results and the expected results based on the knowledge-representation model of 
the previous loop can be thought of as a feedback signal, and it can be used as the basis for 
training subsequent models.29, 33  
 
2.3 Design of the Planning Algorithms 
 
The design of the planning algorithms requires careful consideration of the design policy, which 
is directly related to the field of optimal experimental design.29, 34, 35 Throughout the execution of 
a campaign, the task of achieving the research objective (such as minimizing a response) is often 
in tension with resolving the uncertainties inherent in the AE system's knowledge representation. 
This tension, also known as the exploration–exploitation dilemma in the AI community,25, 36-39 
fundamentally arises from the limited and uncertain knowledge the autonomous system has 
about the physical system under study. The system may choose to perform experiments that are 
more tailored to reducing overall uncertainties and to searching for new minima (exploration), or 
it may choose to perform experiments near minima predicted based on current knowledge, 
uncertainties in that knowledge not withstanding (exploitation). A balance between these two 
modes, in which the response function is learned globally prior to optimization, is often more 
efficient than the decoupled alternative.30 
 
For an AE system to be autonomous, the planning algorithms should be able to function at a 
certain depth of intelligence; while a simple home thermostat can act on its own, its degree of 
intelligence is limited. Profound AI for AE can include logical reasoning, independent 
hypothesis generation and testing, understanding by analogy, the ability to extrapolate concepts, 
and the ability to design experiments to discern complex relationships efficiently and effectively, 
among myriad possible outcomes. Because of this versatility, decision authority can be delegated 
to the AI planner, making the iterative research loop possible. Additionally, the planning and 
analysis algorithms should be able to integrate contextual information and experimental 
uncertainties, e.g., intrinsic variability in the materials phenomena themselves, noise from the 
feedback characterization tools, or the influence of exogenous parameters we do not 
control/measure. 
 
2.4 Human–Machine Teaming and Deciding on the Decision-Maker 
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Prior to designing an AE campaign, it is worth considering if AE is the best route for a particular 
research campaign and how human researchers and the system's algorithms will cooperate, also 
known as human–machine teaming. Among the many aspects of human–machine teaming, the 
division of labor is one that should be determined early. By considering the differing strengths 
and abilities of human and robot researchers, automation and AE can be used to enhance human 
efforts. Robots excel at performing repetitive work with precision, so manual labor can be done 
by research robots (automation) more quickly, reproducibly, and cost-effectively. Research 
robots can also analyze data in high-dimensional parameter space in ways that are beyond the 
capabilities of human researchers; they can make decisions that are more disciplined, and 
potentially more effective, towards a set of research goals and without human confirmation 
bias.40 Meanwhile, human researchers provide insight, intuition, creativity, and a deep 
understanding of the context and overall goals of the research project, all of which are abilities 
that cannot be completely replaced by AI.  
 
These factors are also relevant in determining if decision authority can be delegated to planning 
algorithms or remain with human researchers. Cognitive labor is better and more easily done by 
machine, when decisions require: (i) a faster pace than that of human cognitive and/or manual 
ability; (ii) holistic and detailed understanding of every preceding experiment; and (iii) 
interpolation/extrapolation in multi-dimensional spaces, with requisite tracking uncertainties, 
variances, and covariances; and lastly, (iv) when decisions are easy but numerous, and tedious 
such that they will tire or bore a human, potentially leading to errors. In such cases, a fully 
autonomous route is suitable. 
 
In contrast, decision authority is best left to human researchers when (i) new insights or 
inferences beyond the supplied physical rules are required to understand a phenomenon, (ii) 
difficult-to-define objective functions are involved, and (iii) information beyond the context of 
what has been supplied to the AE system becomes relevant. When there are clear issues of safety 
and/or ethics involved in the next experiment, humans should oversee AI experiments to ensure 
relevant safety and ethical practices are observed, e.g., that dangerous reactions are avoided. This 
is an active area of study for autonomous systems in general,41, 42 much of which is appropriate 
to materials AE systems. 
 
Another aspect of human–machine teaming relevant to the design of AE campaigns is the 
collaborative interaction between the AE system and the human researcher.43 As with any 
collaboration, good communication and trust are necessary for success, and all parties should be 
able to understand and use the results. Trust in the context of autonomous systems is an active 
area of study44 and is broadly characterized by predictable behavior and the expectation of two-
way communication of well-defined and achievable objectives.  
 
3. FOUNDATIONS OF AUTONOMOUS RESEARCH AND THEIR CONTRIBUTIONS 
TO AE 
 
The development of AE builds upon prior investments in technologies created to accelerate the 
research process, and AE integrates them in new ways. These technologies include: (i) 
HT/Combi experimentation as a method to increase the rate at which new experiments are 
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performed; (ii) modeling and simulation as a substitute for slow and costly experiments; and (iii) 
data science methods to extract information from simulation and experimental data. The 
groundwork for these developments was laid in part by the Materials Genome Initiative (MGI),4, 

45, 46 as well as by similar initiatives worldwide.47, 48 We will briefly review the state of each of 
these technology areas to clarify their contribution to AE. 
 
3.1 From HT/Combi Experimentation to AE 
 
Traditional HT/Combi experiments expedite materials science discovery by parallelizing 
materials synthesis, processing, and characterization.49 A typical HT/Combi experiment starts 
with the automated synthesis of a set of 101–102 samples, in which some combination of 
composition, microstructure, and processing have been systematically varied to cover the entire 
parameter space of interest. This library of samples is then screened either in parallel or serially 
using a set of automated measurement tools. HT/Combi experimental campaigns are typically 
limited to one or a few iterations of libraries. Some representative recent examples50, 51 of this for 
materials are reviewed by Green et al.49   
 
Historically, HT experimentation (HTE) hardware development has focused on increasing the 
number of experimental results per unit time and decreasing the cost per experiment. This makes 
sense in a non-autonomous (“open-loop”) scenario, where the goal is either to obtain the 
composition–processing–structure–property linkages by an exhaustive experimental search or to 
generate a sufficiently large dataset that can be used post hoc to determine these linkages and 
provide information on regions of optimal performance for subsequent study. The shift towards 
autonomous approaches may eliminate the need for many experiments and instead favor faster 
turnaround for smaller batches of targeted experiments, as new results can be incorporated into 
the experiment planning. In a non-iterative (“open loop”) system, AI can be used to intelligently 
guide an automated characterization tool to subsample a pre-deposited compositional spread 
library, realizing a 2× to 10× decrease in the number of samples required to extract information 
from the system.49 Some relevant examples of the trend towards lower-throughput, low-latency, 
small-batch laboratory automation include 3D-printed carousels for performing iterative 
syntheses of gold nanoparticles to obtain a desired spectrum,16 dexterous, free-roaming robot 
chemists that synthesize and characterize small batches of photocatalysts,52 one-at-a-time 
synthesis and optoelectronic characterization of perovskite thin films,14 and the iterative 
synthesis of perovskite nanocrystals.53 Microfluidic flow chemistry targeting nanocrystalline 
materials are especially amenable to this type of approach, as the products can be observed in 
iteratively changed conditions.54-56 While AE has certainly built upon the techniques used in 
traditional combinatorial experiments, AE campaigns can be designed to adapt the experimental 
sampling as needed; replicates can be made where uncertainties are high, while redundant 
information can be minimized.  
 
3.2 From Modeling and Simulation to AE 
 
Physics-based modeling is a mature field, and it is now widely accepted that simulations can 
identify possible materials of interest.57 This is exemplified in national efforts, such as the MGI,4, 

45, 46 as well as by large-scale computational materials database/repositories,58 such as the 
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Materials Project,46 AflowLib,59 Open Quantum Materials Database,60 the Harvard Clean Energy 
Project (for solar materials),61 and the NOMAD repository.62 Rich toolsets have been developed 
for facilitating large-scale computation and data archiving, such as ChemML63 and Atomate.64 
Whereas past efforts have focused on making predictions that are subsequently tested in the 
laboratory, autonomy enables the incorporation of this information into the ongoing 
experimental process. That is, simulations are used to select better experiments, and 
simultaneously incoming experimental data are used to select more informative simulations, in a 
closed-loop process. A notable recent example of this idea is in the use of density functional 
theory (DFT) alloy thermodynamics as a probabilistic constraint in the (experimental) Bayesian 
optimization (BO) of perovskite alloys for structure and stability.65 More examples of these 
techniques in the context of AE campaigns will be presented in Current and Related AI 
Technologies for Materials AE.  
 
3.3 From Data Science Methodologies to AE 
 
The use of ML and AI methods for materials applications is now well established and is the topic 
of recent reviews.24, 40, 66-70 Their use in accelerating tasks in materials research can be broadly 
classified as learning to “see” (e.g., spectral interpretation), learning to “estimate” (e.g., surrogate 
models for predicting outcomes), and learning to “search” (e.g., optimization).71 Many ML 
predictions of new materials and properties have been confirmed experimentally.72, 73 In addition 
to the use of these methods on simulation and experimental data, they have been used to process 
other sources of information, such as the natural language text descriptions of synthesis 
conditions and properties in published papers65 and structured data showing the relationships 
between known materials.74 In addition to mere prediction, ML approaches can play a role in 
facilitating human understanding. Relevant examples include the use of machine-learned natural 
language models to provide automated summarization of material properties,75 collaborative 
human–algorithm optimization approaches,43 and explainable AI (XAI) methods.76, 77 ML and AI 
methods provide a necessary foundation for the planning and analysis algorithms of AE systems. 
 
4. STATE OF THE ART THROUGH A SELECTION OF AE EXAMPLES 
 
AE for materials is a quickly developing field with new systems coming online with increasing 
frequency. In order to separate the abstract capabilities of the continually evolving robotic 
systems from the discrete achievements, we will view this progress through the lens of a 
selection of completed AE research campaigns (see Table 1). One overarching theme to note is 
that reports of fully autonomous systems are often closely preceded by related advances in 
hardware automation, in ML-driven experimental planning, or in both, but without full 
autonomy. These related non-autonomous advances along with certain efforts towards AE will 
also be included to better illustrate the current state of materials AE development. 
 
4.1 The First Reported AE System for Materials Development, ARES 
 
Soon after realizing an automated system to map reaction conditions for carbon nanotube (CNT) 
growth,78 Nikolaev et al. reported the first AE system for materials development (see Table 1, 
Study A).10 Using in-situ Raman spectroscopy to monitor CNT growth,79 their Autonomous 
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Research System, ARES, was able to learn to grow CNTs at controlled rates over a six-
dimensional processing parameter space, ultimately delivering an improved understanding of 
CNT growth phenomena. The complete iterative research loop of its AE campaign is illustrated 
in Figure 2. After approximately 600 autonomous iterations, ARES was able to supply the input 
growth conditions that achieved the targeted growth rate. Starting from no prior knowledge of 
nanotube growth physics, ARES taught itself to grow CNTs at controlled rates via iterative 
sampling of a complex six-dimensional parameter space that was much too large to sample using 
grid-based80 or open-loop DOE (design of experiments)81 methods. As a straw-man, a full 
factorial span of 6 parameters with only 10 conditions per parameter yields 60,466,176 
experiments. Not only is this orders-of-magnitude more experiments, but the sampling fidelity is 
much coarser than the iterative approach of ARES. Designs of further campaigns using ARES 
are underway; the more recent inclusion of scanning probe lithography to introduce 
compositional variations for screening CNT catalysts82 highlights one path of future 
development. 
 
4.2 AE for Solution Chemistry 
 
One of the main focal points for the development of automation has been platforms for studying 
solution-phase chemistry in a broad sense. For instance, Bédard et al. developed a plug-and-play 
continuous-flow AE system for performing synthesis and analysis in an automated fashion 
(Table 1, study B);83 user-specified reactions were automatically optimized through the 
exploration of three discrete reactions using a black-box optimization tool known as SNOBFIT.84 
Building on this platform, Coley et al.85 integrated both a robotic system to dynamically 
reconfigure the flow chemistry platform and a pipeline to search the literature and predict 
synthetic pathways. This highly versatile system was used to discover the optimal synthetic 
pathways for six sample drug substances; however, the process did not comprise experimental 
feedback nor optimization of reaction conditions due to the complexity inherent to multi-step 
reaction chemistry.  
 
An alternate approach to general chemistry has recently been shown by Burger et al., wherein a 
mobile robot can move around a room to access a variety of distinct stand-alone, commercial 
instruments, reducing the need for instrument customization. This AE system was used to 
optimize the hydrogen evolution reaction (Table 1, study G).52 
 
4.3 AE for Emulsions: Algorithmic versus Random Sampling 
 
Following the initial demonstrations of AE systems, an important trend started in the literature 
with systems explicitly testing the acceleration inherent to the confluence of automation and 
algorithmic planning. Specifically, DropFactory was constructed as an automated system to 
dispense reagents to form oil-in-water droplets, which exhibit a wide range of behaviors from 
locomotion to self-dividing.86 Incorporating it into an AE campaign, Grizou et al. explored the 
behavioral range resulting from a four-dimensional parameter space (Table 1, study C). One 
important contribution from this work was the comparison of experimental campaigns run by 
random sampling versus those in which each subsequent experiment was chosen algorithmically. 
When given a budget of 1000 experiments, the algorithmically driven system explored 73% of 
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the parameter space while random sampling only explored 22%. Perhaps more importantly, the 
algorithmic sampling achieved the same performance in 128 experiments as the random 
sampling achieved in 1000. 
 
4.4 AE for Additive Manufacturing: Bayesian Optimization versus Grid-Based Exploration 
 
Building on the trend of introducing new categories of experiments in an autonomous context 
while benchmarking against traditional techniques, Gongora et al.30 developed BEAR, a robotic 
manufacturing and testing system to autonomously optimize the toughness of additively 
manufactured components (BEAR = Bayesian Experimental Autonomous Researcher; see 
Figure 3 and Table 1, Study D). As part of the initial demonstration to study components defined 
by four geometric parameters, the authors included an explicit comparison between experimental 
campaigns guided by BO and those guided by grid-based exploration, revealing the time- and 
cost-efficiency of AE. What the grid-based system achieved in about a month, the Bayesian 
system accomplished in just 12 h; after 24 h, the Bayesian method produced a higher toughness 
performance than that achieved by the month-long grid-based search. They have now extended 
their work to include finite-element modeling of the physical response, successfully increasing 
the toughness by another 30% (see Figure 3, Conclude panel).87 
 
4.5 AE for Thin Films 
 
There has been a sustained effort by multiple research groups to develop AE to synthesize and 
study functional thin films for energy applications. Once again, examples in automation and 
HTE came first. In 2019, Sun et al. developed a HT process that allowed the synthesis and 
characterization of 75 unique compositions of perovskite-inspired inorganic films over a span of 
two months.88 Following these results, Langner et al. developed a robotic system to synthesize 
polymer blends for organic photovoltaics and to study degradation in a totally automated 
fashion, at ~300 samples per day. The resulting large dataset in a four-dimensional parameter 
space of compositional blends was used to simulate autonomous campaigns, which suggested 
that a self-driving laboratory could achieve equivalent performance in this space with 32 times 
fewer experiments.89 A fully autonomous realization of functional films was published shortly 
thereafter by MacLeod et al., in which they reported a robotic system moving between synthesis, 
processing, and multiple characterization stations (Table 1, Study E). By guiding this system 
with BO through two 35-sample experimental campaigns, they optimized the hole mobility of an 
organic semiconductor film. Significantly, they also identified a region that exhibits a previously 
unknown local maximum in mobility.14 
 
4.6 AE for Quantum Dots 
 
In addition to films, quantum dots (QDs) have been the subject of advances in both automation 
and, recently, autonomy. As far back as 2010, HT synthesis had been applied to map the 
synthetic parameter space corresponding to QDs.90 Efforts to screen QDs continue with recent 
reports on metal–halide QDs.91 Recently, the concept of automated QD synthesis was combined 
with a ML-guided experimental planner to realize an artificial chemist for optimizing QD 
synthesis (Table 1, Study F).55 This system utilized flow reactors to study a variety of decision-
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making policies in a BO framework. Further, the study showed that learning can be accelerated 
by at least two-fold when the knowledge of one set of precursors was transferred to a different 
set of precursors. 
 
4.7 Developments in Characterization and Analytical Methods in Efforts towards AE 
 
In some cases, efforts towards autonomy in the study of complex properties involve innovative 
approaches to assess properties. Kirman et al. employed optical observation of crystallization to 
identify novel perovskites.92 HT experiments were made possible by using instrumentation 
developed for protein crystallography studies. ML was applied to both optically analyze samples 
to evaluate crystallization and to build a predictive model of whether samples would crystallize. 
Independently, Li et al. also combined robotic synthesis with ML-based experimental selection 
for perovskite synthetic studies.93 While their analysis involved a number of manual steps 
including visual inspection, their experimental selection leveraged a previously developed 
experimental planner termed ESCALATE (Experiment Specification, Capture And Laboratory 
Automation Technology).94  
 
Efforts towards materials AE need not originate from a synthetic viewpoint; the active guidance 
of analytical systems can itself accelerate the characterization process. For instance, Noack et al. 
demonstrated how a kriging-based approach could accelerate X-ray scattering experiments by 
selecting the parameters of subsequent experiments.95 This approach was experimentally 
validated through a set of campaigns, each with 600 experiments, on a sample composed of 
nanoparticles; a reduction in error was observed when the system was guided by active learning 
(AL), where the ML model’s uncertainty and expected value are used to select new data points. 
This study highlights a challenge inherent to benchmarking experimental-learning-based studies; 
comparisons can only be made to previously reported experiments. More recently, real-time 
control over X-ray measurements was combined with synthetic capabilities by Rakita et al. to 
dynamically adjust the redox state of compounds in solution.96 While this approach only featured 
a single dimension of control (the presence of reducing or oxidizing agents), it is a promising 
example of how synthesis and characterization can be combined in an autonomous fashion. 
 
4.8 AE and Materials Discovery 
 
Efforts towards AE in materials science has also led to the discovery of new materials. 
Combining HTE and ML, Ren et al. discovered a new metallic glass using an iterative approach 
and an ML model for experimental selection.97 Many important materials properties are 
intimately tied to the structure. As such, learning the relationship between the structure of a 
material and how it is formed—i.e., phase map—can serve as a blueprint for guiding materials 
discovery and optimization. Kusne et al.12 developed CAMEO (Closed-loop, Autonomous 
system for Materials Exploration and Optimization), an AE system that maximizes overall 
knowledge of the composition–structure relationship (Table 1, Study H). By controlling 
synchrotron X-ray diffraction measurements and exploiting phase-map knowledge, they 
identified a novel phase-change material, which has recently attracted attention in the electronics 
industry.98 Further, recent reports of AE systems using first-principles simulation provide more 
evidence that this approach is amenable to the rapid discovery of novel materials formulations.18 
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4.9 Materials AE as a Collaboration between AI and Materials Science  
 
Although it is obvious that successful AE requires knowledge from both the AI and materials 
science communities, well-funded collaborations with experts in both fields may allow for 
tackling even larger problems. For example, a consortium of computer scientists and materials 
scientists are developing SARA (Scientific Autonomous Reasoning Agent)99 to use 
combinatorial samples with laser spike annealing to generate time–temperature–transformation 
(TTT) diagrams for novel functional oxides. SARA will use AL strategies with the 
distinguishing feature that complex reasoning is required to guide experiment selection. For 
example, one operational mode for SARA is the identification of all unique synthesis routes for a 
given structure, requiring AI algorithms that are deeply aware of phase diagrams and the 
properties of all known phases, among other issues. Realizing this breadth of expertise in an AI 
system requires learning-and-reasoning-based algorithms well beyond the purview of ML 
algorithms demonstrated in materials research to date. The need for materials-aware AI 
combined with the substantial complexity of the composition–processing–structure 
instrumentation makes the SARA project emblematic of the grand challenges in materials AE.  
 
5. CURRENT AND RELATED AI TECHNOLOGIES FOR MATERIALS AE  
 
AE systems offer a unique opportunity to the AI community as platforms for the development 
and testing of their models and algorithms. The value proposition of materials AE to the AI 
community is the iterative nature of the platform over unknown search spaces, that nonetheless 
have a ground truth in materials phenomena because they originate from fundamental chemistry 
and physics. There is no direct mechanistic analogue in social media response or static 
voluminous databases, where advanced AI methods are often applied. On the other hand, 
materials AE depends on AI technologies for planning algorithms and knowledge-representation 
models; the distinguishing component of closed-loop AE systems from merely automated 
experimentation are the iterative decisions made by an AI/ML planner.  
 
At this nascent stage, many of the existing AE systems offer proof-of-concept demonstrations, 
opting to use previously developed ML and AI methods. While these generic methods are 
attractive for their broad and perhaps immediate applicability, they do not necessarily capture 
aspects of the material system, experimental apparatus, and campaign constraints. To build more 
robust, intelligent platforms with greater autonomy, these factors should be included. In this 
section, we highlight a few examples of such problem-specific features and consider how—if at 
all—current state-of-the-art methods address them. We also present some new features materials 
science has brought to AI technologies: the trend towards models based on physical and 
chemical phenomena and new considerations required for planning algorithms. 
 
5.1 Bayesian Optimization (BO) and Gaussian Process (GP) Models 
 
Many general methodologies—such as BO,100 AL,101 and statistical DOE102, 103—suggest a 
model of the relevant quantities-of-interest to learn sequentially as well as the decision-making 
policies that can select a set of experimental actions to execute towards a research objective, 
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making them useful to closed-loop techniques. For example, in BEAR (Figure 3 and Table 1, 
Study D),30, 87 the mechanical performance of a manufactured structure is viewed as an 
experimental response function over such structures and is modeled as a random function using a 
Gaussian process (GP) model.32 Used with the expected improvement (EI) policy, in which 
sampling is pursued at the point most likely to maximize improvement of a value, this GP model 
is used to select the next structure to test.104 GP models with the EI policy or similar modeling 
and policy choices are attractive because of the modeling and computational ease. The GP model 
allows the specification of the assumed structure, such as smoothness, of the response function 
without being overly restrictive. However, in many materials systems, such assumptions are not 
globally accurate. The archetypal example of this are critical phenomena. Critical regions of 
experiment space (e.g., delineating regimes of pressure or temperature) result in responses that 
change rapidly or discontinuously, which cannot be properly modeled using off-the-shelf GP 
models. This is not isolated to the use of GP models in BO. Many AL and DOE methods 
ultimately rely on similar types of generic models. For example, uncertainty-based methods105-107 
often rely on GP or linear models to model responses. 
 
Another feature not immediately captured with off-the-shelf methods is the fact that experiments 
often yield several types of responses, e.g., various characterizations, experiment failure, 
experimental time or cost, or an uncontrolled factor, such as laboratory humidity. More complex 
models are needed to properly capture the relationships between the different responses, as well 
as the uncertainties between these relationships. A joint description capturing a variety of 
measurable responses and phenomena may not be easy to work with. An alternative direction is 
to utilize an ensemble of more traditional models, each offering simple estimates of the functions 
of interest; however, the lack of formalism makes inference and predictions more difficult. For 
example, Powell and Reyes and co-workers108, 109 describe methods for using an ensemble of 
physics-based kinetic models to represent beliefs on experimental responses. Other models such 
as ensembles of neural networks55 can directly offer multi-variate predictions for several types of 
responses, in which correlations between outputs are emergent rather than having to explicitly 
couple them statistically. Such networks have already been used in experimental science and 
control settings.110 In a broader context, ensemble-based methods could allow us to use a variety 
of different types of models in a single decision-making framework. Here, methods such as 
Bayesian hypothesis testing,111 model averaging,112 multi-fidelity modeling,113, 114 strategies for 
multi-fidelity optimization with variable dimensional hierarchical models,113, 115 and multi-
information source optimization (MISO),116 offer potential avenues for more robust modeling 
and decision-making. 
 
5.2 Reinforcement Learning (RL) 
 
Closely related to closed-loop techniques, such as BO, are reinforcement learning (RL)29 and 
optimal control.35 Markov decision processes (MDPs), a core RL framework, models generic 
states of a closed-loop campaign, stochastic transitions between states upon taking experimental 
actions, and rewards or costs incurred when making such transitions,117 offering a more fluent 
way of modeling many aspects of materials research. Through RL, MDPs allow an agent to 
make more operational considerations. RL decisions are obtained by estimating expected future 
cumulative rewards incurred when pursuing a particular branch of an experimental campaign. 
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Many such techniques do so by approximating a value function (i.e., a measure of how “good” 
states are) or a policy function (i.e., the expected best action we can take to transition to high-
value states). As with BO, learning such functions can be done with generic black-box models or 
with more problem-specific models that use probabilistic beliefs on response functions, 
experimental failure, costs, or rewards obtained. 
 
5.3 Deep Learning (DL) 
 
Regardless of the type of modeling, approximating the functions needed to execute decision-
making in RL generally requires a significant computational investment. The coupling of deep 
learning (DL)118 with RL—so-called deep reinforcement learning (DRL),119—to calculate DL-
model surrogates of value or policy functions may prove useful here. DL models are trained 
against a large number of states/value pairs. This can be done offline, by considering a large 
number of potential states a campaign can be in and assuming that a representative set of 
potential states can be simulated. While this methodology proved successful in the case of 
AlphaGo120 and other cases,121 it remains to be seen whether something similar can be applied in 
the context of AE. 
 
In general, DL methods are also proving useful outside the context of predicting value or policy 
functions. They work well by self-discovering latent and predictive features from raw, often 
high-dimensional data.122 Despite impressive results in many problems, the direct use of DL in 
materials AE is limited due to the high data requirements needed to train models. Requiring large 
sets of representative data is somewhat antithetical to the intelligent and nuanced exploration of 
experiment space discussed above. There are, however, opportunities for this powerful technique 
to be used inside the closed loop when simulations and physical models are used to generate 
synthetic data for offline pre-training of the DL model. DL can also be used to autonomously 
analyze rich characterization data, such as microscopy or tomography data, and possibly map 
such data into signals that the autonomous agent can use to close the loop. Current examples of 
this use in non-autonomous settings include DL for optimal microscopy,123 cryo-electron 
microscopy,124 and atom probe tomography.125 
 
5.4 Transfer Learning (TL) 
 
The lack of data is frequently encountered in autonomous research and generally prohibits the 
use of larger DL outright. To mitigate this, transfer learning (TL) can be used to leverage 
existing data of previously studied, related materials systems. One way to do this is with deep 
transfer learning (DTL).126 Above, we discussed pre-training a DL model in a way similar to 
what would be encountered during the online execution of the closed loop. In DTL, a DL model 
is trained using data obtained from a separate task, often in an unsupervised manner, resulting in 
a learned latent representation of some material in general. Then, within the closed loop, the 
model is trained from latent representation features to a material property of interest. Pre-training 
the mapping from material to latent features reduces the data requirements needed to learn the 
mapping to the property of interest. Alternatively, one can use adjacent data to build more 
informative priors for BO models used in closed-loop design. This is the perspective taken by 
Roy and Kaelbling127 and applied, for example, to building Bayesian priors for the tribological 
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properties in two-dimensional TMD (transition metal dichalcogenide) materials using adjacent 
materials descriptors.128 
 
5.5 Towards Physics-Based Models 
 
The iterative nature of AE can be used to explicitly test physics-based models,65 as opposed to 
black-box statistical models comprising raw experimental parameters. A campaign may also be 
designed to search over multiple potentially operative physical and chemical models, known in 
the AI community as model selection. These approaches are particularly appealing because they 
incorporate physics-based phenomena, e.g., Arrhenius behavior, into their knowledge 
representations rather than being naïve or purely statistical representations.108 King et al.31 built 
one of the earliest robot scientists called "ADAM," which produced yeast enzymes by generating 
hypotheses of biological synthesis routes that it evaluated in a closed loop.129 Similar to the 
symbolic regression work of Schmidt and Lipson,130 we envisage AE campaigns where the 
objective is to select and parameterize from a broad range of materials phenomena (in place of 
mathematical symbols) using iterative experimental search strategies that are designed to regress 
quickly to the operative physics. With appropriately chosen models, AE output as physical 
models is often superior to output as naïve or black-box statistical models—which, while they 
may be predictive, are scientifically uninformative. Additionally, while statistical techniques, 
such as ML, are appropriate for interpolation, they do not excel at extrapolation, which is 
possible with physics-based models. 
 
The design of planning algorithms to test the physics-based models is currently the subject of 
intense research, including both established approaches (e.g., BO, RL)31, 99, 108 and more 
exploratory advanced AI/ML methods.12, 131-133 The integration of ML with AI reasoning in the 
context of scientific knowledge may be used emulate how humans would interpret data; AI 
reasoning comprises the ability to infer new facts via the consideration of various information 
sources, complementing statistical ML. This coupling of AI-reasoning and ML is a pillar of the 
so-called third wave of AI,134-136 and the phenomenological nature of the physical sciences 
makes it particularly well-suited for the development and demonstration of such AI/ML systems.  
 
5.6 Challenges in the Design of Planning Algorithms for Materials AE 
 
Materials AE campaigns often have real-life operational considerations or constraints (e.g., time, 
cost, available inventories) that may need to be incorporated into the planning algorithm. 
Decisions may require a "cost–benefit" analysis that utilizes multiple information sources,116, 137 
which may include a mix of experiments that exploit various characterization techniques and in-
silico simulations of multiple levels of fidelity. Frequently, advanced materials development 
involves expensive methods and instrumentation (e.g., electron microscopy or molecular beam 
epitaxy) or limited-access, highly competitive facilities (e.g., synchrotron X-ray or neutron 
sources), making the ability to reliably select the right experiment especially impactful. New 
algorithms should be developed for the efficient exploration of high-dimensional parameter 
space in a time-constrained environment, thus reducing the number of required experiments. This 
was realized in the recent AE campaign of CAMEO (Table 1, Study H);12 a combinatorial library 
with an effectively infinite number of compositions to characterize was generated during limited 
synchrotron beam time. Exploiting the phase map autonomously, they discovered an optimal 
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phase-change memory material using only one-tenth the number of measurements required by 
the standard (non-autonomous) grid-based approach.  
 
While autonomous systems promise to more reliably perform optimal experiments towards an 
objective, some have expressed concern that robots will ignore results that are outside the 
objective but are nonetheless interesting and that they will miss serendipitous and synergistic 
unanticipated results that a human would naturally recognize.138 In the future, serendipity-
awareness may be incorporated into autonomous research algorithms.86 
 
6. POTENTIAL IMPACT OF AE ON MATERIALS SCIENCE RESEARCH 
 
6.1 Increased Speed and Decreased Cost 
 
AE promises to disrupt the current research enterprise and investment structure by increasing 
returns on capital and skilled labor. While it is difficult to quantify the rate of research progress, 
it is a function of iteration time, number of iterations needed to find a solution, and the unit cost 
per iteration, all of which are expected to improve as experimental hardware is automated and as 
closed-loop iterative algorithms are implemented and improved. Early demonstrations of AE, 
such as the ARES,10 BEAR,30 and CAMEO12 AE systems discussed above, have already 
demonstrated orders-of-magnitude reductions in iteration time and number of iterations needed 
to discover and characterize novel functional materials.12 AE can also achieve better research 
outcomes than current processes in terms of parameters, such as materials performance or 
fidelity of characterization.12, 30  
 
The exponential increase in research-progress speed enabled by AE will make research more 
affordable. Labor dominates the cost of research, and AE can effectively multiply the 
productivity of an individual researcher; hundreds of experimental iterations can be done in the 
time and labor it previously took to do one, reducing the marginal cost of subsequent 
experiments and allowing us to consider the economics of the AE process. In principle, AE-
enabled research equipment need not be more expensive than traditional equipment; in practice, 
any additional capital costs are a fixed cost, and the amortized marginal cost is small because of 
the increased duty cycle. As research becomes more affordable, we expect it to become more 
accessible, just as computing power became more accessible with low-cost processors. 
 
6.2 Future Directions: Globally Integrated AE Systems and a Rise in Citizen Science 
 
With the increasing speed of research (per researcher), we predict the trend depicted in Figure 4; 
it assumes each researcher will have access to research robots, which will increase the number of 
researchers. We expect three phases of AE development stemming from their degree of 
interconnectedness. Current AE systems are stand-alone and self-contained. In 3–5 years, we 
anticipate a transition to locally connected systems, where multiple robots can perform mutually 
dependent research. In 15–20 years, we expect a network of AE systems to be globally 
integrated, much like the internet is today. Importantly, we envisage network effects for the 
globally integrated AE systems, where beyond the tipping point, the size and degree of 
interconnectedness greatly multiply the impact of each new research robot’s contribution to the 
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network. We can thus expect solutions to currently intractable problems, as a result of leveraging 
network effects from data sharing and interpretation and a community-driven approach to 
scientific investigation. 
 
Currently, only those with access to large, well-resourced laboratories are able to participate in 
materials research at the highest level. As a result of the decreased cost and increased 
accessibility of research, a potential outcome is a rise in citizen science where—as in the 
astronomy and high-energy physics communities—contributions to the field can be made by 
enthusiasts with access to data or instruments. In the future, greater access to AE will provide 
more people the opportunity to access research robots and be able to do meaningful research. 
This may take the form of remote-access "cloud labs" (e.g., Emerald Cloud Lab, Strateos); low-
cost, relatively self-contained networkable benchtop equipment analogous to 3D printers (e.g., 
modular automated organic synthesizers,139 ChemPuters140); or open-access challenges where 
participants can propose new experiments based on collected datasets (e.g., the DARPA SD2 
Perovskites Synthesis challenge, performed on the RAPID system).93 With the expected increase 
in accessibility, AE can help address the lack of diversity in science at the earliest stages. Studies 
have shown that while children may lose confidence in their potential to be scientists, they do not 
lose their ability to do science; this was especially evident in underrepresented groups.141 As AE 
progresses, it can help make scientific research more accessible and appealing to everyone, 
especially those at risk. 
 
6.3 Changes in Research Strategies  
 
As AE is applied to more types of materials systems, we must also consider the implications of 
AE on the design of campaign objectives and search strategies. Human researchers design 
experimental campaigns to balance the likelihood of success, potential benefits of success, and 
explainability of outcomes. Often this takes the form of starting from known experiments142 and 
making modifications one variable at a time.143 This strategy can be effective for local 
optimizations, but it has difficulty in multiparameter problems and results in biased datasets.144 
The speed and reduced human effort of AE enable a greater diversity of experiments, and since 
AI/ML algorithms excel at high-dimensional search problems, they are holistic rather than 
reductionist. AE also increases the risk appetite per experiment. The failure of one or even 
several experiments does not doom a campaign. In fact, "failed experiments" can serve to inform 
where experiments do not work and further improve the ML model.145 Using AE, previously 
intractable problems become more likely to succeed, and we can pursue more challenging, high-
dimensional problems. 
 
7. INVESTMENTS FOR MATERIALS AE 
 
In order to fully benefit from AE, the community must overcome significant challenges by 
investing in ways that make experimental hardware, software, and data sharing more suited to 
AE. Investments in fundamental research typically focus on addressing specific foundational 
questions. However, investments in AE will establish an infrastructure that will broadly enable 
faster research towards many scientific questions as well as industry-relevant results.   
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7.1 Investments in Experimental Hardware 
 
We encourage non-proprietary interfaces to enable facile sample exchange across multiple 
commercial experimental tools for synthesis and characterization. Although it is possible to 
design mobile robotic systems that can work in existing human-centric laboratories,52 this is not 
an ideal long-term solution compared to standardized sample exchange interfaces, which will 
reduce complexity and design or robot-path planning time. The redesign of microscopes, 
synchrotron beamlines, and other sophisticated instrumentation to be compatible with robotic 
sample handling—akin to the multi-plate-handling robots in the bio-community—is an essential 
area of investment. It will also be necessary to integrate in-situ/inline and real-time metrologies 
with automated data processing pipelines for various material data formats.52 For example, in-
situ microscopes could generate a massive amount of image frames at microsecond frame 
rates,146 and to exploit them, inline image analysis carried out as fast as the frame rate is crucial 
for accelerating their experimental campaigns.147 
 
Innovative new technologies for on-demand sample fabrication and in-situ characterization are 
also needed to translate these early wins to the full spectrum of materials science applications. 
With many material properties and desired functionalities emergent from multiple phenomena, 
detailed characterization of samples would improve the rate and degree of convergence towards 
campaign goals. However, it is not generally tractable to measure every spot of a heterogeneous 
sample with every tool. Optimizing the information obtained by multiple techniques requires a 
judicious subsampling of this measurement space to uncover the relevant descriptors.148  
 
7.2 Investments in Data Management and Sharing 
 
By their very nature, AE systems will generate much larger data sets than current laboratory 
practice, and these data are “born digital,” making them inherently easy to incorporate into 
digital workflows, and avoiding the bottleneck of human data-entry. This creates an opportunity 
to encourage the organized collection, sharing, and reuse of data at much larger scales than at 
present. Such accumulated and well-curated databases can be reused by a distributed network of 
AE systems (see Figure 4). This in turn provides a dataset from which prior knowledge of related 
scientific domains97, 149, 150 can be extracted and then used to supplement RL151 and TL,128, 152, 153 
algorithms. As highlighted in efforts, such as the MGI,45 more attention needs to be paid to the 
collection of data from failed experiments145 and to the automated labeling of data as they are 
collected, which should consider the FAIR data principles of findability, accessibility, 
interoperability, and reusability.154  
 
Despite efforts to make data more widely available (e.g., Materials Data Facility155), most data 
are kept proprietary and are not used fully even by the team that produced them. We encourage 
open sharing of data and AE algorithms to maximize exploitation of AE campaigns. We also 
encourage increased investment into open-source/open-standards data file formats and 
application programming interfaces (APIs) to lower the barrier to access, and discourage 
proprietary software and data formats for experimental hardware. Investments will be needed for 
the large-scale structured repositories of both data (e.g., Materials Data Facility,156 Materials 
Project,46 PRISMS157) and trained AI/ML models (e.g., DLHub158)—designed for use by 
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machines and people—as well as the automated tools for constructing and curating these 
databases.46 Additionally, efforts to develop uniform metadata descriptions, such as tracking 
material sources and workflow methodologies will be needed to improve knowledge 
representation.  
 
7.3 Investments in Software Infrastructure 
 
To build automated or AE systems that can incorporate multiple commercial systems for 
synthesis and characterization, more open-source software, data standards, and APIs are needed. 
Irrespective of whether a system is fully automated, the algorithms used to direct experimental 
decision-making need to be both robust and flexible enough to be used on a variety of different 
experimental platforms. Investment is needed in the software infrastructure for materials AE. 
Atinary (formerly ChemOS),159 ESCALATE,94 LabMate.ML,160 MAOS,161 BlueSky,162 and 
ARES™ OS28 are examples of such efforts. However, the broader range of materials, modeling 
software, and experimental hardware will require further investment into software. Commercial 
hardware often uses proprietary software and data formats that are difficult to access or modify 
for incorporation into AE systems.  
 
7.4 Collaborations as the Foundation to Future Cooperative Networks 
 
AE requires its collaborative network to expand to reach its full potential. As the AE 
infrastructure becomes more accessible with hardware, data-storage, and software investments, 
efforts should also be made to encourage key stakeholders in research—industry, academia, and 
government—to work together and take advantage of the increased accessibility. Current 
collaborations and partnerships will lay the foundations for the network of AE systems we 
anticipate in the future. Many materials and chemical corporations have HT/Combi research 
units that collaborate with academic researchers. Academic research teams are also directly 
commercializing technologies of AE materials discovery, e.g., ML tools for materials data 
analysis (Citrine Informatics). The main barrier to effective partnerships between academic and 
industrial teams is in the ownership of the co-developed intellectual property. With laboratory 
capabilities distributed across different entities and open-sourced ML algorithms trained with 
proprietary data, the questions about product ownership and the contributions of involved parties 
will be a persistent concern, requiring much legal effort to predefine the conditions of each 
partnership. Programs to standardize these partnerships would be helpful. 
 
Government-funded scientific user facilities (SUFs) can play a critical role in encouraging the 
transition from small-team independent research to cooperative scientific networks. The 
centralized nature of these facilities offers an opportunity to establish common data formats, data 
sharing policies, and new access paradigms such as multi-facility proposals. The national 
laboratory-scale engineering resources can be leveraged to enhance automation, develop 
hardware and software standards around which large community-scale AE programs can 
nucleate.  
 
In addition to encouraging collaborations between academic, government, and industrial 
partners, investments for improving the collaborative interaction between human researchers and 
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the AI algorithms of AE systems are necessary. Designing effective human–machine teaming is 
an emerging area in autonomy and user-experience research.163 With good teaming, humans and 
chess-playing computers working together outperform either humans alone or computers 
alone.164 In the 2005 Freestyle Chess Tournament, a team of chess masters and a supercomputer 
were defeated by a team of amateur humans and desktop computers with superior teaming. There 
are on-going efforts to incorporate human expertise, judgement, and prior knowledge into search 
and decision-making algorithms.165 With respect to materials, only nascent efforts at teaming 
humans with AI exist for inorganic materials.43  
 
7.5 Educating the Materials–AI Workforce 
 
We have recommended a variety of investments to help establish a new infrastructure for AE to 
accelerate research progress. This new infrastructure will make possible the globally integrated 
AE systems we expect in 15–20 years (Figure 4). The systems will be linked together over 
networks, where experimental, simulation, and information processing nodes combine with 
human direction to form autonomous "collaboratories,"166 generating scientific knowledge at 
rates barely imaginable today. Changes in the workforce behind AE will be required to support 
this future infrastructure. 
 
The current lack of AI and autonomy expertise is a barrier to AE progress. Most individuals in 
our existing workforce do not have the skillset to do both materials and autonomy research, and 
universities are just beginning to develop curricula to address computer science and AI for 
materials research. With autonomous vehicles and huge demands for AI professionals, the AE 
community will need substantial programmatic investments to develop a workforce of "AI 
natives" that are comfortable doing closed-loop AE as they are doing materials research, as well 
as value propositions to attract autonomy and AI experts to materials problems.167  
 
Workforce development and curricular innovation is needed at all levels,167 but one particularly 
pressing need is for technicians that can manage the hybrid mechanical–electrical–chemical 
systems. Because of similarities to workforce needs in advanced manufacturing, there may be 
opportunities to extend the existing efforts of community colleges.168  
 
8. CONCLUSION 
 
We hope that this paper informs, sparks interest, and potentially inspires the larger community 
for AE systems. The first research robots are already making an impact in materials research and 
development. From optimizing the growth of CNTs to accelerating the understanding of 
composition–structure–property maps, they are revolutionizing the way scientific research is 
conducted. Disrupting conventional research methods, AE has demonstrated an increased rate of 
knowledge generation by orders of magnitude and has resulted in the discovery of new 
compounds. Broad deployment of AE will require substantial investment in hardware, software, 
and data infrastructure, as well as in education to overcome technological and workforce 
challenges. Integrated, online AE systems need to be made cheaper and exponentially more 
accessible. Upon the demonstration of a sufficient number of AE platforms, funding of large-
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scale multi-institutional "collaboratories" will enable researchers to attack civilization’s most 
pressing topics.   
 
The extensive collaboration of the fields of materials science and autonomy research have and 
will continue to benefit both sides. Novel materials have been identified and syntheses 
optimized, while a unique platform with complex real-world problems is available to develop 
and test advanced AI and autonomy approaches. With the potential to revolutionize research, an 
opportunity exists for the autonomous materials and AI communities to pursue the Nobel–Turing 
Challenge.169 
 
Overcoming the challenges identified in the paper has the potential to reshape science and 
particularly the roles of human researchers, freeing us to engage with science more meaningfully 
and interactively. This will lower the barrier to entry for asking and answering scientific 
questions, generating a new breed of scientists who focus on insight and creativity and lowering 
the barrier to entry for citizen scientists. These tools will bring together artificial and human 
intelligence in efficient and effective efforts to accelerate technological and fundamental 
scientific progress transforming the world around us. 
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Figure Captions 
 
Figure 1. Schematic showing the different parts of an autonomous experimentation (AE) 
campaign. 
An AE campaign comprises an iterative research loop that is carried out autonomously towards a 
research objective. Initialize: Before the first research cycle, the AE system incorporates 
information provided by human researchers to initialize the campaign. Plan: In this first part of 
the research loop, the system considers the predefined campaign objective and the most recent 
knowledge base and plans the next experiments to be pursued. Experiment: The experiments—
which are broadly defined to encompass physical tests, modeling/simulation, or data mining—
are carried out without human intervention. Analyze: Finally, the AE system uses the output data 
of the experiments to update the knowledge base, which will then be used in the planning of the 
next loop. Conclusion: Once the campaign objective is reached or some other criteria is met, the 
system completes the AE campaign and discontinues the iterations of planning, experiment, and 
analysis. Further development of this new research process is expected to significantly increase 
the efficiency of scientific investigations and completely shift the way research is carried out. 
 
Figure 2. Schematic showing the autonomous experimentation (AE) campaign of ARES 
(Autonomous Research System), the first reported AE system.10 
Initialize: ARES was provided with a database to seed its AI planner algorithm of 140 input 
synthesis condition with resultant growth rates. Plan: ARES used the subsequent database to 
train a random-forest model, which it used to determine the reaction conditions of the first 
experimental phase, beginning the first cycle of planning, experiment, and analysis. Experiment: 
Using automated apparatus, carbon nanotubes (CNTs) were synthesized via chemical vapor 
deposition (CVD), and CNT growth was tracked via in-situ Raman spectroscopy. Left inset 
shows the experimental set-up: an array of pillars for experiments with a laser heating one pillar. 
Right inset shows the time series of spectra (waterfall plot), revealing CNT growth via the 
increasing intensity of the G peak with time. Analyze: The maximum growth rate, νmax, of each 
experiment was extracted as shown by plotting the G-band area versus time. Along with the 
results of previous experiments (input conditions and output results), the results were analyzed 
and used to update the random-forest knowledge representation. Plan: Considering the latest 
knowledge representation, the AI planner once again decides on new experimental input 
conditions to target growth rates using a genetic algorithm. Conclude: After hundreds of 
iterations, the system converged on the maximum growth rate, demonstrating that ARES taught 
itself to grow CNTs at controlled rates.  
 
Figure 3. Schematic showing features of autonomous experimentation (AE) campaigns of 
BEAR (Bayesian Experimental Autonomous Researcher).30, 87 
BEAR is an AE system for producing and mechanically testing additively manufactured 
components. Initialize: The diagrams define the strut thickness (t), strut radius (r), number of 
struts (n), and twist (θ) of the components. These four parameters were varied to optimize 
toughness, the campaign objective. Performance was measured during uniaxial compression in 
which the structure was compressed by displacement D. Plan: The plot is an example of how 
parameter selection in one of BEAR's AE campaigns progressed with campaign time. Planning 
involved Bayesian optimization (BO) in all AE campaigns; in a set of campaigns, finite-element 
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modeling of prior physical data was also included through transfer learning to evaluate the 
inclusion of this data into the AE campaign. Experiment: The image shows the automated 
experimental apparatus of BEAR, where components were manufactured and tested for 
toughness (U). Analyze: Plot showing how U was obtained by measuring the force (F) as D was 
varied, adding to the knowledge base. Conclude: BEAR was used to benchmark the performance 
of AE by exploring the mechanical toughness of components that were either chosen from a grid 
or by an active-learning algorithm. Plotted are the median performance of the grid-based 
exploration and the AE campaigns. Even after 60 experiments, AE (blue diamonds) 
outperformed the 1800 experiments chosen from a grid (black squares). Providing the system 
with prior information about physical response (orange triangles) led to a +30% improvement in 
median performance. 
 
Figure 4. Schematic showing the expected exponential increase of the speed of research as 
autonomous experimentation (AE) is further developed. We see a progression from 
connected AE systems to locally integrated systems, and finally to globally integrated systems. 
At a critical (or tipping) point, integration will create network effects that multiply the 
contribution of individual research nodes, greatly increasing research speed. Global integration 
and reduced cost will exponentially impact the access of researchers to AE systems. By 
leveraging network effects from data sharing and interpretation, and from the community-driven 
approach to scientific investigation, we anticipate solutions to currently intractable problems. 
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Table 
 
Table 1. Selected Autonomous Experimentation (AE) Campaigns for Materials 
Development. The breadth of materials classes, synthesis methods, and characterization methods 
reveals the versatility of AE, and the benchmarked examples show that AE has successfully 
accelerated the research process. (UV, vis, and NIR represent ultraviolet, visible, and near 
infrared, respectively.) 
 
Study (including publication 
date) 

Material 
class and 
synthesis 
method 

Characterization 
method 

Planning 
and 
learning 
algorithm 

Experimental 
campaigns and 
objectives 

Metric of 
acceleration and 
benchmarking 

(A) Autonomy in materials 
research: a case study in 
carbon nanotube growth 
(Oct 2016)10 
see Figure 2 and the ARES 
example in the text 

Chemical vapor 
deposition of 
nano-materials  

in-situ Raman 
spectroscopy 

Random-
forest model 

600 experiments to 
obtain a controlled 
growth rate 

none 

(B) Reconfigurable system 
for automated optimization of 
diverse chemical reactions 
(Sept 2018)83  

Flow-based 
chemistry of 
soluble 
molecules 

High-performance 
liquid 
chromatography 

Blackbox 
optimization 
software 
(SNOBFIT) 

112 experiments to 
optimize three 
chemical reactions  

none 

(C) A curious formulation 
robot enables the discovery of 
a novel protocell behavior  
(Jan 2020)86 

Syringe-based 
liquid handling 
of oil-in-water 
emulsions 

Optical imaging Random 
goal 
exploration 
on a support 
vector 
regressor 

1000 experiments to 
explore temperature 
response of emulsions 

8× reduction in 
the number of 
experiments 
needed to match 
the performance 
of 1000 random 
experiments 

(D) A Bayesian experimental 
autonomous researcher for 
mechanics 
(April 2020)30 
see Figure 3 and the BEAR 
example in text 

Additive 
manufacturing 
of structural 
polymers 

Mechanical 
uniaxial 
compression, 
weight 
measurement, 
optical imaging 

Bayesian 
optimization 

6 repetitions of 100 to 
maximize component 
toughness 

55× reduction in 
number of 
experiments 
needed to match 
1800 experiments 
on a grid 

(E) Self-driving laboratory for 
accelerated discovery of thin-
film materials (May 2020)14 

Spin-coating of 
mixtures of 
photoactive 
chemicals 

Dark-field 
photography, 
UV–vis–NIR 
spectroscopy, 4-
point probe 

Bayesian 
optimization 

2 campaigns, each 
with 35 experiments 
to maximize hole 
mobility 

none 

(F) Artificial chemist: an 
autonomous quantum dot 
synthesis  
(June 2020)55 

Solution-phase 
quantum-dot 
halide exchange 
reaction in flow 

in-situ UV–vis 
absorption and 
photoluminescenc
e spectroscopy 

Neural 
network 
ensemble, 
Bayesian 
optimization 

X campaigns of 25 
experiments to obtain 
a target emission 
energy with 
maximized brightness 

Comparison of 
decision-making 
policies and role 
of pre-training 

(G) A mobile robotic chemist  
(July 2020)52 

Vial-based 
solution 
chemistry  

Gas 
chromatography 

Batched, 
constrained, 
Bayesian 
optimization 
algorithm 

688 experiments 
performed over 8 days 

none 

(H) On-the-fly closed-loop 
materials discovery via 
Bayesian active learning 
(November 2020)12 
see CAMEO example in the 
text 

Solid-state 
materials 

Synchrotron X-
ray diffraction 

Physics-
informed 
graph-based 
Bayesian 
optimization  

19 measurements to 
discover best-in-class 
material during 
limited synchrotron 
beam time 

10× reduction in 
number of 
experiments 
relative to grid-
based approach 

 


