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A B S T R A C T

Distributed water and energy technologies have the potential to reduce reliance on centralized infrastructures,
household utility bills, and carbon footprints. Current adoption levels remain low because of issues such as
long payback periods, limited consumer awareness, capital constraints, and resource intermittency challenges.
In this study, we assess the ability of two system design concepts to improve the economics of distributed
water and energy technologies, and ultimately encourage their broader adoption: (1) co-optimizing water
and energy technology investments and operations, and (2) investing in community-scale rather than home-
scale systems. We explore the benefits of these approaches by formulating a mixed-integer linear program
for optimal system design and dispatch. Our case study applies this model to a neighborhood in Austin,
Texas. Results show that distributed electricity and water production increase, and total cost decreases, when
resources and demands are pooled at larger community scales. These community-scale systems make a wider
range of technologies economically viable and enable greater asset utilization due to systems integration. The
cost and carbon emissions reduction benefits of co-optimizing distributed water and energy investments are
significant, especially at higher aggregation levels. While distributed water production alone tends to increase
carbon emissions, complementing it with appropriate distributed electricity generation technologies can yield
simultaneous economic and environmental benefits.
1. Introduction

Distributed water technologies (DWTs) and distributed energy tech-
nologies (DETs) can provide a wide range of benefits. They reduce a
household’s reliance on centralized infrastructures, which can improve
resilience in disaster situations and make the home’s access to wa-
ter and electricity less vulnerable to cascading failures across water
and electricity networks (Falco & Webb, 2015; Wang et al., 2016).
Depending on the distributed technologies adopted, their patterns of
operation, and their geographical and infrastructural context, they
can reduce a household’s water and electricity bills and lower its
carbon footprint (Deetjen et al., 2018; O’Shaughnessy et al., 2018;
Valdez et al., 2016; Vitter et al., 2018). Distributed technologies also
ave the potential to democratize decision making over natural re-
ources by giving individuals greater autonomy over their water and
nergy choices (Koch & Christ, 2018; Koirala et al., 2016). From
the higher-level perspective of water and electricity system planning,
distributed technologies can reduce the strain that population and
economic growth put on centralized infrastructures. They can help
reduce the need for expensive expansions of existing networks (Vitter
et al., 2018) and cost-effectively improve access to electricity and clean
water in developing regions (Levin & Thomas, 2016).
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However, despite their myriad benefits, few households or commu-
nities invest in distributed technologies and those that do are typically
more affluent (Koch & Christ, 2018). Some experts point to land
requirements, long payback periods, and intermittency as key factors
that discourage adoption (Koch & Christ, 2018; Levin & Thomas, 2016;
O’Shaughnessy et al., 2018). Other experts believe that utility-scale
investments and the economies of scale they provide will in most
cases be cheaper than any distributed technology (Eggimann et al.,
2015, 2016; Levin & Thomas, 2016). Still, some analysts contend that
the market and distribution structure of the existing electricity system
hinders meaningful adoption more than any other factor (Dyson et al.,
2018; Hirsch et al., 2018; Leigh & Lee, 2019; The Johnson Foundation
at Wingspread, 2014).

In this study, we investigate the conditions that promote adoption
of distributed technologies, focusing on the benefits of co-optimizing
distributed water and electricity systems, and of investing at the com-
munity scale (rather than home scale). First, we explore when dis-
tributed electricity and water technologies are economical alterna-
tives to centrally supplied electricity and water at current costs. Then,
vailable online 30 September 2020
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we investigate how different levels of aggregation affect the cost-
effective adoption of distributed systems. Finally, we analyze whether
co-optimizing investments in – and operation of – distributed electricity
and water technologies improves their combined economics, stimulates
additional adoption, and reduces greenhouse gas (GHG) emissions.

To explore these ideas, we develop a mixed-integer linear program
that optimizes distributed technology capacities and hourly dispatch.
We test our model through a case study of a neighborhood in Austin,
Texas that leverages household-level empirical data on rooftop solar
outputs and water and electricity demand profiles. Previous studies
have examined water and electricity independently using real-world
demand profiles (Blinco et al., 2017; Bradshaw & Luthy, 2017) or in
conjunction using hypothetical input data (Awal et al., 2019; Elasaad
et al., 2015; Fan et al., 2019; Valdez et al., 2016; Ward et al., 2012).
ther studies have compared distributed versus utility-scale genera-
ion (Eggimann et al., 2015, 2016; Latreche et al., 2018) or household
versus community generation (Hledik et al., 2018; Vitter et al., 2018).
ur study adds to the literature by being the first to incorporate all
hese elements within a unified optimization model: co-optimization of
istributed water and electricity investments and operations; choices
mong household, community, and centralized systems; and empirical
ousehold-level time series data.
To preview our findings, our results show that distributed technolo-

ies are still relatively expensive, but they can compete economically
ith utility-supplied electricity and water in certain contexts, especially
f they are invested in at the community scale and are co-optimized.
ommunity-scale aggregation can significantly enhance the prospects
or distributed electricity and water by taking advantage of economies
f scale, spreading out fixed costs over more households, and aggregat-
ng heterogeneous demand profiles. A co-optimized distributed energy
nd water system (DEWS) can achieve synergies that make it more
ttractive than the sum of its parts by flexibly operating DWTs to
onsume surplus distributed electricity at times of abundance.
The remainder of this article is structured as follows. Section 2

eviews the most relevant literature on DETs and DWTs, community-
cale applications, modeling of distributed energy and water systems,
nd co-optimization. Section 3 describes our methodology including
he model and case study data. We outline the scenarios that we
un and compare in Section 4. Section 5 presents and discusses the
cenario results. We conclude in Section 6 with a summary of our most
mportant findings, acknowledgment of limitations, and directions for
uture research.

. Literature review

.1. Background on distributed energy and water technologies

This subsection provides background information on some promi-
ent DETs and DWTs, including their functions, real-world applications,
nd benefits. This brief review cannot possibly span the full breadth of
ETs and DWTs that may play important roles in the future. Therefore,
e focus on those DETs and DWTs which are strong candidates for
idespread adoption in the near future, and which we incorporate into
ur model for this paper. Further technical details of these technologies,
ncluding our parameter assumptions for performance and cost, are
ound in Section 3.7.

.1.1. Distributed energy technologies
DETs, which are also commonly referred to in the literature as dis-

ributed energy resources (DERs), generate and/or store electricity, are
nstalled and operated independently from the utility, and can interact
ith the local distribution system (Latreche et al., 2018; Lawrence &
rins, 2018). The Electric Reliability Council of Texas (ERCOT) defines
DET as a generation and/or storage technology that is interconnected
t or below 60kV and operates in parallel with distribution. DETs
nclude solar photovoltaics (PV) which convert light into electricity,
2

smaller) wind turbines which capture wind energy using large blades
nd convert it into electricity using a mechanical turbine, batteries
hich store energy to be discharged at a later time, small-scale com-
ined heat and power systems, and other similar technologies (Akorede
t al., 2010; The Brattle Group and Electric Reliability Council of
exas, 2019). While utility-scale ‘‘macrogrids’’ produce gigawatts and
ransmit electricity hundreds or thousands of miles, microgrids are
ade of groups of DETs that have more limited capacities (Hirsch et al.,
018). Nonetheless, the ability of DETs to decentralize, decarbonize,
nd democratize electricity systems from the bottom-up rather than
op-down as the current utility-scale system does has made them a
ubject of vast interest to researchers and policymakers alike (Carvallo
t al., 2020; Green, 2016).
DET adoption remains low relative to the scale of the full electricity

ystem, but is increasing (Hirsch et al., 2018). DETs can enhance grid
eliability (Xu et al., 2017), and a system optimized for DETs can reduce
he complexity of the current grid and improve cost and quality (Kristov
t al., 2016). Because of these and other factors, ERCOT now has 1300
W of distributed generation (62% growth in only two years), mostly
olar but with some small-scale distributed wind (The Brattle Group
nd Electric Reliability Council of Texas, 2019). Nonetheless, due to a
ack of know-how, regulatory barriers, and capital constraints facing
otential adopters, DETs are far from full market penetration (Dyson
t al., 2018).
Projects beyond typical solar and wind installations are also be-

oming more prevalent. Hybrid solar, wind, and storage facilities are
ppearing all over the world. The Skeleton Creek Project which will
ntegrate 250 MW each of solar and wind with 200 MW of battery
apacity will be completed in Oklahoma by 2021 (Eller, 2019). Commu-
ity solar projects are also expanding; for example, a project in Houston
epurposed a 240-acre landfill to host 70 MW of solar panels owned by
he community (Wolfe Energy LLC, 2019).

.1.2. Distributed water technologies
Water infrastructure, like energy infrastructure, is often dated both

hysically and conceptually. Water sources are becoming increasingly
carce and repairs to the existing infrastructure are becoming in-
reasingly expensive. New solutions, especially local solutions, are
eeded (Leigh & Lee, 2019; The Johnson Foundation, and Rivers,
merican and Ceres, 2012; The Johnson Foundation at Wingspread,
014).
DWTs capture and/or recycle water near the point of use rather

han at a centralized facility. These technologies include rainwater
arvesting, stormwater capture, graywater recycling, and small water
ecycling facilities (WRFs). Rainwater harvesting captures rainwater
nd stores it in a tank to be later pumped and sometimes filtered back to
n end user. Stormwater capture works like rainwater harvesting except
t captures stormwater runoff, usually from roads and other paved
urfaces. Graywater recycling captures used water (graywater) from
ost residential sources, except for toilets which produce blackwater.
RFs capture water on site and treat it to drinking standards using
echnologies like reverse osmosis or UV filtration (Makropoulos et al.,
010; National Academies of Sciences Engineering and Medicine, 2016;
ational Research Council, 2012). In contrast, traditional water systems
ithdraw water from basins like rivers or lakes, purify that water,
ump it to each end user, and then collect the wastewater from each
oint of use for return back to a centralized plant for treatment (Na-
ional Research Council, 2012). The traditional system requires massive
nfrastructure investments (National Research Council, 2012) and has
igh embedded energy (Awal et al., 2019); DWTs generally do not.
The ability of DWTs to make up for limited or poor-quality water

upplies has encouraged rainwater harvesting in Texas, especially in ru-
al areas (Barer, 2012). Stormwater capture requires coordination with
ore people or organizations but can provide quantities of water much
arger than rainwater harvesting, so it is used in municipalities with
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constrained water supplies like Los Angeles (National Academies of Sci-
ences Engineering and Medicine, 2016). Furthermore, water supplies
can be augmented through water recycling technologies like graywa-
ter reuse or WRFs. This is popular in countries with minimal fresh
water sources, like Singapore, which receives 40% of its water from
reuse (National Research Council, 2012; Vitter et al., 2018).

DWTs are drawing much interest as a solution to water infras-
ructure problems due to their potential to improve sustainability and
esilience via recycling and resource conservation (Leigh & Lee, 2019),
ower capital and operating costs (Ajami et al., 2018), and ability to
omplement and not just replace the centralized system as a hybrid
ystem (Sapkota et al., 2015). DWTs have important features in com-
on with DETs, and some studies have looked at how similar market
echanisms could be applied (Ajami et al., 2018). Nonetheless, despite
heir benefits, DWT adoption in the U.S. remains limited (Leigh & Lee,
019; National Research Council, 2012). DWTs face significant barriers
o large-scale adoption because of socio-institutional impediments and
ock-in effects (Leigh & Lee, 2019), as well as safety concerns (The
ohnson Foundation at Wingspread, 2014).

.2. Community-scale distributed energy and water applications

Many studies investigate how home-scale DETs and DWTs compare
o centralized utilities, but there are compelling reasons to believe that
he community scale is a promising aggregation level for investing in
istributed technologies (Leigh & Lee, 2019). For example, Hledik et al.
2018) show how net zero initiatives that focus solely on the household
evel omit an appealing option in the form of community solar, which
nables significant savings compared to investments for individual
omes. Chwastyk et al. (2018) study different community solar design
odels to calculate cost saving potentials and assess market penetration
ates.
While centralized solutions benefit from economies of scale and

igh efficiencies (especially when co-optimization takes place at the
tility scale, e.g., combined heat and power plants fueled by biogas
rom wastewater treatment facilities (EPA, 2007; Gu et al., 2017)), they
an also suffer from diseconomies of scale when they have to serve a
ast number of end users. On the other hand, community-scale systems
an flexibly match growing demand with ‘‘just-in-time’’ investments
nd avoid costs of idle capacity in both production and distribution
etworks (Wang, 2014). Furthermore, community-scale solutions, like
ommunity solar, expand access to those who could not afford single-
ome investments, reduce the upfront cost any one person has to pay,
nd lower the hassle of installation and maintenance (Coughlin et al.,
010; Hoffman & High-pippert, 2015).
This study evaluates the extent to which community-scale dis-

ributed resource deployment results in more favorable economics than
ome-scale distributed systems. Even as home-scale solutions become
ore affordable, community-scale solutions still offer numerous ad-
antages. By comparing different levels of aggregation, we aim to
ontribute new insights on the synergies between energy and water
ystems at various scales.

.3. Distributed energy and water modeling

.3.1. Distributed energy modeling
Many studies model how DETs interact with the centralized elec-

ricity system, though their methodologies and levels of granularity
ary. For instance, Levin and Thomas (2016) create a general decision
upport framework to compare extending the grid to investing in
istributed solar. Latreche et al. (2018) develop multiple formulations
o determine the optimal level of distributed generation integration as
single- or multi-objective optimization problem, and experiment with
everal different solution strategies. O’Shaughnessy et al. (2018) evalu-
ate an integrated approach to solar deployment called ‘‘solar plus’’ that
3

combines solar, energy storage, and load control into one system. They s
use a techno-economic time series model from the National Renewable
Energy Laboratory (NREL) called the Renewable Energy Optimization
model (RE-Opt) and parameterize it with inputs based on another
NREL tool (PVWatts). They find that the solar plus approach improves
user economics across a wide variety of rate structures. Deetjen et al.
(2018) create a mixed-integer linear program to model the optimal
equipment capacity and dispatch of a central utility plant using hourly
data from 123 homes. The authors demonstrate that the central utility
plant provides economic benefits to the neighborhood even though
it does not incorporate much rooftop solar and could worsen net
demand ramp rates faced by the utility. Carvallo et al. (2020) develop
a sequential optimization procedure to model decentralized decision
making on distributed solar and battery storage investments. Customers
make their own DET investment choices, and then the utility must plan
its resources accordingly. Their results show that better coordination
between distributed and utility-scale electric investments could yield
very large cost savings.

2.3.2. Distributed water modeling
The modeling literature on water recycling and wastewater treat-

ment systems is vast and comprises different scales, areas, uses, and
treatment technologies (Barker et al., 2016; DeOreo et al., 2016; Guo
et al., 2014; Makropoulos et al., 2010; National Academies of Sci-
ences Engineering and Medicine, 2016; Yu et al., 2015). Examples
include studies which analyze how recycled water can address drought
in California (Cohen, 2009), reduce the amount of economically recov-
erable water that is wasted in Texas (Loftus et al., 2018), or provide
another economical source of water (Brown & Recycling, 2007; Morelli
& Cashman, 2019).

Other previous research explores how distributed water systems
would operate in more detail. Falco and Webb (2015) outline how
electricity microgrid concepts can provide a framework for water mi-
crogrids. Roefs et al. (2017) evaluate the economic performance of
centralized wastewater treatment, a community water treatment fa-
cility, and a hybrid approach under different urban growth scenarios
using Monte Carlo simulations for urban growth, infrastructure design
properties, and discounted asset lifetime costs. Eggimann et al. (2015,
2016) develop heuristic algorithms to determine the optimal level of
aggregation for water infrastructure. Vitter et al. (2018) compare the
inancial cost of a community-scale WRF to centralized water treatment
ervice using a mixed-integer linear program with batch processes for
reatment.

.4. Integrated energy-water models

The research literature on the water-energy nexus is expanding as
nergy and water resources become scarcer and their interrelatedness
s increasingly viewed as an asset rather than a liability. Some studies
xamine narrow cases of the water-energy nexus. For example, Ward
t al. (2012) benchmark the energy consumption of rainwater harvest-
ng systems. Fan et al. (2019) use an urban metabolism framework to
nvestigate how the water-energy nexus could be leveraged to conserve
esources in a city. Other analyses construct specific case studies to
how how solar energy can be used for water purification via desalina-
ion (Shatat et al., 2013) or reverse osmosis membranes in undeveloped
exico (Elasaad et al., 2015).
Awal et al. (2019) use a simulation model to determine irrigation

equirements for turf grass in Houston, calculate the corresponding
nergy inputs needed to clean the irrigated water sourced from the
unicipal water supply, and investigate how different irrigation tech-
iques could reduce water and energy demands. While their study
xamines the water-energy nexus, it considers only one end-use de-
and (irrigation water) and employs a simulation approach that cannot
utomatically generate optimal decisions. Valdez et al. (2016) design
simulation model to compare the water consumption, energy con-
umption, and carbon emissions of buildings in Mexico City when
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fully supplied by utilities versus incorporating different rainwater har-
vesting systems. This model simulates rainwater harvesting strategies
instead of allowing an optimization model to choose investments and
dispatch. Furthermore, while Valdez et al. (2016) compute water and
nergy outcomes, the model’s distributed investments are limited to
WTs. Gold and Webber (2015) develop a water treatment model, an
nergetic model, and an integrated optimization scheme to explore how
esalination, solar, and wind technologies could operate in tandem.
he optimization scheme uses information gathered from the other two
odels to determine an operational schedule to desalinate water using
olar and wind energy.
At far more macro scales in terms of space and time, integrated as-

essment models (IAMs) of coupled energy, economic, and environmen-
al systems have evolved to capture water-energy nexus interactions in
ore detail (Wilkerson et al., 2015). For instance, the Global Change

Assessment Model has been applied to assess the long-run balance
between water supply and demand at the basin scale, considering water
use for energy (e.g., power plant cooling, hydroelectricity, bioenergy
crops) and climate change (Kim et al., 2016). However, the spatial and
temporal resolutions of IAMs tend to be too coarse to capture the dif-
ferences between utility-scale, community-scale, and distributed-scale
technology deployment.

In some respects, our work is a natural extension of Vitter et al.
(2018) in that we formulate a mixed-integer linear program to optimize
DWT investments and operations, but we add the ability to invest in
DETs as an alternative to grid electricity for powering DWTs and sat-
isfying all other electricity demand. Our model also considers a larger
menu of technologies, whereas Vitter et al. (2018) primarily focus on a
reverse-osmosis-based WRF. It should also be noted that our model is
similar in spirit to other optimization frameworks that couple represen-
tations of electricity supply options with end-use technologies in other
sectors that require electricity. For instance, Brozynski and Leibowicz
(2018) and Jones and Leibowicz (2019) follow similar approaches to
co-optimize electricity and transportation investments, where electric
vehicle charging can be scheduled to maximize utilization of solar and
wind resources.

3. Methodology

3.1. Model overview

We develop a DEWS optimization framework structured as a de-
terministic mixed-integer linear program (MILP) that minimizes the
annual net cost of satisfying the water and electricity demands of a
household or group of households. The optimization scheme endoge-
nously chooses which technologies to install, how much capacity to
invest in, and the operational level for each hour of the year. The
system must operate according to a host of resource and engineering
constraints.

We formulate our model as an MILP to capture the ‘‘lumpy" nature
of investments at the home and community scales. Certain DWTs and
DETs are available only in discrete sizes, so integer variables are a
more appropriate choice than continuous variables for representing
their investment decisions. Furthermore, the MILP structure allows us
to incorporate economies of scale that reduce investment costs in per-
unit terms as DWT and DET capacities are added in larger increments.
This is an important factor for comparing single-home and community
levels of aggregation, and the MILP formulation is a computationally
easier way to capture economies of scale than a nonlinear optimization
model.

To tailor the model to a particular application, the input database
requires information on technology costs, technology performance,
utility water and energy rates, water and energy demands, and water
and energy resources (e.g., rainfall, solar availability). It is built to
enable tiered utility rate structures which are often encountered in
practice, where the marginal cost rises as threshold consumption levels
4

are exceeded. The model is designed to span a timeframe of one year,
with all investment costs annualized so that they can be fairly compared
to operating costs. Dispatch is computed at an hourly resolution for
a total of 8760 operational timeslices. This highly granular temporal
resolution is necessary to accurately represent intermittent resources,
capture time-varying demands, and model water and energy storage
technology operations.

3.2. Key model equations

This subsection provides and explains some of the key equations in
our model. These include the objective function, the supply–demand
balance constraints, and special constraints designed to implement
tiered rates, operate a community-scale DEWS, and govern storage
technology operations. For the full model formulation, please refer to
Appendix A.

The objective function for cost minimization is specified in Eq. (1).
The first line includes the investment costs for DWTs and DETs, which
consist of two terms. The first is the product of the installed capacity
(continuous) and a per-unit capital cost, while the second is the prod-
uct of the purchase decision (binary) and a fixed cost that does not
scale with the amount of capacity added (i.e., it is the same for any
positive addition). The second line includes operating costs incurred
through dispatch. Water and electricity purchases from the utility in
each tier of the rate structure are represented as ‘‘technologies’’, such
that the rates themselves are featured as variable costs. The 𝑡, 𝑙, and
𝑚 indices refer to technologies, timeslices, and months, respectively.
The endogenous variables are in bold to distinguish them from the
exogenous parameters.

minimize
∑

𝑡
(𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑡 ∗ 𝑰𝒏𝒔𝒕𝒂𝒍𝒍𝒆𝒅𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚𝒕

+𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑠𝑡𝑡 ∗ 𝑷𝒖𝒓𝒄𝒉𝒂𝒔𝒆𝒕)
+
∑

𝑡,𝑙,𝑚
𝑷 𝒓𝒐𝒅𝒖𝒄𝒆𝒅𝑻 𝒆𝒄𝒉𝒕,𝒍,𝒎 ∗ 𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝐶𝑜𝑠𝑡𝑡

(1)

Balance equations for each hour ensure that all demands are sat-
isfied. The three demands are electricity, whitewater, and total water.
Demand for electricity consists of both an exogenous component, rep-
resenting the existing load profile of the household, and an endogenous
component, which reflects the electricity requirements of installed
DWTs based on their optimized dispatch schedule. Given the presence
of water and energy storage technologies, resources sent into storage
appear as endogenous demands that must be met in that hour, and
resources released from storage contribute to supply in that hour. Elec-
tricity and water resources that are not used or stored in the hour they
are produced are curtailed. Note that curtailment could be a normal
feature of the optimal solution, especially for renewable electricity that
has zero marginal cost (e.g., solar PV) but is fairly expensive to store
for later use. However, the cost minimization objective combined with
the ability to purchase utility water and electricity will generally steer
the model away from investing in distributed technologies whose pro-
duction would largely be curtailed. The total water constraint ensures
sufficient supply of whitewater and graywater in aggregate, whereas
the additional whitewater constraint recognizes that graywater can
only be used for certain residential uses (e.g., irrigation, toilet flushing).
Eqs. (2), (3), and (4) are the balance constraints for electricity, total
water, and whitewater, respectively.
∑

𝑡∈𝐸𝐿𝐶
𝑷 𝒓𝒐𝒅𝒖𝒄𝒆𝒅𝑻 𝒆𝒄𝒉𝒕,𝒍,𝒎 = 𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑒𝑑𝐷𝑒𝑚𝑎𝑛𝑑𝑘𝑊 ℎ,𝑙,𝑚

∗ 𝑀𝑜𝑛𝑡ℎ𝑙𝑦𝐷𝑒𝑚𝑎𝑛𝑑𝑘𝑊 ℎ,𝑚

+
∑

𝑡∈𝐸𝐿𝐶
(𝑺𝒕𝒐𝒓𝒂𝒈𝒆𝑨𝒅𝒅𝒆𝒅𝒕,𝒍,𝒎 + 𝑪𝒖𝒓𝒕𝒂𝒊𝒍𝒎𝒆𝒏𝒕𝒕,𝒍,𝒎

+𝑪𝒐𝒏𝒔𝒖𝒎𝒆𝒅𝑬𝒏𝒆𝒓𝒈𝒚𝒕,𝒍,𝒎)

(2)
𝑙 = 1,… , 744, 𝑚 = 1,… , 12
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∑

𝑡∈𝑊
𝑷 𝒓𝒐𝒅𝒖𝒄𝒆𝒅𝑻 𝒆𝒄𝒉𝑾𝑾 ,𝒍,𝒎 + 𝑷 𝒓𝒐𝒅𝒖𝒄𝒆𝒅𝑻 𝒆𝒄𝒉𝑮𝑾 ,𝒍,𝒎 =

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑒𝑑𝐷𝑒𝑚𝑎𝑛𝑑𝑔𝑎𝑙,𝑙,𝑚 ∗ 𝑀𝑜𝑛𝑡ℎ𝑙𝑦𝐷𝑒𝑚𝑎𝑛𝑑𝑔𝑎𝑙,𝑚
+

∑

𝑡∈𝑊
(𝑺𝒕𝒐𝒓𝒂𝒈𝒆𝑨𝒅𝒅𝒆𝒅𝒕,𝒍,𝒎 + 𝑪𝒖𝒓𝒕𝒂𝒊𝒍𝒎𝒆𝒏𝒕𝒕,𝒍,𝒎)

𝑙 = 1,… , 744, 𝑚 = 1,… , 12

(3)

∑

𝑡∈𝑊𝑊
𝑷 𝒓𝒐𝒅𝒖𝒄𝒆𝒅𝑻 𝒆𝒄𝒉𝒕,𝒍,𝒎 ≥ 𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑒𝑑𝐷𝑒𝑚𝑎𝑛𝑑𝑊 𝑎𝑡𝑒𝑟,𝑙,𝑚

∗ 𝑀𝑜𝑛𝑡ℎ𝑙𝑦𝐷𝑒𝑚𝑎𝑛𝑑𝑊𝑊 ,𝑚

+
∑

𝑡∈𝑊𝑊
(𝑺𝒕𝒐𝒓𝒂𝒈𝒆𝑨𝒅𝒅𝒆𝒅𝒕,𝒍,𝒎) 𝑙 = 1,… , 744, 𝑚 = 1,… , 12

(4)

.3. Tiered rates and community-scale operations

Our model features several novel constraints added to implement
iered rate structures for utility electricity and water, and to ensure
hat these tiers continue to function properly in scenarios solved at the
ommunity scale. Eq. (5) represents the balance equations for all houses
n the community. The 𝑓 and ℎ indices refer to the resource demanded
water, whitewater, or electricity) and home, respectively.
∑

𝑡
(𝑯𝒐𝒖𝒔𝒆𝑻 𝒆𝒄𝒉𝒇 ,𝒕,𝒉,𝒎 +𝑯𝒐𝒖𝒔𝒆𝑼𝒕𝒊𝒍𝒊𝒕𝒚𝒇 ,𝒕,𝒉,𝒎) ≥ 𝐻𝑜𝑢𝑠𝑒𝐷𝑒𝑚𝑎𝑛𝑑𝑓,ℎ,𝑚

∀𝑓, ℎ, 𝑚

(5)

Even when the DEWS is optimized at the community scale, tiered
ates must still apply to each individual home’s purchases of utility
esources. Eq. (6) imposes an upper bound on the amount of the utility
esource that can be purchased within each tier, and also prohibits
ouseholds from transferring the resource among each other to avoid
aying the higher marginal costs associated with higher tiers. Mathe-
atically, the constraint requires that a binary variable, which decides
hether a house enters a specific utility tier, multiplied by the upper
ound of that tier, is greater than what the house receives from that
ier in a given month. If the house chooses not to enter that utility tier,
hen the binary variable is zero, and if it does decide to enter the tier,
hen it can only purchase up to the upper bound of the tier. Note that
e do not need constraints to mandate that the home purchase from
he tiers in ascending order of marginal cost, as this will automatically
e the case due to the cost minimization objective.

𝑯𝒐𝒖𝒔𝒆𝑷𝒖𝒓𝒄𝒉𝒂𝒔𝒆𝒇 ,𝒕,𝒉 ∗ 𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑𝑡 ≥
∑

𝑚
𝑯𝒐𝒖𝒔𝒆𝑼𝒕𝒊𝒍𝒊𝒕𝒚𝒇 ,𝒕,𝒉,𝒎

𝑡 ∈ 𝑈𝑡𝑖𝑙𝑖𝑡𝑦,∀𝑓, ℎ
(6)

3.4. Case study and input data

As a case study, we apply our model to a sample of real-world
homes in Austin, Texas equipped with rooftop solar PV. Pecan Street
Inc. (2016) provides a dataset with home-level electricity and water
demand profiles, weather data, and some rooftop solar generation data
for the full year 2016. We obtain data on technology performance and
cost parameters from other sources to fully instantiate the model with
input data for the case study.

City of Austin (2019) and Austin Water (2019b) employ rate struc-
tures with five tiers, where the marginal per-unit costs of electricity and
water utilities increase as a household consumes more in a given month
and moves into higher price tiers. These tiered rates are implemented
using the constraints in the preceding subsection.
5

3.5. Distributed technologies

The case study database includes menus of DETs and DWTs that
the model can invest in. All of these technologies have been deployed
in real-world applications, and corresponding technical and cost data
are available. However, technical and cost assumptions are subject to
uncertainty, especially for the technologies with only a few existing
installations.

The DETs available in our case study application are:

• Household rooftop photovoltaic panels (RFT-PV) (0–15 KW unit
capacity)

• Community-scale photovoltaic panels (COM-PV) (100–250 kW
unit capacity)

• Wind turbines (WIND) (250–1000 kW unit capacity)
• Wind and solar hybrid system (HBRD) (2.5 MW unit capacity)

The DWTs available in our case study application are:

• Household rainwater harvesting (RWH) (0–5000 gallon capacity)
• Household graywater recycling (GWR) (0–25 gallon capacity)
• Community stormwater recycling (CSW) (0–100,000 gallon ca-
pacity)

• Community graywater recycling (CGW) (0–180 gallon capacity)
• Community-scale water recycling facility (WRF) (0–9000 gallon
capacity)

The energy and water storage technologies included in our case
study are:

• Household rainwater tanks (RWTANK) (0–5000 gallon capacity)
• Community stormwater tanks (SWTANK) (0–100,000 gallon ca-
pacity)

• Household battery (IND-BAT) (0–60 KW unit capacity)
• Community-scale battery (COM-BAT) (0–500 KW unit capacity)

3.6. Resource demands

As indicated above, Pecan Street Inc. (2016) provides hourly, home-
level electricity and water usage data for the year 2016 which we use to
parameterize the demand profiles in our case study. After eliminating
homes with significant missing data or data that appear unreliable, the
dataset for our case study includes 32 homes. The data are cleaned
by using the interquartile rule to determine and correct outliers; the
rule states that any monthly water and electricity use value which is
1.5 times the difference between the first and third quartiles above or
below the first or third quartile, respectively, is an outlier (Manikandan,
2011). After reviewing the data, we determine that any monthly elec-
tricity use below 200 kWh or above 2800 kWh is an outlier, and that
any monthly water use below 6000 gallons or above 27,000 gallons
is also an outlier. For each resource, all outliers below the minimum
value are replaced by the first quartile value, and all outliers above the
maximum value are replaced by the third quartile value.

3.7. Performance and cost data

Table 1 succinctly reports the main performance and cost assump-
tions for each technology in the model, including operational en-
ergy use and capital, fixed, and variable costs. The capacity limit for
each technology was given in Section 3.5. The capital and fixed costs
of all technologies (with exceptions noted below) are annualized by
spreading their costs over ten years at a discount rate of 5%.

The fixed cost of a given technology is incurred whenever any
positive amount of capacity is installed, and does not depend on the
capacity. Mathematically, fixed costs are included in the formulation
as costs multiplied by the integer purchase decision variables. For
technologies whose investments are lumpy and are represented only
by integer variables, the fixed cost represents the full upfront cost of
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Table 1
Main performance and cost assumptions for technologies in our case study, and documentation of data sources.
Technology Capital costs Fixed costs Variable costs Energy use Sources

Utility Electricity N/A $10 $0.08, 0.11, 0.13,
0.14, 0.16/kWh

N/A (City of Austin, 2019)

RFT-PV $722/kW $2000 $0 N/A (Fu et al., 2018)
IND-BAT $500/kW $80 N/A 0.01 kWh/hr (Fu et al., 2019)
COM-PV $513/kW $25,000 $0 N/A (Fu et al., 2018)
COM-BAT $500/kW $80 N/A 0.01 kWh/hr (Fu et al., 2019)
WIND $840/kW $76,000 $0 N/A (Wiser & Bolinger, 2016)
HBRD (2.5 MW) N/A $5,000,000 N/A N/A (Guterl, 2018)

Utility Water N/A $8.6, 11,17, 37, 38 $2.89, 4.81, 8.34,
12.70, 14.39/kGal

N/A (Austin Water, 2019b)

RWH (5000 gallons) N/A $1600 N/A 0.5 kWh/kL (National Academies of Sciences Engineer-
ing and Medicine, 2016) and (Ward et al.,
2012)

RWTANK $0.50/gal N/A N/A 0.5 kWh/kL (National Academies of Sciences Engineer-
ing and Medicine,
2016)

GWR (25 gallons) N/A $2300 N/A 1 kWh/kL (National Academies of Sciences Engineer-
ing and Medicine,
2016)

CSW (100,000 gallons) N/A $251,900,000 N/A 5000 kWh/MGal (National Academies of Sciences Engineer-
ing and Medicine,
2016)

SWTANK $0.50/gal N/A N/A 5000 kWh/MGal (National Academies of Sciences Engineer-
ing and Medicine,
2016)

CGW (180 gallons) N/A $71,500 N/A 5000 kWh/MGal (National Academies of Sciences Engineer-
ing and Medicine,
2016)

WRF (9000 gallons) N/A $900,000 N/A 15,000 kWh/MGal (Vitter et al., 2018)
F
b
c
t
C
w
T
t

installing that amount of capacity. For technologies whose investment
can be continuous, the fixed cost still applies and is complemented by
the capacity-dependent capital cost. Fixed costs are spread across ten
years with a discount factor of 5% except in the WRF case, where the
annual cost is kept the same as in the case study of Vitter et al. (2018).

Given that some continuous amount of capacity is added, each unit
f capacity is associated with a capital cost. Mathematically, the capital
osts appear in the formulation as costs multiplied by continuous capac-
ty installation variables. Capital costs are spread over ten years with a
iscount factor of 5%. Some technologies have seen very limited real-
orld deployment (e.g., WRF, HBRD) or are practically only available
n discrete sizes (e.g., RWH, GWR), so they are represented as purely
nteger investments with fixed costs but no capital costs.
Variable costs are assessed according to the operating levels of

echnologies in the cost-minimizing dispatch solution determined by
he model. There are five variable costs for utility electricity and utility
ater because they have rate structures with five different price tiers. In
ur results below, we label the five utility electricity tiers in ascending
rder as U_ELC1, U_ELC2, U_ELC3, U_ELC4, and U_ELC5, and the five
tility water tiers similarly as U_H2O1, U_H2O2, U_H2O3, U_H2O4,
nd U_H2O5. It is important to note that the costs associated with
lectricity and water inputs to the technologies are not included in
he variable cost parameters, because these costs are accounted for
eparately through utility purchases of these resources, or investments
n the distributed technologies that produce them and make them avail-
ble for final consumption or for other technologies to use. Operational
nergy use by technology is shown in Table 1, where batteries have
ome energy ‘‘use" because they do not perfectly maintain storage
harge. Given this cost accounting, only utility purchases have variable
osts.

.8. Capacity factors and weather data

The Pecan Street Inc. (2016) dataset provides empirical time series
f home-level RFT-PV generation. Using these time series and knowing
he nameplate capacities of the corresponding units, we calculate a time
6

eries of average RFT-PV capacity factors in our case study community.
or all daytime hours, the capacity factor for COM-PV is assumed to
e greater than that for RFT-PV by 0.03 (in fractional terms). This
aptures the likely outcome that COM-PV is slightly more efficient due
o superior siting, orientation, and electrical hardware (Fu et al., 2019).
apacity factors for wind technologies are calculated by taking Texas
ind generation and dividing it by the total nameplate capacity of
exas wind turbines, where both empirical datasets are provided by
he Electric Reliablity Council of Texas (2018). Capacity factors for the
community wind-solar hybrid (HBRD) are computed by adding 0.015
to the COM-PV capacity factors due to the efficiencies gained by using
the wind turbine inverter (Guterl, 2018), multiplying these numbers
by 0.2 since solar panels only account for 20% of the capacity, and
then adding these figures to the capacity factors of community WIND
multiplied by 0.8.

The Pecan Street Inc. (2016) dataset also includes weather infor-
mation. By combining its hourly rain data with the median home roof
square footage of 1959 square feet (also from the Pecan Street Inc.
(2016) dataset), we are able to determine the amount of rainwater
available to each home every hour. These data are important due to
the availability of the RWH technology. We also assume that each
household uses 30% of its total water demand for outdoor uses like
irrigation which can be satisfied with graywater (this is the only use
for graywater) (Awal et al., 2019), and that 80% of each household’s
used water is available for water recycling (Vitter et al., 2018).

3.9. Carbon emissions

All DETs and DWTs in our case study do not produce carbon
emissions. However, utility electricity and water purchases do have
carbon footprints. The utilities are used to supplement DET and DWT
production, and in the case of DWTs, utility electricity can be used
to power the technologies (with associated carbon emissions) even
though DWTs do not produce carbon emissions on their own. Given
the solution determined by the model, we can use data from the
local utilities to calculate the total carbon footprint of satisfying the

households’ electricity and water demands for one year.
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Fig. 1. Comparison of average annualized cost (per household) and fractions of electricity and water produced by distributed technologies, across the scenarios. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)
p
p
A

Austin Energy (2019) indicates that the average carbon intensity of
ts electricity during the year 2018 (the most recent available estimate)
as 0.85 lbs CO2/kWh. Therefore, multiplying this average carbon
ntensity by the quantity of electricity purchased from the utility yields
he total carbon emissions associated with electricity provision. While
here are emissions embedded in the manufacturing and distribution
upply chain for DETs, these are orders of magnitude lower than the
irect emissions resulting from fossil fuel power plant operations in
he bulk power system (Pehl et al., 2017), so we exclude embedded
missions from this study.
In 2018, Austin Water (2019a) required 1723–2286 kWh/Mgal

(0.46–0.63 kWh/kL) with an average of 1920 kWh/Mgal to treat water
withdrawn from the Colorado River to drinking standards and pump
it to end users. Therefore, multiplying this average energy intensity
of water treatment and pumping by the quantity of water purchased
from the utility yields the total energy use associated with utility
water provision. Similarly, wastewater treatment and return to the Col-
orado River required 1305–2660 kWh/Mgal (0.34–0.70 kWh/kL) with
an average of 1924 kWh/Mgal. This energy intensity for wastewater
treatment is multiplied by the total volume of wastewater that the
households send back to the central water utility to yield more energy
use associated with water. Since it is assumed that the water utility
receives all of its energy from the electric utility, the water utility’s
energy use for water treatment, pumping, and wastewater treatment
7

is multiplied by the same carbon intensity of electricity provided in f
the preceding paragraph, to determine the carbon emissions for utility
water services.1

4. Scenarios

For our Austin case study, we consider 17 different scenarios that
are distinguished by their optimization scheme (i.e., whether DETs
and/or DWTs can be added) and level of aggregation (i.e., whether
optimal decisions are made by individual households or communities of
varying size). These scenarios are designed to help us address our pri-
mary research questions and hypotheses. Specifically, we are interested
in understanding whether DET and DWT investments are economically
justified given current data, whether co-optimizing these investments as
an integrated DEWS improves economic competitiveness, and whether
community-scale aggregation favors greater DEWS adoption.

City of Austin (2019) and Austin Water (2019b) do not allow elec-
tricity or water bought from the utility or generated behind the meter
to be shared across homes, though in some cases distributed electricity
generation can be sold back to the utility. In our scenarios, we enforce
this prohibition on transferring utility-supplied resources from home
to home, and we do not allow distributed electricity and water outputs

1 Note that one wastewater treatment plant operated by Austin Water
roduces biogas for a combined heat and power (CHP) plant, which in turn
rovides electricity for the wastewater plant. This CHP plant is owned by
ustin Energy and its emissions are included in the average carbon intensity
or Austin Energy (Bogusch & Grubbs, 2014).
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Fig. 2. Comparison of average annual electricity production by technology across the scenarios. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)
o be sold to the utilities. However, in the scenarios with community
ggregation, we allow resources produced by community-scale DETs
nd DWTs to be dispatched to any home within the community. Since
he objective of the optimization problem is to minimize the total
ost of satisfying all households’ electricity and water demands, the
odel will tend to dispatch community-scale resources to the homes
ith higher consumption levels, since they face higher tiered rates on
he margin. Implicitly, our assumption is that the households in the
ommunity could conduct their own monetary transfers to remedy any
erceived unfairness of this approach and ensure that it yields a Pareto
mprovement where everyone’s bill is reduced. Note that the outputs of
ome-level DETs and DWTs cannot be shared across homes.
To investigate the effects of co-optimizing electricity and water

nvestments in an integrated DEWS, we compare scenarios where the
odel can invest in both DETs and DWTs to other cases where the
odel can only deploy one of these groups of technologies. To explore
ow the community could most cost-effectively meet its electricity
nd water demands with limited reliance on central utilities, we solve
number of Limited Utility scenarios. In these scenarios, monthly
ousehold electricity purchases are limited to the first tier of the rate
tructure (500 kWh) (City of Austin, 2019) and water purchases are
imited to the first four tiers (20 kGal) (Austin Water, 2019a). Four tiers
f the water rate structure are included because this is the lowest tier in
hich the majority of households could produce enough water to meet
heir demands every month. However, we relax this water restriction
lightly further to 21 kGal/month for two households in the dataset
8

whose water consumption is particularly large, so that their demand
can be met by the model even with home-scale rainwater and graywater
technologies.

Our scenario set is comprised of all combinations of the following
five optimization schemes and four aggregation levels. There are in fact
17 scenarios instead of 20 because the aggregation level is irrelevant
with the Utility Only optimization scheme. Given that there are 32
unique homes in the dataset, the community aggregation scenarios with
320 and 3200 homes assume that there are 10 and 100 identical homes,
respectively, corresponding to each unique home in the dataset. By
scaling up the size of the community, we can see whether a higher level
of aggregation favors investments in distributed technologies.

The five optimization schemes are:

• Co-Optimized – Can invest in both DETs and DWTs and/or use
the utilities

• Electricity Only – Can only invest in DETs and/or use the utilities
• Water Only – Can only invest in DWTs and/or use the utilities
• Utility Only – No DET or DWT investments are allowed and all
demands must be satisfied using the utilities

• Limited Utility – The Co-Optimized scenario with additional re-
strictions that limit utility purchases to less than 500 kWh/month
and 20 kGal/month per household

The four aggregation levels are:

• Individual – A group of 32 households make investment and
dispatch decisions individually, and their results are aggregated
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Fig. 3. Comparison of average annual water production by technology across the scenarios. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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• 32 houses – A group of 32 households optimize their distributed
technologies as a collective unit, but do not share utility electric-
ity or water

• 320 houses – A group of 320 households optimize their dis-
tributed technologies as a collective unit, but do not share utility
electricity or water

• 3200 houses – A group of 3200 households optimize their dis-
tributed technologies as a collective unit, but do not share utility
electricity or water

. Results

In this section we present, compare, and discuss results from our sce-
arios which combine different optimization schemes and aggregation
evels. We begin by comparing the annualized investment and operat-
ng costs of satisfying electricity and water demands across all scenar-
os. Then we examine how the technologies used to provide electricity
nd water vary by aggregation level and across the hours in a year.
inally, we explore the implications of co-optimizing DET and DWT
nvestments rather than investing in just one group of technologies.

.1. Costs and fraction of demand met by technology

Fig. 1 displays the average annualized cost of satisfying all electric-
ty and water demands in each scenario. It also shows the fractions of
lectricity and water that are supplied using distributed technologies
9

instead of central utilities. The height of each bar is equivalent to the
minimized objective value given in Dollars (see left y-axis) divided by
the total number of households in a given scenario. The height of each
dot represents the DET electricity production divided by total electricity
production; this is labeled as the Electricity Fraction and corresponds to
he right 𝑦-axis. The height of each triangle represents the DWT water
roduction divided by total water production; this is labeled as the
ater Fraction and also corresponds to the right 𝑦-axis. Note that, since
he electricity and water fractions represent the amount of electricity
nd water produced by distributed technologies over total production,
heir numerators and denominators both include production that gets
urtailed, is sent to storage, or is lost while being stored. Each subfigure
n Fig. 1 corresponds to an optimization scheme. Within each subfigure,
the green bar at the far left (which is the same in all subfigures)
is the Utility Only baseline, while the other bars represent different
aggregation levels.

The annualized costs for all scenarios are lower than the cost in the
Utility Only scenario, with the exception of the scenario with Individual
aggregation and the Limited Utility scheme. This is intuitive, because in
all scenarios except those with the Limited Utility scheme, the Utility
Only solution is feasible, and therefore the model can only improve
upon its solution. However, the restrictions on utility purchases in the
Limited Utility scheme make the Utility Only solution infeasible, and
with households optimizing individually, the annualized cost increases
as a result of replacing utility purchases with DETs and DWTs. Nev-
ertheless, the fact that costs are almost always lower than the Utility
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Fig. 4. Comparison of monthly electricity production by technology for different community aggregation levels, under the Co-Optimized scheme.
nly baseline indicates that at least some DET and DWT investments
re economically competitive.
The Electricity Only scenarios, which only allow DET investments

nd use of the utilities, yield small savings relative to the Utility Only
aseline. These savings slowly increase with the level of aggregation.
he Water Only scenarios, which only allow DWT investments and use
f the utilities, yield larger savings than the Electricity Only scenarios
t all levels of aggregation, implying that DWTs offer greater economic
enefits than DETs within this sample of homes. As expected, the
o-Optimized scenarios, which allow investments in DETs and DWTs
nd use of the utilities, lead to the largest cost savings at every level
f aggregation. Meanwhile, the Limited Utility scenarios result in the
mallest savings. In line with previously described logic, the additional
onstraints in the Limited Utility scenarios are binding and cause the
odel to invest in more distributed technologies than would otherwise
e justified economically.
The Electricity Fraction and Water Fraction generally increase with

he level of aggregation, with the exception of the Electricity Fraction
ver the transition from the 320 Houses aggregation level to the 3200
ouses level. The general increasing trend is intuitive because as the
ggregation level expands, the costs are shared across more households
nd economies of scale enhance the case for investment. We interpret
he slight declines in Electricity Fraction from 320 Houses to 3200
ouses as artifacts of some of the lumpy investment decisions in the
odel, where certain technologies are available only in discrete sizes
this effect is explored further in Figs. 6 and 7). The Water Fractions
10

or the Water Only, Co-Optimized, and Limited Utility schemes are
nearly identical at each aggregation level. In contrast, the Electricity
Fractions for the Electricity Only, Co-Optimized, and Limited Utility
schemes vary more significantly for a given aggregation level. The
Limited Utility scenarios have the largest Electricity Fractions for all
aggregation levels and, interestingly, the Electricity Only scenarios
have higher Electricity Fractions than the Co-Optimized scenarios at
all levels of aggregation except Individual. In other words, the Co-
Optimized scheme often invests less in DETs than the Electricity Only
scheme. The reasoning is essentially that the option of purchasing all
resources from the utilities implies a limited budget that could ever
be justified for expenditures on distributed technologies; given that the
Co-Optimized scenarios also include investment in DWTs, less of the
implicit budget is available for DET additions.

Economically, co-optimizing electricity and water as an integrated
DEWS leads to the greatest cost savings. However, the sum of the
Electricity Only and Water Only scenarios’ savings exceeds the Co-
Optimized scenario’s savings at each level of aggregation except for
3200 Houses. At the 3200 Houses aggregation level, co-optimizing
exploits synergies between DETs and DWTs to amplify the economic
benefits that each group of technologies could achieve individually.
In other words, the benefits of co-optimization increase with the level
of aggregation. With more homes demanding electricity and water,
the implied budget available for distributed technology investments
is larger, and the pooling of more heterogeneous resource and de-
mand profiles offers more significant opportunities to improve system

economics through synchronized dispatch.
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Fig. 5. Comparison of monthly water production by technology for different community aggregation levels, under the Co-Optimized scheme.
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.2. Production of electricity and water

.2.1. Annual production of electricity and water
The average yearly electricity production by technology and the

verage yearly water production by technology for all scenarios are
hown in Figs. 2 and 3, respectively. The height of each bar corresponds
o the kWh of produced electricity or the gallons of produced water
ivided by the number of households in a given scenario. Note that,
o reflect actual demand, curtailed electricity has been removed but
here is never any curtailed water. The different colors correspond
o different technologies and the charts compare a given scheme and
ts corresponding aggregation levels to the Utility Only baseline. The
ater Only scenarios are excluded from Fig. 2 because they do not
llow DET investments and the Electricity Only scenarios are excluded
rom Fig. 3 because they do not allow DWT investments.
Household graywater recycling (GWR) and household rainwater

arvesting (RWH) satisfy some of the water demand for all scenarios
hown in Fig. 3 (other than Utility Only). The contributions of GWR
nd RWH technologies are fairly similar across optimization schemes
nd aggregation levels. However, the water recycling facility (WRF) is
nly added in the scenarios with 3200 Houses. The WRF is assumed to
e a lumpy investment with a specific, predefined size, consistent with
he notion that it requires a certain scale in order to be viable. This is
he case with 3200 Houses, but not at lower levels of aggregation.
Household rooftop photovoltaic panels (RFT-PV) satisfy some elec-

ricity demand at the Individual aggregation level for the scenarios
11

hown in Fig. 2, with the Limited Utility scheme producing the most t
RFT-PV electricity and the Electricity Only and Co-Optimized schemes
producing only small amounts. For the 32 Houses aggregation level,
community-scale photovoltaic panels (COM-PV) replace RFT-PV, and at
higher aggregation levels the scenarios use a combination of COM-PV
and wind turbines (WIND) with WIND producing a majority of the total
electricity. The Limited Utility scheme also invests in the wind and solar
hybrid system (HBRD) for the 3200 Houses aggregation level. The total
amount of electricity produced increases as DET investment increases,
and the amount of electricity produced by DETs increases with the
aggregation level. These results suggest that home-level RFT-PV is
economically justified only on a small scale, whereas community-scale
DET investments (COM-PV, WIND, HBRD) are much more economically
attractive and could displace significantly more utility electricity.

The bars in Fig. 2 do not all have equal heights because certain
WTs require additional energy in order to operate. This is clearly seen
y comparing the Co-Optimized and Limited Utility scenarios, which
llow investments in DETs and DWTs, to the Electricity Only scenarios.
he Electricity Only scenarios do not feature endogenous electricity
emand added by DWTs, and as a result all of their bars are of equal
eight. Furthermore, because the Limited Utility scenarios place a strict
pper limit on the electricity that can be purchased from the utility,
hey all include greater electricity production from DETs than the
cenarios with the other optimization schemes. Even with the mandate
o produce more distributed electricity, the HBRD installation is only
eployed in the Limited Utility scenario with 3200 Houses. Similar to
he analogous result for the WRF, the lumpy HBRD investment requires
his critical community scale in order to become economically viable.
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Fig. 6. Average installed DET capacity by technology across scenarios. In each bar chart, the first bar depicts generation technologies and the second bar depicts storage technologies.
5.2.2. Monthly production of electricity and water
Since resource availability and electricity and water demands vary

throughout the year, it is informative to investigate differences in the
composition of electricity and water production on a more granular
timescale. We examine monthly electricity and water production in this
section, and provide snapshots of hourly production for a representative
day in Appendix B.

The stacked bar charts in Figs. 4 and 5 depict the total production
of electricity and water, respectively, by technology in each month
of the year for the Co-Optimized scheme and different community
aggregation levels. The height of each bar measures the total kWh or
gallons produced in each month, excluding any curtailed production.
Note that, unlike in previous figures, the height of the bar corresponds
to the total amount of electricity or water produced by all households in
the scenario, not the average household’s amount. Therefore, the 𝑦-axis
scale increases by an order of magnitude with each jump in aggregation
level from 32 to 320 to 3200 Houses.

The monthly bar heights in Figs. 4 and 5 reflect the variations
in demands for electricity and water throughout the year. Electricity
demand exhibits much sharper seasonality than water demand, and
is more than twice as high in the peak summer month than in the
lowest winter month due to strong summer air conditioning demand
in Texas that drives the peak residential load. In most months of the
year, utility electricity purchases are limited to the first tier of the rate
structure. However, during the summer months, some utility electricity
in the second tier is purchased to help satisfy peak loads. Effectively,
the ability to purchase electricity from the utility – even at marginally
12
increasing rates – acts as a backstop that prevents the model from
having to size DET investments for peak load conditions and have them
be underutilized at all other times.

In addition to the monthly variations in demands, Figs. 4 and 5
also illustrate how distributed resource supplies change from month to
month. COM-PV generation is higher in the summer months than in
the winter months, which is well aligned with the electricity demand
pattern. On the other hand, WIND production is higher in the winter,
so it tends to be more abundant during parts of the year when less
electricity is needed. Monthly water demand is relatively constant
throughout the year, but rainfall peaks in the spring with another high
point in August. This is clearly visible for the pink bars which represent
the rainwater harvesting (RWH) technology in Fig. 5. During these
months with abundant rainfall to harvest, significantly less water has to
be obtained from the utility. However, in months with limited rainfall,
whitewater demand must be satisfied using utility water from higher
price tiers. Since the fixed costs for being in these higher utility water
tiers will be incurred anyway, the model finds it cheaper to continue
purchasing from the utility to meet its graywater demand rather than
use electricity to recycle the graywater produced within the home. This
effect is most clearly illustrated by the October results in Fig. 5, when
there are only 0.1456 inches of rain and the solutions for 32 and 320
Houses feature very little RWH or GWR production. However, at the
3200 Houses level of aggregation where whitewater can be produced
by the WRF even in the absence of RWH production, GWR production
returns to a normal level.
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Fig. 7. Average installed DWT capacity by technology across scenarios. In each bar chart, the first bar depicts generation technologies and the second bar depicts storage
echnologies.
.2.3. Average installed capacity per household
Average (per household) DET and DWT capacity additions for all

cenarios are shown in Figs. 6 and 7, respectively. Within the figures,
he bar chart for each scenario includes one bar for generation capacity
nd a second bar for storage capacity, with each bar broken down into
he different technologies that are installed.
As the aggregation level expands, per-household DWT production

apacity additions consistently decrease for all optimization schemes
n Fig. 7. As we have seen, DWT investments such as the GWR and
WH technologies are economically competitive even at the Individual
ome level, so community aggregation is not required to incentivize
doption (except for the WRF at 3200 Houses). As the aggregation
evel becomes larger, the DWTs can operate more efficiently, so less
ew capacity is required per household even though the Water Fraction
upplied by DWT generation actually increases. The relationship be-
ween aggregation level and average DET generation capacity additions
s not monotonic for any of the three optimization schemes in Fig. 6.
or the Co-Optimized and Electricity Only schemes, DET generation
eployment increases from Individual to 32 Houses, then decreases. At
ow levels of aggregation, community-scale investment makes certain
ET technologies much more economically desirable, leading to greater
eployment of COM-PV at 32 Houses than RFT-PV in the Individual
ase. At high levels of aggregation, system efficiency gains become the
13

ominant factor and less new DET generation capacity is required even
though the Electricity Fraction supplied by DETs actually increases in
some scenarios.

For the Limited Utility scheme, there is eventually an uptick in
DET generation capacity at 3200 Houses, when the decision is made to
invest in the HBRD facility. This is an example where the lumpy nature
of the investment means that there is a sudden jump in the use of DETs
to generate electricity, when the community becomes large enough to
economically justify the installation of a relatively large, shared facility.
The Limited Utility scenario with 3200 Houses also demonstrates the
interdependence between distributed electricity and water systems. On
the water side, the model chooses to add the WRF in this scenario,
which needs considerable electricity in order to operate. The Limited
Utility scheme prevents the model from obtaining all of this additional
electricity from the utility, so it must invest in substantially more DET
generation capacity in order to provide electricity for the WRF. The
decision to invest in the HBRD facility meets this demand.

Battery electricity storage is expensive, so it is informative to estab-
lish the conditions under which battery investment is included in the
optimal solution. From Fig. 6, it is interesting that very little home-
level battery storage is ever added (with the one major exception of
the Limited Utility scheme and Individual homes), whereas substantial
community-scale battery storage is deployed in a wider variety of sce-
narios. Batteries are essentially modular, so that per-unit upfront costs

do not decline significantly with the size of the installation. However,
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Fig. 8. Average annual household carbon emissions by resource in the Co-Optimized, Electricity Only, and Water Only scenarios. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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the major advantage of community-scale battery storage is that it can
take advantage of the heterogeneous distributed resources and demand
profiles of homes in the community to charge from or discharge to
different points at different times. In other words, compared to an indi-
vidual home battery, a community-scale battery unit has more options
for charging from generators or discharging to satisfy loads. It is also
clear that having a balance between solar PV and wind resources in the
DET generation mix sharply reduces (or eliminates) the role for battery
storage. Solar PV and wind resources have complementary capacity
factor profiles, with the former active during the day and the latter
peaking at night. As long as utility purchases are not constrained, it is
evidently less costly to support a balanced portfolio of distributed solar
and wind assets with occasional utility purchases than with battery
storage investments. If the DET portfolio leans heavily toward solar,
however, then battery storage is an economically competitive strategy
for mitigating the total lack of solar power at night.

On the other hand, water storage is comparatively cheap, and all the
scenarios in Fig. 7 incorporate household rainwater tanks (RWTANK)
nto their optimal solutions. Additions of RWTANK per household
re fairly steady across the scenarios, until they drop considerably in
oving from the 320 Houses to the 3200 Houses aggregation level.
his is a direct consequence of the model deciding to invest in the WRF
t the 3200 Houses level. The WRF recycles used water and returns it
o the households to be used again, which reduces the need for new
ater supplies entering the community from the central utility or in
he form of rainwater. This effect is particularly visible in the Water
14

l

Only scenario with 3200 Houses, where the installed RWH capacity also
declines significantly from its value with 320 Houses.

5.3. Carbon emissions

Average carbon emissions per household for the Co-Optimized,
Electricity Only, and Water Only scenarios are shown in Fig. 8. The
height of each bar represents the average annual household emissions
in metric tons of carbon dioxide for the given scenario. The two colors
in each bar distinguish emissions associated with electricity and water
obtained from the utilities. The first bar in each chart represents the
Utility Only baseline and the remaining bars represent different levels
of aggregation.

The striking finding that is immediately visible in Fig. 8 is that a
o-Optimized DEWS always reduces carbon emissions (in some cases
ubstantially), while only investing in DWTs and sourcing their elec-
ricity inputs from the electric utility always increases emissions. The
ssential logic is that DWTs add more electricity use to the system,
nd as small-scale technologies, they typically operate less efficiently
han the centralized water infrastructure. This result is consistent with
he findings of Vitter et al. (2018), who effectively only considered
ater Only scenarios in their study. However, if DWTs receive their
lectricity from carbon-free DETs such as solar PV panels and wind
urbines, the water they produce will have a lower carbon footprint
han water purchased from the water utility even if the DWTs are
ess energy-efficient. These carbon reductions associated with water
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only add to the emissions savings realized in electricity directly by
substituting carbon-free distributed generation for electricity obtained
from the grid.

Looking at the Co-Optimized scenarios, the emissions reduction
becomes much larger as the aggregation level increases. This is be-
cause community-scale aggregation is required to make most of the
DET generation options other than RFT-PV (which is quite expensive)
economically viable, leading to investment in COM-PV, WIND, and
eventually the HBRD facility.

Total carbon emissions in the Electricity Only scenarios are very
similar to their levels in the Co-Optimized scenarios. The Electricity
Only scenarios have higher water emissions, slightly lower (within 5%
or less) electricity emissions because there are no DWTs demanding
electricity, and nearly identical total emissions (within 1% or less). In-
terestingly, the Co-Optimized scheme yields slightly lower total carbon
emissions than Electricity Only at the 3200 Houses aggregation level,
but slightly higher emissions at the 32 and 320 Houses levels. While
the differences are tiny, this further highlights the tradeoff between the
lower efficiencies of DWTs but their ability to operate synergistically
with carbon-free DETs, resulting in greater benefits of co-optimization
at higher levels of community aggregation where DETs become more
desirable investments.

It is important to keep in mind that none of our scenarios includes
any explicit constraint on carbon emissions or financial incentive to
reduce emissions. The results plotted in Fig. 8 arise simply as fea-
tures of the cost-minimizing solutions identified by the model in each
scenario. Certainly, the results suggest that co-optimizing DET and
DWT investments and operations, and aggregating these decisions at
the community scale, can simultaneously reduce households’ electric-
ity and water costs as well as the carbon footprints associated with
consumption of these resources.

6. Conclusions

6.1. The cost of investing in distributed technologies

A number of distributed electricity and water technologies are
economically competitive at today’s prices, and the case for investment
is even stronger if DETs and DWTs can be co-optimized to form an in-
tegrated DEWS. The resulting cost savings increase when decisions are
made and distributed technologies are shared by larger communities of
households that pool resources. Limiting purchases of utility electricity
and water only increases the cost compared to the utility only scenarios
when households are limited to home-scale distributed technologies.
For all other levels of aggregation, it is still cheaper to use distributed
technologies than it would be to use only utilities to satisfy demand.
This implies that investing in distributed technologies is beneficial even
in areas where utilities are fairly cheap and especially in areas where
they are strained by rising demand.

6.2. Effects of aggregation

The electricity or water produced by, and the fraction of demand
met by, distributed technologies generally increase with the aggre-
gation level while the average capacity additions needed to do so
decrease. This is intuitive because as more households pool their re-
sources, they can spread fixed costs over more households, take ad-
vantage of lower per-unit costs stemming from economies of scale, and
justify large and discrete installations. However, these trends do not
always hold, due to the introduction of new energy-intensive water
technologies that significantly increase energy demand or because the
investment decision reaches a disjoint point where a significant capital
investment would be needed to meet more demand with additional
distributed technology capacity.

Furthermore, community-scale aggregation of distributed resources
enables several other mechanisms that reduce costs. Community-scale
15
resources can be intelligently dispatched to the households who pay
higher marginal rates for utility electricity and water, which reduces
the overall utility bills owed by the community. By itself this setup
would be unfair to households who consume lower quantities of elec-
tricity and water, but a Pareto improvement could easily be realized
through side payments. In addition, compared to home-level distributed
technologies, a community-scale DEWS takes advantage of heteroge-
neous resource and demand profiles to achieve higher utilization rates
of installed capacities.

6.3. Effects of co-optimization

When solving under the Co-Optimization scheme, for most levels of
aggregation, it is not optimal to combine the optimal DWT capacity
investments of the Water Only scheme with the optimal DET capacity
investments of the Electricity Only scheme. So, the model chooses the
best combination which by definition must be less costly than the sum
of the two independent solutions, implying that there is a maximum
‘‘budget" that can be spent on distributed technologies. However, for
the 3200 Houses aggregation level, there are enough houses to increase
the ‘‘budget" so that the model can invest in both optimal capacities.
Nonetheless, the model invests in a slightly different mix than simply
the combination of the Electricity Only and Water Only schemes’
investments that maximizes the benefits of both at a lower cost; this
shows that the largest benefits of co-optimization arise at higher levels
of aggregation.

Furthermore, co-optimizing balances the energy demand increase
from DWT technologies with the carbon intensity reductions of DET
technologies. This allows a community to benefit from the cost savings
of DWT technologies and still reduce emissions via DET technologies.

6.4. Limitations

An MILP is much more computationally demanding than a simple
linear program with only continuous variables. This forced us to model
hourly dispatch for only one year, whereas over a multi-year time-
frame, conditions for demands, sunlight, wind, and rainfall will vary
from year to year. Furthermore, the constraint eliminating household-
to-household sharing of resources purchased from the utilities also
increased computational time. We did not regulate how the distributed
technologies are shared. As a result of the scheme, the program sends
more distributed technology production to higher usage customers
than lower usage customers, creating equity issues that the community
would need to address via transfers between households in order to
realize a Pareto improvement.

We ignored costs associated with physically distributing community-
scale resources to individual households, except for the WRF tech-
nology, where this cost was built into the input data we used. Since
we are optimizing at the community scale, the assumption that the
grid is already designed for two-way flow at least at the local level
could be an acceptable assumption; however, in certain situations that
could lead to dramatic underestimations of the total cost of distributed
resources. However, ignoring distribution limits the insights that can
be gleaned from this model, as creating and managing a feasible
distribution system is one of the impediments for community-scale
technology adoption. Furthermore, in comparing the relative costs and
carbon intensities of distributed and utility-scale resource acquisition
strategies, our approach optimized its distributed system but took
the prices and carbon intensities of utility-scale resources as given at
their current, empirical values. Optimizing the design and operation
of the centralized electricity and water infrastructures was beyond the
scope of this paper, as we adopted the perspectives of households
and communities. Nevertheless, future work attempting to compare
the relative economics and environmental impacts of centralized and
distributed electricity and water provision could view both systems as
amenable to optimization on their respective scales.
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6.5. Future directions and implications

Beyond investment insights, investigating how to optimally op-
erate both DETs and DWTs alone or in coordination is an interest-
ing problem without a clear solution. It requires optimizing under
uncertainty (Zhang et al., 2020), creating market incentives for all
takeholders including owners, utilities, and grid operators, and pos-
ibly creating a new distribution system that can accommodate their
mall and intermittent nature (Kristov et al., 2016). Furthermore, a
ew distribution system where supply and demand are aggregated at
he community level would make the model less complex, easier to
nderstand, and significantly easier to solve. Adding these insights to
he investment insights would go a long way toward encouraging adop-
ion of distributed technologies. Lastly, DETs and DWTs can provide
missions benefits and reduce the investments in large infrastructure
pgrades by shrinking utility demand. This was briefly explored in this
tudy but is worth expanding on in future works.
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ppendix A. Complete mathematical formulation

This section contains the full mathematical formulation for our
odel. We list the all of the variables and their descriptions below.
lso, in this section we have added the indices to the general equa-
ions so they fully represent the model. The index l represents the
ourly timeslice, the index t represents the corresponding technology
e.g. RWH or RFT-PV), the index f represents the resource (e.g. white-
water, or electricity), the index h represents the 32 houses in the
original dataset, and the index m represents the month. There are
also subsets of these indices used in the equations below. The subset
Gal is associated with the resource index (f ) and represents the water
esource which includes both white and gray water. The subset WW is
associated with the technology index (t) and represents all technologies
hat produce white water (e.g. RWH).

.1. Variables

See Table A.1.

.2. Equations

minimize
∑

𝑡
(𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑡 ∗ 𝑰𝒏𝒔𝒕𝒂𝒍𝒍𝒆𝒅𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚𝒕

+𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑠𝑡𝑡 ∗ 𝑷𝒖𝒓𝒄𝒉𝒂𝒔𝒆𝒕)
+
∑

𝑡,𝑙,𝑚
𝑷 𝒓𝒐𝒅𝒖𝒄𝒆𝒅𝑻 𝒆𝒄𝒉𝒕,𝒍,𝒎 ∗ 𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝐶𝑜𝑠𝑡𝑡

(A.1)

subject to
∑

𝑡∈𝑊𝑊
𝑷 𝒓𝒐𝒅𝒖𝒄𝒆𝒅𝑻 𝒆𝒄𝒉𝒕,𝒍,𝒎 ≥ 𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑒𝑑𝐷𝑒𝑚𝑎𝑛𝑑𝑊 𝑎𝑡𝑒𝑟,𝑙,𝑚

∗ 𝑀𝑜𝑛𝑡ℎ𝑙𝑦𝐷𝑒𝑚𝑎𝑛𝑑𝑊𝑊 ,𝑚

+
∑

(𝑺𝒕𝒐𝒓𝒂𝒈𝒆𝑨𝒅𝒅𝒆𝒅𝒕,𝒍,𝒎) 𝑙 = 1,… , 744, 𝑚 = 1,… , 12

(A.2)
16

𝑡∈𝑊𝑊
∑

𝑡∈𝑊
𝑷 𝒓𝒐𝒅𝒖𝒄𝒆𝒅𝑻 𝒆𝒄𝒉𝑾𝑾 ,𝒍,𝒎 + 𝑷 𝒓𝒐𝒅𝒖𝒄𝒆𝒅𝑻 𝒆𝒄𝒉𝑮𝑾 ,𝒍,𝒎 =

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑒𝑑𝐷𝑒𝑚𝑎𝑛𝑑𝑔𝑎𝑙,𝑙,𝑚 ∗ 𝑀𝑜𝑛𝑡ℎ𝑙𝑦𝐷𝑒𝑚𝑎𝑛𝑑𝑔𝑎𝑙,𝑚
+

∑

𝑡∈𝑊
(𝑺𝒕𝒐𝒓𝒂𝒈𝒆𝑨𝒅𝒅𝒆𝒅𝒕,𝒍,𝒎 + 𝑪𝒖𝒓𝒕𝒂𝒊𝒍𝒎𝒆𝒏𝒕𝒕,𝒍,𝒎)

𝑙 = 1,… , 744, 𝑚 = 1,… , 12

(A.3)

∑

𝑡∈𝐸𝐿𝐶
𝑷 𝒓𝒐𝒅𝒖𝒄𝒆𝒅𝑻 𝒆𝒄𝒉𝒕,𝒍,𝒎 = 𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑒𝑑𝐷𝑒𝑚𝑎𝑛𝑑𝑘𝑊 ℎ,𝑙,𝑚

∗ 𝑀𝑜𝑛𝑡ℎ𝑙𝑦𝐷𝑒𝑚𝑎𝑛𝑑𝑘𝑊 ℎ,𝑚

+
∑

𝑡∈𝐸𝐿𝐶
(𝑺𝒕𝒐𝒓𝒂𝒈𝒆𝑨𝒅𝒅𝒆𝒅𝒕,𝒍,𝒎 + 𝑪𝒖𝒓𝒕𝒂𝒊𝒍𝒎𝒆𝒏𝒕𝒕,𝒍,𝒎

+𝑪𝒐𝒏𝒔𝒖𝒎𝒆𝒅𝑬𝒏𝒆𝒓𝒈𝒚𝒕,𝒍,𝒎)
𝑙 = 1,… , 744, 𝑚 = 1,… , 12

(A.4)

𝑺𝒕𝒐𝒓𝒂𝒈𝒆𝑳𝒆𝒗𝒆𝒍𝒕,𝒍,𝒎 ∗ (1 − 𝐿𝑜𝑠𝑠𝑡) + 𝑺𝒕𝒐𝒓𝒂𝒈𝒆𝑨𝒅𝒅𝒆𝒅𝒕,𝒍,𝒎
= 𝑺𝒕𝒐𝒓𝒂𝒈𝒆𝑳𝒆𝒗𝒆𝒍𝒕,𝒍+𝟏,𝒎 + 𝑷 𝒓𝒐𝒅𝒖𝒄𝒆𝒅𝑻 𝒆𝒄𝒉𝒕,𝒍+𝟏,𝒎

∀𝑡, 𝑚 = 1,… , 12, 𝑙 = 1,… , 744
(A.5)

𝐸𝑛𝑒𝑟𝑔𝑦𝑈𝑠𝑒𝑡 ∗ 𝑷 𝒓𝒐𝒅𝒖𝒄𝒆𝒅𝑻 𝒆𝒄𝒉𝒕,𝒍,𝒎 = 𝑪𝒐𝒏𝒔𝒖𝒎𝒆𝒅𝑬𝑳𝑪 𝒕,𝒍,𝒎
∀𝑡, 𝑚 = 1,… , 12, 𝑙 = 1,… , 744

(A.6)

𝑷𝒖𝒓𝒄𝒉𝒂𝒔𝒆𝒕 ∗ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟𝑡,𝑙,𝑚 ∗ 𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑𝑡
≥
∑

𝑙
𝑷 𝒓𝒐𝒅𝒖𝒄𝒆𝒅𝑻 𝒆𝒄𝒉𝒕,𝒍,𝒎

∀𝑡, 𝑚 = 1,… , 12, 𝑙 = 1,… , 744

(A.7)

𝑰𝒏𝒔𝒕𝒂𝒍𝒍𝒆𝒅𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚𝒕 ∗ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐹𝑎𝑐𝑡𝑜𝑟𝑡,𝑙,𝑚 ≥
∑

𝑙
𝑷 𝒓𝒐𝒅𝒖𝒄𝒆𝒅𝑻 𝒆𝒄𝒉𝒕,𝒍,𝒎

∀𝑡, 𝑚 = 1,… , 12, 𝑙 = 1,… , 744

(A.8)

∑

𝑡
(𝑯𝒐𝒖𝒔𝒆𝑻 𝒆𝒄𝒉𝒇 ,𝒕,𝒉,𝒎 +𝑯𝒐𝒖𝒔𝒆𝑼𝒕𝒊𝒍𝒊𝒕𝒚𝒇 ,𝒕,𝒉,𝒎) ≥ 𝐻𝑜𝑢𝑠𝑒𝐷𝑒𝑚𝑎𝑛𝑑𝑓,ℎ,𝑚

𝑚 = 1,… , 12, ℎ = 1,… , 12, 𝑓 = 𝑊 𝑎𝑡𝑒𝑟, 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦

(A.9)
∑

𝑙
(𝑷 𝒓𝒐𝒅𝒖𝒄𝒆𝒅𝑻 𝒆𝒄𝒉𝒕,𝒍,𝒎 − 𝑪𝒖𝒓𝒕𝒂𝒊𝒍𝒎𝒆𝒏𝒕𝒕,𝒍,𝒎)

∗ (𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑓,ℎ,𝑚 + 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡)
≥ 𝑯𝒐𝒖𝒔𝒆𝑻 𝒆𝒄𝒉𝒇 ,𝒕,𝒉,𝒎 𝑡, 𝑓 = 𝑊 𝑎𝑡𝑒𝑟, 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦,

ℎ = 1,… , 32, 𝑚 = 1,… , 12

(A.10)

𝑯𝒐𝒖𝒔𝒆𝑷𝒖𝒓𝒄𝒉𝒂𝒔𝒆𝒇 ,𝒕,𝒉 ∗ 𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑𝑡 ≥
∑

𝑚
𝑯𝒐𝒖𝒔𝒆𝑼𝒕𝒊𝒍𝒊𝒕𝒚𝒇 ,𝒕,𝒉,𝒎

∀𝑡, 𝑓 = 𝑊 𝑎𝑡𝑒𝑟, 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦, ℎ = 1,… , 32
(A.11)

∑

𝑙
𝑷 𝒓𝒐𝒅𝒖𝒄𝒆𝒅𝑻 𝒆𝒄𝒉𝒕,𝒍,𝒎 ≥

∑

ℎ
𝑯𝒐𝒖𝒔𝒆𝑼𝒕𝒊𝒍𝒊𝒕𝒚𝒇 ,𝒕,𝒉,𝒎

𝑡 ∈ 𝑈𝑡𝑖𝑙𝑖𝑡𝑦, 𝑓 = 𝑊 𝑎𝑡𝑒𝑟, 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦, 𝑚 = 1,… , 12
(A.12)

Appendix B. Hourly production of electricity and water

Our model solves for the optimal electricity mix at the hourly scale,
Fig. B.1 shows representative samples of total hourly electricity and
water production for the scenario corresponding to the Co-Optimized
scheme and the 32 House level of aggregation. The height of each bar
is equivalent to the total production given in kWh or Gals for a given
hour. The colors in the bars represents the technology that produced
the kWh or Gals.

Fig. B.1 illustrates the granularity of our model, the intermittency
of resources, and how the model responds to those intermittencies with
storage or by using utility electricity. When the bars go below the 𝑥-
axis that indicates that production exceeds demand and the model has
chosen to store it rather than to curtail it. COM-PV and RWH are the
technologies responsible for overproduction in this example, but other
technologies could also overproduce. This example only illustrates 36 h
of operation, but our model runs for 8760 h. Our model balances grace
and power in order to achieve hourly granularity, make annuitized
investment decisions, and optimizes yearly operations.
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Table A.1
Variables.
Name Description Indicies

Variables
Installed Capacity How much capacity in a technology is invested in. t
Purchase (Integer) How many units of a technology are invested in. t
Produced Tech How much a technology produces in a timeslice. t,l,m
Storage Added How much of a resource is added to a storage technology in a timeslice. t,l,m
Curtailment How much resource production in curtailed. t,l,m
Consumed Energy How much energy a technology uses in order to operate in a timeslice. t,l,m
House Tech How much of a resource a technology produces for a house in a month. f,t,h,m
House Utility How much of a resource a utility produces for a house in a month. f,t,h,m
House Purchase (Binary) An indicator that states if a house chooses to purchase a resource from a utility.
Parameters
Capital Cost The cost per unit of capacity invested in. t
Fixed Cost The unit cost of investing in one technology unit. t
Variable Cost The cost of using a unit of a resource. t,l,m
Specified Demand The demand for a resource in a timeslice divided by the total monthly demand. f,l,m
Monthly Demand The demand for a resource in a month. f,m
Loss The fraction of a resource loss when a technology is used. t
Energy Use The amount of energy a technology uses to produce a unit of a resource. t
Capacity Factor The amount of resources a technology can provide in a timeslice t,l,m
Upper Bound The maximum capacity that can be invested in before another unit is needed. t
House Demand The demand for a resource in a month for a house. f,h,m
Proportion The demand for a resource for a house divided by total demand for a month. f,h,m
Constant Added to the proportion to allow for flexible technology allocation
Fig. B.1. A representative sample of the total hourly electricity and water production by technology for the Co-Optimized scheme and the 32 Houses level of aggregation. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
17
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