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Progress and Potential

As human researchers, we are trained to reduce the number of variables to make experiments
manageable. This limits the depth and kinds of phenomena we can study. High-dimensional
iterative search empowers us to investigate richer, more complex materials phenomena.

Importantly we envisage network effects for the globally integrated autonomous experimentation
systems, where beyond the tipping point, the size and degree of interconnectedness greatly
multiply the impact of each research robot's contribution to the network.

However, to truly exploit the potential of autonomous research, we must build substantial
programmatic investments to develop a workforce comfortable working with artificial
intelligence.

Summary

Solutions to many of the world's problems depend upon materials research and development.
However, advanced materials can take decades to discover and decades more to fully deploy.
Humans and robots have begun to partner to advance science and technology orders-of-
magnitude faster than humans do today through the development and exploitation of closed-loop,
autonomous experimentation systems. This review discusses the specific challenges and
opportunities related to materials discovery and development that will emerge from this new
paradigm. Our perspective incorporates input from stakeholders in academia, industry,
government laboratories, and funding agencies. We outline the current status, barriers, and
needed investments, culminating with a vision for the path forward. We intend the article to
spark interest in this emerging research area and to motivate potential practitioners by illustrating
early successes. We also aspire to encourage a creative reimagining of the next generation of
materials science infrastructure. To this end, we frame future investments in materials science
and technology, hardware and software infrastructure, artificial intelligence and autonomy
methods, and critical workforce development for autonomous research.

Keywords: autonomy, artificial intelligence, machine learning, algorithmic development,
research methods, human—machine teaming, workforce development, materials discovery,
carbon nanotubes, additive manufacturing



1. INTRODUCTION

Materials science and technology are at the core of society, and the development of new
materials defines our history. Indeed, specific materials technologies give appellation to the
Stone, Bronze, and Iron Ages, to the Industrial Revolution (steel), and to our modern Information
Age (silicon).! Future advances in quantum computation? and synthetic biology? will similarly
arise from advancements in materials research. However, while the pace of technological
advancement is ever increasing, the rate of materials development remains slow, with decades
typically needed to transition a new material from discovery to commercial use.* 3 This slow
development directly impedes humanity's ability to solve existential problems such as climate
change, and to generate new technologies that fuel economic growth.® Indeed, the futurist
Hiroaki Kitano has said, “Scientific discovery is at pre-industry revolution level."” The
importance of artificial intelligence (AI) in augmenting research and autonomous
experimentation (AE) is becoming recognized as a solution to these needs. Former US Secretary
of Defense M. Esper recently remarked, “...Al is advancing automated chemistry... These
advances free up time for our scientists and researchers to focus on next-generation innovation,
rather than countless tests and experiments.”®

Materials AE uses advanced decision algorithms to plan and execute a series of materials
experiments iteratively towards human-directed research outcomes.® *-1° More precisely, an
iterative research loop of planning, experiment, and analysis is carried out autonomously (see
Figure 1). Once human researchers have provided the necessary information (e.g., campaign
objectives; constraints; relevant data from previous experiments, and in general, prior
knowledge), the AE campaign is initialized, and the AE system plans the first group of
experiments. These experiments—which are broadly defined to encompass physical tests,
modeling/simulation, or data mining—are conducted via automation without human intervention
to generate experimental outputs from supplied inputs. Next, the results are analyzed
automatically and incorporated into an updated understanding of the series of experiments in the
framework of a knowledge representation.?’ Finally, a decision algorithm employing Al once
again plans the next experiment phase and generates a new set of experimental inputs by
considering the research campaign objectives and the value of a particular next experiment
towards furthering the objective. The system autonomously advances through the iterations of
planning, experiment, and analysis. Iterations continue until the campaign objective is achieved
or other exit criteria are met, concluding the AE campaign. The hundreds or perhaps thousands
of iterations that may comprise an experimental campaign form the powerful core of AE
systems.

As many of the terms have multiple interpretations, note that we will use automation to refer to a
system that can execute experimental actions without human intervention. An example is using
robotics to mix chemicals and measure results. In contrast, autonomy is distinguished by the
independence of action, integration of delegated decision-making, and complexity of operations.
The AE (autonomous experimentation) system described above uses automation to execute
experiments, and it critically has the additional capability to incorporate new knowledge derived
from these experiments and to reason over and make decisions on subsequent iterations. AE
systems can incorporate new knowledge and design appropriate experiments towards the



research objective using Al and machine learning (ML). While Al and ML are often used
interchangeably, we will use the broader term Al to emphasize algorithms used for decision-
making in experiments; ML will refer to a subset of methods that include interpolation,
classification, and statistical inference.

Previous efforts to speed research include high-throughput and combinatorial (HT/Combi)
approaches,?! integrated computational materials engineering (ICME),?? and the use of Al and
ML methods to mine existing databases to identify potential compounds and processes.?*26
While these efforts are powerful for exploring materials parameter spaces and producing and
analyzing large amounts of data, they have low iteration rates (related to the “Analysis
Bottleneck™?7), where interpreting results and planning further iterations are the rate-limiting
factor. In contrast, AE systems can execute tens or hundreds of iterations without human
intervention, making exceptional speed and high fidelity in research results possible. Indeed, the
value proposition of AE lies in the advantages of the autonomous iterative loop; when properly
designed, the loop can advance research progress much faster than current methods, make better
use of human researcher time and effort, allow for novel unanticipated findings, and enable a
better understanding of a system—all while expending fewer resources. Highly autonomous
systems also facilitate experiments to be performed remotely,?® making AE highly accessible to
the broad community.

The intent of this review is to inform the broad materials community about the current status and
future directions of materials AE from researchers active in the area. After presenting some
concepts to help the general readership appreciate AE campaigns, we will briefly look at
previous attempts to speed research. We will then illustrate the state of the art of AE systems for
materials using select examples, describe how Al technologies are being applied to materials AE,
and consider the impact of AE on materials research. Lastly, we will set out a future vision for
how to expand and exploit AE.

2. MORE ABOUT AUTONOMOUS EXPERIMENTATION

For those less familiar with autonomy research, we will explain additional concepts to
complement the AE campaign described in the Introduction and Figure 1; further background
theory can be found in the literature.!!> 1% 252 We will also look at how AE can enhance the
efforts of human researchers.

2.1 Campaign Objective

The campaign objective is the goal of the iterative search process, which comprises a series of
experiments termed an experimental campaign. The campaign objective is designed by human
researchers in the first step of developing an AE system. In its most basic form, the objective can
be the optimization of a property,’ testing a hypothesis,! or the prediction of a result (e.g., in an
early campaign, an AE system was tasked with closely predicting the growth rate of carbon
nanotubes using prior experiments).'?

2.2 Analysis and Understanding (Knowledge Representation)



In our AE schema, the initial results and raw data from experiments are analyzed, or processed
into information that can be exploited for decision-making. This could be, for example,
translating force—displacement data to a material stiffness. During analysis, Al and other
statistical methods may be used to identify trends or anomalies in data, categorize regions where
experiments are prone to fail, detect fundamentally different system responses, or build beliefs
into hyperparameters for models. The results of the analyses are captured into a knowledge
representation, which is a machine-interpretable model of the information gained from past
experiments, including the mapping from inputs to outputs.?’ 32 As the campaign advances, the
internal knowledge representation, capturing understanding of the system under study, evolves to
include newly observed data. The term "knowledge representation" is used for both the model of
understanding and for how new data is captured by the model. The difference between the
experimental results and the expected results based on the knowledge-representation model of
the previous loop can be thought of as a feedback signal, and it can be used as the basis for
training subsequent models.?” 33

2.3 Design of the Planning Algorithms

The design of the planning algorithms requires careful consideration of the design policy, which
is directly related to the field of optimal experimental design.?®-** 35 Throughout the execution of
a campaign, the task of achieving the research objective (such as minimizing a response) is often
in tension with resolving the uncertainties inherent in the AE system's knowledge representation.
This tension, also known as the exploration—exploitation dilemma in the AT community,?3- 36-3
fundamentally arises from the limited and uncertain knowledge the autonomous system has
about the physical system under study. The system may choose to perform experiments that are
more tailored to reducing overall uncertainties and to searching for new minima (exploration), or
it may choose to perform experiments near minima predicted based on current knowledge,
uncertainties in that knowledge not withstanding (exploitation). A balance between these two
modes, in which the response function is learned globally prior to optimization, is often more
efficient than the decoupled alternative.°

For an AE system to be autonomous, the planning algorithms should be able to function at a
certain depth of intelligence; while a simple home thermostat can act on its own, its degree of
intelligence is limited. Profound Al for AE can include logical reasoning, independent
hypothesis generation and testing, understanding by analogy, the ability to extrapolate concepts,
and the ability to design experiments to discern complex relationships efficiently and effectively,
among myriad possible outcomes. Because of this versatility, decision authority can be delegated
to the Al planner, making the iterative research loop possible. Additionally, the planning and
analysis algorithms should be able to integrate contextual information and experimental
uncertainties, e.g., intrinsic variability in the materials phenomena themselves, noise from the
feedback characterization tools, or the influence of exogenous parameters we do not
control/measure.

2.4 Human—Machine Teaming and Deciding on the Decision-Maker



Prior to designing an AE campaign, it is worth considering if AE is the best route for a particular
research campaign and how human researchers and the system's algorithms will cooperate, also
known as human—machine teaming. Among the many aspects of human—machine teaming, the
division of labor is one that should be determined early. By considering the differing strengths
and abilities of human and robot researchers, automation and AE can be used to enhance human
efforts. Robots excel at performing repetitive work with precision, so manual labor can be done
by research robots (automation) more quickly, reproducibly, and cost-effectively. Research
robots can also analyze data in high-dimensional parameter space in ways that are beyond the
capabilities of human researchers; they can make decisions that are more disciplined, and
potentially more effective, towards a set of research goals and without human confirmation
bias.*® Meanwhile, human researchers provide insight, intuition, creativity, and a deep
understanding of the context and overall goals of the research project, all of which are abilities
that cannot be completely replaced by Al

These factors are also relevant in determining if decision authority can be delegated to planning
algorithms or remain with human researchers. Cognitive labor is better and more easily done by
machine, when decisions require: (i) a faster pace than that of human cognitive and/or manual
ability; (i1) holistic and detailed understanding of every preceding experiment; and (iii)
interpolation/extrapolation in multi-dimensional spaces, with requisite tracking uncertainties,
variances, and covariances; and lastly, (iv) when decisions are easy but numerous, and tedious
such that they will tire or bore a human, potentially leading to errors. In such cases, a fully
autonomous route is suitable.

In contrast, decision authority is best left to human researchers when (i) new insights or
inferences beyond the supplied physical rules are required to understand a phenomenon, (ii)
difficult-to-define objective functions are involved, and (ii1) information beyond the context of
what has been supplied to the AE system becomes relevant. When there are clear issues of safety
and/or ethics involved in the next experiment, humans should oversee Al experiments to ensure
relevant safety and ethical practices are observed, e.g., that dangerous reactions are avoided. This
is an active area of study for autonomous systems in general,*!- *> much of which is appropriate
to materials AE systems.

Another aspect of human—machine teaming relevant to the design of AE campaigns is the
collaborative interaction between the AE system and the human researcher.** As with any
collaboration, good communication and trust are necessary for success, and all parties should be
able to understand and use the results. Trust in the context of autonomous systems is an active
area of study** and is broadly characterized by predictable behavior and the expectation of two-
way communication of well-defined and achievable objectives.

3. FOUNDATIONS OF AUTONOMOUS RESEARCH AND THEIR CONTRIBUTIONS
TO AE

The development of AE builds upon prior investments in technologies created to accelerate the
research process, and AE integrates them in new ways. These technologies include: (i)
HT/Combi experimentation as a method to increase the rate at which new experiments are



performed; (ii) modeling and simulation as a substitute for slow and costly experiments; and (iii)
data science methods to extract information from simulation and experimental data. The
groundwork for these developments was laid in part by the Materials Genome Initiative (MGI),*
43,46 a5 well as by similar initiatives worldwide.*”-*® We will briefly review the state of each of
these technology areas to clarify their contribution to AE.

3.1 From HT/Combi Experimentation to AE

Traditional HT/Combi experiments expedite materials science discovery by parallelizing
materials synthesis, processing, and characterization.*” A typical HT/Combi experiment starts
with the automated synthesis of a set of 10'-10? samples, in which some combination of
composition, microstructure, and processing have been systematically varied to cover the entire
parameter space of interest. This library of samples is then screened either in parallel or serially
using a set of automated measurement tools. HT/Combi experimental campaigns are typically
limited to one or a few iterations of libraries. Some representative recent examples>®>! of this for
materials are reviewed by Green et al.*

Historically, HT experimentation (HTE) hardware development has focused on increasing the
number of experimental results per unit time and decreasing the cost per experiment. This makes
sense in a non-autonomous (“open-loop”’) scenario, where the goal is either to obtain the
composition—processing—structure—property linkages by an exhaustive experimental search or to
generate a sufficiently large dataset that can be used post hoc to determine these linkages and
provide information on regions of optimal performance for subsequent study. The shift towards
autonomous approaches may eliminate the need for many experiments and instead favor faster
turnaround for smaller batches of targeted experiments, as new results can be incorporated into
the experiment planning. In a non-iterative (“open loop”) system, Al can be used to intelligently
guide an automated characterization tool to subsample a pre-deposited compositional spread
library, realizing a 2x to 10x decrease in the number of samples required to extract information
from the system.*” Some relevant examples of the trend towards lower-throughput, low-latency,
small-batch laboratory automation include 3D-printed carousels for performing iterative
syntheses of gold nanoparticles to obtain a desired spectrum,'® dexterous, free-roaming robot
chemists that synthesize and characterize small batches of photocatalysts,>? one-at-a-time
synthesis and optoelectronic characterization of perovskite thin films,'# and the iterative
synthesis of perovskite nanocrystals.> Microfluidic flow chemistry targeting nanocrystalline
materials are especially amenable to this type of approach, as the products can be observed in
iteratively changed conditions.’*>¢ While AE has certainly built upon the techniques used in
traditional combinatorial experiments, AE campaigns can be designed to adapt the experimental
sampling as needed; replicates can be made where uncertainties are high, while redundant
information can be minimized.

3.2 From Modeling and Simulation to AE
Physics-based modeling is a mature field, and it is now widely accepted that simulations can

identify possible materials of interest.’” This is exemplified in national efforts, such as the MGL*
43.46 a5 well as by large-scale computational materials database/repositories,>® such as the



Materials Project,* AflowLib,> Open Quantum Materials Database,®® the Harvard Clean Energy
Project (for solar materials),’! and the NOMAD repository.®? Rich toolsets have been developed
for facilitating large-scale computation and data archiving, such as ChemMLS® and Atomate.%*
Whereas past efforts have focused on making predictions that are subsequently tested in the
laboratory, autonomy enables the incorporation of this information into the ongoing
experimental process. That is, simulations are used to select better experiments, and
simultaneously incoming experimental data are used to select more informative simulations, in a
closed-loop process. A notable recent example of this idea is in the use of density functional
theory (DFT) alloy thermodynamics as a probabilistic constraint in the (experimental) Bayesian
optimization (BO) of perovskite alloys for structure and stability.®> More examples of these
techniques in the context of AE campaigns will be presented in Current and Related Al
Technologies for Materials AE.

3.3 From Data Science Methodologies to AE

The use of ML and Al methods for materials applications is now well established and is the topic
of recent reviews.?* 40-96-70 Their use in accelerating tasks in materials research can be broadly
classified as learning to “see” (e.g., spectral interpretation), learning to “estimate” (e.g., surrogate
models for predicting outcomes), and learning to “search” (e.g., optimization).”! Many ML
predictions of new materials and properties have been confirmed experimentally.’? 73 In addition
to the use of these methods on simulation and experimental data, they have been used to process
other sources of information, such as the natural language text descriptions of synthesis
conditions and properties in published papers®® and structured data showing the relationships
between known materials.” In addition to mere prediction, ML approaches can play a role in
facilitating human understanding. Relevant examples include the use of machine-learned natural
language models to provide automated summarization of material properties,” collaborative
human-algorithm optimization approaches,*’ and explainable Al (XAI) methods.”®7” ML and Al
methods provide a necessary foundation for the planning and analysis algorithms of AE systems.

4. STATE OF THE ART THROUGH A SELECTION OF AE EXAMPLES

AE for materials is a quickly developing field with new systems coming online with increasing
frequency. In order to separate the abstract capabilities of the continually evolving robotic
systems from the discrete achievements, we will view this progress through the lens of a
selection of completed AE research campaigns (see Table 1). One overarching theme to note is
that reports of fully autonomous systems are often closely preceded by related advances in
hardware automation, in ML-driven experimental planning, or in both, but without full
autonomy. These related non-autonomous advances along with certain efforts towards AE will
also be included to better illustrate the current state of materials AE development.

4.1 The First Reported AE System for Materials Development, ARES
Soon after realizing an automated system to map reaction conditions for carbon nanotube (CNT)

growth,”® Nikolaev et al. reported the first AE system for materials development (see Table 1,
Study A).!° Using in-situ Raman spectroscopy to monitor CNT growth,” their Autonomous



Research System, ARES, was able to learn to grow CNTs at controlled rates over a six-
dimensional processing parameter space, ultimately delivering an improved understanding of
CNT growth phenomena. The complete iterative research loop of its AE campaign is illustrated
in Figure 2. After approximately 600 autonomous iterations, ARES was able to supply the input
growth conditions that achieved the targeted growth rate. Starting from no prior knowledge of
nanotube growth physics, ARES taught itself to grow CNTs at controlled rates via iterative
sampling of a complex six-dimensional parameter space that was much too large to sample using
grid-based®® or open-loop DOE (design of experiments)®! methods. As a straw-man, a full
factorial span of 6 parameters with only 10 conditions per parameter yields 60,466,176
experiments. Not only is this orders-of-magnitude more experiments, but the sampling fidelity is
much coarser than the iterative approach of ARES. Designs of further campaigns using ARES
are underway; the more recent inclusion of scanning probe lithography to introduce
compositional variations for screening CNT catalysts®? highlights one path of future
development.

4.2 AE for Solution Chemistry

One of the main focal points for the development of automation has been platforms for studying
solution-phase chemistry in a broad sense. For instance, Bédard et al. developed a plug-and-play
continuous-flow AE system for performing synthesis and analysis in an automated fashion
(Table 1, study B);® user-specified reactions were automatically optimized through the
exploration of three discrete reactions using a black-box optimization tool known as SNOBFIT.%*
Building on this platform, Coley et al.®* integrated both a robotic system to dynamically
reconfigure the flow chemistry platform and a pipeline to search the literature and predict
synthetic pathways. This highly versatile system was used to discover the optimal synthetic
pathways for six sample drug substances; however, the process did not comprise experimental
feedback nor optimization of reaction conditions due to the complexity inherent to multi-step
reaction chemistry.

An alternate approach to general chemistry has recently been shown by Burger et al., wherein a
mobile robot can move around a room to access a variety of distinct stand-alone, commercial
instruments, reducing the need for instrument customization. This AE system was used to
optimize the hydrogen evolution reaction (Table 1, study G).3

4.3 AE for Emulsions: Algorithmic versus Random Sampling

Following the initial demonstrations of AE systems, an important trend started in the literature
with systems explicitly testing the acceleration inherent to the confluence of automation and
algorithmic planning. Specifically, DropFactory was constructed as an automated system to
dispense reagents to form oil-in-water droplets, which exhibit a wide range of behaviors from
locomotion to self-dividing.3¢ Incorporating it into an AE campaign, Grizou et al. explored the
behavioral range resulting from a four-dimensional parameter space (Table 1, study C). One
important contribution from this work was the comparison of experimental campaigns run by
random sampling versus those in which each subsequent experiment was chosen algorithmically.
When given a budget of 1000 experiments, the algorithmically driven system explored 73% of



the parameter space while random sampling only explored 22%. Perhaps more importantly, the
algorithmic sampling achieved the same performance in 128 experiments as the random
sampling achieved in 1000.

4.4 AE for Additive Manufacturing: Bayesian Optimization versus Grid-Based Exploration

Building on the trend of introducing new categories of experiments in an autonomous context
while benchmarking against traditional techniques, Gongora et al.>° developed BEAR, a robotic
manufacturing and testing system to autonomously optimize the toughness of additively
manufactured components (BEAR = Bayesian Experimental Autonomous Researcher; see
Figure 3 and Table 1, Study D). As part of the initial demonstration to study components defined
by four geometric parameters, the authors included an explicit comparison between experimental
campaigns guided by BO and those guided by grid-based exploration, revealing the time- and
cost-efficiency of AE. What the grid-based system achieved in about a month, the Bayesian
system accomplished in just 12 h; after 24 h, the Bayesian method produced a higher toughness
performance than that achieved by the month-long grid-based search. They have now extended
their work to include finite-element modeling of the physical response, successfully increasing
the toughness by another 30% (see Figure 3, Conclude panel).?’

4.5 AE for Thin Films

There has been a sustained effort by multiple research groups to develop AE to synthesize and
study functional thin films for energy applications. Once again, examples in automation and
HTE came first. In 2019, Sun et al. developed a HT process that allowed the synthesis and
characterization of 75 unique compositions of perovskite-inspired inorganic films over a span of
two months.®® Following these results, Langner et al. developed a robotic system to synthesize
polymer blends for organic photovoltaics and to study degradation in a totally automated
fashion, at ~300 samples per day. The resulting large dataset in a four-dimensional parameter
space of compositional blends was used to simulate autonomous campaigns, which suggested
that a self-driving laboratory could achieve equivalent performance in this space with 32 times
fewer experiments.® A fully autonomous realization of functional films was published shortly
thereafter by MacLeod et al., in which they reported a robotic system moving between synthesis,
processing, and multiple characterization stations (Table 1, Study E). By guiding this system
with BO through two 35-sample experimental campaigns, they optimized the hole mobility of an
organic semiconductor film. Significantly, they also identified a region that exhibits a previously
unknown local maximum in mobility.'#

4.6 AE for Quantum Dots

In addition to films, quantum dots (QDs) have been the subject of advances in both automation
and, recently, autonomy. As far back as 2010, HT synthesis had been applied to map the
synthetic parameter space corresponding to QDs.?® Efforts to screen QDs continue with recent
reports on metal-halide QDs.”! Recently, the concept of automated QD synthesis was combined
with a ML-guided experimental planner to realize an artificial chemist for optimizing QD
synthesis (Table 1, Study F).>® This system utilized flow reactors to study a variety of decision-
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making policies in a BO framework. Further, the study showed that learning can be accelerated
by at least two-fold when the knowledge of one set of precursors was transferred to a different
set of precursors.

4.7 Developments in Characterization and Analytical Methods in Efforts towards AE

In some cases, efforts towards autonomy in the study of complex properties involve innovative
approaches to assess properties. Kirman et al. employed optical observation of crystallization to
identify novel perovskites.”” HT experiments were made possible by using instrumentation
developed for protein crystallography studies. ML was applied to both optically analyze samples
to evaluate crystallization and to build a predictive model of whether samples would crystallize.
Independently, Li et al. also combined robotic synthesis with ML-based experimental selection
for perovskite synthetic studies.”® While their analysis involved a number of manual steps
including visual inspection, their experimental selection leveraged a previously developed
experimental planner termed ESCALATE (Experiment Specification, Capture And Laboratory
Automation Technology).**

Efforts towards materials AE need not originate from a synthetic viewpoint; the active guidance
of analytical systems can itself accelerate the characterization process. For instance, Noack et al.
demonstrated how a kriging-based approach could accelerate X-ray scattering experiments by
selecting the parameters of subsequent experiments.”> This approach was experimentally
validated through a set of campaigns, each with 600 experiments, on a sample composed of
nanoparticles; a reduction in error was observed when the system was guided by active learning
(AL), where the ML model’s uncertainty and expected value are used to select new data points.
This study highlights a challenge inherent to benchmarking experimental-learning-based studies;
comparisons can only be made to previously reported experiments. More recently, real-time
control over X-ray measurements was combined with synthetic capabilities by Rakita et al. to
dynamically adjust the redox state of compounds in solution.’® While this approach only featured
a single dimension of control (the presence of reducing or oxidizing agents), it is a promising
example of how synthesis and characterization can be combined in an autonomous fashion.

4.8 AE and Materials Discovery

Efforts towards AE in materials science has also led to the discovery of new materials.
Combining HTE and ML, Ren et al. discovered a new metallic glass using an iterative approach
and an ML model for experimental selection.’” Many important materials properties are
intimately tied to the structure. As such, learning the relationship between the structure of a
material and how it is formed—i.e., phase map—can serve as a blueprint for guiding materials
discovery and optimization. Kusne et al.'> developed CAMEO (Closed-loop, Autonomous
system for Materials Exploration and Optimization), an AE system that maximizes overall
knowledge of the composition—structure relationship (Table 1, Study H). By controlling
synchrotron X-ray diffraction measurements and exploiting phase-map knowledge, they
identified a novel phase-change material, which has recently attracted attention in the electronics
industry.”® Further, recent reports of AE systems using first-principles simulation provide more
evidence that this approach is amenable to the rapid discovery of novel materials formulations.'®
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4.9 Materials AE as a Collaboration between AI and Materials Science

Although it is obvious that successful AE requires knowledge from both the Al and materials
science communities, well-funded collaborations with experts in both fields may allow for
tackling even larger problems. For example, a consortium of computer scientists and materials
scientists are developing SARA (Scientific Autonomous Reasoning Agent)” to use
combinatorial samples with laser spike annealing to generate time—temperature—transformation
(TTT) diagrams for novel functional oxides. SARA will use AL strategies with the
distinguishing feature that complex reasoning is required to guide experiment selection. For
example, one operational mode for SARA is the identification of all unique synthesis routes for a
given structure, requiring Al algorithms that are deeply aware of phase diagrams and the
properties of all known phases, among other issues. Realizing this breadth of expertise in an Al
system requires learning-and-reasoning-based algorithms well beyond the purview of ML
algorithms demonstrated in materials research to date. The need for materials-aware Al
combined with the substantial complexity of the composition—processing—structure
instrumentation makes the SARA project emblematic of the grand challenges in materials AE.

5. CURRENT AND RELATED AI TECHNOLOGIES FOR MATERIALS AE

AE systems offer a unique opportunity to the AI community as platforms for the development
and testing of their models and algorithms. The value proposition of materials AE to the Al
community is the iterative nature of the platform over unknown search spaces, that nonetheless
have a ground truth in materials phenomena because they originate from fundamental chemistry
and physics. There is no direct mechanistic analogue in social media response or static
voluminous databases, where advanced Al methods are often applied. On the other hand,
materials AE depends on Al technologies for planning algorithms and knowledge-representation
models; the distinguishing component of closed-loop AE systems from merely automated
experimentation are the iterative decisions made by an AI/ML planner.

At this nascent stage, many of the existing AE systems offer proof-of-concept demonstrations,
opting to use previously developed ML and Al methods. While these generic methods are
attractive for their broad and perhaps immediate applicability, they do not necessarily capture
aspects of the material system, experimental apparatus, and campaign constraints. To build more
robust, intelligent platforms with greater autonomy, these factors should be included. In this
section, we highlight a few examples of such problem-specific features and consider how—if at
all—current state-of-the-art methods address them. We also present some new features materials
science has brought to Al technologies: the trend towards models based on physical and
chemical phenomena and new considerations required for planning algorithms.

5.1 Bayesian Optimization (BO) and Gaussian Process (GP) Models
Many general methodologies—such as BO,!% AL,'%! and statistical DOE!'%> 153 —suggest a

model of the relevant quantities-of-interest to learn sequentially as well as the decision-making
policies that can select a set of experimental actions to execute towards a research objective,
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making them useful to closed-loop techniques. For example, in BEAR (Figure 3 and Table 1,
Study D),3% 87 the mechanical performance of a manufactured structure is viewed as an
experimental response function over such structures and is modeled as a random function using a
Gaussian process (GP) model.?? Used with the expected improvement (EI) policy, in which
sampling is pursued at the point most likely to maximize improvement of a value, this GP model
is used to select the next structure to test.'%* GP models with the EI policy or similar modeling
and policy choices are attractive because of the modeling and computational ease. The GP model
allows the specification of the assumed structure, such as smoothness, of the response function
without being overly restrictive. However, in many materials systems, such assumptions are not
globally accurate. The archetypal example of this are critical phenomena. Critical regions of
experiment space (e.g., delineating regimes of pressure or temperature) result in responses that
change rapidly or discontinuously, which cannot be properly modeled using oft-the-shelf GP
models. This is not isolated to the use of GP models in BO. Many AL and DOE methods
ultimately rely on similar types of generic models. For example, uncertainty-based methods
often rely on GP or linear models to model responses.

105-107

Another feature not immediately captured with off-the-shelf methods is the fact that experiments
often yield several types of responses, e.g., various characterizations, experiment failure,
experimental time or cost, or an uncontrolled factor, such as laboratory humidity. More complex
models are needed to properly capture the relationships between the different responses, as well
as the uncertainties between these relationships. A joint description capturing a variety of
measurable responses and phenomena may not be easy to work with. An alternative direction is
to utilize an ensemble of more traditional models, each offering simple estimates of the functions
of interest; however, the lack of formalism makes inference and predictions more difficult. For
example, Powell and Reyes and co-workers!%: 1% describe methods for using an ensemble of
physics-based kinetic models to represent beliefs on experimental responses. Other models such
as ensembles of neural networks>® can directly offer multi-variate predictions for several types of
responses, in which correlations between outputs are emergent rather than having to explicitly
couple them statistically. Such networks have already been used in experimental science and
control settings.!!? In a broader context, ensemble-based methods could allow us to use a variety
of different types of models in a single decision-making framework. Here, methods such as
Bayesian hypothesis testing,!!! model averaging,'!? multi-fidelity modeling,'!* !4 strategies for
multi-fidelity optimization with variable dimensional hierarchical models,''> !> and multi-
information source optimization (MISO),'!¢ offer potential avenues for more robust modeling
and decision-making.

5.2 Reinforcement Learning (RL)

Closely related to closed-loop techniques, such as BO, are reinforcement learning (RL)? and
optimal control.?> Markov decision processes (MDPs), a core RL framework, models generic
states of a closed-loop campaign, stochastic transitions between states upon taking experimental
actions, and rewards or costs incurred when making such transitions,!!” offering a more fluent
way of modeling many aspects of materials research. Through RL, MDPs allow an agent to
make more operational considerations. RL decisions are obtained by estimating expected future
cumulative rewards incurred when pursuing a particular branch of an experimental campaign.

13



Many such techniques do so by approximating a value function (i.e., a measure of how “good”
states are) or a policy function (i.e., the expected best action we can take to transition to high-
value states). As with BO, learning such functions can be done with generic black-box models or
with more problem-specific models that use probabilistic beliefs on response functions,
experimental failure, costs, or rewards obtained.

5.3 Deep Learning (DL)

Regardless of the type of modeling, approximating the functions needed to execute decision-
making in RL generally requires a significant computational investment. The coupling of deep
learning (DL)!'® with RL—so-called deep reinforcement learning (DRL),'"*—to calculate DL-
model surrogates of value or policy functions may prove useful here. DL models are trained
against a large number of states/value pairs. This can be done offline, by considering a large
number of potential states a campaign can be in and assuming that a representative set of
potential states can be simulated. While this methodology proved successful in the case of
AlphaGo'?° and other cases,!?! it remains to be seen whether something similar can be applied in
the context of AE.

In general, DL methods are also proving useful outside the context of predicting value or policy
functions. They work well by self-discovering latent and predictive features from raw, often
high-dimensional data.!>?> Despite impressive results in many problems, the direct use of DL in
materials AE is limited due to the high data requirements needed to train models. Requiring large
sets of representative data is somewhat antithetical to the intelligent and nuanced exploration of
experiment space discussed above. There are, however, opportunities for this powerful technique
to be used inside the closed loop when simulations and physical models are used to generate
synthetic data for offline pre-training of the DL model. DL can also be used to autonomously
analyze rich characterization data, such as microscopy or tomography data, and possibly map
such data into signals that the autonomous agent can use to close the loop. Current examples of
this use in non-autonomous settings include DL for optimal microscopy,'?* cryo-electron
microscopy,'?* and atom probe tomography.!?

5.4 Transfer Learning (TL)

The lack of data is frequently encountered in autonomous research and generally prohibits the
use of larger DL outright. To mitigate this, transfer learning (TL) can be used to leverage
existing data of previously studied, related materials systems. One way to do this is with deep
transfer learning (DTL).!'?® Above, we discussed pre-training a DL model in a way similar to
what would be encountered during the online execution of the closed loop. In DTL, a DL. model
is trained using data obtained from a separate task, often in an unsupervised manner, resulting in
a learned latent representation of some material in general. Then, within the closed loop, the
model is trained from latent representation features to a material property of interest. Pre-training
the mapping from material to latent features reduces the data requirements needed to learn the
mapping to the property of interest. Alternatively, one can use adjacent data to build more
informative priors for BO models used in closed-loop design. This is the perspective taken by
Roy and Kaelbling!?” and applied, for example, to building Bayesian priors for the tribological
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properties in two-dimensional TMD (transition metal dichalcogenide) materials using adjacent
materials descriptors.'?8

5.5 Towards Physics-Based Models

The iterative nature of AE can be used to explicitly test physics-based models,® as opposed to
black-box statistical models comprising raw experimental parameters. A campaign may also be
designed to search over multiple potentially operative physical and chemical models, known in
the Al community as model selection. These approaches are particularly appealing because they
incorporate physics-based phenomena, e.g., Arrhenius behavior, into their knowledge
representations rather than being naive or purely statistical representations. ! King et al.?! built
one of the earliest robot scientists called "ADAM," which produced yeast enzymes by generating
hypotheses of biological synthesis routes that it evaluated in a closed loop.'?° Similar to the
symbolic regression work of Schmidt and Lipson,'3? we envisage AE campaigns where the
objective is to select and parameterize from a broad range of materials phenomena (in place of
mathematical symbols) using iterative experimental search strategies that are designed to regress
quickly to the operative physics. With appropriately chosen models, AE output as physical
models is often superior to output as naive or black-box statistical models—which, while they
may be predictive, are scientifically uninformative. Additionally, while statistical techniques,
such as ML, are appropriate for interpolation, they do not excel at extrapolation, which is
possible with physics-based models.

The design of planning algorithms to test the physics-based models is currently the subject of
intense research, including both established approaches (e.g., BO, RL)3! %% 19 and more
exploratory advanced AI/ML methods.!? '*1-133 The integration of ML with Al reasoning in the
context of scientific knowledge may be used emulate how humans would interpret data; Al
reasoning comprises the ability to infer new facts via the consideration of various information
sources, complementing statistical ML. This coupling of Al-reasoning and ML is a pillar of the
so-called third wave of Al,'3*13¢ and the phenomenological nature of the physical sciences
makes it particularly well-suited for the development and demonstration of such AI/ML systems.

5.6 Challenges in the Design of Planning Algorithms for Materials AE

Materials AE campaigns often have real-life operational considerations or constraints (e.g., time,
cost, available inventories) that may need to be incorporated into the planning algorithm.
Decisions may require a "cost-benefit" analysis that utilizes multiple information sources,
which may include a mix of experiments that exploit various characterization techniques and in-
silico simulations of multiple levels of fidelity. Frequently, advanced materials development
involves expensive methods and instrumentation (e.g., electron microscopy or molecular beam
epitaxy) or limited-access, highly competitive facilities (e.g., synchrotron X-ray or neutron
sources), making the ability to reliably select the right experiment especially impactful. New
algorithms should be developed for the efficient exploration of high-dimensional parameter
space in a time-constrained environment, thus reducing the number of required experiments. This
was realized in the recent AE campaign of CAMEO (Table 1, Study H);'? a combinatorial library
with an effectively infinite number of compositions to characterize was generated during limited
synchrotron beam time. Exploiting the phase map autonomously, they discovered an optimal

116, 137
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phase-change memory material using only one-tenth the number of measurements required by
the standard (non-autonomous) grid-based approach.

While autonomous systems promise to more reliably perform optimal experiments towards an
objective, some have expressed concern that robots will ignore results that are outside the
objective but are nonetheless interesting and that they will miss serendipitous and synergistic
unanticipated results that a human would naturally recognize.'*® In the future, serendipity-
awareness may be incorporated into autonomous research algorithms. 3¢

6. POTENTIAL IMPACT OF AE ON MATERIALS SCIENCE RESEARCH
6.1 Increased Speed and Decreased Cost

AE promises to disrupt the current research enterprise and investment structure by increasing
returns on capital and skilled labor. While it is difficult to quantify the rate of research progress,
it is a function of iteration time, number of iterations needed to find a solution, and the unit cost
per iteration, all of which are expected to improve as experimental hardware is automated and as
closed-loop iterative algorithms are implemented and improved. Early demonstrations of AE,
such as the ARES,!” BEAR,* and CAMEO!? AE systems discussed above, have already
demonstrated orders-of-magnitude reductions in iteration time and number of iterations needed
to discover and characterize novel functional materials.'?> AE can also achieve better research
outcomes than current processes in terms of parameters, such as materials performance or
fidelity of characterization.'? 3¢

The exponential increase in research-progress speed enabled by AE will make research more
affordable. Labor dominates the cost of research, and AE can effectively multiply the
productivity of an individual researcher; hundreds of experimental iterations can be done in the
time and labor it previously took to do one, reducing the marginal cost of subsequent
experiments and allowing us to consider the economics of the AE process. In principle, AE-
enabled research equipment need not be more expensive than traditional equipment; in practice,
any additional capital costs are a fixed cost, and the amortized marginal cost is small because of
the increased duty cycle. As research becomes more affordable, we expect it to become more
accessible, just as computing power became more accessible with low-cost processors.

6.2 Future Directions: Globally Integrated AE Systems and a Rise in Citizen Science

With the increasing speed of research (per researcher), we predict the trend depicted in Figure 4;
it assumes each researcher will have access to research robots, which will increase the number of
researchers. We expect three phases of AE development stemming from their degree of
interconnectedness. Current AE systems are stand-alone and self-contained. In 3—5 years, we
anticipate a transition to locally connected systems, where multiple robots can perform mutually
dependent research. In 15-20 years, we expect a network of AE systems to be globally
integrated, much like the internet is today. Importantly, we envisage network effects for the
globally integrated AE systems, where beyond the tipping point, the size and degree of
interconnectedness greatly multiply the impact of each new research robot’s contribution to the
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network. We can thus expect solutions to currently intractable problems, as a result of leveraging
network effects from data sharing and interpretation and a community-driven approach to
scientific investigation.

Currently, only those with access to large, well-resourced laboratories are able to participate in
materials research at the highest level. As a result of the decreased cost and increased
accessibility of research, a potential outcome is a rise in citizen science where—as in the
astronomy and high-energy physics communities—contributions to the field can be made by
enthusiasts with access to data or instruments. In the future, greater access to AE will provide
more people the opportunity to access research robots and be able to do meaningful research.
This may take the form of remote-access "cloud labs" (e.g., Emerald Cloud Lab, Strateos); low-
cost, relatively self-contained networkable benchtop equipment analogous to 3D printers (e.g.,
modular automated organic synthesizers,'** ChemPuters'*’); or open-access challenges where
participants can propose new experiments based on collected datasets (e.g., the DARPA SD2
Perovskites Synthesis challenge, performed on the RAPID system).”? With the expected increase
in accessibility, AE can help address the lack of diversity in science at the earliest stages. Studies
have shown that while children may lose confidence in their potential to be scientists, they do not
lose their ability to do science; this was especially evident in underrepresented groups.'*! As AE
progresses, it can help make scientific research more accessible and appealing to everyone,
especially those at risk.

6.3 Changes in Research Strategies

As AE is applied to more types of materials systems, we must also consider the implications of
AE on the design of campaign objectives and search strategies. Human researchers design
experimental campaigns to balance the likelihood of success, potential benefits of success, and
explainability of outcomes. Often this takes the form of starting from known experiments'4? and
making modifications one variable at a time.'*3 This strategy can be effective for local
optimizations, but it has difficulty in multiparameter problems and results in biased datasets. '
The speed and reduced human effort of AE enable a greater diversity of experiments, and since
AI/ML algorithms excel at high-dimensional search problems, they are holistic rather than
reductionist. AE also increases the risk appetite per experiment. The failure of one or even
several experiments does not doom a campaign. In fact, "failed experiments" can serve to inform
where experiments do not work and further improve the ML model.'* Using AE, previously
intractable problems become more likely to succeed, and we can pursue more challenging, high-
dimensional problems.

7. INVESTMENTS FOR MATERIALS AE

In order to fully benefit from AE, the community must overcome significant challenges by
investing in ways that make experimental hardware, software, and data sharing more suited to
AE. Investments in fundamental research typically focus on addressing specific foundational
questions. However, investments in AE will establish an infrastructure that will broadly enable
faster research towards many scientific questions as well as industry-relevant results.
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7.1 Investments in Experimental Hardware

We encourage non-proprietary interfaces to enable facile sample exchange across multiple
commercial experimental tools for synthesis and characterization. Although it is possible to
design mobile robotic systems that can work in existing human-centric laboratories,>? this is not
an ideal long-term solution compared to standardized sample exchange interfaces, which will
reduce complexity and design or robot-path planning time. The redesign of microscopes,
synchrotron beamlines, and other sophisticated instrumentation to be compatible with robotic
sample handling—akin to the multi-plate-handling robots in the bio-community—is an essential
area of investment. It will also be necessary to integrate in-sifu/inline and real-time metrologies
with automated data processing pipelines for various material data formats.>?> For example, in-
situ microscopes could generate a massive amount of image frames at microsecond frame
rates,'#6 and to exploit them, inline image analysis carried out as fast as the frame rate is crucial
for accelerating their experimental campaigns.'4’

Innovative new technologies for on-demand sample fabrication and in-situ characterization are
also needed to translate these early wins to the full spectrum of materials science applications.
With many material properties and desired functionalities emergent from multiple phenomena,
detailed characterization of samples would improve the rate and degree of convergence towards
campaign goals. However, it is not generally tractable to measure every spot of a heterogeneous
sample with every tool. Optimizing the information obtained by multiple techniques requires a
judicious subsampling of this measurement space to uncover the relevant descriptors. 48

7.2 Investments in Data Management and Sharing

By their very nature, AE systems will generate much larger data sets than current laboratory
practice, and these data are “born digital,” making them inherently easy to incorporate into
digital workflows, and avoiding the bottleneck of human data-entry. This creates an opportunity
to encourage the organized collection, sharing, and reuse of data at much larger scales than at
present. Such accumulated and well-curated databases can be reused by a distributed network of
AE systems (see Figure 4). This in turn provides a dataset from which prior knowledge of related
scientific domains®”- 4% 130 can be extracted and then used to supplement RL!'>! and TL,!28 152, 153
algorithms. As highlighted in efforts, such as the MGI,* more attention needs to be paid to the
collection of data from failed experiments'4’ and to the automated labeling of data as they are
collected, which should consider the FAIR data principles of findability, accessibility,
interoperability, and reusability.!>*

Despite efforts to make data more widely available (e.g., Materials Data Facility '), most data
are kept proprietary and are not used fully even by the team that produced them. We encourage
open sharing of data and AE algorithms to maximize exploitation of AE campaigns. We also
encourage increased investment into open-source/open-standards data file formats and
application programming interfaces (APIs) to lower the barrier to access, and discourage
proprietary software and data formats for experimental hardware. Investments will be needed for
the large-scale structured repositories of both data (e.g., Materials Data Facility,'>® Materials
Project,* PRISMS'7) and trained AI/ML models (e.g., DLHub!>®)—designed for use by
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machines and people—as well as the automated tools for constructing and curating these
databases.*¢ Additionally, efforts to develop uniform metadata descriptions, such as tracking
material sources and workflow methodologies will be needed to improve knowledge
representation.

7.3 Investments in Software Infrastructure

To build automated or AE systems that can incorporate multiple commercial systems for
synthesis and characterization, more open-source software, data standards, and APIs are needed.
Irrespective of whether a system is fully automated, the algorithms used to direct experimental
decision-making need to be both robust and flexible enough to be used on a variety of different
experimental platforms. Investment is needed in the software infrastructure for materials AE.
Atinary (formerly ChemOS),'*® ESCALATE,** LabMate.ML,'®® MAOS,!¢! BlueSky,'6*> and
ARES™ OS?8 are examples of such efforts. However, the broader range of materials, modeling
software, and experimental hardware will require further investment into software. Commercial
hardware often uses proprietary software and data formats that are difficult to access or modify
for incorporation into AE systems.

7.4 Collaborations as the Foundation to Future Cooperative Networks

AE requires its collaborative network to expand to reach its full potential. As the AE
infrastructure becomes more accessible with hardware, data-storage, and software investments,
efforts should also be made to encourage key stakeholders in research—industry, academia, and
government—to work together and take advantage of the increased accessibility. Current
collaborations and partnerships will lay the foundations for the network of AE systems we
anticipate in the future. Many materials and chemical corporations have HT/Combi research
units that collaborate with academic researchers. Academic research teams are also directly
commercializing technologies of AE materials discovery, e.g., ML tools for materials data
analysis (Citrine Informatics). The main barrier to effective partnerships between academic and
industrial teams is in the ownership of the co-developed intellectual property. With laboratory
capabilities distributed across different entities and open-sourced ML algorithms trained with
proprietary data, the questions about product ownership and the contributions of involved parties
will be a persistent concern, requiring much legal effort to predefine the conditions of each
partnership. Programs to standardize these partnerships would be helpful.

Government-funded scientific user facilities (SUFs) can play a critical role in encouraging the
transition from small-team independent research to cooperative scientific networks. The
centralized nature of these facilities offers an opportunity to establish common data formats, data
sharing policies, and new access paradigms such as multi-facility proposals. The national
laboratory-scale engineering resources can be leveraged to enhance automation, develop
hardware and software standards around which large community-scale AE programs can
nucleate.

In addition to encouraging collaborations between academic, government, and industrial
partners, investments for improving the collaborative interaction between human researchers and
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the Al algorithms of AE systems are necessary. Designing effective human—machine teaming is
an emerging area in autonomy and user-experience research.!%> With good teaming, humans and
chess-playing computers working together outperform either humans alone or computers
alone.'® In the 2005 Freestyle Chess Tournament, a team of chess masters and a supercomputer
were defeated by a team of amateur humans and desktop computers with superior teaming. There
are on-going efforts to incorporate human expertise, judgement, and prior knowledge into search
and decision-making algorithms.!% With respect to materials, only nascent efforts at teaming
humans with AI exist for inorganic materials.*

7.5 Educating the Materials—AI Workforce

We have recommended a variety of investments to help establish a new infrastructure for AE to
accelerate research progress. This new infrastructure will make possible the globally integrated
AE systems we expect in 15-20 years (Figure 4). The systems will be linked together over
networks, where experimental, simulation, and information processing nodes combine with
human direction to form autonomous "collaboratories," % generating scientific knowledge at
rates barely imaginable today. Changes in the workforce behind AE will be required to support
this future infrastructure.

The current lack of Al and autonomy expertise is a barrier to AE progress. Most individuals in
our existing workforce do not have the skillset to do both materials and autonomy research, and
universities are just beginning to develop curricula to address computer science and Al for
materials research. With autonomous vehicles and huge demands for Al professionals, the AE
community will need substantial programmatic investments to develop a workforce of "Al
natives" that are comfortable doing closed-loop AE as they are doing materials research, as well
as value propositions to attract autonomy and Al experts to materials problems.'®’

Workforce development and curricular innovation is needed at all levels,'®” but one particularly
pressing need is for technicians that can manage the hybrid mechanical—electrical-chemical
systems. Because of similarities to workforce needs in advanced manufacturing, there may be
opportunities to extend the existing efforts of community colleges.'®®

8. CONCLUSION

We hope that this paper informs, sparks interest, and potentially inspires the larger community
for AE systems. The first research robots are already making an impact in materials research and
development. From optimizing the growth of CNTs to accelerating the understanding of
composition—structure—property maps, they are revolutionizing the way scientific research is
conducted. Disrupting conventional research methods, AE has demonstrated an increased rate of
knowledge generation by orders of magnitude and has resulted in the discovery of new
compounds. Broad deployment of AE will require substantial investment in hardware, software,
and data infrastructure, as well as in education to overcome technological and workforce
challenges. Integrated, online AE systems need to be made cheaper and exponentially more
accessible. Upon the demonstration of a sufficient number of AE platforms, funding of large-
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scale multi-institutional "collaboratories" will enable researchers to attack civilization’s most
pressing topics.

The extensive collaboration of the fields of materials science and autonomy research have and
will continue to benefit both sides. Novel materials have been identified and syntheses
optimized, while a unique platform with complex real-world problems is available to develop
and test advanced Al and autonomy approaches. With the potential to revolutionize research, an
opportunity exists for the autonomous materials and Al communities to pursue the Nobel-Turing
Challenge.'®

Overcoming the challenges identified in the paper has the potential to reshape science and
particularly the roles of human researchers, freeing us to engage with science more meaningfully
and interactively. This will lower the barrier to entry for asking and answering scientific
questions, generating a new breed of scientists who focus on insight and creativity and lowering
the barrier to entry for citizen scientists. These tools will bring together artificial and human
intelligence in efficient and effective efforts to accelerate technological and fundamental
scientific progress transforming the world around us.
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Figure Captions

Figure 1. Schematic showing the different parts of an autonomous experimentation (AE)
campaign.

An AE campaign comprises an iterative research loop that is carried out autonomously towards a
research objective. Initialize: Before the first research cycle, the AE system incorporates
information provided by human researchers to initialize the campaign. Plan: In this first part of
the research loop, the system considers the predefined campaign objective and the most recent
knowledge base and plans the next experiments to be pursued. Experiment: The experiments—
which are broadly defined to encompass physical tests, modeling/simulation, or data mining—
are carried out without human intervention. Analyze: Finally, the AE system uses the output data
of the experiments to update the knowledge base, which will then be used in the planning of the
next loop. Conclusion: Once the campaign objective is reached or some other criteria is met, the
system completes the AE campaign and discontinues the iterations of planning, experiment, and
analysis. Further development of this new research process is expected to significantly increase
the efficiency of scientific investigations and completely shift the way research is carried out.

Figure 2. Schematic showing the autonomous experimentation (AE) campaign of ARES
(Autonomous Research System), the first reported AE system.!?

Initialize: ARES was provided with a database to seed its Al planner algorithm of 140 input
synthesis condition with resultant growth rates. Plan: ARES used the subsequent database to
train a random-forest model, which it used to determine the reaction conditions of the first
experimental phase, beginning the first cycle of planning, experiment, and analysis. Experiment:
Using automated apparatus, carbon nanotubes (CNTs) were synthesized via chemical vapor
deposition (CVD), and CNT growth was tracked via in-situ Raman spectroscopy. Left inset
shows the experimental set-up: an array of pillars for experiments with a laser heating one pillar.
Right inset shows the time series of spectra (waterfall plot), revealing CNT growth via the
increasing intensity of the G peak with time. Analyze: The maximum growth rate, vmax, of each
experiment was extracted as shown by plotting the G-band area versus time. Along with the
results of previous experiments (input conditions and output results), the results were analyzed
and used to update the random-forest knowledge representation. Plan: Considering the latest
knowledge representation, the Al planner once again decides on new experimental input
conditions to target growth rates using a genetic algorithm. Conclude: After hundreds of
iterations, the system converged on the maximum growth rate, demonstrating that ARES taught
itself to grow CNTs at controlled rates.

Figure 3. Schematic showing features of autonomous experimentation (AE) campaigns of
BEAR (Bayesian Experimental Autonomous Researcher).3% %7

BEAR is an AE system for producing and mechanically testing additively manufactured
components. Initialize: The diagrams define the strut thickness (¢), strut radius (7), number of
struts (n), and twist (0) of the components. These four parameters were varied to optimize
toughness, the campaign objective. Performance was measured during uniaxial compression in
which the structure was compressed by displacement D. Plan: The plot is an example of how
parameter selection in one of BEAR's AE campaigns progressed with campaign time. Planning
involved Bayesian optimization (BO) in all AE campaigns; in a set of campaigns, finite-element
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modeling of prior physical data was also included through transfer learning to evaluate the
inclusion of this data into the AE campaign. Experiment: The image shows the automated
experimental apparatus of BEAR, where components were manufactured and tested for
toughness (U). Analyze: Plot showing how U was obtained by measuring the force (F) as D was
varied, adding to the knowledge base. Conclude: BEAR was used to benchmark the performance
of AE by exploring the mechanical toughness of components that were either chosen from a grid
or by an active-learning algorithm. Plotted are the median performance of the grid-based
exploration and the AE campaigns. Even after 60 experiments, AE (blue diamonds)
outperformed the 1800 experiments chosen from a grid (black squares). Providing the system
with prior information about physical response (orange triangles) led to a +30% improvement in
median performance.

Figure 4. Schematic showing the expected exponential increase of the speed of research as
autonomous experimentation (AE) is further developed. We see a progression from
connected AE systems to locally integrated systems, and finally to globally integrated systems.
At a critical (or tipping) point, integration will create network effects that multiply the
contribution of individual research nodes, greatly increasing research speed. Global integration
and reduced cost will exponentially impact the access of researchers to AE systems. By
leveraging network effects from data sharing and interpretation, and from the community-driven
approach to scientific investigation, we anticipate solutions to currently intractable problems.
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Table

Table 1. Selected Autonomous Experimentation (AE) Campaigns for Materials
Development. The breadth of materials classes, synthesis methods, and characterization methods
reveals the versatility of AE, and the benchmarked examples show that AE has successfully
accelerated the research process. (UV, vis, and NIR represent ultraviolet, visible, and near

infrared, respectively.)

Study (including publication
date)

(A) Autonomy in materials
research: a case study in
carbon nanotube growth

(Oct 2016)1°

see Figure 2 and the ARES
example in the text

(B) Reconfigurable system
for automated optimization of
diverse chemical reactions
(Sept 2018)83

(C) A curious formulation
robot enables the discovery of
a novel protocell behavior
(Jan 2020)%

(D) A Bayesian experimental
autonomous researcher for
mechanics

(April 2020)3¢

see Figure 3 and the BEAR
example in text

(E) Self-driving laboratory for
accelerated discovery of thin-
film materials (May 2020)!4

(F) Artificial chemist: an
autonomous quantum dot
synthesis

(June 2020)%%

(G) A mobile robotic chemist
(July 2020)%

(H) On-the-fly closed-loop
materials discovery via
Bayesian active learning
(November 2020)12

see CAMEQO example in the
text

Material

class and
synthesis
method
Chemical vapor
deposition of
nano-materials

Flow-based
chemistry of
soluble
molecules

Syringe-based

liquid handling
of oil-in-water

emulsions

Additive
manufacturing
of structural
polymers

Spin-coating of
mixtures of
photoactive
chemicals

Solution-phase
quantum-dot
halide exchange
reaction in flow

Vial-based
solution
chemistry

Solid-state
materials

Characterization
method

in-situ Raman
spectroscopy

High-performance
liquid
chromatography

Optical imaging

Mechanical
uniaxial
compression,
weight
measurement,
optical imaging
Dark-field
photography,
UV-vis—NIR
spectroscopy, 4-
point probe
in-situ UV—vis
absorption and
photoluminescenc
e spectroscopy

Gas

chromatography

Synchrotron X-
ray diffraction

Planning
and
learning
algorithm
Random-
forest model

Blackbox
optimization
software
(SNOBFIT)

Random
goal
exploration
on a support
vector
regressor

Bayesian
optimization

Bayesian
optimization

Neural
network
ensemble,
Bayesian
optimization

Batched,
constrained,
Bayesian
optimization
algorithm
Physics-
informed
graph-based
Bayesian
optimization

Experimental
campaigns and
objectives

600 experiments to
obtain a controlled
growth rate

112 experiments to
optimize three
chemical reactions

1000 experiments to
explore temperature
response of emulsions

6 repetitions of 100 to
maximize component
toughness

2 campaigns, each
with 35 experiments
to maximize hole
mobility

X campaigns of 25
experiments to obtain
a target emission
energy with
maximized brightness

688 experiments
performed over 8 days

19 measurements to
discover best-in-class
material during
limited synchrotron
beam time

Metric of
acceleration and
benchmarking

none

none

8% reduction in
the number of
experiments
needed to match
the performance
of 1000 random
experiments

55% reduction in
number of
experiments
needed to match
1800 experiments
on a grid

none

Comparison of
decision-making
policies and role
of pre-training

none

10x reduction in
number of
experiments
relative to grid-
based approach
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