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Abstract 
 
Determining the activity series of a collection of elements is a classic pedagogical experiment, in 

which pairs of elements are reacted to determine the relative rank ordering of their reactivity.  

Determining the optimal sequence of pairwise experiments that minimizes the total number of 

experiments corresponds to well-known comparison sorting algorithms in computer science.  We 

describe relevant algorithms (insertion sort, binary insertion sort, merge sort, and merge insertion 

sort), their application to the activity series problem, and discuss ways that this connection can 

contribute to the introductory chemistry and computer science curricula.  In addition to 

pedagogical interest, this illustrates a simple form of artificial intelligence for chemical 

experiment planning. 
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Introduction 

The activity series—a list of elements arranged in decreasing order of reactivity— is a 

standard topic of high school and undergraduate chemistry courses.1 A classic pedagogical 

laboratory exercise has students determine the activity series by reacting pairs of species, 

observing the qualitative outcome of each of experiment to determine which is more reactive, 

and using the results to construct a ranked list of reactivity.  These lab experiences typically 

include between four species (as a wet lab activity) and nine species (as an online activity where 

clicking on a hyperlink “performs” a reaction and shows a photograph of the reaction outcome2). 

Activity table charts in textbooks list about 30 species.  How many experiments are required to 

determine the activity series of n items? 

 

The problem takes a simpler and more universal form if we consider it as the task of 

ranking n items using pairwise comparisons of a transitive characteristic (i.e., a characteristic 

such that if 𝐴 < 𝐵 and 𝐵 < 𝐶 then 𝐴 < 𝐶).  Mathematicians know this as a tournament problem, 

as it can be posed in terms of the design of an athletic tournament, in which n players compete 

against one another in pairwise matches to establish a ranking.  An early version of this problem 

was discussed by the British mathematician Charles Dodgson (better known by his pen name 

Lewis Carroll), and is discussed in Steinhaus’s recreational mathematics book.3 Computer 

scientists recognize this as sorting—arranging a list of items into an ordered arrangement—and 

more specifically, as an example of the subclass of comparison sort problems in which a single 

abstract comparison operation determines if a pair of items are in the proper order.4,5 In an 

activity series experiment, the qualitative observation of which species is more reactive plays the 



same role as determining the winner of an individual athletic match or which of two items in a 

pair is greater than the other. In all of these examples, the desired outcome is a list in descending 

order.  

Recognizing reactivity series determination as a sorting task allows us to apply known 

algorithms that solve this problem in an optimal way that minimizes the number of experiments 

required.  [JS1]However, we are not aware of previous pedagogical or research literature 

discussing the isomorphism between the optimal experiment design and sorting algorithms.  

Chemical phenomena such as electrophoresis experiments and chromatography can be 

considered as physically sorting molecules by size or interactions,6 but no algorithm is applied in 

these experimental processes. (The sole exception is the demonstration of an ensemble sorting 

algorithm for purifying mixtures of different droplet types in microfluidic devices.7)  A growing 

body of work on artificial intelligence approaches for autonomous (“self-driving”) chemical 

experimentation combines machine-learned surrogates between experimental inputs and outputs 

and then uses an optimization algorithm to select new experiments with the highest reward.8  In 

general, the space of parameters or molecules to be explored is vast, so not all possibilities can 

be tested, and the goal is to find examples that maximize a given property.  In contrast, the 

reactivity series experimental task requires every species to be tested at least once, using only 

relative information about pairs of items (i.e., without access to absolute properties of the 

individual species or other side information), and the goal is to produce a ranking of those items. 

In both cases, an algorithm is used to plan an optimal experiment sequence, mimicking how a  

productive scientist performs experiments to yield the most information with the least effort, 

time, and materials.  Therefore, in additional to fundamental interest, teaching algorithmic 

strategies for experiment planning is of general value for science students and complements 



previous work on statistical design of experiments activities for optimization that have appeared 

previously in this journal.9–11  The reactivity series experiment has the advantage that efficient 

planning is achieved by simple algorithms that are amenable to mathematical analysis. 

Revisiting this classic laboratory experiment provides an opportunity to cultivate 

computational problem-solving skills in chemistry students. Algorithmic methods (without 

computers per se)  are often invoked when teaching general chemical problem solving related to 

stoichiometric problems, drawing of Lewis structures, or prediction of molecular shape using 

VSEPR theory.12  There is a growing appreciation of the importance of computational thinking 

across all disciplines,13 and for teaching chemical principles in particular.14 The ACS Committee 

on Professional Training recommends incorporating computational and informatics 

methodologies into the undergraduate curriculum.15  However, efforts to explicitly introduce 

computational thinking into chemistry curricula at the high-school16 and first-year university 

level17,18 have focused more on numerical calculations, data analysis, programming, and 

simulation aspects of computational thinking.  In contrast, our approach to the activity series 

experiment emphasizes abstraction and algorithmic thinking competencies for a non-numerical 

problem, without the need for explicit computer programming. Instructors can incorporate the 

computational thinking ideas presented here into an existing laboratory without the need for 

significant modifications or displacing other topics in the curriculum.  

 

Instructors should not expect students to have prior knowledge on this topic. Only about a 

third of first-year university students can correctly describe a sorting algorithm, and this only 

increases to two-thirds of students who enroll in a university-level computer science course.19 

Even those students who correctly describe an algorithm typically describe inefficient algorithms 



such as insertion sort (vide infra); the value of avoiding this becomes apparent when placed in an 

experimental setting.  Although our discussion focuses on teaching chemistry students about how 

sorting relates to their experiments, highlighting this connection may also benefit computer 

science pedagogy.  Students who have completed an introductory computer science course are 

more likely to default to descriptions of numeric sorts rather than more general descriptions of 

sorting processes.19 This may arise because the typical classroom examples involve sorting lists 

of numbers. Introducing the activity series problem—where the data items are chemical species, 

rather than numbers and the comparisons are experiments rather than numerical inequalities—

may help broaden their perspective appropriately and emphasize the value of efficiency. 

 

Comparison of Sorting Algorithms 

 

Algorithms are characterized by the number of resources used, such as the number of 

operations needed to achieve a result, the amount of memory required to store intermediate 

results, communication between distributed workers, complexity of the implementation, or other 

constraints.   An algorithm may be better in one of these metrics while being worse in another. 

For activity series determination, the most appropriate goal is minimizing the number of 

comparison operations that must be performed, as each comparison corresponds to an 

experiment which associated time and reagent costs; any computational effort needed to 

implement the algorithm or store intermediate results is trivial with respect to that real-world 

laboratory process.  Different numbers of comparisons may be required to sort different possible 

initial arrangements of the list.  For example, if fortuitously provided with a list in the correct 

order, merely 𝑛 − 1 experiments (testing each adjacent pair) suffice to verify that the order is 



correct.  However, this is unlikely to occur in practice, as it corresponds to just one of the n! 

possible arrangements of the list. Common ways to assess the number of comparisons include 

the average number (over all possible initial guesses) or the maximum (“worst-case scenario”) 

needed to obtain a ranking.  The Big-O notation is a shorthand used by computer scientists to 

denote the asymptotic performance by indicating the leading-order terms as a function of 

problem size; for example, 𝑂(𝑛!) indicates that the number of operations grows as the square of 

the size of items, n.  Big-O notation does not include numerical prefactors or lower-order terms, 

and thus emphasizes the asymptotic behavior of the algorithms with problem size.  It is 

sometimes also possible to determine the exact number of operations required, as in the cases 

discussed below.   

 

Guess and check is one of the worst possible strategies that could be adopted: Propose a 

possible ordering of the activity series, then performs 𝑛 − 1	experiments to verify that the 

ranking is correct. If not correct, repeat with the next possible ordering. As there are 𝑛! possible 

arrangements to check, this will require (𝑛 − 1)	(𝑛!) experiments in the worst case. The correct 

ordering could be any of the permutations, so on average we only need to try half of these 

experiments. However, for n=9 species, this still requires an average of 1.4 million experiments.  

Clearly a smarter approach is needed. 

 

 



 

Figure 1: Insertion Sort and Binary Insertion Sort.  We depict the final step in the insertion 

sort algorithm applied to sorting 6 elements by reactivity; the previous 4 steps proceeded 

identically to this one and put Mg-Fe in order of decreasing activity. The goal in the current 

step is to find the correct place in the list in which to insert Al (between Mg and Mn). The 

reactions are numbered and proceed from right to left. (a) Insertion sort performs a linear 

search for the insertion point, traversing from the least reactive to most reactive elements (or 

vice versa), performing an experiment until a reaction does not occur. (b) Binary insertion sort 

performs a binary search for the insertion point, starting at the median element and taking 

advantage of the fact that the Mg-Fe are already sorted. Given the pre-sorting of Mg-Fe, an 

observation that Al reacts with Zn implies it will react with Cr and Fe. 

 

Insertion Sort (depicted in Figure 1a) is one of the simplest algorithms to consider; 

incidentally, it is one of the most common algorithms described by computer science 

undergraduate students when asked to define a sorting algorithm.19 (An “out-of-place” 

implementation is described here, although computer science courses will often describe an “in-

place” variant which requires the same number of comparisons but reduces computer memory by 



eliminating the need for a separate sorted list.) Given a list of unsorted items, begin by creating 

an empty list into which we will add sorted entries in the correct rank order.  At each iteration, 

take the next item from the unsorted list and determine where to insert it into the sorted list by 

comparing it against each of the items in the sorted list. For the activity series, this corresponds 

to testing each new species against the species already in the sorted list until a reaction does not 

occur to determine its placement within the descending list of reactivities.  Insertion sort requires 

𝑂(𝑛!) comparison operations for n items to be compared, because each of the n items must be 

compared against each of the other 𝑛 − 1 items.  More precisely, only half of these comparisons 

are needed as the sorted list is constructed, so the worst-case scenario requires 𝑛(𝑛 − 1)/2 

comparisons; for an activity series of n=9 species, at most 36 comparison experiments are 

required.  The average number of required comparisons (averaged over possible arrangements of 

the input) is somewhat lower than the worst-case, and can be determined by numerical 

simulations (see the Supporting Information).   For insertion sort, an average of 24.2 experiments 

are required to sort n=9 species. 

 

Binary Insertion Sort (depicted in Figure 1b) greatly reduces the number of 

comparisons needed by performing a binary search to determine where to insert a new entry into 

the sorted list, rather than testing the entries sequentially.  At each step, test the new item against 

the median entry in the sorted list. If the new item is more (reactive) than this median item, its 

correct placement is in the first half of the sorted list, and if it is less (reactive) than the median 

then its correct placement is in the last half. Repeat the process against the median entry in the 

relevant half-list, until a single location is identified. In general, this requires log! 𝑛 subdivisions 

(expressed in terms of the binary, i.e., base-2, logarithm).   The binary search is repeated for each 



of the n items to be sorted, resulting in an asymptotic worst-case requirement of 𝑂(𝑛 log! 𝑛) 

comparisons.  The exact expression can be described analytically,20 and at most 21 comparisons 

are required to rank 9 items. Adopting the binary insertion algorithm reduces the maximum 

number of experiments needed by more than 40% compared to the insertion algorithm. 

Numerical simulations indicate that an average of 19.9 experiments are needed to perform binary 

insertion sorting of n=9 species.  

  



 

 

Figure 2: Merge Sort.  We depict the merge sort algorithm applied to rank the elements Cr, 

Mg, Zn, Mn in order of decreasing reactivity. (a) Overall structure of the algorithm: Starting 

from individual elements in the original unsorted order, themselves each sorted lists of length 

1, pairs of sorted lists are merged together until only one sorted list remains. Steps 1a and 1b 

can be performed in parallel. (b) Detailed view of the ‘merge’ routine in step 2 of panel (a): At 

each step of ‘merge’, pairs of elements across the two lists are compared, beginning with the 

most reactive element from each list. The more reactive element from the experiment is 

chosen and inserted into an empty list (top) which will store the final sorted output of ‘merge’. 

The next element from the list from which the ‘winner’ of the previous comparison is 

compared with the ‘loser’ thereof, and so on until the empty list is filled. 

 

Merge Sort (depicted in Figure 2), developed by John von Neuman in 1945, was one of 

the first programs written for a stored memory computer.21 The unsorted list is divided into n 



sublists, each containing one item; a list of only one item is intrinsically “sorted”.  These sorted 

lists are merged and resorted to produce new sorted sublists.  The merging process is repeated 

until only a single (sorted) list remains.  An advantage of merge sort is that each sublist merge 

step can be performed in parallel.  This can be useful in a laboratory setting, as the students can 

“divide and conquer” the experiments in an efficient way.  Like binary insertion sort, this 

algorithm is also 𝑂(𝑛 log! 𝑛) and requires the same number of (exact) worst-case comparisons.20  

However, the average number of comparisons for merge sort is slightly lower; for n=9 only 19.2 

comparisons are required. 

 

Merge Insertion Sort (also known as the Ford-Johnson algorithm) was invented in 

1959,22 and combines merge and binary insertion ideas. The general premise is that 𝑘 + 1 

comparisons are needed to perform binary insertion into sorted sublists of 2k+1 – 1 and 2k, so 

sublists should be organized such that insertions are performed into the largest sublists possible.  

In theory it is one of the most optimal sorting algorithms in terms of number of comparisons 

required, but it is rarely used in practice as the required data structures are complicated and 

require additional processor operations that erode this advantage for typical sorting tasks.  (Other 

algorithms requiring fewer comparisons for large n are known to exist,23 but Ford-Johnson 

requires the fewest comparisons for 𝑛 ≤ 47	items.24)  The exact number of comparisons needed 

in the worst case can be calculated exactly,25 and for n=9 items at most 19 comparisons are 

required; this is two fewer experiments than the worst cases for binary insertion and merge sort 

algorithms, and even slightly lower than the average number of comparisons needed for either of 

those other algorithms.  The average number of required comparisons, 18.6, is only slightly 

lower than the worst-case requirement.26   



 

 

Figure 3:  Comparison of exact number of comparison experiments needed as a function of 

number of items to be compared.  The curve for merge sort is identical to binary insertion, so it 

is not shown. 

 

Larger problems.  By changing the algorithm, the maximum number of experiments 

needed for the n=9 problem can be reduced from 36 (using insertion sort) to 19 (using merge 

insertion sort).  This is an appreciable savings, although an intellectually lazy (but hard working) 

student might argue that the less efficient approach is still tractable. This notion can be dispelled 

by plotting the number of experiments needed for each algorithm as the number of items grows 

in Figure 3; insertion sort grows quadratically with the number of items, whereas the other 

algorithms we have discussed require only 𝑂(𝑛 log! 𝑛) experiments.  How many experiments 

are needed to determine an n=30 activity series?  Insertion sort requires at most 435 experiments 

(and on average 243.5), whereas binary insertion and merge sort require at most 119 experiments 

(and on average 114.4 and 111.5, respectively), while merge insertion requires at most 111 

experiments (and on average 108.5 experiments). The Mathematica notebook in the Supporting 

Information contains interactive functions for computing the exact worst-case values for 
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arbitrary numbers of items, implementations of the insertion, binary insertion, and merge sort 

algorithms, and numerical simulations for estimating the average number of comparisons. 

 

 Generalizations.  The algorithms discussed above sort an arbitrary (and non-

predetermined) number of items using only information obtained from pairwise comparison 

operations.  Further improvements are possible by removing these assumptions.  If the number of 

items is known ahead of time, and the goal is to find a predetermined work plan that uses the 

shortest amount of elapsed time by distributing comparison experiments across students working 

in parallel, sorting networks may be a more appropriate model. Background information known 

about the species (e.g., “alkali metals are more reactive than coinage metals”) can be 

incorporated into non-comparison sorting algorithms (e.g., bucket sort); essentially this 

information is a form of pre-sorting of the items into smaller groups which reduces the total 

number of comparison operations needed. If instead of relying solely upon pairwise comparisons 

of relative ordering one has access to a value for each item which establishes its absolute ranking 

(e.g., the electrochemical half-cell potential of each species relative to a common reference 

electrode), then the n experiments needed to determine those values suffices, after which a 

(solely numerical) sort can be performed to order the items without further pairwise experiments.   

The analysis above assumed that each comparison has the same unit cost and that all 

comparisons can be performed; this is not necessarily true in a laboratory setting, where some 

reagents might be more expensive than others (e.g., gold versus copper) or some reaction pairs 

may be forbidden (e.g., because of safety concerns).  The corresponding problems of sorting 

items by minimizing the total of the costs of comparison operation27 and sorting under forbidden 

pairs28 have been treated; it is common to analyze these in terms of a graph where the vertices 



denote each item and the edges are weighted (or absent) depending on the cost.  Finally, we have 

assumed that each comparison returns a deterministic outcome; while this is the case for the 

activity series, other types of experiments may yield a statistical distribution of outcomes, 

necessitating additional experiments beyond the minimum requirements above discussed above. 

 

Further Resources 

Chemical educators can draw upon an extensive computer science pedagogy literature 

around teaching sorting algorithms using song,29 folk dancing,30 and student-led exercises 

analyzing written algorithms without explicit computer programming.31 Because sorting is a core 

part of the computer science curriculum, a plethora of learning resources exist.  Here we 

highlight a few resources we have found most helpful:  Christian and Griffiths’ Algorithms to 

Live By: The Computer Science of Human Decisions is an entertaining, no-code introduction of 

algorithms and their applications to real-life problems intended for a popular audience; Chapter 3 

discusses the sorting problem using anecdotes related to laundry, athletic tournaments, libraries, 

and animal behavior.4 Joe James has created a series of YouTube videos with animated sorting 

algorithms and companion code in the Python32 and Java33 programming languages.  The 

Wolfram Demonstration project has two interactive demonstrations of sorting algorithms.34,35 

Khan Academy’s “Computer Science: Algorithms” unit provides a self-paced series of videos 

and activities introducing algorithms, binary search, asymptotic (Big-O) notation, and several 

sorting algorithms (including insertion and merge sort).36  The authoritative reference on sorting 

algorithms is Knuth’s The Art of Computer Programming, Volume 3: Sorting and Searching, a 

highly technical book devoted to implementation and mathematical analysis of the algorithms 

discussed here.5 Equally authoritative, but more approachable, is the CLRS Introduction to 



Algorithms textbook;37 insertion sort is used as an introductory example of algorithm analysis in 

Chapter 2, and a more extensive discussion of sorting algorithms occupies Chapters 6-9, 

however it does not describe the Ford-Johnson merge insertion algorithm.  

 

Conclusion 

We have elucidated the relationship between the classic activity series determination 

chemistry experiment and sorting algorithms from computer science.  Selecting an appropriate 

algorithm drastically reduces the number of experiments required to determine the relative 

reactivities.  Even for a modest pedagogical-scale determination of an activity series of 9 species, 

the number of pairwise experiments can be nearly halved by adopting more efficient algorithms.  

Furthermore, adopting an appropriate algorithm such as the merge sort allows experimental tasks 

to be distributed across independently acting students in an efficient way.  For laboratory tasks 

where the time and materials costs of performing experimental comparisons outweighs any 

computational or mental resources, the use of theoretically optimal algorithms (such as the Ford-

Johnson merge insertion sort) is warranted. In general, sorting algorithms are an optimal way of 

planning any experiment whose goal is producing a rank ordering of items and where the only 

information comes from pairwise comparisons of those items.  

 

 

  



Associated Information 

 

Supporting Information 

Supporting information is available at [ACS Information]. 

• Mathematica 12.1 notebook containing exact scaling results used to generate Figure 3, 

implementations of the algorithms, and numerical simulations of an activity series 

experiment. (ZIP) 
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