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Fisher Information and Logarithmic Sobolev
Inequality for Matrix-Valued Functions

Li Gao, Marius Junge and Nicholas LaRacuente

Abstract. We prove a version of Talagrand’s concentration inequality for
subordinated sub-Laplacians on a compact Riemannian manifold using
tools from noncommutative geometry. As an application, motivated by
quantum information theory, we show that on a finite-dimensional matrix
algebra the set of self-adjoint generators satisfying a tensor stable modi-
fied logarithmic Sobolev inequality is dense.

1. Introduction

Isoperimetric inequalities play an important role in geometry and analysis.
In the last decades, the deep and beautiful connection between isoperimetric
inequalities and functional inequalities has been discovered. This discovery
started with the work of Meyer, Bakry and Émery on the famous ‘carré du
champs’ or gradient form, and was brought to perfection by Varopoulos, Saloff-
Coste [89,90], Coulhon [100], Diaconis [31], Bobkov and Götze [9,10], Barthe
and his coauthors [5,6,12,16], and Ledoux [59–64]. It appears that the right
framework of this analysis is given by abstract semigroup theory, i.e., starting
with a semigroup of measure preserving maps on a measure space.

A crucial application of isoperimetric inequalities on compact manifolds
is the famous concentration of measure phenomenon, used fundamentally in
[35], and analyzed systematically by Milman and Schechtmann [73]. Thanks to
the work of Gross [38–41], it is now well known that concentration of measure
can occur in noncommutative spaces and infinite dimensions in the form of a
logarithmic Sobolev inequality. Indeed, let Tt = e−tA be a measure-preserving
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semigroup, acting on L∞(Ω, μ) with energy form E(f) = (f,Af). Then, Tt (or
its generator A) satisfies a logarithmic Sobolev inequality, in short λ-LSI, if

λ

∫
|f |2 log |f |2dμ ≤ E(f) (1.1)

holds for all f with
∫ |f |2dμ = 1 in the domain of A1/2. We will use the notation

Ent(f) =
∫

f log fdμ for the entropy of a probability density f . To simplify
the exposition, we will assume throughout this paper that A ⊂ dom(A) ∩
L∞ is a dense ∗-algebra in the domain and invariant under the semigroup.
Semigroup techniques have been very successfully combined with the notion
of hypercontractivity that

‖Tt : L2 → Lq(t)‖ ≤ 1 for q(t) ≤ 1 + ect .

Indeed, the standard procedure to show that the Laplace–Beltrami operator on
a compact Riemannian manifold satisfies λ-LSI is to derive hypercontractivity
from heat kernel estimates and then use the Rothaus lemma to derive LSI from
hypercontractivity. In this argument, ergodicity of the underlying semigroup
appears to be crucial.

A major breakthrough in this development is Talagrand’s inequality
which connects entropic quantities with a given distance. A triple (Ω, μ, d)
given by a measure and a metric satisfies Talagrand’s inequality if

W1(fμ, μ) ≤
√

2Ent(f)
λ

.

Here

W1(ν, μ) = inf
π

∫
d(x, y)dπ(x, y) = sup

‖g‖Lip≤1

∣∣
∫

g(x)dν(x) −
∫

g(x)dμ(x)
∣∣

(1.2)

is the Wasserstein 1-distance, and the second equality is the famous
Kantorovich–Rubinstein duality (see [56,99]). The infimum is taken over all
joint probability measures π on Ω×Ω with marginals as ν and μ. Using the tri-
angle inequality for the Wasserstein distance, it is easy to derive the geometric
Talagrand’s inequality

d(A,B) ≥ h =⇒ μ(A)μ(B) ≤ e− h2
C .

If in addition μ(A) ≥ 1/2 and Bh = {x|d(x,A) ≥ h}, this inequality implies
exponential decay of μ(Bh) in h, i.e., concentration of measure usually proved
via isoperimetric inequalities. We refer to Tao’s blog for applications of Tala-
grand’s inequality [93] in particular to eigenvalues of random matrices [96,97].

As pointed out by Otto and Villani [76], Talagrand proved a much
stronger inequality for 2-Wasserstein (in short λ-TA2), namely

W2(fμ, μ) ≤
√

2Ent(f)
λ

(1.3)

for Ω = [0, 1]n with respect to the Euclidean distance and for {0, 1}n with
respect to the Hamming distance, with a constant λ not depending on n. Here
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the 2-Wasserstein distance is obtained by replacing the L1-norm by the L2-
norm of L2(Ω × Ω) in the middle term of (1.2). Indeed, in the insightful paper
by Otto and Villani [76], they point out that the correct way to understand
Talagrand’s inequality consists in pushing the semigroup into the state space
of the underlying commutative C∗-algebra. Then, Talagrand’s concentration
inequality can be reformulated as a convexity condition for the Riemannian
metric associated with the 2-Wasserstein distance. In that sense, Otto and
Villani reconnects to the geometric aspect of concentration inequalities. The
key idea in the Otto–Villani approach is to define the Riemannian metric such
that the relative entropy function

D(ν||μ) =
∫

log
dν

dμ
dν

admits the semigroup Tt( dν
dμ ) as a path of steepest descent. Here, dν

dμ is the
Radon–Nikodym derivative. A key tool in their analysis was to consider the
modified version of the logarithmic Sobolev inequality, (in short λ-MLSI)

λ Ent(f) ≤
∫

A(f) log fdμ =: IA(f) (1.4)

and show that it implies λ-TA2. The right-hand side is known as Fisher infor-
mation and turns out to be the energy functional for the relative entropy with
respect to the Riemannian metric.

In this paper, we extend the theory of logarithmic Sobolev inequalities
in two directions, by including matrix-valued functions and non-ergodic semi-
groups. The main road block, discovered in the quantum information theory
literature, is that the Rothaus lemma ( [86])(

∃λ>0 ∀E(f)=0 : λD(f2||E(f2)) ≤ E(f)
)

?=⇒
(
∃λ̃>0 ∀f : λ̃D(f2||E(f2)) ≤ E(f)

)
(1.5)

may fail for matrix-valued functions f . Here, E(f2) is the mean of the matrix-
valued f2. The failure of (1.5) forces us to introduce new tools. Recently, and in
part parallel to the refereeing process of this paper, Talagrand’s inequalities in
the noncommutative setting have made very significant progress, in particular
through the work of Rouzé and Datta [84], and the continuation of the seminal
work [25] by Carlen and Maas in [26]. On the other hand, we are not aware of
any investigation of Talagrand’s inequality in the non-ergodic setting even in
the commutative cases. For self-adjoint semigroups, the fixpoint algebra N =
{x : ∀t Tt(x) = x} admits a normal conditional expectation Efix onto N . This
remains true in the noncommutative setting, i.e., for a semigroup (Tt) of (sub-
)unital completely positive maps on a finite von Neumann algebra M provided
each Tt is self-adjoint with respect to the inner product 〈x, y〉 = τ(x∗y) of a
normal faithful tracial state τ . The reader less familiar with von Neumann
algebras is welcome to think of M = L∞(Ω, μ;Mm), the space of bounded
random matrices equipped with τ(f) =

∫
Ω

1
m tr(f(ω))dμ(ω) and τ(Tt(x∗)y) =

τ(x∗Tt(y)).
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Let us consider examples of the form Tt = St ⊗ idMm
, where St is a

nice ergodic semigroup. These examples are natural in the context of operator
spaces (see [81] and [33] for more background), despite being obviously not
ergodic. We say that a self-adjoint semigroup Tt or its generator A satisfies
λ-MLSI ( λ-modified logarithmic Sobolev inequality) if

λD(ρ||Efix(ρ)) ≤ IA(ρ) = τ(A(ρ) ln ρ) .

The right-hand side is the noncommutative Fisher information introduced
under the name entropy production by Spohn [92], which is well known in
the quantum information theory. At the time of this writing, it is not known
whether λ-MLSI is stable under tensorization. However, tensorization is an
important feature and allows us to deduce the Gaussian log-Sobolov inequal-
ity from an elementary 2-point inequality, see, e.g., [7]. Therefore, we introduce
the complete logarithmic Sobolov inequality (in short λ-CLSI) by requiring that
Tt ⊗ idMm

satisfies λ-MLSI for all m ∈ N. Using the data processing inequality,
it is easy to show that the CLSI is stable under tensorization (c.f. Proposition
2.9). Before this paper, the list of examples which satisfy good tensorization
properties could all be deduced from the following key example, due to Bardet
[1] (see also [8,57]):

Lemma 1.1 (Examples 3.1 of [1]). Let E : M → N be a conditional expectation.
Then, Tt = e−t(I−E) satisfies 1-CLSI.

Indeed, for conditional expectation, we have

II−E(ρ) = D(ρ||E(ρ)) + D(E(ρ)||ρ) ≥ D(ρ||E(ρ)) .

In this case, CLSI follows from non-negativity of relative entropy. The mid-
dle term is the original symmetrized divergence introduced by Kullback and
Leibler [54], which is interesting from a historical point of view. Using the
tensorization, one can now deduce that Gaussian systems (and certain depo-
larizing channels) also satisfy CLSI (see [8,23]).

Our new tool to prove CLSI is based on the gradient form:

2ΓA(f, g) : = A(f∗)g + f∗A(g) − A(f∗g) .

We say that the generator A satisfies λ-ΓE if

λ[ΓI−Efix
(fj , fk)]i,j ≤ [ΓA(fj , fk)]i,j

holds for all finite families (fk). The next lemma states the two new basic facts
used in this paper. The second assertion (ii) is the tensorization property of
CLSI.

Lemma 1.2. (i) λ-ΓE implies λ-CLSI. (ii) If the generators A and B satisfy
λ-CLSI, then A ⊗ id + id ⊗ B satisfies λ-CLSI.

Inspired by the work of Saloff-Coste [89], we find that ΓE is a strong
condition that implies the following Lp-return time estimate, to our knowledge
new even in the commutative setting.
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Theorem 1.3. If Tt satisfies λ-ΓE, then for all x,

‖Tt(x) − E(x)‖1 ≤ e−λt‖x − E(x)‖1 .

Note that λ-MLSI implies exponential decay of relative entropy, D(Tt(ρ)||E(ρ))
≤ e−λtD(ρ||E(ρ)) and hence of L1-norm via Pinsker inequality D(ρ||σ) ≥ 1

2 ‖
ρ − σ ‖2

1. However, the initial term D(ρ||E(ρ)) has linear growth with respect
to the number of tensor products. Theorem 1.3 is strong in the sense that
‖ρ − E(ρ)‖1≤ 2 for any density ρ.

Our main contribution is to identify large classes of examples from rep-
resentation theory satisfying ΓE . Recall that the definition of a Hörmander
system on a Riemannian manifold (M, g) is given by a family of vector fields
X = {X1, . . . , Xr} such that the iterated commutators [Xi1 , [Xi2 , . . .]] gener-
ate the tangent space TxM at every point x ∈ M. Building on the famous
heat kernel estimates from [87], see also [67], and the work of Saloff-Coste
on return time, we find entropic concentration inequalities for subordinated
sub-Laplacians.

Theorem 1.4. Let X be a Hörmander system on a compact Riemannian man-
ifold, and the self-adjoint generator ΔX =

∑
j Xj

∗Xj be the corresponding
sub-Laplacian. Then, for any 0 < θ < 1, (ΔX)θ satisfies λ-ΓE, and hence
λ-CLSI for some constant λ = λ(X, θ).

It is widely open whether the ΔX itself satisfies CLSI, even when ΔX

is the Laplace–Beltrami operator on a compact Riemannian manifold. For
Ω = S1 the Torus the standard semigroup given by A = − d2

dx2 satisfies 1-
CLSI however fails λ-ΓE . For more information on Bakry–Emery theory for
sub-Laplacians, we refer to the deep work of Baudoin and his coauthors [2–
4,11,13,15]. Subordinated semigroups (in a slightly different meaning) have
also been investigated in the Gaussian setting, see [66,68]. From a rough kernel
perspective (see [29,34,42]), it may appear less surprising that subordinated
semigroups outperform their smooth counterparts.

In the context of group actions, we can transfer logarithmic Sobolev
inequalities. Indeed, let α : G → Aut(M) be a trace-preserving action on a
finite von Neumann algebra (M, τ), i.e., α is strongly continuous group homo-
morphism with values in the set of trace-preserving automorphisms on M . A
semigroup St : L∞(G) → L∞(G) which is invariant under right translations is
given by an integral operator of the form

St(f)(g) =
∫

kt(gh−1)f(h)dμ(g)

where μ is the Haar measure. We will assume that G is compact and μ is a
probability measure. Then, we may define the transferred semigroup on the
von Neumann algebra M ,

Tt(x) =
∫

kt(g−1)αg(x)dμ(g) .
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For ergodic St, the fixpoint algebra of the transferred semigroup Tt is then
given by the fixpoint algebra of the action NG = {x|∀gαg(x) = x}, which is
in general not a trivial subalgebra.

Theorem 1.5. Let G be a compact group acting on a finite von Neumann alge-
bra (M, τ). If St = e−tA satisfies λ-CLSI (resp. λ-ΓE), then Tt satisfies λ-CLSI
(resp. λ-ΓE).

For a compact Lie group G, a generating set X = {X1, . . . , Xr} of the
Lie-algebra g defines a Hörmander system X = {X1, . . . , Xr} given by the
corresponding right translation invariant vector fields. Then, we conclude that
for any group representation the semigroup T θ

t transferred from St = e−tΔθ
X

satisfies λ-ΓE . Our motivation is from quantum information theory and pre-
vious results of hypercontractivity. Starting with the seminal papers [30,65],
Temme and his coauthors [22,57,58,94,95] made hypercontractivity on matrix
algebras available in the ergodic setting (see [45–47,88] for results in group von
Neumann algebras). Using transferred semigroups and the so-called Lindblad
generators, we can prove the following density result of CLSI on matrix alge-
bras:

Theorem 1.6. The set of self-adjoint generators of semigroups on Mm satisfy-
ing ΓE and CLSI is dense.

Indeed, combining all the results from above, we can show that for such
self-adjoint generators A the subordinated Aθ satisfies λ(θ)-ΓE for all 0 < θ <
1. Let us mention the deep work of Carlen-Maas [24,25]. They translate the
work of Otto-Villani [76] to the state space of matrices and identify a truly
noncommutative Wasserstein 2-distance dA,2(ρ, σ). They also showed (in the
ergodic setting) that λ-MLSI implies

dA,2(ρ,E(ρ)) ≤ 2

√
D(ρ||E(ρ))

λ
.

An analogue of an intrinsic Wasserstein distance has already been introduced
in [49,52]:

dΓ(ρ, σ) = sup
f=f∗,ΓA(f,f)≤1

|τ(ρf) − τ(σf)| .

Based on [48] we show that dΓ ≤ 2
√

2dA,2, and hence, we see that λ-MLSI
does indeed imply a noncommutative geometric Talagrand’s inequality: Let e1

and e1 be projections in M such that for some test function f with ΓA(f, f) ≤ 1
we have ∣∣∣∣τ(e1f)

τ(e1)
− τ(e2f)

τ(e2)

∣∣∣∣ ≥ h =⇒ τ(e1)τ(e2) ≤ e−h2/C ,

where C only depends on the λ-MLSI constant of the generator A. Thus, we
have identified large classes of new examples which satisfy the Talagrand’s
concentration inequality, not only for Tt = e−tA, but also for the n-fold tensor
product (T⊗n

t ).
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The paper is organized as follows: We discuss gradient forms, deriva-
tions, and Fisher information in Sect. 2. In Sect. 3, we first consider kernel
and decay time estimates in the ergodic and then in the non-ergodic case. The
latter analysis relies on the theory of mixed Lp(Lq) spaces from [44], which
has been recently used in [20]. We discuss group representations in Sect. 4 and
the density result in Sect. 5. Section 6 is devoted to geometric applications
and concentration inequalities. In Sect. 7, we discuss examples and counterex-
amples. A chart of the different properties considered in this paper is given in
the following diagram:

λ-ΓE Cor. 2.10⇒ λ-CLSI ⇒ λ-MLSI
[Carlen−Maas]

=⇒ λ-TA2

⇓Thm 2.13 ⇓Prop 2.9 ⇓Rem 6.10

Lp-return time λ-CLSI for T ⊗n
t quant. metric

Prop. 6.14⇒ geom. Talag.

Open problems will be mentioned at the end of Sect.7. In fact, we expect CLSI
to hold for the smooth generators of semigroups as well. Due to space restric-
tions, we ignore the deep and interesting connection to free Fisher information.

2. Gradient Forms and Fisher Information

2.1. Modules and Gradient Forms

Let (M, τ) be a finite von Neumann algebra M equipped with a normal faith-
ful tracial state τ . We denote the noncommutative Lp-spaces by Lp(M, τ) or
Lp(M) if the trace is clear from the context. Throughout the paper, we consider
that Tt = e−tA : M → M is a strongly continuous semigroup of completely
positive, unital and self-adjoint maps. Then, τ(x∗Tt(y)) = τ(Tt(x)∗y) for all
x, y ∈ M and hence Tt is also trace preserving. The generator A is the (possibly
unbounded) positive operator on L2(M, τ) given by Ax = limt→0

1
t (x − Tt(x))

(see [28] for more background.) We will assume that there exists a weakly
dense ∗-subalgebra A ⊂ M such that

(i) A ⊂ dom(A) ∩ {x|A(x) ∈ M};
(ii) Tt(A) ⊂ A for all t > 0.

In most cases, it is enough to assume that A ⊂ dom(A1/2) and the Γ-regularity
from [48]. The gradient form of A is defined as

ΓA(x, y)(z) : =
1
2

(
τ(A(x)∗yz) + τ(x∗A(y)z) − τ(x∗yA(z))

)

We say the generator A satisfies Γ-regularity if ΓA(x, y) ∈ L1(M, τ) for all
x, y ∈ dom(A1/2).

Theorem 2.1 [48]. Suppose Γ(x, x) ∈ L1(M, τ) for all x ∈ dom(A1/2). Then,
there exists a finite von Neumann algebra (M̂, τ̂) containing M with τ̂ |M = τ ,
and a self-adjoint derivation δ : dom(A1/2) → L2(M̂) such that for all z ∈ M ,

τ(ΓA(x, y)z) = τ̂(δ(x)∗δ(y)z) .

Equivalently, EM (δ(x)∗δ(y)) = ΓA(x, y) where EM : M̂ → M is the condi-
tional expectation.
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The Γ-regularity allows us to define the right Hilbert W ∗-module ΩΓ as
the completion of dom(A1/2) ⊗ M with Γ-inner product

〈x1 ⊗ x2, y1 ⊗ y2〉Γ = x∗
2Γ(x1, y1)y2 .

Here, we use the canonical right action (x ⊗ y) · b = x ⊗ yb and the left action
is given by

Γ(x, a · y) = E(δ(x)∗aδ(y)) = E(δ(x)∗δ(ay)) − E(δ(x)∗δ(a))y
= Γ (x, ay) − Γ(x, a)y .

Namely, a · y = ay ⊗ x − a ⊗ xy. Note that in Theorem 2.1 the completion of
M̂ with respect to M -valued inner product

〈x, y〉EM
: = EM (x∗y) , x, y ∈ M̂

also gives rise to a W ∗-module, which we denote as Lc
∞(M ⊂ M̂) =

M̂ ⊗E M
STOP

, see also [50,51]. Recall that for a W ∗-module H of M , the
norm is given by its M -valued inner product 〈·, ·〉H as follows:

‖ξ‖H = ‖〈ξ, ξ〉H‖1/2
M .

Then, it is readily verified that the map

πδ : ΩΓ → Lc
∞(M⊂M̂) , πδ(x ⊗ y) = δ(x)y

is an isometric right M -module map. Moreover, thanks to [77] (see also [50]),
the range πδ(ΩΓ) is 1-complemented in Lc

∞(M⊂M̂).

Remark 2.2. Our notation ΩΓ is motivated by the universal bimodule of 1-
forms

Ω1A = {x ⊗ y − 1 ⊗ xy | x, y ∈ A} ⊂ A ⊗ A
from noncommutative geometry (see [27]). Indeed, the map Πδ induces a rep-
resentation of the universal derivation δ(x) = x ⊗ 1 − 1 ⊗ x.

We refer to [48] for the proof of Theorem 2.1. Here, we discuss the follow-
ing special case. Let T : M → M be a unital completely positive self-adjoint
map. Recall that the W ∗-module M ⊗T M is given by GNS construction

〈x1 ⊗ x2, y1 ⊗ y2〉T = x∗
2T (x∗

1y1)y2 .

with left module action a · (x ⊗ y) = ax ⊗ y and (x ⊗ y) · b = x ⊗ yb on A ⊗ A.
Note that this implies the ‘differential left action’ aδ(b) = δ(ab)−δ(a)b on Ω1A
which is shared by all representations. It is shown in [48](see also [91]) that
there exists a finite von Neumann algebra M̂ containing M and a self-adjoint
element ξ ∈ L2(M̂) of norm 1 such that

T (x) = EM (ξxξ) . (2.1)

This gives an isometric M -module map φ : M ⊗T M → Lc
∞(M⊂M̂)

φ(x ⊗ y) = xξy

with respect to the right module action φ((x ⊗ y) · z) = xξyz = φ(x ⊗ y)z.
On the other hand, let I : M → M be the identity map. The map A =
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I − T is a generator of a semigroup of completely positive maps (see [79] for a
characterization of generators of trace-preserving self-adjoint semigroups). Its
gradient form is

ΓI−T (x, y) =
1
2
(
x∗y − T (x)∗y − x∗T (y) + T (x∗y)

)
.

The gradient form of this generator can be realized as a right submodule of
M ⊗T M via the map

ψ : ΩΓI−T
→ M ⊗T M , ψ(x ⊗ y) =

1√
2

(
x ⊗ y − 1 ⊗ T (x)y

)
. (2.2)

Indeed, this follows from

〈ψ(x ⊗ y), ψ(x′ ⊗ y′)〉T =
1
2
y∗(x∗x′ − x∗T (x′) − T (x∗)x′

+T (x∗x′))y′ = y∗ΓI−T (x, x′)y′ .

This means for the semigroup generators of the form A = I −T , the deviation
δ : M → M̂ and the module isometry πδ : ΩΓI−T

→ M̂ can be obtained as a
composition πδ = φψ:

δ(x) =
1√
2
(xξ − ξT (x)) , πδ(x ⊗ y) =

1√
2
(xξ − ξT (x))y .

where the vector ξ is as in (2.1).
In the following, we will use the completely positive order in two ways.

For two completely positive maps T and S, we write T ≤cp S if S − T is
completely positive. For two gradient forms Γ,Γ′, we write Γ ≤cp Γ′ if

[Γ(xi, xj)]i,j ≤ [Γ′(xi, xj)]i,j

holds for all finite sequence (xj) in the domain of Γ.

Lemma 2.3. (i) Let T : M → M be a completely positive unital map. Then,
for any state ρ,

ρ(〈ξ, ξ〉ΓI−T
) = inf

c∈M
ρ(〈ξ − 1 ⊗ c, ξ − 1 ⊗ c〉T ) .

(ii) Let T1, T2 : M → M be two completely positive unital maps. Given λ > 0,
λT1 ≤cp T2 implies λΓI−T1 ≤cp ΓI−T2 .

Proof. We choose a module basis {ξi}i∈I of M ⊗T M (see [50,77]) and let
ξ0 = 1 ⊗ 1. Then,

〈ξi, ξj〉T = δijei ,

where (ei)i∈I ⊂ M is a family of projections and e0 = 1. Let P : M ⊗T M →
1 ⊗ M be the orthogonal projection given by

P (ξ) = P

(∑
i

ξi(1 ⊗ αi)

)
= ξ0(1 ⊗ α0) , αi ∈ M

Note that

〈1 ⊗ z, x ⊗ y〉T = z∗T (x)y = 〈1 ⊗ z, 1 ⊗ T (x)y〉T .
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This implies that P (x ⊗ y) = 1 ⊗ T (x)y and hence for ξ =
∑

i ξi(1 ⊗ αi), we
find that

〈ξ, ξ〉ΓI−T
= 〈ψ(ξ), ψ(ξ)〉T = 〈ξ − P (ξ), ξ − P (ξ)〉T =

∑
i
=0

α∗
i eiαi ,

where ψ is the isometric module map in (2.2). On the other hand, for any
c ∈ M ,

〈ξ − 1 ⊗ c, ξ − 1 ⊗ c〉T = (α0 − c)∗(α0 − c) +
∑
i
=0

α∗
i eiαi .

This exactly implies that for any c ∈ M ,

〈ξ, ξ〉ΓI−T
≤ 〈ξ − 1 ⊗ c, ξ − 1 ⊗ c〉T

and clearly for any state ρ,

ρ(〈ξ, ξ〉ΓI−T
) = inf

c∈N
ρ(〈ξ − 1 ⊗ c, ξ − 1 ⊗ c〉T ) .

For (ii), for any state ρ we can find a c ∈ M such that

ρ(〈ξ, ξ〉ΓI−T2
) = ρ(〈ξ − 1 ⊗ c, ξ − 1 ⊗ c〉T2) ≥ λρ(〈ξ − 1 ⊗ c, ξ − 1 ⊗ c〉T1)

≥ λρ(〈ξ, ξ〉ΓI−T1
) .

Here, we used i) twice. The argument for arbitrary matrix levels is the
same. �

Our next observation is based on operator integral calculus (see [82] and
references therein for more information). Let F : R → R be a continuously
differentiable function and δ be a derivation as in Theorem 2.1. Then, for a
positive ρ ∈ A, the functional calculus for δ is given by the following operator
integral:

δ(F (ρ)) =
∫
R+

∫
R+

F (s) − F (t)
s − t

dEρ
s δ(ρ)dEρ

t . (2.3)

where Eρ((s, t]) = 1(s,t](ρ) is the spectral projection of ρ. Indeed, this is obvi-
ous for monomials

δ(ρn) =
n−1∑
j=0

ρjδ(ρ)ρn−j−1 =
∫
R+

∫
R+

sn − tn

s − t
dEρ

s δ(ρ)dEρ
t .

The convergence of (2.3) in L2(M̂) follows from the boundedness of the deriv-
ative F ′ (and in Lp(M̂) from the theory of singular integrals, see again [82]).
Let us introduce the double operator integral

Jρ
F (y) :=

∫
R+

∫
R+

F (s) − F (t)
s − t

dEρ
s ydEρ

t .

For ρ =
∑

k ρkek with discrete spectrum, this simplifies to a Schur multiplier

Jρ
F (y) =

∑
k,l

F (ρk) − F (ρl)
ρk − ρl

ekyel .

At k = l, F (ρk)−F (ρl)
ρk−ρl

is understood as F ′(ρl).
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Lemma 2.4. Let F : R → R be a continuously differentiable monotone increas-
ing function and ρ ∈ M be positive. Let A and B be two generators of semi-
groups on M with corresponding derivation δA and δB. Suppose their gradient
forms satisfy that for some λ > 0,

λΓA ≤cp ΓB .

Then, dom(B
1
2 ) ⊂ dom(A

1
2 ) and for any x ∈ dom(B

1
2 ),

λτ(EM (δA(x)∗Jρ
F (δA(x)))) ≤ τ(EM (δB(x)∗Jρ

F (δB(x)))) .

Proof. Let us first assume that x =
∑

k λkek has discrete spectrum. Using
(2.3) we find

τ
(
EM

(
δA(x)∗Jρ

F (δA(x))
))

=
∑
k,l

F (λk) − F (λl)
λk − λl

τ̂
(
δA(x)∗ekδA(x)el

)

=
∑
k,l

F (λk) − F (λl)
λk − λl

‖ekδA(x)el‖2
L2(M̂A)

.

Recall that ΩΓA
(resp. ΩΓB

) is a submodule of Lc
∞(M⊂M̂A) (resp. Lc

∞(M⊂
M̂B)), and hence, there is an M -module projection PB onto ΩΓB

. Our assump-
tion implies that the right module map

Φ : ΩΓB
→ Lc

∞(M⊂M̂A) , Φ(x ⊗ y) = δA(x)y

is well defined and of norm less than λ−1/2. Now consider the composition

Φ̃ = Φ ◦ PB : Lc
∞(M⊂M̂B) → Lc

∞(M⊂M̂A) , Φ̃(δB(x)y) = δA(x)y .

It follows from the Leibniz rule that Φ̃ is also a left A-module map,

Φ̃(aδB(x)y) = Φ̃(δB(ax)y − δB(a)xy) = δA(ax)y − δA(a)xy = aδA(x)y .

Using strongly converging bounded nets from the weak∗-dense algebra A ⊂
dom(A1/2), we deduce that Φ̃ extends to a M -bimodule map with ‖ Φ̃ :
L2(M̂B) → L2(M̂A)‖≤ λ−1/2. Hence for all k, l,

√
λ‖ekδA(x)el‖L2(M̂A) ≤ ‖ekδB(x)el‖L2(M̂B) .

Since F is increasing, F (λk)−F (λl)
λk−λl

and F ′(λk) are positive. Therefore, we
obtain

λτ
(
EM

(
δA(x)∗Jρ

F (δA(x))
)) ≤ τ

(
EM

(
δB(x)∗Jρ

F (δB(x))
))

.

This implies the assertion for ρ with discrete spectrum.
Let ρ ∈ M be a general positive element. Then, we can approximate

F (s, t) = F (s)−F (t)
s−t by the sequence

Fn(s, t) =
F (n� s

n�) − F (n� t
n�)

n(� s
n�) − n(� t

n�) ,

and find lim
n→∞ Jρ

Fn
(x) = Jρ

F (x) (with respect to convergence in L2). �
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2.2. Fisher Information

Recall that the Fisher information of a generator A is defined as

IA(x) = τ(A(x) ln(x)) , x ∈ A ∩ M+ ,

provided that A(x) ∈ L1(M) and lnx is bounded. Equivalently, one can define
IA(x) = lim

ε→0
τ(A(x) ln(x+ε1)). In the quantum information theory literature,

IA is also called entropy production (see [92]).

Corollary 2.5. Let ΓA,ΓB be the gradient forms of two semigroups on M . Sup-
pose λΓA ≤cp ΓB. Then, for x ∈ A ∩ M+,

λIA(x) ≤ IB(x) .

Proof. Let x ∈ dom(B1/2) ∩ M . Then, by the Leibniz rule,

‖B1/2(x∗x)‖L2(M) = ‖δB(x∗x)‖L2(M̂B) = ‖δB(x∗)x + x∗δB(x)‖L2(M̂B)

≤ ‖δB(x)‖2‖x‖∞ + ‖x∗‖∞‖δB(x)‖2

≤ 2‖x‖‖B1/2(x)‖ .

Hence, x∗x is also in the domain of B1/2. Thus, we have enough positive
elements in dom(B1/2)∩M . Take the function F (t) = ln t. Then, using Lemma
2.4,

τ
(
B(x) ln(x + ε1)

)
= τ

(
δB(x)δB

(
ln(x + ε1)

))
= τ

(
δB(x)Jx+ε1

F

(
δB(x)

))

≥ λτ
(
δA(x)Jx+ε1

F

(
δA(x)

))
= λτ

(
A(x) ln(x + ε1)

)
.

The assertion follows from sending ε → 0. �

Let N ⊂ M be a von Neumann subalgebra and EN be the conditional
expectation (or shortly E for EN if no ambiguity). We define the Fisher infor-
mation for the subalgebra N with the help of the generator I − E:

IN (ρ) = II−E(ρ) = τ
(
(ρ − E(ρ)) ln ρ

)
.

Recall that for two positive elements ρ, σ ∈ M , the relative entropy is

D(ρ||σ) : =

{
τ(ρ ln ρ) − τ(ρ ln σ), if ρ � σ

+∞, otherwise.
,

Equivalently, one can define D(ρ||σ) = limδ→0 D(ρ||σ+δ1). When τ(ρ) = τ(σ),
D(ρ||σ) is always positive. The relative entropy with respect to N is defined
as

DN (ρ) = D(ρ||E(ρ)) = inf
σ∈N,σ≥0,τ(σ)=τ(ρ)

D(ρ||σ) .

See [37,74] for more information on DN as an asymmetry measure. The fol-
lowing result is due to [1] (see [57] for the primitive case), but the simple proof
is crucial for this paper.
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Lemma 2.6. The Fisher information satisfies

IN (ρ) = D(ρ||E(ρ)) + D(E(ρ)||ρ)

and hence DN ≤ IN .

Proof. We first note that

IN (ρ) = τ(ρ ln ρ) − τ(E(ρ) ln ρ) = τ(ρ ln ρ) − τ(ρ ln E(ρ))

+ τ(E(ρ) ln E(ρ)) − τ(E(ρ) ln ρ)

= D(ρ||E(ρ)) + D(E(ρ)||ρ) .

The non-negativity of the relative entropy implies the assertion. �

Now let Tt = e−At : M → M be a self-adjoint semigroup of completely
positive unital maps and N ⊂ M be the fixpoint algebra of Tt. It is easy to
see that

E ◦ Tt = Tt ◦ E = E .

It is well known that the Fisher information IA appears as the negative deriv-
ative of relative entropy DN under the semigroup Tt (see also [92]).

Proposition 2.7. Suppose that

λDN (ρ) ≤ IA(ρ) , ∀ ρ ≥ 0 .

Then,

DN (Tt(ρ)) ≤ e−λtDN (ρ) , ∀ ρ ≥ 0.

Proof. Take f(t) = DN (Tt(ρ)). The idea is to differentiate

f(t) = DN

(
Tt(ρ)

)
= τ

(
Tt(ρ) ln Tt(ρ)

)− τ
(
E(Tt(ρ)) ln E(Tt(ρ))

)
= τ

(
Tt(ρ) ln Tt(ρ)

)− τ
(
E(ρ) ln E(ρ)

)
.

For a function F : R+ → R with bounded continuous derivatives F ′, we have
(see, e.g., [101, Corollary 5.10])

lim
s→0

τ(F (ρ + sσ)) − τ(F (ρ))
s

= τ(F ′(ρ)σ) .

Note that lims→0
1
s (Tt+s(ρ) − Tt(ρ)) = −A

(
Tt(ρ)

)
. Now we use the chain rule

for F (s) = s ln s and F ′(s) = 1 + ln s and deduce that

f ′(t) = τ
(

− A
(
Tt(ρ)

))
+ τ

(
− A

(
Tt(ρ)

)
ln
(
Tt(ρ)

))
= −IA

(
Tt(ρ)

)
.

Here, the first term vanishes because A is self-adjoint and A(1) = 0. Thus, the
assumption implies that

f ′(t) = −IA(Tt(ρ)) ≤ −λDN (Tt(ρ)) = −λf(t).

Then, the assertion follows from Grönwall’s lemma. �

Definition 2.8. The semigroup Tt or its generator A with fixpoint algebra N
is said to satisfy:
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(a) the gradient condition λ-ΓE for some λ > 0 if

λΓI−EN
≤cp ΓA .

(b) the modified logarithmic Sobolev inequality λ-MLSI if for all positive ρ,

λD(ρ||EN (ρ)) ≤ IA(ρ) .

(c) the complete logarithmic Sobolev inequality λ-CLSI if A ⊗ idMm
satisfies

λ-MLSI for all m ∈ N.
We also say that Tt or A has ΓE (resp. MLSI, CLSI) if it satisfies λ-ΓE (resp.
λ-MLSI, λ-CLSI) for some λ > 0.

It is an immediate consequence of the data processing inequality that
CLSI has the tensorization property.

Proposition 2.9. Let Tt : M1 → M1 and St : M2 → M2 be two self-adjoint
semigroup that both satisfy λ-CLSI. Then, the tensor product semigroup Tt ⊗
St : M1 ⊗ M2 → M1 ⊗ M2 also satisfies λ-CLSI.

Proof. Let A1 (resp. A2) be the generator of Tt (resp. St.). Then, A = A1 ⊗
id+ id⊗A2 gives the generator of Tt ⊗St. Let ρ ∈ L1(M1 ⊗M2) and E1, E2 be
the conditional expectation onto the fixpoint algebras. Then, we deduce from
the data processing inequality that

D(ρ||E1 ⊗ E2(ρ)) = τ(ρ ln ρ) − τ(ρ ln E1 ⊗ E2(ρ))

= D(ρ||E1 ⊗ id(ρ)) + D(E1 ⊗ id(ρ)||E1 ⊗ E2(ρ))

≤ D(ρ||E1 ⊗ id(ρ)) + D(ρ||id ⊗ E2(ρ))

≤ λ−1IA1⊗id(ρ) + λ−1Iid⊗A2(ρ) = λ−1IA(ρ) . �

Another immediate corollary is that λ-ΓE implies λ-CLSI.

Corollary 2.10. If the generator A satisfies λ-ΓE, then A ⊗ idM has λ-ΓE for
any finite von Neumann algebra M . In particular, λ-ΓE implies λ-CLSI.

Proof. Let ΓM (a, b) = a∗b be trivial gradient form on M . Then, the generator
A ⊗ IM has gradient form ΓA ⊗ ΓM (x ⊗ a, y ⊗ b) = ΓA(x, y) ⊗ a∗b. The first
assertion follows from [52, Lemma 6.1]. The second follows from Corollary 2.5
and Lemma 2.6. �

In the rest of this section, we discuss some interesting consequences of the
ΓE condition. The first result is related to the symmetrized version of relative
entropy.

Proposition 2.11. Let (Tt) : M → M be a semigroup of completely positive
unital self-adjoint maps with fixpoint algebra N ⊂ M . Then,

λIN (ρ) ≤ IA(ρ)

implies

IN (Tt(ρ)) ≤ e−λtIN (ρ) .
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Proof. Let us consider the function

f(t) = IN (Tt(ρ)) = D
(
Tt(ρ)||E(Tt(ρ))

)
+ D

(
E(Tt(ρ))||Tt(ρ)

)
= D

(
Tt(ρ)||E(ρ)

)
+ D

(
E(ρ)||Tt(ρ)

)
.

We have seen in Proposition 2.7 that the derivative of the first term is −IA

(Tt(ρ)). Write h(t) = D
(
E(ρ)||Tt(ρ)

)
as the second term. By data processing

inequality, we have

h(s + t) = D
(
E(ρ)||Tt+s(ρ)

)
= D

(
Ts

(
E(ρ)

)||Ts

(
Tt(ρ)

)) ≤ D
(
E(ρ)||Tt(ρ)

)
,

for any s ≥ 0. Thus, h′(t) ≤ 0, and hence,

d
dt

IN

(
Tt(ρ)

) ≤ −IA(ρt) ≤ −λIN (Tt(ρ)) .

We conclude that f satisfies f ′(t) ≤ −λf(t) and hence, f(t) ≤ e−λtf(0). �

Another application of noncommutative derivation calculus can be used
to show ΓE gives exponential decay of Lp-distance for all 1 ≤ p ≤ ∞.

Lemma 2.12. Let λΓA ≤cp ΓB and N ⊂ M be the fixpoint subalgebra of both
semigroups e−tA and e−tB. Let 1 < p < ∞. Then, for x ∈ M self-adjoint, the
functions

fA(t) = ‖e−tA(x) − E(x)‖p
Lp(M), fB(t) = ‖e−tB(x) − E(x)‖p

Lp(M)

satisfy −λf ′
A(t) ≤ −f ′

B(t) for all t ≥ 0.

Proof. Let x ∈ M be self-adjoint. Then, a = x − E(x) is again self-adjoint.
We use the notation a+ and a− for the positive and negative part of a. Recall
that the spectral projections of a+ and a− are mutually disjoint and commute
with a. Thus, |a|p = ap

+ + ap
−. Note that

fA(t) = ‖e−tA(x) − E(x)‖p
Lp(M) = ‖e−tA

(
x − E(x)

)‖p
Lp(M) = ‖e−tA(a)‖p

Lp(M)

Differentiating fA at t = 0, we obtain that

f ′
A(0) = −pτ

(
a|a|p−2A(|a|))

= −p
(
τ
(
ap−1
+ A(a+)

)
+ τ

(
ap−1
+ A(a−)

)
+ τ

(
ap−1

− A(a−)
)

+ τ
(
ap−1

− A(a+)
))

.

Let δA be the derivation of A. Write a− = (√a−)2 = b2. Then, (2.3) implies
that

τ(δ(ap−1
+ )δ(b2)) =

∫
R+×R+

∫
R+×R+

sp−1 − tp−1

s − t

r2 − v2

r − v

τ(dEsδ(a+)dEtdFrδ(b)dFv)

where Es (resp. Fr) are spectral projections of a+ (resp. √
a−). Because Es and

Fr are orthogonal, we obtain τ(ap−1
+ A(a−)) = 0. The same argument applies to
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τ(ap−1
− A(a+)). By Lemma 2.4, λE

(
δA(ap−1

+ )δA(a+)
) ≤ E

(
δB(ap−1

+ )δB(a+)
)
,

and

λE
(
δA(ap−1

− )δA(a−)
) ≤ E

(
δB(ap−1

− )δB(a−)
)

This implies

−λf ′
A(0) = λp

(
τ
(
δA(ap−1

+ )δA(a+)
)

+ τ
(
δA(ap−1

− )δA(a−)
))

≤ p
(
τ
(
δB(ap−1

+ )δB(a+)
)

+ τ
(
δB(ap−1

− )δB(a−)
))

= −f ′
B(0) .

Replacing x by e−tA(x), we obtain that −λf ′
A(t) ≤ −f ′

B(t) for all t ≥ 0. �

Theorem 2.13. Let Tt = e−tA be a self-adjoint semigroup satisfying λ-ΓE.
Then, for all 1 ≤ p ≤ ∞,

‖Tt(x) − E(x)‖Lp(M) ≤ e−λt‖x − E(x)‖Lp(M) .

Proof. Let us first assume that x = Ts(y) for some y so that x belongs to the
domain of A and A

1
2 . Then, we note that

Tt((I − E)(x)) = Tt(x) − E(x) .

Write a = x − E(x) and St = e−t(I−E). According to Lemma 2.12, we have
that

−λ
d

dt
‖St(a)‖p

Lp(M) ≤ − d
dt

‖Tt(a)‖p
Lp(M) .

Note that EN (a) = 0, and hence, St(a) = e−ta. Then,

− d
dt

‖St(a)‖p
Lp(M) = pe−tp‖a‖p

Lp(M) .

We apply Lemma 2.12 and deduce that

λpfA(0) = λp‖a‖p
p = −λf ′

I−E(0) ≤ −f ′
A(0) .

Repeat the argument for at = Tt(a) and deduce

λpfA(t) ≤ −f ′
A(t) .

This implies fA(t) ≤ e−λptfA(0). Taking the p-root, we obtain that

‖Tt(a)‖Lp(M) ≤ e−λt‖a‖Lp(M) .

For general self-adjoint x, the assertion follows from the approximation x =

lims→0 Ts(x). By considering the 2×2 matrix
(

0 x
x∗ 0

)
, we deduce the asser-

tion for all x. The cases p = 1 and p = ∞ are obtained by passing to the limit
for p → 1 or p → ∞. �

The next corollary studies the Lp-distance decay under tensor product.

Corollary 2.14. Let T j
t : Mj → Mj be a family of semigroups with fixpoint

subalgebras Nj ⊂ Mj. Then, the tensor product semigroup Tt = T 1
t ⊗ T 2

t ⊗
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· · · ⊗ Tn
t on M = ⊗n

j=1Mj has the fixpoint algebra N = ⊗n
j=1Nj. Suppose for

each j, T t
j satisfies λj-ΓE. Then,

‖Tt − EN (x)‖Lp(M) ≤ 2

⎛
⎝ n∑

j=1

e−tλj

⎞
⎠ ‖x‖Lp(M) .

Proof. Let us consider a twofold tensor product St = T 1
t ⊗ T 2

t . Then,

St − EN1 ⊗ EN2 = St(id − EN1 ⊗ EN2) = St

(
(id − EN1) ⊗ idM2

+ EN1 ⊗ (idM2 − EN2)
)

= (T 1
t − EN1) ⊗ T 2

t + EN1 ⊗ (T 2
t − EN2) .

Since T 2
t and EN1 are completely contractive on Lp spaces, we deduce from

Theorem 2.13 that

‖St − EN1 ⊗ EN2(x)‖Lp(M)

≤ ‖(T 1
t − EN1) ⊗ T 2

t (x)‖Lp(M) + ‖id ⊗ (T 2
t − EN2)(x)‖Lp(M)

≤ 2e−λ1t‖x‖Lp(M) + ‖id ⊗ (T 2
t − EN2)(x)‖Lp(M)

≤ 2(e−λ1t + e−λ2t)‖x‖Lp(M) .

For the n-fold tensor product, we may use induction. �

3. Kernel Estimates and Module Maps

3.1. Kernels on Noncommutative Spaces

In this part, we derive kernel estimates for ergodic and non-ergodic semigroups
and their matrix-valued extension. Let N,M be two von Neumann algebras
and N∗ be the predual of N . The kernel of maps between noncommutative
measure spaces is given by the following theorem due to Effros and Ruan [33]:

CB(N∗,M) = N⊗̄M (3.1)

which states that the space of completely bounded maps CB(N∗,M) is com-
pletely isometrically isomorphic to the von Neumann algebra tensor prod-
uct N⊗̄M . Let us now assume that N is semifinite with trace tr. The linear
duality bracket 〈x, y〉 = tr(xy) gives a completely isometric pairing between
L1(N, τ) and Nop, the opposite algebra of N . More precisely, for every kernel
K ∈ Nop⊗̄M the linear map

TK(x) = (tr ⊗ id)
(
K(x ⊗ 1)

)
satisfies ‖K‖min = ‖TK : L1(N, τ) → M‖cb. Let us pause for a moment and
consider M = Md and N = Mk and denote Sk

1 for the trace class. For a linear
map T : Sk

1 → Md, the Choi matrix is given by

χT =
∑
rs

|r〉〈s| ⊗ T (|r〉〈s|) ∈ Mk ⊗ Md .
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The map φ(a) = at given by the transpose is a ∗-homomorphism between Mk

and M
op
k . Therefore, we should consider

KT =
∑
rs

|s〉〈r| ⊗ T (|r〉〈s|) ∈ M
op
k ⊗ Mm

and find

TKT
(|r〉〈s|) = tr(KT (|r〉〈s| ⊗ 1)) =

∑
tv

tr(|t〉〈v||r〉〈s|) T (|v〉〈t|) = T (|r〉〈s|) .

Equivalently, this shows that our description via kernels in Nop⊗̄M is com-
patible with the standard choice of a Choi matrix, see also [78].

3.2. Saloff-Coste’s Estimates

After these preliminary observation, we now assume that Tt is a semigroup of
(sub-)unital completely positive, self-adjoint maps on a finite von Neumann
algebra M so that Tt : L1(M) → M are completely bounded. According to the
previous section, the kernels of Tt are given by positive element Kt ∈ Mop⊗̄M .
Let N ⊂ M be the fixpoint subalgebra of the semigroup Tt and E : M → N
be the conditional expectation. Recall that Tt ◦ E = E ◦ Tt = E by the
self-adjointness on L2(M).

Lemma 3.1. Let (Tt) : M → M be a semigroup of self-adjoint ∗-preserving
maps. Then, for any t ≥ 0,

(i) ‖T2t : L1(M) → L∞(M)‖ = ‖Tt : L2(M) → L∞(M)‖2;
(ii) ‖T2t − E : L1(M) → L∞(M)‖ = ‖(Tt − E) : L2(M) → L∞(M)‖2.

The same estimates also hold for cb-norm, instead of the operator norm.

Proof. We start by recalling a general fact. Let v : X → H be a linear map
from a Banach space X to a Hilbert space H. By H∗ ∼= H̄, we have for any
x, y ∈ X,

〈v(y), v(x)〉H = 〈y, v̄∗v(x)〉(X,X̄∗) .

Here, v̄∗ : H̄ → X̄∗ is the conjugate adjoint of v and the right-hand side is the
sesquilinear bracket between X and its conjugate dual X̄∗. Then, we have

‖v : X → H‖2 = sup
‖x‖≤1

〈v(x), v(x)〉 = sup
‖x‖,‖y‖≤1

|〈y, v̄∗v(x)〉|

= ‖v̄∗v : X → X̄∗‖ . (3.2)

In our situation, we use X = L1(M) and v = Tt : X → L2(M). Note that

〈Tt(x), Tt(y)〉 = τ(Tt(x)∗Tt(y)) = (x∗, T2t(y)) .

and the anti-linear bracket

(x, y) = τ(x∗y)

gives a complete isometry between M and L1(M)
∗
. Therefore,

‖T2t : L1(M) → L∞(M)‖ = ‖Tt : L1(M) → L2(M)‖2 .

Similarly, we deduce (ii) from

(Tt − E)(Tt − E) = T2t − ETt − TtE + E = T2t − E .
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For the cb-norm estimate, we take X = S2(L1(N)) from [81] (see also
Sect. 3.4). For the Schatten 2-space S2, the trace bracket 〈x, y〉 = tr(x∗y)
identifies S∗

2 with S̄2. Thus,

‖id ⊗ Tt : S2(L1(M)) → S2(L2(M))‖2

= ‖id ⊗ T2t : S2(L1(M)) → S2(L∞(M))‖
follows again from the general principle. The same argument applies to (Tt −
E)2 = T2t − E. �

The following observation is essentially due to Saloff-Coste ( [89]).

Proposition 3.2. Let (Tt) be a semigroup of self-adjoint and ∗-preserving maps
such that

(i) ‖Tt : L1(M) → L∞(M)‖cb ≤ ct−d/2 for some c, d > 0 and all 0 ≤ t ≤ 1;
(ii) the self-adjoint positive generator A satisfies the λ-spectral gap condition:

‖A−1(I − E) : L2(M) → L2(M)‖ ≤ λ−1 .

Then,

‖Tt − E : L1(M) → L∞(M)‖cb ≤
{

2ct−d/2 0 ≤ t ≤ 1
C(d, λ)e−λt 1 ≤ t < ∞ .

where C(d, λ) is a constant depending only on d and λ.

Proof. First, note that Tt(I − E) = Tt − E and ‖I − E : L∞(M) →
L∞(M)‖cb ≤ 2. Then, the estimate for t ≤ 1 follows from the assumption i).
For t ≥ 1/2, we use functional calculus so that

‖Tt−1/4(I − E) : L2(M) → L2(M)‖ ≤ e−λ(t−1/4) .

Note that L2(M) is an operator Hilbert space, and hence, the above operator
norm coincides with the completely bounded norm ([80, Proposition 7.2]).
Thus, we obtain

‖(Tt − E) : L1 → L2‖cb

≤ ‖Tt−1/4(I − E) : L2(M) → L2(M)‖cb‖T1/4 : L1(M) → L2(M)‖cb

≤ e−λ(t−1/4)‖T1/2 : L1(M) → L∞(M)‖1/2
cb ≤ √

c2d/4eλ/4e−λt .

Applying Lemma 3.1 yields the assertion for t′ = 2t ≥ 1. �

3.3. From Ultracontractivity to Gradient Estimates

In this part, we use the kernel estimate discussed above to prove ΓE for (gener-
alized) fractional powers, including generators of so-called subordinated semi-
groups. This is a classical construction in harmonic analysis. Recall that (I−Tt)
is a semigroup generator. For a positive function F on [0,∞), we can define a
new generator

ΦF (A) =
∫ ∞

0

(I − Tt)F (t)
dt

t
,
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provided the integral is well defined. Then, the gradient form of ΦF (A) is given
by

ΓφF (A)(x, y) =
∫ ∞

0

ΓI−Tt
(x, y)F (t)

dt

t
. (3.3)

We also define the modified Laplace transform

φF (λ) =
∫ ∞

0

(1 − e−tλ)F (t)
dt

t
.

For positive F , we may use the integrability (I), quasi-monotonicity (QM), or
the well-known (Δ2) conditions:

(I) CF :=
∫ ∞

0

min(1, t)F (t)
dt

t
< ∞;

(QM) For some 0 < μ < 1, there exists Cμ > 0 such that F (μt) ≤ CμF (t)
for all t > 0.

(Δ2) For some 0 < μ < 1, there exists 0 < α < 1, tα > 0, cα > 0 such that
F (μt) ≤ cαμ−αF (t) for tα ≤ μt ≤ t.

Since 1 − e−λt ≤ min(1, λt) ≤ (1 + λ)min(1, t), we deduce that

φF (λ) ≤ CF (1 + λ)

and hence

ΦF (A) ≤ CF (I + A) .

Then, ΦF (A) is a closable operator well defined on the domain of A, and hence
according to our assumptions also defined on the dense subalgebra A.

Remark 3.3. Our calculus is closely related to the theory of symmetric positive
definite functions on R, which can be represented as:

ψG(λ) =
∫
R

(1 − cos(sλ))G(s)
ds

s
,

where G is a positive function such that∫
R

min(1, s2)G(s)
ds

s
=
∫ ∞

0

min(1, t)G(
√

t)
dt

t
< ∞ .

Let g be a Gaussian distribution. Then, we obtain a randomized, new, positive
definite function

ψ̃G(λ) = Eψ(gλ) =
∫
R

(1 − e−s2λ2
)G(s)

ds

s
=
∫ ∞

0

(1 − e−tλ2
)G(

√
t)

dt

t
.

Thus, for any positive definite function ψG, the function φ(λ) = ψ̃(
√

λ) can
be used for the Laplace transform in (3.3) and hence defines a generalized
subordinated semigroup.

In particular, all fractional power of generators are examples of our cal-
culus.



Vol. 21 (2020) Complete logarithmic Sobolev inequality 3429

Example 3.4. Let 0 < α < 1 and Fα(t) = c(α)t−α. Then,

φα(λ) = c(α)
∫ ∞

0

(1 − e−λt)t−α dt

t
= λαc(α)

∫ ∞

0

(1 − e−s)s−α ds

s
= λα

holds for a suitable choice of the normalization c(α). It is clear that Fα sat-
isfies the condition (I) and (QM). We refer to [36] for monotonicity results
overlapping with our approach.

Let us now fix an F satisfying the condition (I) and (QM). A key technical
tool for our estimates is the following family of unital completely positive
maps:

ΨF (r) = g(r)−1

∫ ∞

0

e−r/tTtF (t)
dt

t
, r > 0 ,

where g(r) is the normalization constant given by

g(r) =
∫ ∞

0

e−r/tF (t)
dt

t
.

Lemma 3.5. Let Tt be a semigroup of unital completely positive, self-adjoint
maps. Suppose the generator A satisfies Γ-regularity and F satisfies (I). Then,

(i) For r ≥ s, g(r) ≤ g(s) and g(r)ΨF (r) ≤cp g(s)ΨF (s);
(ii) limr→0 g(r)(I − ΨF (r)) = ΦF (A), limr→0 g(r)ΓI−ΨF (r) = ΓΦF (A);
(iii) ΦF (A) satisfies Γ-regularity.

Proof. Let r ≥ s > 0. Then, obviously e−r/t ≤ e−s/t and hence

g(r) ≤ g(s) , g(r)ΨF (r) ≤cp g(s)ΨF (s)

For (ii), since ΨF (r) is completely positive and self-adjoint, then Ar := g(r)
(
I−

ΨF (r)
)

is a generator of a semigroup of unital completely positive and self-
adjoint maps. Let us consider the function

ψr(λ) = g(r)−1

∫ ∞

0

e−r/t(1 − e−λt)F (t)
dt

t
.

Using

(1 − e−λt) ≤ min(1, λt) ≤ (1 + λ)min(1, t)

we deduce from the dominated convergence theorem that

lim
r→0

g(r)ψr(λ) = φF (λ) .

Note that g(r)ψr ≤ g(s)ψs if r ≥ s. Applying the monotone convergence
theorem, we have that for any x ∈ A,

lim
r→0

〈x, g(r)ψr(A)x〉 = lim
r→0

∫ ∞

0

g(r)ψr(λ)dμx(λ) = 〈x,ΦF (A)x〉 .

Here, dμx(λ) is the spectral measure d〈x, 1{A≤λ}x〉. This implies that for any
x ∈ A,

lim
r→0

g(r)(I − ΨF (r))x = ΨF (A)x
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in the weak topology on L2(M). Thus, for all x, y ∈ A,

lim
r→0

g(r)ΓI−ΨF (r)(x, y) = lim
r→0

ΓΦF (A)(x, y)

in the weak topology on L2(M) and also in the weak∗ topology in M . For (iii),
we split the function φF into two pieces

φF (λ) = φ′
F (λ) + φ′′

F (λ) =
∫ 1

0

1 − e−λt

t
F (t)dt +

∫ ∞

1

(1 − e−λt)F (t)
dt

t
.

and correspondingly ΦF (A) = Φ′
F (A) + Φ′′

F (A). According to our assumption,

both
∫ 1

0

F (t)dt and
∫ ∞

1

F (t)
dt

t
are finite. For any x, y ∈ A, 1

t Γ1−Tt
(x, y)

is uniformly bounded in L1(M). Therefore, the gradient form of Φ′
F (A) is

well defined on A and has range in L1(M). On the other hand, the map
Tt : M → M is completely positive and bounded from L∞(M) to itself. Then,
Φ′′

F (A) converges, and the gradient forms ΓΦ′′
F (A) take range in L∞(M) and in

particular also in L1(M). �

A direct consequence of the above lemma is as follows:

Corollary 3.6. For every r > 0,

g(r)ΓI−ΨF (r) ≤cp ΓΦF (A) , g(r)II−ΨF (r) ≤ IΦF (A) .

Proof. The previous lemma shows that g(r)ΨF (r) is decreasing in cp-order as
r → 0. By Lemma 2.3, the gradient form g(r)ΓI−ΨF (r) is also decreasing in
cp-order. Then, the assertion follows from the limits in Lemma 3.5 (iii) and
Corollary 2.5. �

We say a self-adjoint semigroup Tt is ergodic if its fixpoint subalgebra
N = C1. In this situation, the conditional expectation is the trace Eτ (x) =
τ(x)1 and the kernel is KE = 1 ⊗ 1 in Mop⊗M .

Proposition 3.7. Assume that a semigroup (Tt) of unital completely positive
and self-adjoint maps satisfy the conclusion of Proposition 3.2 with respect to
Eτ (x) = τ(x)1. Suppose F satisfies (I) and (QM). Then, there exists a r0 > 0
such that for all r ≥ r0,

(i) ‖ΨF (r) − Eτ : L1(M) → L∞(M)‖cb ≤ 1/2;
(ii) Eτ ≤cp 2ΨF (A);
(iii) g(r)ΓI−Eτ

≤cp 2ΓΦF (A).

Proof. Write Eτ = E. For i) we use the assumption and Proposition 3.2,

‖ΨF (r) − E : L1(M) → L∞(M)‖cb

≤ g(r)−1

∫ ∞

0

e−r/t‖Tt − E : L1(M) → L∞(M)‖cbF (t)
dt

t

≤ g(r)−1

(
2c

∫ 1

0

e−r/tt−d/2F (t)
dt

t
+ C(d, λ)

∫ ∞

1

e−r/te−λtF (t)
dt

t

)

=: g(r)−1(2cI + C(d, λ)II) .



Vol. 21 (2020) Complete logarithmic Sobolev inequality 3431

Then, the condition (QM) of F implies that for some 0 < μ < 1,

I = r−d/2

∫ ∞

r

F (r/u)ud/2e−u du

u

≤ r−d/2c(d, μ)
∫ ∞

r

F (r/μu)e−μu du

u

= r−d/2c(d, μ)
∫ ∞

μr

F (r/w)e−w dw

w
≤ r−d/2c(d, μ)g(r) .

Here, we have used the change of variables u = r/t and w = μu. Indeed, the
same change of variable shows that

g(r) =
∫ ∞

0

F (r/u)e−u du

u
.

For the second part, we see that

II =
∫ r

0

e− λ
u F (r/u)e−u du

u
≤ e−λ

∫ r

0

F (r/u)e−u du

u
≤ e−λg(r) .

Hence, there exists a r0 which only depends to c, d, C(d, λ) and Cμ so that for
all r ≥ r0

‖ΨF (r) − E‖cb ≤ 1
2

.

This proves i). Let Kr be the kernel of ΨF (r) in Mop⊗M and recall that
KE = 1 ⊗ 1 is the kernel of E. Then, by (3.1),

‖Kr − 1 ⊗ 1‖Mop⊗M ≤ 1
2

which implies Kr ≥ 1
21 ⊗ 1 = 1

2KE , where (ii) follows. The assertion (iii)
follow from Lemma 2.3 and Corollary 3.6. �

Remark 3.8. The polynomial decay ‖Tt : L1 → L∞‖cb ≤ t−d/2 for 0 < t < 1
is not really needed. Indeed, if

‖Tt : L1 → L∞‖cb ≤ Cαecαt−α

holds for some α < 1 for all t > 0, then we can choose β > 0 such that
CαCF (μ)e− 1−μ

2 β ≤ 1
4 and choose r large enough so that cαr−α ≤ 1−μ

2 β1−α.
Thus, we find that

Iβ :=
∫ r

β

0

e−r/t‖Tt − E : L1(M) → L∞(M)‖cbF (t)
dt

t

≤
∫ r

β

0

Cαecαt−α

F (t)
dt

t

≤ CF (μ)Cα

∫ ∞

β

euα(cαr−α−(1−μ)u1−α)F (r/μu)e−μu du

u

≤ CF (μ)Cαe− 1−μ
2 β

∫ ∞

μ

F (r/w)e−w dw

w
.
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Let IIβ be the corresponding integral on the integral [r/β,+∞). Using a
small modification in Proposition 3.2, the spectral gap allows us to estimate
g(r)−1IIβ ≤ C(β, λ)e− rλ

β .

Motivated by the discussion above, let us introduce the return time

t0 : = inf{t | ‖KTt
− 1 ⊗ 1‖Mop⊗M ≤ 1/2}

= inf{t | ‖Tt − Eτ : L1(M) → L∞(M)‖cb ≤ 1/2} . (3.4)

Under the assumption of Proposition 3.2, t0 is always finite.

Proposition 3.9. Assume that F satisfies (I) and (Δ2). Let r = max{t0, tα}
where tα is the parameter in (Δ2). Then,

ΓΦF (A) ≥cp
F (r)
2αcα

ΓI−E .

Proof. Recall that ΓB is linear with respect to B. Therefore, we deduce from
‖KTt

− 1⊗ 1‖ ≤ 1/2 and Lemma 2.3 that ΓI−Tt
≥ 1

2ΓI−E holds for t ≥ t0.
Then, we note that the (Δ2) condition implies

F (r) = F
(r

t
t
)

≤cp cα(t/r)αF (t)

for all r ≤ t. Therefore,

ΓΦF (A) =
∫ ∞

0

ΓI−Tt
F (t)

dt

t
≥cp

ΓI−E

2

∫ ∞

r

F (t)
dt

t

≥cp
ΓI−E

2cα
F (r)rα

∫ ∞

r

t−(1+α)dt =
ΓI−E

2αcα
F (r)

which completes the proof. �

Theorem 3.10. Let Tt be an ergodic semigroup of completely positive self-
adjoint maps such that

(i) ‖Tt : L1(M) → L∞(M)‖cb ≤ ct−d/2 for 0 ≤ t ≤ 1 and c, d > 0.
(ii) the generator A has a spectral gap σmin > 0.

Let F be a function satisfying the condition (I)+(QM) or (I)+(Δ2). Then,
ΦF (A) satisfies λ-ΓE and hence λ-CLSI for some λ depending on c, d, F and
σmin.

Proof. Let E = Eτ be the conditional expectation Eτ (x) = τ(x)1. For F
satisfying (I)+(QM), we deduce from Proposition 3.7 that

g(r0)ΓI−Eτ
≤cp 2ΓΦF (A)

for some r0 depending on σmin, c and d. Then, one can choose λ = g(r0)
2 .

Similarly, for F satisfying (I)+(Δ2), we apply Proposition 3.9. �
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3.4. Non-ergodic Semigroups

In this part, we want to adapt the kernel techniques for ergodic maps to
the non-ergodic situation. This requires more operator space theory from the
work in [44] on vector-valued noncommutative Lp-spaces associated with an
inclusion of von Neumann algebras. As usual, we assume that (Tt) : M → M
is a semigroup of unital completely positive self-adjoint maps and N ⊂ M is
the fixpoint subalgebra. Whenever N is infinite dimensional, we can no longer
hope for an ultracontractivity of Tt : L1(M) → L∞(M) for operator norm or
cb-norm, because the identity map

id : L1(N) → L∞(N)

is already unbounded. This leads us to use vector-valued Lp norms. Let 1 ≤
p, q, r ≤ ∞ and fix the relation 1

r = | 1p − 1
q |. Recall that the Lp(Lq) norms for

the inclusion N ⊂ M is defined as:

‖x‖Lq
p(N⊂M) =

⎧⎪⎨
⎪⎩

inf
x=ayb

‖a‖L2r(N)‖y‖Lq(M)‖b‖L2r(N) p ≤ q ,

sup
‖a‖L2r(N)=‖b‖L2r(N)≤1

‖axb‖Lq(M) q ≤ p .
(3.5)

Here, for p ≤ q, the infimum takes over all factorization x = ayb with a, b ∈
L2r(N), y ∈ Lq(M) and for p ≥ q, the supremum runs over all a, b ∈ L2r(N)
with ‖a‖L2r(N) = ‖b‖L2r(N) ≤ 1. The Banach space Lq

p(N ⊂M) is then the
completion of M with respect to the corresponding norm. It follows from the
Hölder inequality that for p = q, Lp

p(N⊂M) ∼= Lp(M). These norms have been
extensively studied in the quantum information theory and operator space
community [20,37,72]. For the special cases M = R⊗N and M = Mk(N),

Lq
p(N⊂R⊗N) = Lp(R,Lq(N)) , Lq

p(N⊂Mk(N)) = Sk
p (Lq(N)) .

which are the vector-valued Lp spaces introduced in [80]. In the following, we
mention the properties of Lq

p(N⊂M) needed in our discussion and refer to [44]
for a detail account of these Lp-spaces. First, we will use a duality relation that
the anti-linear trace bracket (x, y) = τ(x∗y) provides an isometric embedding

Lq
p(N⊂M) ⊂ Lq′

p′(N⊂M)∗ , (3.6)

for 1 ≤ p, q ≤ ∞,
1
p

+
1
p′ =

1
q

+
1
q′ = 1, and it is indeed an equality when for

1 < p, q < ∞. We will also need the following factorization property that

Lp(M) = L2p(N)Lp
∞(N⊂M)L2p(N) (3.7)

which reads as

‖x‖Lp(M)= inf
x=ayb

‖a‖L2p(N)‖y‖Lp∞(N⊂M)‖b‖L2p(N) .

This can be verified by interpolation. Indeed, it is obvious for p = ∞. For
p = 1 let us assume that x is positive and τ(x) = 1. Then, τ(E(x)) = 1, and
we may write

x = E(x)1/2(E(x)−1/2xE(x)−1/2)E(x)1/2 = E(x)1/2yE(x)1/2 .
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Note that for every a ∈ L2(N),

τ(a∗ya) = τ(E(x)−1/2E(x)E(x)−1/2aa∗) = τ(aa∗) = ‖a‖2
2 .

Using the positivity of y and a Cauchy–Schwarz type argument, it follows that
‖y‖L1∞(N⊂M) ≤ 1. This factorization property is closely related to the following
fact.

Lemma 3.11 (Lemma 4.9 of [44]). Let x ∈ M . Then

‖x‖L1∞(N⊂M) = inf
x=x1x2

‖E(x1x
∗
1)‖1/2

∞ ‖E(x∗
2x2)‖1/2

∞ .

The following fact is an extension of Lemma 1.7 of [80]. Recall that T :
M → M is a N -bimodule map if for any a, b ∈ N,x ∈ M , T (axb) = aT (x)b.

Lemma 3.12. Let T : M → M be a N -bimodule map and 1 ≤ p, q ≤ ∞. Then,
for any 1 ≤ s ≤ ∞,

‖T : Lp
∞(N⊂M) → Lq

∞(N⊂M)‖ = ‖T : Lp
s(N⊂M) → Lq

s(N⊂M)‖
Proof. Let us introduce the short notation |‖T‖|s = ‖T : Lp

s(N⊂M) → Lq
s(N⊂

M)‖. We first prove “≥” for s = 1. For an element x ∈ Lp
1(N⊂M) of norm less

than 1, we have a decomposition x = ayb with a, b ∈ L2p′(N), and y ∈ Lp(M)
all of norm less than 1. Using the factorization (3.7), we may further write
y = αY β with α, β ∈ L2p(N) and Y ∈ Lp

∞(M) all of norm less than 1.
Therefore, we have shown that x = (aα)Y (βb) with Y ∈ Lp

∞(N⊂M), and

‖aα‖L2(N) ≤ 1 , ‖βb‖L2(N) ≤ 1 .

Thus, we may write aα = a′α′ and βb = β′b′ such that

max{‖b′‖L2q′ (N), ‖β′‖L2q(N), ‖a′‖L2q′ (N), ‖β′‖L2q(N)} ≤ 1 .

Then, we deduce from the module property that

T (x) = a′α′T (Y )β′b′ = a′(α′T (Y )β′)b′

and ‖T (Y )‖Lq∞(N⊂M) ≤ |‖T‖|∞. Using (3.7) again, (α′T (Y )β′) ∈ Lq(M) of
norm less than ‖|T‖|∞ and hence we have shown that ‖ T (x) ‖Lq

1(N⊂M)≤
‖|T‖|∞. By interpolation, we deduce that

|‖T‖|s ≤ |‖T‖|∞
for all 1 ≤ s ≤ ∞. We dualize this inequality by applying it to T ∗ and obtain

|‖T‖|s = ‖T ∗ : Lq′
s′(N⊂M) → Lp′

s′ (N⊂M)‖ ≤ ‖T ∗ : Lq′
∞(N⊂M)

→ Lp′
∞(N⊂M)‖

= |‖T‖|1 .

Then, we dualize again to get

|‖T‖|∞ ≤ |‖T ∗‖|s′ ≤ |‖T‖|s ≤ |‖T‖|∞ .

Hence, all these norms coincide. �
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Thanks to the independence of s, we may now introduce the short nota-
tion

‖T‖p→q = ‖T : Lp
∞(N⊂M) → Lq

∞(N⊂M)‖ .

and similarly, the cb-version

‖T‖p→q,cb = sup
m

‖idMm
⊗ T : Lp

∞
(
Mm(N)⊂Mm(M)

)

→ Lq
∞
(
Mm(N)⊂Mm(M)

)‖ .

In particular, we understand Lp
∞(N⊂M) as an operator space with operator

space structure

Mm

(
Lp

∞(N⊂M)
)

= Lp
∞
(
Mm(N)⊂Mm(M)

)
.

The analogue of Lemma 3.1 reads as follows:

Lemma 3.13. Let (Tt) be a semigroup of self-adjoint ∗-preserving N -bimodule
maps. Then,

(i) ‖T2t‖1→∞ = ‖Tt‖2
1→2.

(ii) ‖T2t − E‖1→∞ = ‖(Tt − E)‖2
2→∞

The same equality holds for cb-norms.

Proof. Because Tt are N -bimodule maps, we know by Lemma 3.12 that

‖T2t‖1→∞ = ‖T2t : L1
2(N ⊂ M) → L∞

2 (N ⊂ M)‖ ,

‖Tt‖1→2 = ‖Tt : L1
2(N ⊂ M) → L2(M)‖

Take X = L1
2(N ⊂ M) and H = L2(M) ∼= L2

2(N ⊂ M). The anti-linear
bracket 〈x, y〉 = τ(x∗y) gives a complete isometric embedding L∞

2 (N⊂M) ⊂
X̄∗. Then, using the general principle in the proof of Lemma 3.1 implies the
assertion because Tt is ∗-preserving and self-adjoint. The cb-norm case follows
similarly with X = S2(L1

2(N⊂M)) and H = S2 ⊗2 L2(M), where S2 is the
Schatten 2-class. �

We have seen in the last subsection that a complete positive order inequal-
ity Eτ ≤cp T can be deduced from kernel estimates. For non-ergodic cases, we
have to modify the argument by introducing the appropriate Choi matrix for
bimodule maps. Let us recall that the conditional expectation E : M → N
generates a Hilbert W ∗-module HE = Lc

∞(N⊂M) with N -valued inner prod-
uct

〈x, y〉HE
= E(x∗y) .

As observed in [50,51], it is easy to identify the completion of this module
in B(L2(M)), namely the strong closure of H̄E = MpE , where pE = E :
L2(M) → L2(N) is the Hilbert space projection onto the subspace L2(N) ⊂
L2(M). The advantage of a complete W ∗-module is the existence of a module
basis (ξi)i∈I such that

〈ξi, ξj〉HE
= δijpi
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where pi ∈ N are the projections. Note that in our situation the inclusion
MpE ⊂ L2(M) is faithful and hence, the basis elements ξi (or more precisely
ξ̂i obtained from the GNS construction) are in L2(M). In particular, every
element x in L2(M) has a unique decomposition

x =
∑

i

ξixi

so that xi = pixi ∈ N . Indeed, we have xi = 〈ξi, x〉HE
. For a N -bimodule map

T : L1
∞(N⊂M) → M , we may therefore introduce the Choi matrix

χT =
∑
i,j

|i〉〈j| ⊗ T (ξ∗
i ξj) .

Lemma 3.14. Let T : M → M be a N -bimodule map. Then,

‖T‖1→∞,cb = ‖χT ‖B(�2(I))⊗̄M .

Proof. Let q =
∑

i,j |i〉〈j| ⊗ ξ∗
i ξj ∈ B(�2(I))⊗̄M . Viewing q as a kernel, the

corresponding map Tq : S1(�2(I)) → M is given by

Tq(|i〉〈j|) = ξ∗
i ξj

Let us show that Tq : S1(�2(I)) → L1
∞(N ⊂ M) is completely contractive.

Indeed, using operator space version of (3.1)

‖Tq ‖cb = ‖q‖B(�2(I))⊗minL1∞(N⊂M) = ‖q‖L1∞(B(�2(I))⊗minN⊂B(�2(I))⊗minM)

= ‖ id ⊗ E(q)‖B(�2(I))⊗̄M = ‖
∑

i

|i〉〈i| ⊗ pi ‖B(�2(I))⊗̄M≤ 1

Here, we have used the fact q is positive and pi are projections. Note that the
kernel of T ◦ Tq : S1(�2(I)) → M is exactly the Choi matrix χT . Therefore,
thanks to (3.1) again, we deduce that

‖χT ‖ = ‖T ◦ Tq : S1(�2(I)) → M‖cb ≤ ‖T‖1→∞,cb .

Now let x ∈ L1
∞(N⊂M) of norm less than 1. According Lemma 3.11, we have

a factorization x = y1y2 such that E(y∗
1y1) ≤ 1 and E(y∗

2y2) ≤ 1. This means
we find coefficients ai, bj such that

x =
∑
i,j

a∗
i ξ

∗
i ξjbj

and
∑

i aia
∗
i ≤ 1 and

∑
j b∗

j bj ≤ 1. Therefore, we deduce that

‖T (x)‖M =‖
∑
i,j

a∗
i T (ξ∗

i ξj)bj‖ = ‖
(∑

i

〈i| ⊗ a∗
i

)⎛
⎝∑

i,j

|i〉〈j| ⊗ T (ξ∗
i ξj)

⎞
⎠

×
⎛
⎝∑

j

|j〉 ⊗ bj

⎞
⎠ ‖

≤ ‖
∑

i

aia
∗
i ‖1/2‖χT ‖‖

∑
j

b∗
jbj‖1/2.
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This implies

‖T (x)‖ ≤ ‖χT ‖ inf
x=y1y2

‖E(y1y
∗
1)‖1/2‖E(y∗

2y2)‖1/2 ,

or equivalently

‖T‖1→∞ ≤ ‖χT ‖ .

The same argument applies for idMm
⊗ T , and we have the equality

‖T‖1→∞,cb = ‖χT ‖. �

We are now in a position to prove a version of Proposition 3.7 ii) in the
non-ergodic situation

Lemma 3.15. Let T : M → M be a unital completely positive N -bimodule map
such that

‖T − EN : L1
∞(N⊂M) → M‖cb ≤ 1

2
.

Then, EN ≤cp 2T .

Proof. Let χT (resp. χE) be the Choi matrix of T (resp. EN ). We known by
Lemma 3.14 that

‖χT − χE‖B(�2(I))⊗̄N ≤ 1
2

.

Since T and E are completely positive, χT and χE are positive. Thus, we may

write χE − χT = α − β with 0 ≤ α, β ≤ 1
2

. Write α =
∑

i,j |i〉〈j| ⊗ αi,j and

β =
∑

i,j |i〉〈j| ⊗ βi,j . It is clear that αi,j − βi,j = E(ξ∗
i ξj) − T (ξ∗

i ξj). Let
x = y∗y be a positive element in M and y =

∑
j ξjyj with coefficients yj ∈ N

in the module basis. Then, we deduce that∑
j

y∗
j pjyj = E(y∗y) = (E − T )(y∗y) + T (y∗y)

=
∑
i,j

y∗
i piαi,jpjyj −

∑
i,j

y∗
i piβi,jpjyj + T (y∗y)

≤ 1
2

⎛
⎝∑

j

y∗
j pjyj

⎞
⎠+ T (y∗y) . (3.8)

Indeed, in the last step we use the fact that

∑
i,j

y∗
i piαi,jpjyj =

(∑
i

〈i| ⊗ y∗
i pi

)⎛
⎝∑

i,j

|i〉〈j| ⊗ αi,j

⎞
⎠
⎛
⎝∑

j

|j〉 ⊗ pjyj

⎞
⎠

≤ 1
2

(∑
i

〈i| ⊗ y∗
i pi

)⎛
⎝∑

j

|j〉 ⊗ pjyj

⎞
⎠

=
1
2

⎛
⎝∑

j

y∗
j pjyj

⎞
⎠ .
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Subtracting 1
2 (
∑

j y∗
j pjyj) in (3.8), we obtain

E(y∗y) =
∑

j

y∗
j pjyj ≤ 2T (y∗y) .

The same argument holds for matrix coefficients. Hence, E ≤cp 2T . �

Thus, in the non-ergodic situation, we can now state the analogue of
Theorem 3.10.

Theorem 3.16. Let Tt be a semigroup of completely positive self-adjoint maps
and N be the fixpoint subalgebra. Suppose that

(i) ‖Tt : L1
∞(N ⊂M) → L∞(M)‖cb ≤ ct−d/2 for 0 ≤ t ≤ 1 and c > 0,

d ≥ 0;
(ii) ‖Tt(I − EN ) : L2(M) → L2(M)‖ ≤ e−σmint for some σmin > 0.

Let F be a function satisfying (I)+(QM) or (I)+(Δ2). Then, ΦF (A) satisfies
λ-ΓE and hence λ-CSLI for some λ depending on c, d, F and σmin.

Proof. The fixpoint algebra N is the common multiplicative domain of Tt

for all t. Hence, Tt are N -bimodule maps. Then, the assertion follows from
combining Lemma 3.15 with argument in Theorem 3.10. �

4. Riemannian Manifolds and Representation Theory

In this section, we find heat kernel estimates, which allow us to apply Theorem
3.16.

4.1. Riemannian Manifolds

Let (M, g) be a d-dimensional compact Riemannian manifold without bound-
ary. A Hörmander system is a finite family of vector fields X = {X1, . . . , Xr}
such that for some global constant lX , the set of iterated commutators (no
commutator if k = 1)⋃

1≤k≤lX

{[Xj1 , [Xj2 , . . . , [Xjk−1 ,Xjk
]]] | 1 ≤ j1, . . . , jk ≤ r}

spans the tangent space TxM at every point x ∈ M. We consider the sub-
Laplacian

ΔX =
r∑

j=1

X∗
j Xj .

where X∗
j is the adjoint operator of Xj with respect to L2(M, μ). Here, dμ is

the volume measure of the metric g, which in local coordinates is given by

dμ(x) =
√

|g|dx1 ∧ · · · ∧ dxn , |g|(x) = |det
(
gij(x)

)| .

For compact M, ΔX extends to a self-adjoint operator on L2(M, μ). It follows
from the famous Rothschild–Stein estimate [87] (see also [65]) that ΔX is hypo-
elliptic. This leads to the estimate (see, e.g., [75])

〈f,Δ
1

lX f〉 ≤ C(〈f,ΔXf〉+ ‖f ‖2
2) , (4.1)
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where Δ is the Laplace–Beltrami operator on M. Using the Hardy–Littlewood–
Sobolev inequality in the Riemannian setting, we have the following Sobolev-
type inequality (see, e.g., [67]):

Lemma 4.1. Let M be a compact Riemannian manifold and X be a Hörmander
system of M. Let q = 2dlX

dlX−2 . Then,

‖f‖q ≤ C
(〈ΔXf, f〉+ ‖f ‖2

2

)1/2
.

Now it is time to invoke the Varopoulos theorem about the dimension of
semigroups.

Theorem 4.2 [100]. Let Tt : L∞(Ω, μ) → L∞(Ω, μ) be a semigroup of measure
preserving maps and A be its generator. The following conditions are equiva-
lent: for m ∈ N,

(i) ‖Tt : L1(Ω, μ) → L∞(Ω, μ)‖ ≤ C1t
−m/2 for all 0 ≤ t ≤ 1 and some C1;

(ii) ‖f‖2
2m

m−2
≤ C2(〈Af, f〉+ ‖f ‖2

2);

(iii) ‖f‖2+4/m
2 ≤ C3〈Af, f〉‖f‖4/m

1 .

Remark 4.3. Varopoulos theorem remains valid for semi-finite von Neumann
algebras. For the proof, the only part which requires modification is i)⇒ ii)
(see [52] and independently [102]). The completely bounded norm analog is
significantly more involved [53], and it will be used later.

It is well known that the Laplace–Beltrami operator ΔLB on a compact
Riemannian manifold has a spectral gap. Similarly, ΔX also has a spectral
gap. Combining Lemma 4.1 and Theorem 4.2, we obtain the kernel estimates
in Proposition 3.2 for m = dlX . As a consequence of Theorem 3.10, we have:

Theorem 4.4. Let (M, g) be a compact Riemannian manifold and X = {X1,
. . . , Xr} be a Hörmander system. Then, there exists m = dlX ∈ N and c > 0
such that St = e−tΔX satisfies

‖St : L1(M, μ) → L∞(M, μ)‖cb ≤ ct−m/2 .

Moreover, for every 0 < θ < 1, Sθ
t = e−tΔθ

X satisfies λ-ΓE and λ-CLSI with
λ = c0t

−θ
0 (1 − θ)θ2. Here, t0 = t0(ΔX) is the return time of ΔX in (3.4) and

c0 is an absolute constant.

As mentioned in Corollary 2.10, the ΓE condition automatically extends
to the operator-valued setting for any finite von Neumann algebra M . Here, we
note that the kernel estimates for Hörmander systems also extend to M -valued
functions.

Corollary 4.5. Let M be a finite von Neumann algebra with tracial state τ . Let
(M, g) be a compact Riemannian manifold and X be a Hörmander system as
above. Then,

‖id ⊗ St : L∞(M ;L1(M)) → L∞(M ;L∞(M))‖ ≤ ct−m/2

holds for 0 ≤ t ≤ 1 and some c > 0.
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Proof. Let E(f) =
1

V ol(M)

∫
M

f(x)dμ(x) be the conditional expectation onto

M , i.e., E(f)1M = EM (f). Then, a positive element f ∈ L1
∞(M⊂L∞(M)⊗̄M)

has norm ≤ 1 if ‖E(f)‖M ≤ 1. Let h ∈ L2(M) be a unit vector. Consider the
scalar function fh(x) = 〈h, f(x)h〉L2(M). We deduce that

E(fh) =
∫

M
fh(x)dμ(x) = 〈h,E(f)h〉L2(M) ≤ 1

and therefore, ‖St(f)h‖L∞(M) ≤ ct−m/2. This means

sup
‖h‖2≤1

sup
x∈M

〈h, St(f)(x)h〉L2(M) ≤ ct−m/2 .

Interchanging the double supremums, with the help of the duality L1(M,
L1(M))∗ = L∞(M)⊗̄M , implies the assertion �

4.2. Group Representation

Let G be a compact group with Haar measure μ. We consider a semigroup of
measure preserving maps St : L∞(G) → L∞(G) that is also right translation
invariant. Suppose that St is given by the kernel

St(f)(g) =
∫

G

Kt(g, h)f(h)dμ(h) .

The right translation invariance means that for any f ∈ L∞(G) and g, s ∈ G
we have ∫

Kt(gs, h)f(h)dμ(h) = St(f)(gs) =
∫

Kt(g, h)f(hs)dμ(h)

=
∫

Kt(g, hs−1)f(h)dμ(h) .

Thus, Kt(gs, h) = Kt(g, hs−1) and hence Kt(g, h) = kt(gh−1) for some single
variable function kt. Conversely, Kt(g, h) = kt(gh−1) implies right invariance.

Now let (M, τ) be a finite von Neumann algebra and α : G → Aut(M)
be an action G on M of trace-preserving automorphisms. Using the standard
co-representation,

π : M → L∞(G;M) , π(x)(g) = αg−1(x) .

we define the transferred semigroup on M

Tt(x) =
∫

G

kt(g−1)αg−1(x)dμ(g) .

Lemma 4.6. The semigroups St and Tt satisfy the following factorization prop-
erty:

π ◦ Tt = (St ⊗ idM ) ◦ π .

Proof. We include the proof for completeness. Indeed, for x ∈ M

π(Tt(x))(g) = α−1
g

∫
G

kt(h−1)αh−1(x)dμ(h)
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=
∫

G

kt(gg−1h−1)α(hg)−1(x)dμ(h)

=
∫

G

kt(gh−1)αh−1(x)dμ(h) = (St ⊗ id)(π(x))(g) . �

Let us denote by N = {x |αg(x) = x ∀ g ∈ G} the fixpoint subalgebra.
Note that we have the following commuting diagram:

M
π−→ L∞(G,M)

↓ EN ↓ EM

N
π−→ M

. (4.2)

Here, M ⊂π L∞(G,M) is considered as operator-valued constant functions
and, as seen in Corollary 4.5, the conditional expectation is given by averaging.
Then, for any x ∈ M ,

E(π(x)) =
∫

G

αg−1(x)dμ(g) = EN (x)

is exactly the conditional expectation form M onto the fixpoint algebra N .
Since EM is a unital completely positive N -bimodule map, we see that

EM : Lq
p(M⊂L∞(G,M)) → Lq

p(N⊂M)

is completely contractive for all 1 ≤ p, q ≤ ∞. This implies that the inclusion
π : Lq

p(N ⊂M) ⊂ Lq
p(M ⊂L∞(G,M)) is a completely isometric embedding

(see [44] for details). The next proposition shows that λ-ΓE and λ-CLSI of the
semigroup St on the group G pass to the transferred semigroup Tt on M .

Proposition 4.7. Let St : L∞(G) → L∞(G) be an ergodic, right invariant semi-
group and Tt : M → M be the transferred semigroup defined as above. Then,

(i) ‖Tt − EN : L2(M) → L2(M)‖≤‖St − E : L2(G) → L2(G)‖ for all t > 0
and hence the spectral gap for Tt (with respect to EN ) is not less than the
spectral gap of St.

(ii) (Tt) satisfies λ-ΓE (resp. λ-MLSI, λ-CLSI) if (St) does.

Proof. By the diagram (4.2), the transferred semigroup Tt on M can be viewed
as a restriction of semigroup St ⊗ idM on L∞(G,M). By definition, λ-ΓE and
λ-CLSI of St on the group G naturally extends to St ⊗ idM , which implies
corresponding property for Tt. �

We obtain the following application of transference:

Theorem 4.8. Let St : L∞(G) → L∞(G) be an ergodic right invariant semi-
group with kernel function kt. Let σmin be the spectral gap of St and suppose
supg |kt(g)| ≤ ct−m/2 holds for some c,m > 0 and 0 ≤ t ≤ 1. Then, the
transferred semigroup Tt : M → M and its generator A satisfy:

(i) ‖Tt : L1(M) → L∞
1 (N⊂M)‖cb ≤ ct−m/2 for 0 ≤ t ≤ 1, and

‖Tt − E : L1(M) → L∞
1 (N⊂M)‖cb ≤

{
2ct−m/2 0 ≤ t ≤ 1 ,

c(m,σmin)e−σmint 1 ≤ t < ∞ .



3442 L. Gao et al. Ann. Henri Poincaré

(ii) For every function F satisfying condition (I)+(QM) or (I)+(Δ2), the
generator ΦF (A) satisfies ΓE and hence CLSI.

Proof. Let TK(f)(g) =
∫

K(g, h)f(h)dh be an integral operator. Then, we see
that

|TK(f)(g)| ≤ sup
h

|K(g, h)|
∫

|f(h)|dh

implies that

‖TK : L1(G) → L∞(G)‖ = ess supg,h |K(g, h)|
is given by the essential supremum. For a right invariant kernel K(g, h) =
kt(gh−1), we deduce ‖TK‖ = ‖kt‖∞. Therefore, our assumption implies

‖St : L1(G) → L∞(G)‖cb = ‖St : L1(G) → L∞(G)‖ ≤ ct−m/2 .

Combined with the assumption on spectral gap σmin, we know by Proposition
(3.2) that

‖St − E : L1(G) → L∞(G)‖cb ≤
{

2ct−m/2 0 ≤ t ≤ 1
C(d, σmin)e−λt 1 ≤ t < ∞ .

where E is the conditional expectation from L∞(G) onto the constant func-
tions. Note that Tt = St ⊗ idM |π(M), E = E⊗ idM |π(M) by restriction because
the transference homomorphism π gives completely isometric inclusion (by the
diagram (4.2))

L1(M) ⊂π L1(G,L1(M)) , L∞
1 (N⊂M) ⊂π L∞

1 (M ⊂ L∞(G,M)) ,

Then, i) follows from

‖Tt − E : L1(M) → L∞
1 (N ⊂ M)‖cb

≤ ‖(St − E) ⊗ idM : L1(G,L1(M)) → L∞
1 (M⊂L∞(G,M))‖cb

= ‖St − E : L1(G) → L∞(G)‖cb .

The assertion (ii) follows from (i) via Theorem 3.16. �

Now we combine Theorem 4.8 with the kernel estimates for a Hörmander
systems on a Lie group. Let G be a compact Lie group and g be its Lie algebra
(of right invariant vector fields). A generating set X = {X1, . . . , Xr} of g is a
right invariant Hörmander systems on G. Indeed,

X(f) =
d
dt

f(exp(tX)g)|t=0 ,

is right translation invariant because the left and right translations commute.

Then, the sub-Laplacian ΔX =
r∑

j=1

Xj
∗Xj generates a right invariant semi-

group St = e−tΔX

Corollary 4.9. Let X be a generating set of g and St = e−tΔX : L∞(G) →
L∞(G) be the right invariant semigroup given by the sub-Laplacian ΔX . Then,
the transferred semigroup Tt : M → M and its generator A satisfy



Vol. 21 (2020) Complete logarithmic Sobolev inequality 3443

(i) For every function F satisfying condition (I) + (QM) or (I) + (Δ2), the
generator ΦF (A) satisfies ΓE and hence CLSI.

(ii) In particular, for all 0 < θ < 1 the generator Aθ satisfies λ-ΓE with
constant λ(θ,X) = c0t

−θ
0 θ2(1 − θ). Here, t0 = t0(ΔX) is the return time

of ΔX and c0 an absolute constant.

Proof. This is an special case of Theorem 4.4 for a compact Lie group G. �

4.3. Finite-Dimensional Representation of Lie Groups

Let Mm be the m×m matrix algebra and Um be its unitary group. A unitary
representation u : G → Um induces a representation û : g → um of the
corresponding Lie algebra, where um = i(Mm)sa is the Lie algebra of Um

and (Mm)sa are the self-adjoint matrices in Mm. Let X = {X1, . . . , Xr} be a
generating set of g and Y1, . . . , Yr ∈ (Mm)sa be their images under û. Indeed,
for the exponential map, we have

u(exp(tXj)) = eitYj

and iYj ∈ iMsa
m is the corresponding generator for the one parameter unitary

u(exp(tXj)) ⊂ Mm. Let us consider the (self-adjoint) Lindblad generator given
by

L(ρ) =
r∑

j=1

Y 2
j ρ + ρY 2

j − 2YjρYj .

Then, we have a concrete realization of Lemma 4.6.

Lemma 4.10. Let π : Mm → L∞(G,Mm) be given by

π(x)(g) = u(g)−1xu(g)

Then,

ΔX ⊗ idMm
(π(ρ)) = π(L(ρ)) , Xj ⊗ idMm

(π(x)) = −iπ([Yj , x]) .

In particular, e−tL is a transferred semigroup of e−tΔX on G.

Proof. Let x ∈ Mm and h, k ∈ lm2 being two vectors. We consider the scalar
function

f(g) = 〈h, u(g)−1xu(g) k〉
Then, we have

Xj(f)(g) =
d
dt

f(exp(tXj)g)|t=0 =
d
dt

〈h, u(g)−1e−itYj xeitYj u(g)k〉|t=0

= i〈h, u(g)−1(xYj − Yjx)u(g)k〉 = −i〈h, u(g)−1[Yj , x]u(g)k〉 .

Since h, k are arbitrary, we deduce the second assertion. Note that Xj = −Xj
∗.

Then,

Xj
∗Xjπ(x) = π([Yj , [Yj , x]]) = π(Y 2

j x + xY 2
j − 2YjxYj) .
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and hence

ΔX(π(x)) = π

⎛
⎝∑

j

Y 2
j x + xY 2

j − 2YjxYj

⎞
⎠ .

This implies that the semigroup St = e−tΔX on G satisfies

(St ⊗ id) ◦ π = π ◦ e−tL . �

Theorem 4.11. Let X = {X1, . . . , Xr} be a generating set of g and u : G → Um

be a unitary representation such that û(Xj) = Yj. Let

L(x) =
∑

j

Y 2
j x + Y 2

j − YjxYj .

Then, for any 0 < θ < 1, A = Lθ satisfies λ-ΓE and hence λ-CLSI with
λ(X, θ) = c0t

−θ
0 θ2(1 − θ) depending on the return time t0 = t0(e−tΔX ) defined

in (3.4) and θ.

Proof. By Lemma 4.10, e−tL is a transferred semigroup of St on G. The asser-
tion follows from Proposition 4.7 and Corollary 4.9. �

We obtain the following corollary from the cb-version of Varopoulos’ the-
orem [53].

Corollary 4.12. Let G be a d-dimensional Lie group and X be a generating set
of g using iterated Lie brackets up to order lX −1 (with lX many elements from
X). Let u : G → Um be a unitary representation and L be as above. Suppose
St = e−tB is a semigroup of completely positive self-adjoint trace-preserving
maps on Mm such that

(i) The fixpoint algebra NL of e−tL is contained in the fixpoint algebra NB

for e−tB;
(ii) 〈x,Lαx〉tr ≤ c(〈x,Bx〉tr+ ‖x‖2

2) for some 0 < α < dlX
2 .

Then, for all 0 < θ < 1, Bθ satisfies ΓE and hence CLSI.

Proof. Denote dX = dlX . The cb-version of Varopoulos theorem implies that

‖(I + L)−α/2 : L2(Mm) → Lq
2(NL⊂Mm)‖cb ≤ c(q)

holds for 1
q = 1

2 − α
dX

provided 2α < dX . By our assumption, we have

‖(I + L)α/2(x)‖2 ∼ (‖x‖2 + ‖Lα
2 (x)‖2) ≤ c(‖x‖2 + ‖B1/2x‖2) .

Using NL ⊂ NB , we deduce that

‖(I + B)−1/2 : L2(Mm) → Lq
2(NB⊂Mm)‖cb ≤ c′(q) .

By ii) ⇒ i) in Varopoulos Theorem (4.2), we deduce that

‖e−tB : L1
∞(NB⊂M)m → Mm‖cb ≤ ct−dX/2α .

Thanks to the spectral gap for B, we may again use Theorem 3.10 and deduce
the assertion. �
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5. A Density Result

In this section, we show that on matrix algebras, the set of self-adjoint gen-
erators satisfying ΓE is dense. Let Tt = e−tA : Mn → Mn be a semigroup of
self-adjoint and unital completely positive maps. Using the Lindblad form, we
may assume that

L(x) =
m∑

k=1

a2
kx + xa2

k − 2akxak =
m∑

k=1

[ak, [ak, x]] .

with a1, . . . , am self-adjoint. The corresponding derivation is given by

δ : Mn → ⊕m
k=1Mn , δ(x) = ([iak, x])m

k=1 ,

and the fixpoint algebra is

N = {x | δ(x) = 0} = {a1, . . . , am}′ .

It is easy to check that

ΓL(x, x) =
∑

k

[iak, x∗][iak, x] =
∑

k

[ak, x]∗[ak, x] .

Let X = {ia1, . . . , iam}, and g be the matrix Lie algebra generated by X. Note
that for two anti-selfadjoint operators A∗ = −A,B∗ = −B, the commutator
is still anti-selfadjoint [A,B]∗ = (AB −BA)∗ = B∗A∗ −A∗B∗ = [B,A]. Then,
g is a Lie subalgebra of the anti-selfadjoint matrices un. The following lemma
is probably well known. We include a proof for completeness.

Lemma 5.1. Let g be a Lie subalgebra of un. Then, g is a Lie algebra of some
connected compact Lie group.

Proof. Recall that the Killing form on un is given by

K(A,B) = tr(adA ◦ adB) ,

where adA(Y ) = [A, Y ] is the adjoint transformation on un. We first show that
the killing form K is negative semi-definite. For matrices x and y, define the
real inner product (x, y) = Retr(x∗y). It is clear that (·, ·) is unitary invariant,
i.e., for all unitary u, (uxu∗, uyu∗) = (x, y). This yields that for anti-selfadjoint
A

([A, x], y) + (x, [A, y]) = 0 ,

which means the adjoint transformation adA is skew-symmetric on some
orthonormal basis with respect to the inner product. Then, the Killing form
is negative semi-definite because for all skew-symmetric matrix T , tr(T 2) =
−tr(T tT ) ≤ 0. On the other hand, g ⊂ un is matrix Lie algebra invariant
under ∗-operation (conjugate transpose). According to [55, Prop 1.56], we see
that g is reductive. Hence, g = g0 +[g, g] where g0 is abelian and [g, g] is semi-
simple. Then, by [55, Theorem 1.42], we know that the Killing form on [g, g] is
non-degenerate and hence negative-definite. According to [55, Prop 4.27], [g, g]
is the Lie algebra of some compact Lie group G0. Therefore, the Lie group G
corresponding to g can be a product of a finite-dimensional tori and G0, which
is indeed compact. �
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Our aim now is to find a suitable approximation of the form Bε = φε,σ(L),
which satisfies a ΓE estimate and is close to L in operator norm on L2(Mn, tr).
We apply the technique from Sect. 3 and define for a fixed σ > 0 the function

Fε,σ(t) = 1[ε,1)(t)t−2 + 1[1,∞](t)t−(1+σ) .

Lemma 5.2. Let ε > 0. Define

φε,σ(λ) = (− ln ε)−1

∫ ∞

ε

(1 − e−tλ)Fε,σ(t)dt .

Then,

(1) ‖L − φε,σ(L)‖ ≤ 2σ−1+‖L‖2

|2 ln ε| ;
(2) If c(L)ΓI−E ≤cp ΓI−Tt

holds for t ≥ t0 ≥ 1, then

c(L)
σ| ln ε|tσ0

ΓI−E ≤ Γφε,σ(L) .

Proof. Using differentiation, we have that x − x2

2 ≤ 1 − e−x ≤ x. Define

ψ(λ) =
∫ 1

ε

(1 − e−λt)
dt

t2
. Then,

| ln ε|λ − λ2

2
≤
∫ 1

ε

(
λt − λ2t2

2

)
dt

t2
≤ ψ(λ) ≤

∫ 1

ε

λt
dt

t2
= | ln ε|λ .

Write ψ̃(λ) =
∫ ∞

1

(1− e−λt)
dt

t1+σ
. Note that 0 ≤ ψ̃(λ) ≤ σ−1. Then, we find

λ − λ2

2| ln ε| ≤ φε,σ(λ) ≤ λ +
1

σ| ln ε| .

By functional calculus, we deduce that

‖L − φε,σ(L)‖ ≤ 1
σ| ln ε| +

‖L‖2

2| ln ε| ≤ 2σ−1 + ‖L‖2

2| ln ε| .

For the second assertion, we observe that by linearity of ΓA in A

Γφε,σ(L) ≥ c(L)| ln ε|−1

(∫ ∞

t0

dt

t1+σ

)
ΓI−E ≥ c(L)

σ| ln ε| t
−σ
0 ΓI−E .

This completes the proof of (ii). �

Remark 5.3. (a) An interesting choice is σ = 1
ln t0

. Then, we find

Γφε,σ(L) ≥ c(L)| ln t0|
e| ln ε| ΓI−E ,

and ‖L−φε,σ(L)‖ ≤ 2| ln t0|+‖L‖2

2| ln ε| . (b) We can also slightly improve the lower
estimate. Let β > 0. The function g(x) = 1 − e−x is concave and hence
1−e−x

x ≥ (1 − x
2 ) implies

∫ εβ

ε

(1 − e−λt)
dt

t2
≥ 1 − e−λεβ

λεβ

∫ εβ

ε

λt
dt

t2
≥
(

1 − λεβ

2

)
(1 − β)λ| ln ε| .
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Thus, assuming | ln ε| ≥ 2
β | ln λ

2β | implies

−2βλ ≤ φε,σ(λ) − λ ≤ 1
σ| ln ε|

and hence, for σ = 1
ln t0

, t0 ≥ 1 we get

‖φε,σ(L) − L‖ ≤ 2β‖L‖ +
ln t0
| ln ε| .

(c) Estimating the return time t0 through the Hörmander system may not
be very concrete. Nevertheless, we only need to know an upper bound for
‖T1/2 : L1(Mn) → L∞

1 (N⊂Mn)‖cb and the spectral gap of L to control t0.

Theorem 5.4. Let L be the generator of a semigroup of unital completely pos-
itive and self-adjoint maps Tt = e−tL on Mm. Then, there exists a constant
α(L) such that for every ε > 0 there exists a generator Bε, obtained from
functional calculus of L, such that

‖L − Bε : L2(Mm) → L2(Mm)‖ ≤ ε and εα(L)ΓI−EN
≤ ΓBε

.

Moreover, we have the estimate

α(L) ≥ ln t0
e(2 ln t0 + ‖L‖2)

,

where t0 is the return time of L.

Proof. According to Lemma 5.1, we have a generating set X = {X1, . . . , Xr}
of a compact Lie algebra g and a representation π : g → um satisfies
π(Xk) = iak. Let G be the corresponding Lie group and ΔX be the sub-
Laplace of X = {X1, . . . , Xr}. Since X = {X1, . . . , Xr} is generating and
hence a Hörmander system, we have by Lemma 4.1 and Theorem 4.2 that St

satisfies Proposition 3.2 and hence has a return time t0(ΔX) by Proposition
3.7. Note that Tt = e−tL is a transferred semigroup of St ⊗ idMm

and the
commutant N = {a1, . . . , ar}′ is the fixpoint algebra of e−tL. Thus, we have
ΓI−Tt

≥ 1
2ΓI−EN

for t ≥ t0. Now, we choose σ = 1
ln t0

and deduce that for
0 < ε0 < 1,

‖φε0,σ(L) − L‖ ≤ 2| ln t0| + ‖L‖2

2| ln ε0|
and Γφε0,σ(L) ≥ | ln t0|

2e| ln ε0|ΓI−E . Thus, we may choose 0 < ε0 < 1 such that

| ln ε0| = | ln t0|+‖L‖2/2
ε and obtain

Γφε0,σ(L) ≥ ε ln t0
e(2 ln t0 + ‖L‖2)

ΓI−E .

That completes the proof. �

Remark 5.5. We can improve the dependence in ‖L‖ using Remark 5.3 (b).
We choose β = ε

4‖L‖ and ε0 such that

| ln ε0| ≥ 2| ln t0|
ε

, | ln ε0| ≥ 2
β

| ln ‖L‖
2β

| =
8‖L‖

ε
| ln 2‖L‖2

ε
| .
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Then, we obtain the estimate

ΓBε
≥ ε ln t0

16e‖L‖(2 ln ‖L‖ + | ln t0|)ΓI−E .

Note that t0 = ln c0‖T1/2‖cb

σmin(L) only depends linearly on 1/σmin(L). Hence, our
estimate just depends on the minimal and maximal eigenvalue of L.

Corollary 5.6. The set of generators of unital completely positive self-adjoint
semigroups on Mm satisfying ΓE and hence CLSI is dense.

Remark 5.7. In [43] it was shown that in primitive semigroup (with an unity
full-rank invariant state) there exists an entanglement-breaking time tEB such
that Tt is entanglement-breaking for t > tEB. A completely positive trace
preserving map is called entanglement-breaking if its Choi matrix is a convex
combination of tensor product positive matrices. Our kernel estimate can be
used to estimate this entanglement breaking time tEB.

6. Geometric Applications and Deviation Inequalities

The aim of this section is to derive several concentration inequalities for semi-
groups satisfying MLSI in the non-ergodic and possibly infinite-dimensional
situation. The starting point is a version of Rieffel’s quantum metric space. Let
Tt : M → M be a semigroup of unital completely positive and self-adjoint maps
and A be the generator of Tt. As usual, we will assume that A ⊂ dom(A1/2) is
a dense ∗-algebra and invariant under Tt. On M we define the Lipschitz norm
via the gradient form,

‖f‖LipΓ = max{‖ΓA(f, f)‖ 1
2
M , ‖ΓA(f∗, f∗)‖ 1

2
M} , f ∈ A .

This induces a quantum metric on the state space by duality

‖ρ‖Γ∗ = sup{|τ(ρf)| | E(f) = 0 , ‖f‖LipΓ ≤ 1} .

Usually, such a Lipschitz norm is considered in the ergodic setting, where the
fixpoint subalgebra N = C1 and hence the conditional expectation is given
by E(f) = τ(f)1. Since for states τ(ρ) = 1, one can assume the additional
condition E(f) = 0 when calculating the distance dΓ(ρ, σ) = ‖ρ − σ‖Γ∗ . This
is crucial in the non-ergodic situation, see the last section of [49] for more
detailed discussion. Let δ : dom(A1/2) → L2(M̂) be the derivation which
implements the gradient form

ΓA(x, y) = EM (δ(x)∗δ(y)) .

In the construction of a derivation in [48], the following additional estimate
was also proved.

‖δ(x)‖M̂ ≤ 2
√

2 max{‖Γ(x, x)‖1/2
M , ‖Γ(x∗, x∗)‖1/2

M } = 2
√

2‖x‖LipΓ . (6.1)
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6.1. Wasserstein 2-Distance and Transport Inequalities

The Otto-Vilani’s theory [76] of Wasserstein 2-distance transport inequality
has been adapted to discrete commuting setting by Mass [32,69] and primitive
finite-dimensional setting noncommutative by Carlen-Maas [25] (see also [24,
26]). In this part, we review and extend their approach to the non-ergodic self-
adjoint setting. Let ρ be a positive density operator. Following [25, Lemma
5.8] we use the symbol

[ρ](x) =
∫ 1

0

ρsxρ1−sds

for the multiplier operator, and

[ρ]−1(x) =
∫ ∞

0

(ρ + t)−1x(ρ + t)−1dt .

for the inverse. The need of the symmetric two-sided multiplication is a major
difference between the commutative and noncommutative setting. Let us recall
a key formula which recovers the generator from the logarithm as follows:

A(ρ) = δ∗
(
[ρ]δ(ln ρ − ln

(
E(ρ)

))
(6.2)

Indeed, let us assume that ρ and x ∈ A and ρ ≥ c1 for some c > 0. Write
σ = E(ρ). Using the operator integral JF (as in Sect. 2.1) for F (x) = ln(x), we
know δ(ln ρ) = JF (δ(ρ)) is well-defined in L2(M̂). Since ln(σ) ∈ N , we deduce
from δ(ln σ) = 0. Hence,〈

x, δ∗[ρ]δ
(
ln ρ − ln(E(ρ))

)〉
= τ

(
δ(x∗)[ρ]δ

(
ln ρ)

))− τ
(
δ(x∗)[ρ]

(
δ(ln σ)

))

= τ
(
δ(x∗)[ρ]Jρ

F

(
δ(ρ)

))
= τ

(
δ(x∗)[ρ][ρ]−1

(
δ(ρ)

))

= τ(Γ(x, ρ)) =
1
2

(
τ
(
A(x∗)ρ) + τ

(
x∗A(ρ)

)− τ
(
A(x∗ρ)

))
= τ(x∗A(ρ)) .

which verifies (6.2) weakly in L2(M). Here, we used A = A∗ and A(1) =
0. The expression ln ρ − ln E(ρ) itself occurs by differentiating the relative
entropy DN (ρ) = D(ρ||E(ρ)). Consider g(t) = ρ + tβ with a self-adjoint β
with τ(β) = 0. Using the derivation formula (2.3) for F (x) = x ln x with
derivative F ′(x) = 1 + lnx, we deduce from the tracial property that

d
dt

DN (ρ + tβ)|t=0 =
d
dt

τ
(
F (ρ + tβ)

)− d
dt

τ
(
F (E(ρ + tβ))

)|t=0

= τ
(
F ′(ρ)β

)− τ
(
F ′(E(ρ))E(β)

)
= τ(β) + τ

(
(ln ρ)β

)− τ
(
E(β)

)− τ
(
ln E(ρ)E(β)

)
= τ

((
ln ρ − ln E(ρ)

)
β
)

.

This means the Radon–Nikodym derivative of DN with respect to the trace
satisfies

dD′
N (ρ)
dτ

= ln ρ − ln E(ρ) . (6.3)
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In the following, we will identify a normal state φρ(x) = τ(xρ) of M and its
density operator ρ.

Definition 6.1. Given a faithful normal state ρ ∈ M , we define the weighted
L2-norm on L2(M̂) by the inner product

〈ξ, η〉ρ := 〈ξ, [ρ]η〉L2(M̂) =
∫ 1

0

τM̂ (ξ∗ρ1−sηρs)ds .

If ρ is invertible and μ1 ≤ ρ ≤ μ−11, we have

μ〈ξ, ξ〉 ≤ 〈ξ, ξ〉ρ ≤ μ−1〈ξ, ξ〉 .

Hence, for all invertible ρ, the weighted L2-norm ‖ ‖ρ is equivalent to the
trace L2(M̂, τ)-norm. However, this change of metric is crucial in introducing
the following (pseudo-)Riemannian metric. Recall that ΩΓ = H is the W ∗-
submodule of Lc

∞(M⊂M̂) generated by δ(A)A.

Lemma 6.2. Let ρ be a faithful normal state of M . For z ∈ Ran(δ∗) ⊂ M ,
define

‖z‖Tanρ
= inf{‖ξ‖ρ | δ∗([ρ]ξ) = z} .

Here, the infimum is taken over all ξ ∈ H satisfying δ∗([ρ]ξ) = z. Then,
there exists a sequence (an) ⊂ A such that ‖δ(an)‖ρ ≤ ‖z‖Tanρ

and z =
limn δ∗([ρ]δ(an)) holds weakly.

Proof. We follow the argument of [25, Theorem 7.3] in the primitive case.
Observe that for x ∈ A, [ρ](δ(x)) belongs to the closure of H. We say that ξ
in H is divergence-free if δ∗(ξ) = 0. Let ξ0 be in the closure of H such that

‖z‖2
Tanρ

= ‖ξ0‖2
ρ , δ∗([ρ](ξ0)

)
= z .

Write ξε = ξ0 + ε[ρ]−1(ξ). It satisfies

‖ξ0‖2
ρ ≤ ‖ξ0 + ε[ρ]−1(ξ)‖2

ρ = ‖ξ0‖2
ρ + 2εRe〈ξ0, [ρ]−1(ξ)〉ρ + ε2‖[ρ]−1(ξ)‖2

ρ

and hence 〈ξ0, [ρ]−1(ξ)〉ρ = 0 for all divergence-free ξ. Equivalently, we find

τM̂ (ξ∗
0ξ) = τ(ξ∗

0 [ρ][ρ]−1(ξ)) = 0 .

Note that ξ ∈ dom(δ∗) is divergence-free if and only if for all x ∈ A,

τ(δ∗(ξ)x) = τ̂(ξδ(x)) = 0 .

Hence, ξ0 is orthogonal to the divergence-free forms if and only if ξ0 is in the
closure of δ(A). In other words, there exists a sequence (an) ⊂ A such that
ξ0 = limn δ(an) with respect to ‖·‖ρ. This implies

τ(b∗z) = τ(δ(b∗)[ρ]ξ0) = lim
n

τ
(
b∗δ∗([ρ]δ(an)

))

for all b ∈ A. Renormalizing an as ãn = ‖ξ0‖ ρ

‖δ(an)‖ ρ
an, we can assume

‖δ(ãn)‖ρ≤‖ξ0 ‖ρ=‖z ‖Tanρ
and deduce the assertion. �
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Remark 6.3. (a) If z is selfadjoint, we may use the fact that δ is ∗-preserving
to show that ξ0 ∈ M̂ is also self-adjoint. Thus, we may replace an by their
self-adjoint parts using the fact that [ρ] also preserves self-adjointness.
(b) Since A is self-adjoint, we know that the range of A is dense in (I −
E)L2(M), the orthogonal complement of L2(N), and hence contained in the
closure of δ∗(δ(A)A) ⊂ L2(N)⊥. In fact, the L2-closure of δ∗(δ(A)A) =
ran(δ∗) is exactly (I − E)L2(M).

In the following, we denote by Hρ the closure of δ(A)A with respect to
the ‖ ·‖ρ norm. Hρ is viewed as the tangent space at the point ρ and ‖ ·‖Tanρ

gives a pseudo-Riemannian metric at ρ. (When N is not a trivial subalgebra,
ran(δ∗) does not contain all traceless elements). The following inequalities in
ergodic (primitive) setting were derived in [25,84].

Corollary 6.4. Let ρ be a faithful normal state of M . Then,

‖x‖Γ∗ ≤ 2
√

2‖x‖Tanρ .

Proof. Let an ∈ A such that lim
n→∞ δ∗([ρ]δ(an)) = x. We may assume that

‖δ(an)‖ρ ≤ (1 + ε)‖x‖Tanρ

for a given ε > 0. Then, we deduce that for f ∈ A we have

|τ(f∗x)| = lim
n

|τ(f∗δ∗([ρ]δ(an)))| = lim
n

|τ(δ(f)∗[ρ]δ(an))|
≤ lim sup

n
‖δ(f)‖ρ‖δ(an)‖ρ ≤ (1 + ε)‖δ(f)‖ρ‖x‖Tanρ

.

Furthermore, we deduce from the fact that the inclusion M ⊂ M̂ is trace
preserving that

‖δ(f)‖2
ρ = τ(δ(f)∗[ρ]δ(f)) =

∫ 1

0

τ(δ(f)∗ρ1−sδ(f)ρs)ds

≤ ‖δ(f)‖2
L∞(M̂)

∫ 1

0

‖ρ1−s‖L 1
1−s

(M̂)‖ρs‖ 1
s
ds ≤ ‖δ(f)‖2

L∞(M̂)

≤ 8 ‖f ‖2
LipΓ

.

Thus, the estimate (6.1) implies the assertion, after sending ε to 0. �

Denote S(M) as the set of faithful normal states of M . Let F : S(M) → R

be a real function defined on S(M). We say that F admits the gradient gradρ F
with respect to the tangent metric, if for every ρ there is an vector ξ ∈ Hρ

such that for every differentiable path ρ : (−ε, ε) → S(M) with ρ(0) = ρ

ρ′(0) = δ∗([ρ]ξ0) =⇒ d

dt
F (ρ(t))|t=0 = 〈ξ, ξ0〉ρ .

and we write gradρ F = ξ. Our control function is the relative entropy with
respect to the fixpoint algebra

F (ρ) = DN (ρ) = D(ρ||E(ρ)) .
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Let ρ : (−ε, ε) → S(M) be a smooth path. Using the directional derivative of
DN from (6.3), we find that at ρ = ρ(0)

dDN (ρ(t))
dt

|t=0 = τ
((

ln ρ − lnE(ρ)
)
δ∗([ρ]ξ0)

)
= τ

(
δ
(
ln ρ − ln E(ρ)

)
[ρ]ξ0

)

=
〈
δ(ln ρ), ξ0

〉
ρ

.

By definition that means

gradρDN = δ(ln ρ) . (6.4)

Note that in [25] the inner product with the modified multiplication was
exactly designed to satisfy this property. Moreover, we find that the corre-
sponding tangent direction in the dual of the state space is given by

δ∗([ρ] gradρ DN ) = δ∗([ρ]δ(ln ρ)) = δ∗([ρ][ρ]−1δ(ρ)) = A(ρ) .

A curve γ in the state space is said to follow the path of steepest descent or
gradient flow with respect to F if for any t,

γ′(t) = δ∗([γ(t)] gradγ(t) F ) .

This implies
dF (γ(t))

dt
= −‖ gradγ(t) F‖2

γ(t) .

We denote En(ρ) := ‖ gradρ F‖2
ρ as the energy function with respect to F . In

our special case F = DN , we find

En(ρ) = ‖ gradρ DN‖2
ρ = 〈δ(ln ρ), δ(ln(ρ)〉ρ =

〈
[ρ]−1δ(ρ), [ρ][ρ]−1δ(ρ)

〉
L2(M̂)

= τ
(
δ(ρ)[ρ]−1δ(ρ)

)
= τ

(
ρδ∗δ(ln ρ)

)
= τ

(
ρA(ln(ρ))

)
= τ

(
A(ρ) ln ρ

)
= IA(ρ) .

This means the pseudo-Riemannian metric is chosen so that the semigroup
exactly follow the path of steepest descent with respect to F = DN ,

dDN (Tt(ρ))
dt

|t=0 = −IA(ρ) = −‖ gradρ DN‖2
ρ .

With (6.2), we summarizes the above discussion as follows.

Proposition 6.5. Suppose a differentiable curve γ : (a, b) → S(M) satisfies
that

γ′(t) = −A
(
ρ(t)

)
Then, the curve γ follows the path of steepest descent with respect to DN . In
particular, the semigroup path γ(t) = Tt(ρ) is a curve of steepest descent for
DN .

We include the following standard argument for completeness.

Lemma 6.6. Let F (ρ) = DN (ρ) and En(ρ) = IA(ρ). Let ρ : [0,∞) → S(M)
be a path of steepest descent with respect to F and λ > 0. Then,

2λF (ρ(t)) ≤ En(ρ(t)) implies F (ρ(t)) ≤ e−2λtF (ρ(0))
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Proof. According to the above discussion, we have

ρ′(t) = −A(ρ(t)) = −δ∗
(
[ρ(t)] gradρ(t) F )

)
,

dF (ρ(t))
dt

= 〈gradρ(t) F,− gradρ(t) F 〉ρ(t) = −En(ρ(t)) .

Then, our assumption implies that

dF (ρ(t))
dt

= En(ρ(t)) ≤ −2λF (ρ(t))

and hence F (ρ(t)) ≤ e−2λtF (ρ(t)) by Grönwall’s Lemma. �

Denote S+(M) be the space of all normal faithful states of M . The
pseudo-Riemannian distance on S+(M) of our metric is given by

dA,2(ρ, σ) = inf{L(γ) : γ(0) = ρ, γ(1) = σ}
where the infimum runs over all piecewise smooth curve in S(M) and the
length function is defined by

L(γ) =
∫ 1

0

‖γ′(t)‖Tanγ(t)dt .

Thanks to Corollary 6.4 and the definition, we have the distance estimate

‖ρ − σ‖Γ∗ ≤ 2
√

2 dA,2(ρ, σ) . (6.5)

The following result follows similarly from [25, Theorem 8.7] using the path
of steepest descent and the relative entropy. Note that in [25] the modified
log-Sobolev inequality is defined with constant 2λ.

Theorem 6.7. The λ-MLSI inequality

λD
(
ρ||E(ρ)

) ≤ IA(ρ)

implies

dA,2

(
ρ,E(ρ)

) ≤ 2

√
D(ρ||E(ρ))

λ
. (6.6)

We say the generator A satisfies λ-TA2 if the above inequality (6.6) holds.
Combining with the distance estimate (6.5), we have the following corollary of
Γ -Lipschitz distance:

Corollary 6.8. λ-MLSI implies

‖ρ − E(ρ)‖Γ∗ ≤ 4

√
2D(ρ||E(ρ))

λ

and

‖ρ1 − ρ2‖Γ∗ ≤ 4
√

2

(√
D(ρ1||E(ρ1))

λ
+

√
D(ρ2||E(ρ2))

λ

)
.
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The first inequality is just a combination of Corollary 6.4 and Theorem
6.7. For the second inequality, we observe that ‖E(ρ)‖Γ∗ = 0, and hence the
triangle inequality implies

‖ρ1 − ρ2‖Γ∗ ≤ ‖ρ1 − E(ρ1)‖Γ∗ + ‖ρ2 − E(ρ2)‖Γ∗ . �

Remark 6.9. Let e ∈ M be a projection. Then, ρe = e
τ(e) is the normalized

state which satisfies

D(ρe||E(ρe)) = τ(ρe ln ρe) − τ
(
E(ρe) ln E(ρe)

)
≤ − ln τ(e) − τ(ρe) ln τ(ρe) = − ln τ(e) .

Let e1, e2 ∈ M be two projections. Assume that there exists a self-adjoint y
such that

h ≤
∣∣∣∣τ(e1y)

τ(e1)
− τ(e2y)

τ(e2)

∣∣∣∣ and ‖Γ(y, y)‖ ≤ 1 .

Then, we find the geometric version of Talagrand’s inequality (see [93] and
also [52])

τ(e1)τ(e2) ≤ e− λh2
64

Indeed, this follows from Corollary 6.8

h ≤ ‖ρe1 − ρe2‖Γ∗ ≤ 4
√

2λ− 1
2
(√− ln τ(e1) +

√
− ln τ(e2)

)
≤ 8λ− 1

2
√

− ln τ(e1) − ln τ(e2) .

The constant 64 is probably not optimal in general.

6.2. Wasserstein 1-Distance and Concentration Inequalities

In [52], the commutative characterization of Wasserstein entropy estimates
in terms of concentration inequalities was extended to the noncommutative
setting. In the non-ergodic setting, we have the following result.

Theorem 6.10. Let (M, τ) be a finite von Neumann algebra and (Tt) be a self-
adjoint semigroup of completely positive trace reducing maps. Let N be the
fixpoint subalgebra. Then, the following conditions are equivalent

(i) There exists a constant C1 > 0 such that for all p ≥ 2 and f ∈ M with
E(f) = 0,

‖f‖Lp∞(N⊂M) ≤ C1
√

p‖f‖LipΓ ;

(ii) There exists a constant C2 > 0 such that for all normal states ρ

‖ρ‖Γ∗ ≤ C2

√
D(ρ||E(ρ)) .

In the following, we say that (Tt) or its generator A satisfies λ-WA1 if

‖ρ‖Γ∗ ≤ 4
√

2

√
D(ρ||E(ρ))

λ
.

Note that the factor 4
√

2 is chosen so that λ-MLSI implies λ-WA1 (via λ-TA2).
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Proof. Fix 1
p + 1

p′ = 1. Recall that the relative p-Rényi entropy

Dp(ρ||σ) = p′ ln ‖σ−1/2p′
ρσ−1/2p′‖p

is monotone over p ∈ (1,∞]. Hence, Dp
N (ρ) = inf

σ∈N,τ(σ)=1,σ≥0
Dp(ρ||σ) satisfies

D(ρ||E(ρ)) ≤ Dp
N (ρ) = p′ ln ‖ρ‖Lp

1(N⊂M) ≤ p′

ε
‖ρ‖ε

Lp
1(N⊂M) .

for any ε > 0. Therefore, we deduce from (ii) that for positive ρ,

‖ρ‖Γ∗ ≤ C

√
p′

ε
‖ρ‖1− ε

2
1 ‖ρ‖ ε

2
Lp

1
.

Let us consider 1
q = 1

8 + 7
8p . We improve upon the well-known inequality

[L∞, Lp′
∞]1/4,∞ ⊂ [L∞, Lp′

∞]7/8 = Lq′
∞

by using the modified four term Kt functional from [JP05]. Indeed, ‖α‖2q′ ≤ 1
implies

‖
n∑

j=1

πj(α∗xα)‖Lp′ (M,�n∞) ≤ ‖α‖2p′‖
n∑

j=1

πj(x)‖
Lp′

∞(�n∞)
.

By duality, for every ρ = ρ∗ ∈ Lp
1(N⊂M) of norm < 1, we can find a decompo-

sition ρ =
∑

j λjyj ,
∑

j λj ≤ c and yj = ajbj such that ‖aja
∗
j‖1+tj‖aja

∗
j‖Lp

1
≤

t
1/4
j . The same estimate with the same tj holds for b∗

j bj . Using the positive

2 × 2 matrix Yj =
(

aja
∗
j ajbj

b∗
jaj b∗

j bj

)
we deduce

‖yj‖Γ∗ ≤ ‖Yj‖Γ∗ ≤ 4C
√

p′‖Yj‖3/4
1 ‖Yj‖1/4

Lp
1

≤ 4C
√

p′t3/16
j t

−3/16
j ≤ 4C

√
p′.

By convexity we deduce that

‖ρ‖Γ∗ = ‖
∑

j

λjyj‖Γ∗ ≤ 4c0

√
p′‖ρ‖Lq

1
.

By duality we deduce that for E(f) = 0 we have

‖f‖Lq′ (N⊂M) ≤ 8c0

√
2
√

p′C‖f‖Γ .

However, for a given q′ < ∞ we may always choose p′ = 8
7q′, and hence replace

√
p′ by

√
8
7

√
q′. This concludes the proof of ii) ⇒ i). Conversely, again we have

by [44] that for 1
q = ε

2s the inclusion

Lq
∞(N⊂M) = [L∞(M), Ls

∞(N⊂M)]ε/2 ⊂ [L∞(M), Ls
∞(N⊂M)]ε/2,∞

is bounded by a universal constant. This means i) implies that

‖f‖[L∞(M),Ls∞(N⊂M)]ε/2,∞ ≤ C
√

q‖f‖Γ =
√

2C

√
s

ε
‖f‖LipΓ .

By duality we deduce for s = p′ that

‖ρ‖Γ∗ ≤
√

2eC

√
p′

eε
‖ρ‖1− ε

2
1 ‖ρ‖ ε

2
Lp

1(N⊂M)
.
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Thus, for a state ρ such that D(ρ||E(ρ)) < ∞ , we may choose ε =
(ln ‖ρ‖Lp

1(N⊂M))−1 and obtain that

‖ρ‖Γ∗ ≤
√

2eC
√

p′ ln ‖ρ‖Lp
1(N⊂M) .

By sending p → 1, we deduce (ii). �

Remark 6.11. Recall that in the ergodic case N = C1, the relative entropy
coincides with the entropy functional Ent(ρ) := τ(ρ ln ρ) = D(ρ||1). It was
proved in [52] that ‖ρ‖Γ∗ ≤ C

√
Ent(ρ) for all density ρ is equivalent to that

for p ≥ 2,

‖f − E(f)‖Lp(M) ≤ C ′√p‖f‖LipΓ .

In that sense, the estimate in the non-ergodic case with respect to DN is sig-
nificantly stronger, because the inclusion Lp

∞(N⊂M) ⊂ Lp(M) is contractive
for all finite M .

Lemma 6.12. For a positive density ρ,

D(ρ||E(ρ)) = sup
σ

τ
(
ρ
(
ln σ − ln E(σ)

))

where the supremum is taken over all positive density σ with bounded inverse.

Proof. Using the convexity of F (ρ) = D(ρ||E(ρ)), we know that

F (ρ) ≥ F (σ) + F ′(σ)(ρ − σ)

We observed in (6.3) that the total derivative is

F ′(σ)(β) = τ
(
β(ln σ − ln E(σ))

)

Then, for β = ρ − σ,

F (σ) + F ′(σ)(ρ − σ) = τ(σ ln σ − σ ln E(σ)) + τ
(
(ρ − σ)(lnσ − ln E(σ))

)

= τ(ρ ln σ − ρ ln E(σ)) ,

which proves one direction. Conversely, we have equality for σ = ρ as states,
and hence, homogeneity implies the assertion for strictly positive ρ. Note also
that we may replace σ by σ + ε1 to guarantee that the relative entropy is
well-defined. The extra scaling factor τ(σ) + ε cancels thanks to the loga-
rithm. �

Proposition 6.13. Let (Tt) be a semigroup as in Theorem 6.10. The condition

(iii) There exists a c > 0 such that

EN (etf ) ≤ ect2

for all self-adjoint f with Γ(f, f) ≤ 1, EN (f) = 0 and t > 0.

implies λ-WA1 for some λ. If in addition N is contained in the center of M ,
then (iii) is equivalent to WA1.
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Proof. Let us assume that (iii) holds and that f = f∗ satisfies Γ(f, f) ≤ 1. We
define ρ = etf

τ(etf )
and deduce that for every state ψ

D(ψ||E(ψ)) ≥ τ
(
ψ
(
ln ρ − ln E(ρ)

))
= τ

(
ψ
(
tf − ln E(etf )

))
.

This implies

τ(ψf) ≤ D(ψ||E(ψ))
t

+
τ(ψ ln E(etf ))

t
≤ D(ψ||E(ψ))

t
+ ct .

Now we may choose t =
√

D(ψ||E(ψ))
c to deduce the condition (ii) in Theorem

6.10 with constant C = 2
√

c. For the converse, we assume that N is in the
center, f = f∗ and Γ(f, f) ≤ 1 and E(f) = 0. Then, we deduce from condition
(i) in Theorem 6.10 that

τ(σf) ≤ τ(σ|f |p)1/p = ‖σ1/2pfσ1/2p‖p ≤ C
√

p

for all σ ∈ N+, τ(σ) = 1. E(f) = 0 implies that the first-order term in the
exponential expansion vanishes and hence

τ(σE(etf )) ≤ 1 +
∑

k ≥ 2

(Ct)k
√

k
k

k!
≤ 1 +

∑
k ≥ 2

(Cet)k

kk/2
≤ 1 +

∞∑
j=1

(KCet)2j

j!
.

Here, we use that for k = 2j we have (2j)
2j
2 ≥ 2jjj ≥ j!. A slightly more

involved estimate works for k = 2j − 1, j ≥ 2 and leads to the constant
K. �

Let us recall the definition of the Orlicz space LΦ(M, τ) of a Young func-
tion Φ by the Luxembourg norm

‖x‖LΦ = inf
{

ν|τ
(

Φ
( |x|

ν

))
≤ 1

}
.

It is well known that for the convex function Exp2(t) = et2 − 1, the Orlicz
norm ‖x‖LExp2

is equivalent to supp ≥ 2
‖x‖p√

p .

Corollary 6.14. Assume that the generator A satisfies λ-WA1. Then,

‖f‖LExp2
≤ Kλ−2‖f‖LipΓ

holds for all f with E(f) = 0 and some universal constant K.

Proof. Indeed, we have two ways of proving this. By Hölder’s inequality, we
have a contraction

Lp
∞(N ⊂ M) ⊂ Lp(M) .

Then, the assertion follows from the equivalence in Theorem 6.10. On the other
hand, we note that λ-WA1 implies that

‖ρ‖Γ∗ ≤ 2

√
Ent(ρ)

λ
.

Then, Remark 6.11 also implies the assertion. �



3458 L. Gao et al. Ann. Henri Poincaré

Remark 6.15. Similar concentration inequalities for a fixed reference state σ
can be found in [84]. They deduced an estimate for τ(σef ) using the gradient
norm of σ1/2fσ−1/2. Here, we also need information for σ−1, unless N is
central.

In [49], the cb-version of having finite diameter was used for approxi-
mation by finite-dimensional systems. It is shown that the famous rotation
algebras Aθ have finite cb-diameter. Let us recall that for the intrinsic met-
ric ‖f‖LipΓ � ‖δ(f)‖ one can define a natural operator space structure as
intersection of a column and a row space in a Hilbert C∗-module, or cb-
equivalently as a subspace δ(dom(A1/2)) ⊂ M̂ . Thus, it makes sense to say
that (A, ‖ ‖LipΓ ,M) has finite cb-diameter Dcb if

‖I − EN : (A, ‖ ‖LipΓ) → M‖cb ≤ Dcb .

Corollary 6.16. Let A be a generator of a self-adjoint semigroup on a finite
von Neumann algebra M . If (A, ‖ ‖LipΓ) as a quantum metric space has finite
cb-diameter, then A satisfies WA1 for A ⊗ idMm

for all m ∈ N and A ⊗ idM̃

for any finite von Neumann algebra M̃ .

Proof. We just have to note that the inclusion

L∞(M⊗̄M̃) ⊂ Lp
∞(N⊗̄M̃⊂M⊗̄M̃)

is a contraction. Then, Theorem 6.10 implies the assertion. In particular, the
norm from the Lipschitz functions to Lp

∞ space is smaller than 2
√

pDcb. �

We see that both conditions λ-CLSI and Dcb < ∞ imply λ-WA1 on all
matrix levels. We say a semigroup (Tt) or its generator A satisfies λ-CWA1 if
for all n, idMn

⊗ Tt satisfies λ-WA1. Note that according to Remark 6.9, λ-
CWA1 implies the geometric Talagrand’s inequality on all matrix levels, which
we will call matricial Talagrand’s inequality.

Let (M, g) be a d-dimensional compact Riemannian manifold with sub-
Laplacian ΔX and sub-Riemannian (or Carnot–Caratheodory) metric dX

induced by a Hörmander system X (see [85]). This gives a corresponding gra-
dient form:

ΓX(f, f) =
k∑

j=1

|Xj(f)|2 .

For matrix-valued functions f : M → Mm, the natural operator space struc-
ture is given by

‖f‖Mm(LipΓ) = max

⎧⎨
⎩‖

∑
j

|Xj(f)|2‖1/2, ‖
∑

j

|Xj(f)∗|2‖1/2

⎫⎬
⎭ .

Thanks to Voiculescu’s inequality, this is equivalent to

‖f‖Mm(LipΓ) ∼ ‖
∑

j

gj ⊗ Xj(f)‖
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where gj are freely independent semicircular (or circular) random variables (
[81]). For matrix-valued functions, it is therefore better to use the free Dirac
operator D =

∑
j gj ⊗ Xj and the Laplace–Beltrami operator in contrast to

the spin Dirac operator D =
∑

j cj ⊗ Xj which is more common in noncom-
mutative geometry [27]. Let us now consider a manifold M with finite diam-
eter diamX(M) = supx,y dX(x, y) and a normalized volume form μ. Here,
dX is the Carnot–Caratheodory distance given by the Hörmander system. Let
f : M → M be an M -valued Lipschitz function. Let h, k ∈ L2(M). Then,
fh,k(x) = (h, f(x)k) is a complex valued function and hence (following Connes’
[27])

|(h, (f(x) − EMf)k)| = |fh,k(x) −
∫

M
fh,k(y)dμ(y)|

≤
∫

M
|fh,k(x) − fh,k(y)|dμ(y) ≤ diamX(M) sup

z

∣∣∣∣∣∣∣

⎛
⎝∑

j

|Xjfh,k(z)|2
⎞
⎠

1/2
∣∣∣∣∣∣∣

= diamX(M) sup
z

⎛
⎝∑

j

〈h,Xj(f)(z)k〉
⎞
⎠

1/2

≤ diamX(M)‖h‖‖k‖‖
∑

j

|Xj(f)|2‖1/2 .

Actually, the inequality |f(x) − f(y)| ≤ ‖f‖LipdX(x, y) follows directly from
the definition of the distance using connecting path. Therefore, we have shown
the following easy fact:

Lemma 6.17. Let ΔX be the sub-Laplacian on M given by a Hörmander sys-
tem X. Then,

Dcb(ΔX) ≤ diamX(M) .

Theorem 6.18. Let X be a Hörmander system on a connected compact Rie-
mannian manifold. Then, ΔX satisfies CWA1.

Proof. According to the Chow-Rashevskii theorem (see [85, Theorem 3.29]
and [83]), the Carnot–Caratheodory distance d : M × M → R is continuous
with respect to the original topology of the Riemannian metric. Thus, by
compactness diamX(M) is finite. Then, Corollary 6.16 and Lemma 6.17 imply
the assertion. �
Corollary 6.19. Let L be the generator of a self-adjoint semigroup on Mm.
Then, L satisfies CWA1.

Proof. According to Lemma 5.1, we find a connected compact Lie group G
and a generating set X of g such that the transference Theorem 4.8 applies.
That is, via the co-representation π(x)(g) = u(g)xu(g)−1, e−tL is a subdynam-
ical system of e−tΔX ⊗ idMm

. According to Theorem 6.18, we know that ΔX

has λ(X)-CWA1 for some constant λ(X), and hence, L inherits this property
(compare to Proposition 4.7). �
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Remark 6.20. We conjecture that on compact Riemannian manifolds the
Laplace–Beltrami operator satisfies λ-CLSI. However, since ΓE fails in gen-
eral, new techniques will be needed to approach this problem.

We end up this section with the “complete” analogues of the ‘triangle’
inequality for the Wasserstein 1-distance from [70,71].

Proposition 6.21. Assume that (Mj ,ΓAj
) satisfies C−1

j -CWA1 for j = 1, . . . , n.
Let E = E1 ⊗ · · · ⊗ En : ⊗n

j=1Mj → ⊗n
j=1Nj be the conditional expectation

onto the fixpoint algebra of tensor product. Then, for any density operator ψ
and self-adjoint f in ⊗n

j=1Mj with E(f) = 0,

|τ(ψf)| ≤ 2
√

2
√

D(ψ)||E(ψ))

⎛
⎝∑

j

Cj‖ΓAj
(f, f)‖2

⎞
⎠

1/2

.

In particular, the tensor product generator A(n) = A1 ⊗ I ⊗ · · · ⊗ I + I ⊗ A2 ⊗
· · · ⊗ I + I ⊗ · · · ⊗ An satisfies C-CWA1 for C = (

∑
j Cj)−1/2.

Proof. We use a martingale argument by denoting

Ẽj : M1 ⊗ · · · ⊗ Mn → M1 ⊗ · · · ⊗ Mj ⊗ Nj+1 ⊗ · · · ⊗ Nn ,

the corresponding conditional expectation and Ẽ0 = E, Ẽn = id⊗n
j=1Mj

. Let f

be a mean 0 element and write dj(f) = Ẽj(f) − Ẽj−1(f). The gradient form
ΓAj

trivially extends to the tensor product, by identifying

Aj = I ⊗ · · · ⊗ Aj ⊗ · · · ⊗ I (6.7)

with the generator applied in the jth-component. For a positive ψ, we deduce
from the CWA property that

|τ(ψf)| ≤
∑
j

|τ(ψdj(f))| =
∑
j

|τ(Ẽj(ψ)dj(f))|

≤ 2
√

2
∑
j

√
CjD(Ẽj(ψ)||Ẽj−1(ψ))‖ΓAj

(dj(f), dj(f))‖1/2

≤ 2
√

2

⎛
⎝∑

j

D
(
Ẽj(ψ)||Ẽj−1(ψ)

)⎞⎠
1/2⎛

⎝∑
j

Cj‖ΓAj
(dj(f), dj(f))‖

⎞
⎠

1/2

.

Note, however, that Ẽ = Ẽ ◦ Ẽj implies

D(ψ||E(ψ)) =
n∑

j=1

D(Ẽj(ψ)||Ẽj−1(ψ)) .

For each Aj , we have ΓAj
(x, x) = Ej(δj(x)∗δj(x)) for the self-adjoint deriva-

tion δj from Theorem 2.1 extended canonically to the tensor product. Recall
that the derivation δj only depends on the j-the tensor component and hence
commutes with Ẽj . By Kadison’s inequality,

ΓAj

(
dj(f), dj(f)

)
= ΓAj

(
Ẽj(f) − Ẽj−1(f), Ẽj(f) − Ẽj−1(f)

)
= ΓAj

(
Ẽj(f), Ẽj(f)

)
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= Ej

(
δj

(
Ẽj(f)

)∗
δj

(
Ẽj(f)

))
= Ej

(
Ẽj

(
δj(f)

)∗
Ẽj

(
δj(f)

))

≤ Ej

(
Ẽj(δj(f)∗δj(f)

)
) = Ẽj

(
ΓAj

(f, f)
)

Taking norms implies the first assertion. For the second we just observe that
for each j

‖ΓAj
(f, f)‖ ≤ ‖

∑
j

ΓAj
(f, f)‖

holds by positivity. �

This implies that if Tt satisfies λ-CWA1, its tensor product T⊗n
t satisfies

λ
n -CWA1. This is enough to imply Talagrand’s inequality for matrix-valued
functions on {−1, 1}n and [−1, 1]n, see [62] for details in the scalar case.

7. Examples and Counterexamples

This section discusses examples of ΓE and CLSI and some related counterex-
amples. Section 7.1 proves the stability of ΓE with respect to free products.
Section 7.2 considers ΓE for the graph Laplacian on weighted finite graphs.
Section 7.3 discusses the Schur multiplier semigroup on group von Neumann
algebras. We also provide counterexamples of additivity of Fisher information
in Sect.7.4. Section 7.5 gives a counterexample of Rothaus lemma for matri-
ces. We end up the discussion with a summary and some open questions in
Sect. 7.6.

7.1. Free Products

Following the lead of [52], we discuss the stability of ΓE with respect to free
products. We refer to [98] for the definition and general facts on amalgamated
free products. Let N ⊂ Mj be finite von Neumann algebras with trace preserv-
ing conditional expectation Ej : Mj → N . According to [18], a family of unital
completely positive T j : Mj → Mj that leave N invariant can be extended to
the free product with amalgamation M = ∗j

NMj via

T (a1 · · · am) = T i1(a1) · · · T im(am)

provided aj ∈ Mij
and i1 �= i2 �= · · · �= im.

Lemma 7.1. Let Aj , Bj , 1 ≤ j ≤ n be generator of self-adjoint semigroup on
Mj with same fixpoint algebra N ⊂ Mj. Let A(n) (resp. B(n)) be the gener-
ator of the free product semigroup e−tA(n) := ∗n

j=1e
−tAj (resp. e−tB(n) :=

∗n
j=1e

−tAj ) on amalgamated free products. If ΓAj
≤ ΓBj

for all j, then
ΓA(n) ≤ ΓB(n).

Proof. Let us briefly sketch the argument for readers familiar with free prob-
ability. For simplicity of notations, we assume that all the algebras Mj = M
are the same, and all the generators A = Aj and B = Bj are the same. Our
first task is to identify the derivation for free product generator A(n). Let δA

be the derivation for A. We observe that δAj
(xb) = xδAj

(b) holds for x ∈ N .
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Let us recall from [51, Proposition 2.8] that for the conditional expectation
E : M → N , there exists a right N -module map u : Lc

∞(N ⊂ M) → L∞(N, lc2)
such that

u(x) = (uj(x))j , E(x∗y) = u(x)∗u(y) :=
∑

j

uj(x)∗uj(y) .

For a word ω = a1 · · · am so that aj ∈ Mij
are mean zero element and i1 �= i2 �=

· · · �= im, we define the vectors ξl = (ei1 , . . . , eil
) ∈ �2(Nl) for each 1 ≤ l ≤ m.

Then, the derivation of A(n) can be defined as follows,

v(ω) =
∑

l

vl(ω) : =
m∑

l=1

ξl ⊗
(
u(a1) ⊗ · · · ⊗ u(al−1)

)
δA(al)al+1 · · · am .

Here we view

u(a1) ⊗ · · · ⊗ u(al−1) =
(
uj1(a1) · · · ujl−1(al−1)

)
(j1,...,jl−1)

∈ L∞(N, lc2(N
l−1))

and one can check that(
u(bl−1) ⊗ · · · ⊗ u(b1)

)∗(
u(a1) ⊗ · · · ⊗ u(al−1)

)

= E(bl−1E(bl−2 · · · E(b1a1) · · · al−2)al−1)

= E(bl−1 · · · b1a1 · · · al−1)

To explain the cancellation in the gradient form, let us consider the example
ω = b∗

1b
∗
2, bk ∈ Alk , and ω′ = a1a2a3, ak ∈ Ark

. We use the notation a◦ =
a − E(a) for the mean 0 part. We have the following decomposition in terms
of mean 0 words,

ω∗ω′ = b2b1a1a2a3

= b2(b1a1)◦a2a3 + b2E(b1a2)a2a3

= b2(b1a1)◦a2a3 + (b2E(b1a1)a2)◦a3 + EN (b2b1a1a2)a3 .

Here the second equality holds if l1 = r1 and the third equality holds if l1 = r1

and l2 = r2. If l1 �= r1 and l2 �= r2 we think (b1a1)◦ = b1a1, (b2a2)◦ = b2a2 the
latter terms vanish. Then, for the free product generator A(n)

A(n)(ω∗ω′)

= A(n)(b2(b1a1)◦a2a3) + A(n)((b2E(b1a1)a2)◦a3) + A(n)(E(b2b2a1a2)a3)

= A(b2)(b1a1)◦a2a3+b2A(b1a1)a2a3+b2(b1a1)◦A(a2)a3+b2(b1a1)◦a2A(a3)

+ A((b2E(b1a1)a2)◦)a3 + (b2E(b1a1)a2)◦A(a3) + E(b2b2a1a2)A(a3) .

Recall that 2Γ(ω, ω′) = A(ω∗)ω′ + ω∗A(ω′) − A(ω∗ω′). We calculate

A(n)(ω∗)ω′ + ω∗A(n)(ω′)

= A(b2)b1a1a2a3 + b2A(b1)a1a2a3 + b2b1A(a1)a2a3 + b2b1a1A(a2) + b2b1a1a2A(a3)

= A(b2)(b1a1)◦a2a3 + A(b2)E(b1a1)a2a3 + b2(b1a1)◦A(a2)a3 + b2E(b1a1)A(a2)a3

+ b2(b1a1)◦a2A(a3) + b2E(b1a1)a2A(a3) + b2A(b1)a1a2a3 + b2b1A(a1)a2a3
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We first observe that the A(a3) terms cancel, because they can not interact
with anything from b. If l1 = r1 and r2 = l2 we have the additional term

A(b2)E(b1a1)a2a3 + b2E(b1a1)A(a2)a3 − A((b2E(b1a1)a2)◦)a3

= ΓA(b∗
2, E(b1a1)a2)a3 .

So the gradient form of A(n) is

ΓA(n)(ω, ω′) =

⎧⎪⎨
⎪⎩

0, if l1 �= r1

b2ΓA(b∗
1, a1)a2a3, if l1 = r1, l2 �= r2

b2ΓA(b∗
1, a1)a2a3 + ΓA(b∗

2, E(b1a1)a2)a3, if l1 = r1, l2 = r2.

and for each case ΓA(n)(ω, ω′) = v(ω)∗v(ω′). In full generality, we have to use
an inductive procedure and obtain

Γ(b1 · · · bm, a1 · · · an) = v(b1 · · · bm)∗v(a1 · · · an) .

For a word ω ∈ A◦
i1

· · · A◦
im

, we denote σl(ω) = (i1, . . . , il) for the first l

indices. Let x =
∑

(i1,··· ,im)
ω(i1, . . . , im) with ω(i1, . . . , im) in the linear span

A◦
i1

· · · A◦
im

. Then

ΓA(n)(x, x) =
∑
ω,ω′

∑
l

δσl(ω),σl(ω′)v
A
l (ω)∗vA

l (ω′)

≤
∑
ω,ω′

∑
l

δσl(ω),σl(ω′)v
B
l (ω)∗vB

l (ω′)

= ΓB(n)(x, x) .

Here for each l we have used that for any fixed αk, βk, γk ∈ M ,∑
k,k′

β∗
kΓA(αk, E(γ∗

kγk′)αk′)βk′ =
∑
k,k′

∑
j

β∗
kΓA(wj(γk)αk, wj(γk′)αk′)βk′

≤
∑
k,k′

∑
j

β∗
kΓB(wj(γk)αk, wj(γk′)αk′)βk′

=
∑
k,k′

β∗
kΓB(αk, E(γ∗

kγk′)αk′)βk′ .

which follows from the assumption ΓA ≤cp ΓB. �

A particularly interesting case is given by T j
t = e−t(I−EN ) for all j. The

corresponding free product semigroup is the so-called block-length semigroup

Tt(a1 · · · an) = e−tna1 · · · an

for all (free) products of mean 0 terms a1, . . . , an. Note that here we use
E : M → N for the conditional expectation on a single component and EN :nj=1

M → N on the free product.

Lemma 7.2. Let A(n) be the generator of the block-length semigroup Then

1
n

ΓI−E ≤ ΓA(n) .
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Proof. For I − E the gradient form

2ΓI−E(x, y) = (x − E(x))∗(y − E(y)) + E((x − E(x))∗(y − E(y))
= v1(x)∗v1(x) + v2(x)v2(x)

splits into two forms v1(x) = (x − E(x)) and v2(x) = u(x − E(x)). Therefore,
of we may use our argument from above and find two orthogonal forms

v1(a1 · · · am) =
m∑

l=1

ξl ⊗ u(a1 ⊗ · · · ⊗ al−1)al · · · am

v2(a1 · · · am) =
m∑

l=1

ξl ⊗ u(a1 ⊗ · · · ⊗ al)al+1 · · · am ,

and

2ΓA(n)(ω, ω′) = v1(ω)∗v1(ω′) + v2(ω)∗v2(ω′) .

Let x =
∑

(i1,...,im) ω(i1, . . . , im) with ω(i1, . . . , im) in the linear span of A◦
i1

· · · A◦
im

. We deduce from the mean 0 property of the products that

EN (x∗x) =
∑
ω

E(ω∗ω) ≤ |v2(x)|2 . (7.1)

Moreover, let Pj be the projection onto words starting with i1 = j. Then, we
see that for mean 0 words

x∗x =
∑
j,k

Pj(x)∗Pk(x) ≤ n
∑

j

Pj(x)∗Pj(x)

≤ n

⎛
⎝ ∑

l ≥ 1,ω,ω′
δσl(ω),σl(ω′)v

1
l (ω)∗v1

l (ω′)

⎞
⎠ ≤ n|v1(x)|2 ,

because the term l = 1 exactly corresponds to i1 = i′1. Therefore, we find that
for mean 0 element x,

ΓI−EN
(x, x) =

x∗x + EN (x∗x)
2

≤ n

2
|v1(x)|2 +

1
2
|v2(x)|2 ≤ n

2
(|v1(x)|2 + |v2(x)|2)

= nΓ(I−E)∗n(x, x) .

By taking words aj of length 1 and E(a∗
jaj) very small, we see that n is indeed

optimal. �

Combining Lemma 7.1 and Lemma 7.2, we have the similar result for the
general free products.

Theorem 7.3. Let Aj be generators such that

λΓI−E ≤cp ΓAj
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holds for j = 1, . . . , n. Then, the generator A(n) of the free product semigroup
∗n

j=1T
j
t satisfies

λ

n
ΓI−EN

≤cp ΓA(n) .

7.2. Graph Laplacians

Let (V,E) be a finite graph and w : E → R+ be a positive symmetric weight
function on edges. Let us consider the commutator derivation δ(a) = [ξ, a]
with ξ ∈ B(l2(V )). The induced gradient form for f ∈ l∞(V ) is

Γ(f, f)(x) =
∑

y

|ξxy|2|f(x) − f(y)|2 . (7.2)

is always given by a set of weights wxy = |ξxy|2. Using the uniform probability
measure μ on l∞(V ), we have

〈δ(f1), δ(f2)〉μ =
1

|V |

⎛
⎝2

∑
x
=y

wxy f̄1(x)f2(x) − 2
∑
x
=y

wxy f̄1(x)f2(y)

⎞
⎠ .

Thus we have a one to one correspondence between the weight w, the derivation
δ(·) = [ξ, ·] and the weighted graph Laplacian

Ax,y =

{∑
y 
=x wxy, if x = y

−wxy, otherwise.

When the graph is connected, the semigroup Tt = e−At : l∞(V ) → l∞(V )
is ergodic because the only invariant elements are the constant functions on
V . For this situation the conditional expectation E : l∞(V ) → C1 is given
by the trace E(f) = 1

|V |
∑

i∈V f(i) and the gradient form ΓI−E corresponds
to weights wI−E

xy = 1
2|V | . It follows from (7.2) that for two gradient forms

ΓA ≤ ΓB if and only if the weights wA
xy ≤ wB

xy for any x, y ∈ V .

Corollary 7.4. An ergodic graph Laplacian A satisfies λ-ΓE if and only if

wxy ≥ λ

2|V | for all x �= y .

In particular, the weights wxy(θ) for the subordinated generator Aθ are strictly
positive.

Proof. For an ergodic graph Laplacian we have a spectral gap σ and ‖T1 :
l1(V ) → l∞(V )‖ ≤ c1 < ∞. Thanks to Proposition 3.2 and Theorem 3.10, we
obtain that Aθ satisfies λ(θ)-ΓE for some λ(θ) > 0 and hence wxy(θ) ≥ λ(θ)

2|V |
is strictly positive. Conversely, we know that by the above discussion that
wxy(θ) ≥ λ

2|V | for all x, y ∈ E implies λΓI−E ≤cp ΓA. �
Remark 7.5. Of course, we expect CLSI for every finite graph. The above
corollary shows that a finite graph with positive weights has ΓE if and only if
it is a complete graph. Also, it is not clear how expander graphs fit into this
picture since they are in certain sense opposite to complete graphs (see [21]
for more information).



3466 L. Gao et al. Ann. Henri Poincaré

7.3. Fourier Multiplier and Discrete Groups

In this part we discuss group von Neumann algebras and their Fourier multi-
pliers. Let G be a discrete group and L(G) be its group von Neumann algebra.
Denote λ(g) as the left shifting unitary of g ∈ G. We consider the multiplier
semigroup

Tt : L(G) → L(G) , Tt(λ(g)) = e−tψ(g)λ(g)

for a conditional negative function ψ (see [17,19] for more information). The
gradient form is given by

Γψ(λ(g), λ(h)) = K(g, h)λ(g−1h) .

where K is the Gromov distance

2Kψ(g, h) = ψ(g) + ψ(h) − ψ(g−1h) ,

It is easy to see that for two multiplier generators ψ and ψ̃ the relation λΓψ̃ ≤cp

Γψ is equivalent to λKψ̃ ≤ Kψ in the usual order of matrices. The conditional
expectation onto C is the canonical trace E(λ(g)) = τ(λ(g))1 = δg,11. Then,
I − E is a Fourier multiplier and

KI−E(g, h) =
1
2
(1 − δg,1)(1 − δh,1)(1 + δg,h) .

It therefore suffices to consider the matrix KI−E on G\{1}. Let us now consider
the specific example G = Z and ψ(k) = |k| given by the Poisson semigroup.
Then

Kψ(k, j) =
|k| + |j| − |k − j|

2
=

{
0 if k < 0 < j or j < 0 < k

min(|j|, |k|) else.
.

Let B(j, k) = min(j, k) be the matrix on l2(N) and α = (αj) ∈ l2(N) be a
finite sequence. Then, we see that

(α,B(α)) =
∑
j,k

ᾱjαk min(j, k) =
∑
j,k

ᾱjαk

∑
1≤l≤min(j,k)

1 =
∑
l≥1

|
∑
j ≥ l

αj |2 .

Using |a − b|2 ≤ 2a2 + 2b2, we deduce that

∑
l≥1

|αl|2 =
∑
l≥1

∣∣∣∣∣∣
∑
j ≥ l

αj −
∑
j>l

αj

∣∣∣∣∣∣
2

≤ 2
∑

l

⎛
⎜⎝
∣∣∣∣∣∣
∑
j ≥ l

αj

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∑
j>l

αj

∣∣∣∣∣∣
2
⎞
⎟⎠ ≤ 4 (α,B (α)) .

This means 4B ≥ 1N where 1N is the identity matrix on l2(N). Note that Kψ

restricted on either the j, k ≥ 0 part or the j, k ≤ 0 part is a copy of B. Hence

2Kψ = 2(B ⊕ B) ≥ 1
2
1Z\0 .
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where 1Z\0 is the identity matrix on l2(Z \ 0). On the other hand, let 1 denote
the matrix with all entries 1 on l2(N). Then, we certainly have

B ≥ 1N

and therefore

Kψ = B ⊗
(

1 0
0 1

)
≥ 1

2
B ⊗

(
1 1
1 1

)
=

1
2
1Z\{0} .

Because 2KI−E = 1Z\0 + 1Z\{0}, we deduce that

1
3
KI−E ≤ Kψ ,

1
3
ΓI−E ≤ Γψ .

Corollary 7.6. The Poisson semigroup on L(Z) = L∞(T) satisfies 1
3 -ΓE,

and hence 1
3 -CLSI. In particular, the Fourier multiplier associated with

ψn(k1, . . . , kn) =
∑n

j=1 |kj | on Z
n satisfies 1

3 -CLSI, but not ΓE for n ≥ 2.
The free product L(Fn) with the word length function satisfies 1

3n -ΓE.

Proof. Let n = 2 and define the sequence α = (αj,k) = (εjεk) in l2(Z2) so
that

m∑
j=1

εj = 0 ,

m∑
j=1

ε2
j = m , and εj = 0 if j > m .

Then, for

(α,Kψ2α) = (ε,Kψ1ε)(ε,1ε) + (ε,1ε)(ε,Kψ1ε) = 0 .

On the other hand (α, 1N2α) = m2 and KI−E ≥ 1
21N2 . Here ΓE cannot holds

for any constant for ψ2. For free group, L(Fn) = ∗n
j=1L(Z) and moreover the

free product of Poisson semigroup is the Poisson semigroup of L(Fn). Then,
the last fact follows from Theorem 7.2. �

Proposition 7.7. Let Zn = Z/nZ be the cyclic group of cardinality n ∈ N and
the multiplier function be ψ(j) = (1 − cos( 2πj

n )). Then, Aψ satisfies 1-ΓE for
n = 2, 1/6-ΓE for n = 3. For n > 3, Aψ fails ΓE, although A1−θ

ψ satisfies
λθ(n)-ΓE for some λθ(n).

Proof. Since we are working with a Fourier multiplier, we find

2Kn (j, l) =
(

1 − cos
(

2πj

n

))
+
(

1 − cos
(

2πl

n

))
−
(

1 − cos
(

2π (j − l)
n

))

= 1 + cos
(

2π (j − l)
n

)
− cos

(
2πj

n

)
− cos

(
2πl

n

)

= 1 + cos
(

2πj

n

)
cos

(
2πl

n

)
+ sin

(
2πj

n

)
sin
(

2πl

n

)
− cos

(
2πj

n

)

− cos
(

2πl

n

)

=
(

1 − cos
(

2πj

n

))(
1 − cos

(
2πl

n

))
+ sin

(
2πj

n

)
sin
(

2πl

n

)
.
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The gradient matrix KI−E corresponding to ΓI−E is given by 2(1Zn\0 +
1Zn\{0}) and we shall consider them as (n−1)× (n−1) matrices supported on
{|0〉}⊥. Since Kψ has rank at most 2, we deduce that for no n > 3 and λ > 0
the property λ-ΓE is satisfied. For n = 2 we have the standard Walsh system
and 1-ΓE . For n = 3 we find the matrix

2Kψ =
(

1 −1/2
−1/2 1

)
.

We have to compare this to

2KI−E =
(

2 1
1 2

)
.

It is easy to see that for λ = 6 we have

6(2Kψ) ≥ 2KI−E .

Thus we have 1
6 -ΓE and 1

6 -CLSI. For n > 3 and 0 < θ < 1. Then, Theorem
3.16 applies for d = 0 because ‖Tt : L1 → L∞‖ ≤ n. Moreover, and Aψ has a
spectral gap of order n−2. We refer to [31] for the return time estimates t0 ∼ n
and hence Corollary 4.9 gives an estimates of the order λθ(n) ∼ n−2θ(1 − θ)
for ΓE constant. �

7.4. Non-additivity of II−EN

In the proof of tensorization of CLSI, we have used the following subadditivity
of relative entropy

DN1⊗N2(ρ) ≤ DN1⊗M2(ρ) + DM1⊗N2(ρ) ,

where Nj ⊂ Mj , j = 1, 2 are finite von Neumann subalgebras. This is not true
for the symmetrized Kullback-Leibler divergence IN .

Proposition 7.8. The inequality

IN1⊗N2 ≤ IN1⊗M2 + IM1⊗N2 . (7.3)

is not valid in general.

Proof. Let Ej : Mj → Nj , j = 1, 2 be the conditional expectation. We note
that (7.3) is equivalent to

τ
(
(E1 ⊗ id)(x) ln x

)
+ τ

(
(id ⊗ E2)(x) ln x

)
≤ τ(x ln x) + τ

(
E1 ⊗ E2(x) ln x

)
.

Let N1 = N2 = C and M1 = M2 = �∞({1, 2, 3}). We can write x ∈ M1 ⊗ M2

in a 3 × 3 matrix form

x =
∑
i,j

xi,jei ⊗ ej = [xi,j ]3i,j=1 .

Then, the conditional expectation is given by row- and column-average. There-
fore it suffices to decide whether τ((x + 1 − E1 ⊗ id(x) − id ⊗ E2(x)) ln(x)) is
always positive. Let δ > 0 and

[xi,j ] =

⎡
⎣ δ α α

α γ γ
α γ γ

⎤
⎦
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where α = 3/8 and γ = 15/8− δ
4 . Then, the (1, 1)-entry of 1+x−E1 ⊗ id(x)−

id ⊗ E2(x) is given by

1 + δ − 2/3(δ + α + α) =
1
2

+
δ

3
Note that limδ→0 γ = 15/8 is away from 0 and 1

2 (ln δ) → −∞. Thus for δ → 0,
τ((x+1−E1 ⊗ id(x)− id⊗E2(x)) ln(x)) converges to −∞. (Although written
in a matrix form, x and x+1−E1⊗id(x)−id⊗E2(x) are really scalar functions
on {1, 2, 3} × {1, 2, 3}. Hence it suffices to argue that there is one entry goes
to −∞). �

7.5. Failure of Rothaus Lemma for Matrix-Valued Functions

Let N = Mn ⊗ C1 ⊂ Mn ⊗ Mn. We will always use the normalized trace on
matrix algebras and the conditional expectation is the normalized partial trace
E = id ⊗ 1

n tr .

Proposition 7.9. For n ≥ 2, there exists no constant C1, C2 such that

DN (|x|2) ≤ C1τ(x∗A(x)) + C2‖x − E(x)‖2 . (7.4)

Moreover, there are no constants C1, C2 such that

DN (|x|2) ≤ C1DN (|x − E(x)|2) + C2‖x − E(x)‖2 , (7.5)

holds for all self-adjoint x.

Let us start with the non-selfadjoint element in “bracket” notation

y =
n√

n − 1

n∑
j=2

|11〉〈jj| .

The corresponding conditional expectation is given by

E(|y|2) =
n2

n − 1
E

⎛
⎝∑

j,k=2

|jj〉〈kk|
⎞
⎠ =

n

n − 1

n∑
j=2

|j〉〈j| =
n

n − 1
1n−1 ,

where 1n−1 =
∑n

j=2 |j〉〈j| has rank n − 1. Since y is rank one, we get

DN (|y|2) = τ(|y|2 ln |y|2) − τ(E|y|2 ln E|y2|) =
1
n2

n2 ln n2 − ln
n

n − 1

= 2 ln n − ln
n

n − 1
.

Now we modify this element

x = α(|1〉〈1| ⊗ 1) + y

by adding an element in Mn ⊗ 1. Thus x − E(x) = y. We have to calculate
DN (|x|2). Let us denote by f = |1〉〈1| ⊗ 1 the projection. First we observe
that

x∗x = α2f + αy + y∗α + y∗y

and hence

E(x∗x) = α2|1〉〈1| +
n

n − 1
1n−1 .
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This implies

τ(E(|x|2) ln E(|x|2)) =
α2

n
ln α2 + ln

n

n − 1
.

In order to calculate the entropy for |x|2, we decompose f = |11〉〈11|+1n−1 ⊗
|1〉〈1|. The second projection is orthogonal to the support of y, which we denote
by g. Hence x2 is unitarily equivalent to⎛

⎝ α2 nα 0
nα n2 0
0 0 α2g

⎞
⎠ .

The upper corner is of rank 1 with size n2α2 and hence

τ(|x|2 ln |x|2) =
n2 + α2

n2
ln(n2 + α2) +

α2(n − 1)
n2

ln(α2) .

This yields

DN (|x|2) =
n2 + α2

n2
ln(n2 + α2) +

α2

n
ln(α2) − α2

n2
ln(α2)

− α2

n
ln(α2) − ln

n

n − 1

= ln(n2 + α2) +
α2

n2
ln
(

1 +
n2

α2

)
− ln

n

n − 1

In order to contradict (7.4) and (7.5), we observe that τ(xA(x)) = τ(xA(y)) =
τ(yA(y)). Hence, the right-hand side in (7.4) and (7.5) is bounded, but the
left-hand side converges to +∞ for α → ∞, as long as n ≥ 2. For self-adjoint
x see below. �

We will now address cb-hypercontractivity (in the sense of [14]) at p = 2
by considering the self-adjoint element

z =
(

0 x
x∗ 0

)
.

We have τ(|z|2 ln |z|2) = τ(|x|2 ln |x|2). For the conditional expectation, we
find

E(|z|2) =
(

E(xx∗) 0
0 E(x∗x)

)

=
(

α2f + E(n2|11〉〈11|) 0
0 α2f + n

n−11n−1

)
.

This gives

τ(|z|2 ln |z|2) =
α2

2n
ln α2 +

1
2

ln
n

n − 1
+

α2 + n

2n
ln(α2 + n) .

The new part here is

DN (xx∗) =
n2 + α2

n2
ln(n2 + α2) +

α2(n − 1)
n2

ln(α2) − α2 + n

n
ln(α2 + n)



Vol. 21 (2020) Complete logarithmic Sobolev inequality 3471

= ln
(

n2 + α2

n + α2

)
+

α2

n2
ln

α2 + n2

α2
− α2

n
ln
(

α2 + n

α2

)
.

Following our previous calculation, we find that

DN (|z|2) =
1
2

(
ln(n2 + α2) +

α2

n2
ln
(
1 +

n2

α2

)
− ln

n

n − 1

)

+
1
2

(
ln
(n2 + α2

n + α2

)
+

α2

n2
ln

α2 + n2

α2
− α2

n
ln
(α2 + n

α2

))

=
1
2

ln(n2 + α2) +
1
2

ln
(n2 + α2

n + α2

)
+

α2

2n2
ln
(n2 + α2

n + α2

)

+
α2

n2
ln
(
1 +

n2

α2

)
− 1

2
ln

n

n − 1
− α2

2n
ln
(α2 + n

α2

)
.

In order to keep the last term, we choose α2
n = n and then find

DN (|z|2) =
1
2

ln n +
1
2

ln(n + 1) +
1
2

ln(n + 1) − 1
2

ln 2 +
1
2n

(ln(n + 1) − ln 2)

+
1
n

ln(n + 1) − 1
2

ln
n

n − 1
− 1

2
ln 2

=
1
2

ln n +
(

1 +
3
2n

)
ln(n + 1) −

(
1 +

1
2n

)
ln 2 − 1

2
ln

n

n − 1
.

Note that the log n term is the optimal rate for entropy as n → ∞, and hence,
the example is rather extreme. Following the work of [14], we may formulate
this observation as follows.

Proposition 7.10. Let (An) be sequence of self-adjoint generators on Mn such
that supn ‖An : L2(Mn) → L2(Mn)‖ < ∞. Then, the 2-cb-hypercontractivity
constant of An always converges to ∞.

For example, we may choose An = I − τn on Mn has norm 1. In fact,
we only have to control the behavior of An on some version of the maximally
entangled state.

Proof. We recall [14] that the cb-hypercontractivity constant λcb
2 = inf λm

2 ,
where λm

2 is the best constant such that for all x ∈ Mm ⊗ Mn,

λm
2 DMn

(|x|2) ≤ 4τ(x∗(idm ⊗ An)x) = 4E(x) .

Note the trivial bound λn
2 ≥ 1

2 ln n . Hence our choice of |x| in above discussion
shows that ln n

2 λn
2 ≤ ‖An‖ and hence, up to constant 4 supn ‖An‖, the trivial

bound cannot be improved as n tends to infinity. A limiting channel violates
2-cb-hypercontractivity. �

Remark 7.11. A counterexample of similar nature was constructed in [20],
which also shows that S2(Sp) is not uniformly convex. Since our example is
the tracial setting, we think they are of independent interests.
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7.6. Conclusion and Open Problems

We end our discussion with a summary of examples that satisfy CLSI and ΓE
obtained in this paper and also questions on CLSI that remain open.

Conclusion 7.12. (i) The (infinite) tensor products of self-adjoint semigroup
satisfying λ-CLSI still satisfy λ-CLSI.

(ii) The n-fold free product of generators satisfying λ-ΓE satisfies λ
n -ΓE.

(iii) The weighted graph Laplacian of a complete graph satisfies ΓE and hence
CLSI.

(iv) The subordinated semigroups of sub-Laplacians of Hörmander systems on
compact Riemannian manifolds satisfy ΓE and CLSI.

(iv) The subordinated semigroups of self-adjoint semigroups on matrix alge-
bras satisfy ΓE and CLSI.

In particular, combining (i)+(iii), (i)+(iv) and (i)+(v) gives infinite-
dimensional examples of semigroups satisfying CLSI and Talagrand’s inequal-
ity TA2, but not necessarily ΓE . Based on iv), a natural open question is

Problem 7.13. Does every Laplace–Beltrami operator on a compact Riemann-
ian manifold satisfy CLSI ?

If it is true, how does the optimal constant of CLSI compares to the optimal
constant of the non-complete version? Since ΓE fails for the heat semigroup
on torus, new techniques are needed to approach this problem. The similar
question for matrix algebra is

Problem 7.14. Does every generator of a (self-adjoint) semigroup on a matrix
algebra satisfy CLSI?

Bardet proved in [1] via a compactness argument that every semigroup (not
necessarily self-adjoint) on a matrix algebra satisfies λ-MLSI, and inquired
about the CLSI version. Motivated by the stability of ΓE under free product,
one can ask

Problem 7.15. Is CLSI stable under free products?
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tum rényi entropies: a new generalization and some properties. J. Math. Phys.
54(12), 122203 (2013)

[73] Milman, V.D., Schechtman, G.: Asymptotic theory of finite-dimensional
normed spaces, volume 1200 of Lecture Notes in Mathematics. Springer-Verlag,
Berlin. With an appendix by M. Gromov (1986)

[74] Marvian, I., Spekkens, R.W.: Extending Noether’s theorem by quantifying the
asymmetry of quantum states. Nat. Commun. 5, 3821 (2014)

[75] Nier, F., Helffer, B.: Hypoelliptic Estimates and Spectral Theory for Fokker-
Planck Operators and Witten Laplacians. Springer, Berlin (2005)

[76] Otto, F., Villani, C.: Generalization of an inequality by Talagrand and links
with the logarithmic Sobolev inequality. J. Funct. Anal. 173(2), 361–400 (2000)



Vol. 21 (2020) Complete logarithmic Sobolev inequality 3477

[77] Paschke, W.L.: Inner product modules over B∗-algebras. Trans. Am. Math.
Soc. 182, 443–468 (1973)

[78] Paulsen, V.: Completely bounded maps and operator algebras, volume 78 of
Cambridge Studies in Advanced Mathematics. Cambridge University Press,
Cambridge (2002)

[79] Peterson, J.: A 1-cohomology characterization of property (T) in von Neumann
algebras. Pac. J. Math. 243(1), 181–199 (2009)

[80] Pisier, G.: Non-commutative vector valued lp p-spaces and completely p-
summing maps. Asterisque-Societe Mathematique de France, 247 (1998)

[81] Pisier, G.: Introduction to operator space theory, volume 294 of London Math-
ematical Society Lecture Note Series. Cambridge University Press, Cambridge
(2003)

[82] Potapov, D., Sukochev, F.: Double operator integrals and submajorization.
Math. Model. Nat. Phenom. 5(4), 317–339 (2010)

[83] Rachevsky, P.: About connecting two points of complete non-holonomic space
by admissible curve. Uch. Zapiski ped. inst. Libknexta 2, 83–94 (1938)
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