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ABSTRACT 
Solving hard combinatorial optimization problems such as graph 
coloring efficiently continues to be an outstanding challenge for 
computing. Traditional digital computers typically entail an 
exponential increase in computing resources as the problem sizes 
increase. This makes larger problems of practical relevance 
intractable to compute, with subsequently adverse implications for 
a broad spectrum of ever-more relevant practical applications 
ranging from machine learning to electronic device automation 
(EDA). Here, we examine how analog coupled oscillators can 
enable area and energy-efficient methods to accelerate such 
problems. Further, we discuss how the implementation of such 
non-Boolean platforms can take advantage of emerging 
technologies such as scalable ferroelectrics. 
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1 Introduction 
Digital computers have been the backbone of modern 

computing, and have over the past five decades, enabled 
unprecedented performance improvement that has powered the 
information revolution. Problems are solved by creating their 
Boolean (1/0) abstractions which are mapped onto the underlying 
hardware platform, conventionally realized using CMOS-based 
digital switches. Hardware scaling, empowered by Moore’s law, 
has enabled a doubling of the transistor (CMOS) density 
approximately every two years. Furthermore, the computational 
efficiency, has doubled every 1.57 years, as described by Koomey’s 
law [1]. However, even with these tremendous strides in digital 
computation, there is still a large class of problems (known as NP-
Hard) that are considered intractable to solve using digital 
machines [2]. Many combinatorial optimization problems (e.g., 
maximum cut (MaxCut), Boolean satisfiability, vertex cover) 
belong to this category, and typically require computing resources 
that scale exponentially with the input size of the problem [3].  

We consider the Maximum Cut (MaxCut) problem as an 
illustrative example. Computing the MaxCut of a graph G(V,E) (V: 
vertices; E: edges) (unweighted graphs considered here i.e. edges 
only have a binary (1/0) value) entails finding a cut which divides 
G into two sets (S1 & S2) such that the number of common edges 
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between them is as large as possible; the number of common edges 
is the MaxCut solution (Fig. 1a). Fig. 1b demonstrates the measured 
exponential increase in time to compute the optimal MaxCut in 
graphs of increasing size using an SDP (semi-definite 
programming)-based Branch & Bound digital algorithm (BiqMac) 
[4], [5]. 

 
While the above algorithm calculates an optimal solution, even 

heuristic algorithms, which may be faster but do not guarantee 
optimal solutions, struggle when solving large problem instances. 
Such combinatorial optimization problems have important 
applications across a wide spectrum of areas ranging from VLSI 
design (interconnect routing) [6], [7], bioinformatics [8], medical 
imaging [9], protein folding [10], probabilistic reasoning [11], etc. 
Moreover, in certain applications such as deploying swarm 
intelligence [12], [13], autonomous driving [14], etc., such 
problems have to be solved not only in (close to) real-time but also 
in energy-constrained environments making energy efficiency of 
the computational platform equally important. Consequently, this 
has motivated the exploration of alternate computing paradigms to 
solve such problems.  

Broadly, these alternatives can be classified as: (a) Quantum 
computing-based approaches [15]-[17]: the objective here is to 
overcome the fundamental hardness of the problem and provide 
an exponential speed up. This approach inherently relies on the 
idea that the speed up achieved with qubits will outweigh the 
additional energy (specifically, cryogenic cooling [18]) and space 
(area) overhead associated with quantum computers making it 
viable for at least for some applications. The alternate approach: 
(b) non-Von Neumann but classical systems, aim to use alternate 
(classical) computing models and hardware that may be more 
suitable for solving such problems. The objective here is that while 
the approach may not fundamentally overcome the theoretical 
hardness of the problem, it will still enable significantly better 
performance along with higher energy efficiency during runtime 
for a large number of problems. In fact, the energy efficiency (i.e., 
energy/compute) may even be better than that provided by 
quantum methods since most of the hardware implementations do 
not need cryogenic cooling. This may be particularly critical for 

applications that require performing such computation in energy-
constrained environments, as discussed above. 

One such non-Von Neumann approach is based on using 
dynamical systems [19], [20]. Since combinatorial optimization 
problems such as solving the MaxCut entail the 
maximization/minimization of an objective function in the 
combinatorial domain, the underlying concept here is to map the 
problem solution to the energy function of an appropriately 
designed dynamical system. Consequently, as the system evolves 
to minimize its energy and reach its ground state (≡ optimal 
solution), it will naturally compute the solution to the problem. 
The manifestation and effectiveness of this approach is evident in 
the physical world; real-time information processing is observed in 
natural dynamical systems such as the activation patterns of 
neural circuits, cellular signaling mechanisms, and information 
flow in social networks. Analytical solutions of such systems are 
rare and numerical simulations can be extremely computationally 
intensive. Yet the physical system “computes” its own dynamics in 
seconds.  

One example of such a dynamical system is coupled 
oscillators- the focus of the present work. Coupled oscillators [21], 
in principle, represent a promising approach since oscillators can 
be made low-power, compact, room-temperature operation 
compatible, making them particularly attractive for applications 
such as special-purpose accelerators in heterogeneous computing 
platforms. 

2 Oscillator-based computational models 

The idea of analog computation with oscillators is not new. 
However, the field has been receiving increasing attention due to 
the advent of new hardware technologies (e.g., STT MRAM 
oscillators, phase change systems) that promise highly compact 
implementations, coupled with the enormous advances in process 
technology. Oscillator-based computational models have been 
proposed for a range of applications such as image processing 
(image segmentation- LEGION networks [22]-[25]; pattern 
recognition using time-delay encoding [26], frequency shift keying 
(FSK)) [27], [28], associative memory [29], oscillator-based neural 
networks [30], and even speech recognition. Romera et al. [31] 
demonstrated a 4-coupled spin-torque oscillator platform capable 
of classifying a pair of vowels from a speech sample. Furthermore, 
their application in combinatorial optimization has also received 
significant attention recently even though there were some early 
reports on their application in this area [32]. 

Several oscillator-based models have been proposed for solving 
combinatorial optimization problems. Wang et. al. [33] recently 
demonstrated that coupled oscillators, under second harmonic 
injection locking, can be used to minimize the Ising 
njection locking, can be used to minimize the Ising 
jection locking, can be used to minimize the Ising ection locking, can be used to minimize the Ising Hamiltonian, H =

 

Figure 1: (a) The MaxCut problem and its solution 
illustrated using an example graph; (b) Time required to 
compute the optimal MaxCut as a function of graph 
size (V) using a Branch & Bound digital algorithm; an 
exponential increase is observed. The graphs are 
randomly generated instances having an edge density 
(ƞ)=0.2  
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of the graph), under second harmonic injection, can be used to 
compute the MaxCut of a graph. The oscillators exhibit a phase bi-
partition (0 & 180o) that corresponds to the two sets created by the 
(Max-) Cut. Subsequently, this oscillator property has been 
demonstrated using various types of oscillators including 
emerging technologies such as insulator-metal transition 
oscillators [34], spin-torque oscillators [35], as well as using larger 
integrated systems [36], [37].  Figure 2a shows a representative 
graph and its equivalent oscillator network. Fig. 2b shows the 
corresponding oscillator outputs under the influence of a second 
harmonic signal. The resulting oscillator phases, shown in the 
phase plot in Fig. 2c, exhibit a phase bipartition (corresponding to 
S1 & S2) that can be used to compute the MaxCut of the graph. 

 

Parihar et al. [38], also demonstrated the application of coupled 
relaxation oscillators in solving graph coloring– a prototypical NP-
hard combinatorial optimization problem that entails computing 
the minimum number of colors (to be assigned to the nodes) such 
that no two nodes having a common edge are assigned the same 
color. They demonstrated that a topologically equivalent network 
of coupled oscillators (without any external injection signals) 
exhibits a unique phase ordering that can be used (with minimal 
post-processing) to solve the graph coloring problem [38], [39]. 
The underlying framework for this work lies in the equivalence 
between the eigenvalues of the coupled oscillator system in state 
space and those of the adjacency matrix of the graph being solved. 
Recently, the authors demonstrated this behavior in an integrated 
circuit of 30 oscillators with all-to-all reconfigurable coupling [40]. 

The application of this platform in solving other NP-complete 
problems such as computing the maximum independent set of a 
graph was shown [41], [42]. 

3 Leveraging emerging technologies 

 

While the oscillator-based computational models promise 
novel and potentially more efficient algorithmic pathways to solve 
combinatorial optimization, the ultimate efficiency of such an 
approach will also depend on the area-, energy- efficiency and 
performance of the underlying hardware implementation.  

This inspires the exploration of emerging hardware 
technologies that may be more amenable to such implementations 
than conventional CMOS-based designs which are primarily 
optimized as digital switches. Beyond silicon materials systems 
that naturally exhibit characteristics such as non-linear charge vs. 
voltage properties (ferroelectrics), non-linear current vs. voltage 
characteristics (spin transfer torque devices, insulator-metal 
transition materials such as VO2, NbO2), hysteresis - typically 
absent in conventional silicon, can offer more energy and area 
efficient pathways to implement the required hardware primitives. 
For instance, in contrast to the (minimum) 6 transistors (6T) 
required for implementing a ring oscillator in CMOS technology, 
many of the above technologies facilitate a significantly compact 
1T1R implementation; examples include, VO2 & NbO2-based 
insulator-metal transition oscillators, spin-transfer torque (STT) 
oscillators, ferroelectric and anti-ferroelectric oscillators.  

In particular, with the recent discovery of a ferroelectric phase 
in doped-HfO2 (e.g., HfxZr1-xO2; f-HfO2), there has been extensive 
interest in exploring this material system for such applications. 
Besides the inherent compatibility with CMOS process technology, 
f-HfO2 is highly scalable, making it suitable for scaled technology 

 

Figure 2: (a) A representative graph along with the 
corresponding topologically equivalent coupled 
oscillator network. (b) Experimentally measured time-
domain output of the oscillators in the network under 
second harmonic injection. (c) Corresponding phase 
plot of the oscillators showing a phase bipartition with 
each set corresponding to a set created by the (Max-)Cut. 
An optimal solution (=4) is observed in this case. 

 
Figure 3: Illustrative examples of emerging 
technology-based oscillator designs. (a) Ferroelectric 
(FET)-based oscillator, proposed by [43]; (b) Anti-
ferroelectric tunnel junction-based oscillator proposed 
by [44]; (c) insulator-metal transition-based oscillator 
[45]. 
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nodes. 1nm thick films have been experimentally demonstrated 
[46] in alignment with theoretical predictions [47] and there is no 
known limit to lateral scaling. Furthermore, its response can not 
only be modulated between that of a FE and AFE, but its 
polarization can also be varied over a wide range using techniques 
(e.g., composition & doping) that are largely compatible with 
existing process technology. Besides the above materials-centric 
advantages provided by f-HfO2, ferroelectric devices such as 
FeFETs and FTJs can extremely exhibit energy efficient [48], fast, 
and non-filamentary (unlike VO2, NbO2) switching that can be 
tuned between volatile, non-volatile, and oscillatory operation (Fig. 
3). Oscillator designs based on ferroelectrics [43], and anti-
ferroelectric tunnel junctions [44] have been recently shown. 
Additionally, these emerging technologies can potentially provide 
efficient routes to implement the interaction/coupling among the 
oscillators. For instance, the cross-point memory architecture 
implemented using resistive [49] and ferroelectric memory [50], 
[51] provides a natural substrate for mapping the adjacency matrix 
of a graph.  

In summary, computational models & systems based on 
coupled oscillators, co-designed and optimized with emerging 
technologies such as ferroelectrics, can provide energy, area, and 
performance efficient pathways to accelerate computationally 
hard problems. 
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