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ABSTRACT

Solving hard combinatorial optimization problems such as graph
coloring efficiently continues to be an outstanding challenge for
computing. Traditional digital computers typically entail an
exponential increase in computing resources as the problem sizes
increase. This makes larger problems of practical relevance
intractable to compute, with subsequently adverse implications for
a broad spectrum of ever-more relevant practical applications
ranging from machine learning to electronic device automation
(EDA). Here, we examine how analog coupled oscillators can
enable area and energy-efficient methods to accelerate such
problems. Further, we discuss how the implementation of such
non-Boolean platforms can take advantage of emerging
technologies such as scalable ferroelectrics.
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1 Introduction

Digital computers have been the backbone of modern
computing, and have over the past five decades, enabled
unprecedented performance improvement that has powered the
information revolution. Problems are solved by creating their
Boolean (1/0) abstractions which are mapped onto the underlying
hardware platform, conventionally realized using CMOS-based
digital switches. Hardware scaling, empowered by Moore’s law,
has enabled a doubling of the transistor (CMOS) density
approximately every two years. Furthermore, the computational
efficiency, has doubled every 1.57 years, as described by Koomey’s
law [1]. However, even with these tremendous strides in digital
computation, there is still a large class of problems (known as NP-
Hard) that are considered intractable to solve using digital
machines [2]. Many combinatorial optimization problems (e.g.,
maximum cut (MaxCut), Boolean satisfiability, vertex cover)
belong to this category, and typically require computing resources
that scale exponentially with the input size of the problem [3].

We consider the Maximum Cut (MaxCut) problem as an
illustrative example. Computing the MaxCut of a graph G(V.E) (V:
vertices; E: edges) (unweighted graphs considered here ie. edges
only have a binary (1/0) value) entails finding a cut which divides
G into two sets (S1 & S2) such that the number of common edges
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between them is as large as possible; the number of common edges
is the MaxCut solution (Fig. 1a). Fig. 1b demonstrates the measured
exponential increase in time to compute the optimal MaxCut in
graphs of increasing size using an SDP (semi-definite
programming)-based Branch & Bound digital algorithm (BigMac)

(4], [5].

Benchmark Problem: Maximum Cut (MaxCut)
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Figure 1: (a) The MaxCut problem and its solution
illustrated using an example graph; (b) Time required to
compute the optimal MaxCut as a function of graph
size (V) using a Branch & Bound digital algorithm; an
exponential increase is observed. The graphs are
randomly generated instances having an edge density

(n)=0.2

While the above algorithm calculates an optimal solution, even
heuristic algorithms, which may be faster but do not guarantee
optimal solutions, struggle when solving large problem instances.
Such combinatorial optimization problems have important
applications across a wide spectrum of areas ranging from VLSI
design (interconnect routing) [6], [7], bioinformatics [8], medical
imaging [9], protein folding [10], probabilistic reasoning [11], etc.
Moreover, in certain applications such as deploying swarm
intelligence [12], [13], autonomous driving [14], etc., such
problems have to be solved not only in (close to) real-time but also
in energy-constrained environments making energy efficiency of
the computational platform equally important. Consequently, this
has motivated the exploration of alternate computing paradigms to
solve such problems.

Broadly, these alternatives can be classified as: (a) Quantum
computing-based approaches [15]-[17]: the objective here is to
overcome the fundamental hardness of the problem and provide
an exponential speed up. This approach inherently relies on the
idea that the speed up achieved with qubits will outweigh the
additional energy (specifically, cryogenic cooling [18]) and space
(area) overhead associated with quantum computers making it
viable for at least for some applications. The alternate approach:
(b) non-Von Neumann but classical systems, aim to use alternate
(classical) computing models and hardware that may be more
suitable for solving such problems. The objective here is that while
the approach may not fundamentally overcome the theoretical
hardness of the problem, it will still enable significantly better
performance along with higher energy efficiency during runtime
for a large number of problems. In fact, the energy efficiency (i.e.,
energy/compute) may even be better than that provided by
quantum methods since most of the hardware implementations do
not need cryogenic cooling. This may be particularly critical for
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applications that require performing such computation in energy-
constrained environments, as discussed above.

One such non-Von Neumann approach is based on using
dynamical systems [19], [20]. Since combinatorial optimization
the MaxCut the
maximization/minimization of an objective function in the

problems such as solving entail
combinatorial domain, the underlying concept here is to map the
problem solution to the energy function of an appropriately
designed dynamical system. Consequently, as the system evolves
to minimize its energy and reach its ground state (= optimal
solution), it will naturally compute the solution to the problem.
The manifestation and effectiveness of this approach is evident in
the physical world; real-time information processing is observed in
natural dynamical systems such as the activation patterns of
neural circuits, cellular signaling mechanisms, and information
flow in social networks. Analytical solutions of such systems are
rare and numerical simulations can be extremely computationally
intensive. Yet the physical system “computes” its own dynamics in

seconds.

One example of such a dynamical system is coupled
oscillators- the focus of the present work. Coupled oscillators [21],
in principle, represent a promising approach since oscillators can
be made low-power, compact, room-temperature operation
compatible, making them particularly attractive for applications
such as special-purpose accelerators in heterogeneous computing
platforms.

2 Oscillator-based computational models

The idea of analog computation with oscillators is not new.
However, the field has been receiving increasing attention due to
the advent of new hardware technologies (e.g, STT MRAM
oscillators, phase change systems) that promise highly compact
implementations, coupled with the enormous advances in process
technology. Oscillator-based computational models have been
proposed for a range of applications such as image processing
(image segmentation- LEGION networks [22]-[25]; pattern
recognition using time-delay encoding [26], frequency shift keying
(FSK)) [27], [28], associative memory [29], oscillator-based neural
networks [30], and even speech recognition. Romera et al. [31]
demonstrated a 4-coupled spin-torque oscillator platform capable
of classifying a pair of vowels from a speech sample. Furthermore,
their application in combinatorial optimization has also received
significant attention recently even though there were some early
reports on their application in this area [32].

Several oscillator-based models have been proposed for solving
combinatorial optimization problems. Wang et. al. [33] recently
demonstrated that coupled oscillators, under second harmonic
the Ising
the Ising
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of the graph), under second harmonic injection, can be used to
compute the MaxCut of a graph. The oscillators exhibit a phase bi-
partition (0 & 180°) that corresponds to the two sets created by the
(Max-) Cut. Subsequently, this oscillator property has been
demonstrated using various types of oscillators including

emerging technologies such insulator-metal transition

oscillators [34], spin-torque oscillators [35], as well as using larger
integrated systems [36], [37]. Figure 2a shows a representative

as

graph and its equivalent oscillator network. Fig. 2b shows the
corresponding oscillator outputs under the influence of a second
harmonic signal. The resulting oscillator phases, shown in the
phase plot in Fig. 2c, exhibit a phase bipartition (corresponding to
S1 & S2) that can be used to compute the MaxCut of the graph.
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Figure 2: (a) A representative graph along with the

corresponding  topologically equivalent coupled
oscillator network. (b) Experimentally measured time-
domain output of the oscillators in the network under
second harmonic injection. (c¢) Corresponding phase
plot of the oscillators showing a phase bipartition with
each set corresponding to a set created by the (Max-)Cut.
An optimal solution (=4) is observed in this case.

Parihar et al. [38], also demonstrated the application of coupled
relaxation oscillators in solving graph coloring— a prototypical NP-
hard combinatorial optimization problem that entails computing
the minimum number of colors (to be assigned to the nodes) such
that no two nodes having a common edge are assigned the same
color. They demonstrated that a topologically equivalent network
of coupled oscillators (without any external injection signals)
exhibits a unique phase ordering that can be used (with minimal
post-processing) to solve the graph coloring problem [38], [39].
The underlying framework for this work lies in the equivalence
between the eigenvalues of the coupled oscillator system in state
space and those of the adjacency matrix of the graph being solved.
Recently, the authors demonstrated this behavior in an integrated
circuit of 30 oscillators with all-to-all reconfigurable coupling [40].
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The application of this platform in solving other NP-complete
problems such as computing the maximum independent set of a
graph was shown [41], [42].

3 Leveraging emerging technologies
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Figure 3: Illustrative examples of emerging

technology-based oscillator designs. (a) Ferroelectric
(FET)-based oscillator, proposed by [43]; (b) Anti-
ferroelectric tunnel junction-based oscillator proposed
by [44]; (c) insulator-metal transition-based oscillator

While the oscillator-based computational models promise
novel and potentially more efficient algorithmic pathways to solve
combinatorial optimization, the ultimate efficiency of such an
approach will also depend on the area-, energy- efficiency and
performance of the underlying hardware implementation.

This inspires the
technologies that may be more amenable to such implementations

exploration of emerging hardware

than conventional CMOS-based designs which are primarily
optimized as digital switches. Beyond silicon materials systems
that naturally exhibit characteristics such as non-linear charge vs.
voltage properties (ferroelectrics), non-linear current vs. voltage
characteristics (spin transfer torque devices, insulator-metal
transition materials such as VO, NbO,), hysteresis - typically
absent in conventional silicon, can offer more energy and area
efficient pathways to implement the required hardware primitives.
For instance, in contrast to the (minimum) 6 transistors (6T)
required for implementing a ring oscillator in CMOS technology,
many of the above technologies facilitate a significantly compact
1T1R implementation; examples include, VO, & NbO,-based
insulator-metal transition oscillators, spin-transfer torque (STT)
oscillators, ferroelectric and anti-ferroelectric oscillators.

In particular, with the recent discovery of a ferroelectric phase
in doped-HfO, (e.g., Hf,Zr, ,O,; fHfO,), there has been extensive
interest in exploring this material system for such applications.
Besides the inherent compatibility with CMOS process technology,
fHIO, is highly scalable, making it suitable for scaled technology
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nodes. 1nm thick films have been experimentally demonstrated
[46] in alignment with theoretical predictions [47] and there is no
known limit to lateral scaling. Furthermore, its response can not
only be modulated between that of a FE and AFE, but its
polarization can also be varied over a wide range using techniques
(e.g., composition & doping) that are largely compatible with
existing process technology. Besides the above materials-centric
advantages provided by fHfO,, ferroelectric devices such as
FeFETs and FTJs can extremely exhibit energy efficient [48], fast,
and non-filamentary (unlike VO,, NbO,) switching that can be
tuned between volatile, non-volatile, and oscillatory operation (Fig.
3). Oscillator designs based on ferroelectrics [43], and anti-
ferroelectric tunnel junctions [44] have been recently shown.
Additionally, these emerging technologies can potentially provide
efficient routes to implement the interaction/coupling among the
oscillators. For instance, the cross-point memory architecture
implemented using resistive [49] and ferroelectric memory [50],
[51] provides a natural substrate for mapping the adjacency matrix
of a graph.

In summary, computational models & systems based on
coupled oscillators, co-designed and optimized with emerging
technologies such as ferroelectrics, can provide energy, area, and
performance efficient pathways to accelerate computationally
hard problems.
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