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Fisher Information and Logarithmic Sobolev
Inequality for Matrix-Valued Functions

Li Gao, Marius Junge® and Nicholas LaRacuente

Abstract. We prove a version of Talagrand’s concentration inequality for
subordinated sub-Laplacians on a compact Riemannian manifold using
tools from noncommutative geometry. As an application, motivated by
quantum information theory, we show that on a finite-dimensional matrix
algebra the set of self-adjoint generators satisfying a tensor stable modi-
fied logarithmic Sobolev inequality is dense.

1. Introduction

Isoperimetric inequalities play an important role in geometry and analysis.
In the last decades, the deep and beautiful connection between isoperimetric
inequalities and functional inequalities has been discovered. This discovery
started with the work of Meyer, Bakry and Emery on the famous ‘carré du
champs’ or gradient form, and was brought to perfection by Varopoulos, Saloff-
Coste [89,90], Coulhon [100], Diaconis [31], Bobkov and Gétze [9,10], Barthe
and his coauthors [5,6,12,16], and Ledoux [59-64]. It appears that the right
framework of this analysis is given by abstract semigroup theory, i.e.,starting
with a semigroup of measure preserving maps on a measure space.

A crucial application of isoperimetric inequalities on compact manifolds
is the famous concentration of measure phenomenon, used fundamentally in
[35], and analyzed systematically by Milman and Schechtmann [73]. Thanks to
the work of Gross [38-41], it is now well known that concentration of measure
can occur in noncommutative spaces and infinite dimensions in the form of a
logarithmic Sobolev inequality. Indeed, let T} = e~** be a measure-preserving
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semigroup, acting on L, (€2, ) with energy form E(f) = (f, Af). Then, T} (or
its generator A) satisfies a logarithmic Sobolev inequality, in short \-LSI, if

A / P log|f2dn < E(f) (1.1)

holds for all f with [ |f|?du = 1 in the domain of A*/2. We will use the notation
Ent(f) = [ flog fdu for the entropy of a probability density f. To simplify
the exposition, we will assume throughout this paper that A C dom(A) N
Ly is a dense *-algebra in the domain and invariant under the semigroup.
Semigroup techniques have been very successfully combined with the notion
of hypercontractivity that

|Ti : Ly — Lol < 1 for q(t) < 1+ et

Indeed, the standard procedure to show that the Laplace-Beltrami operator on
a compact Riemannian manifold satisfies \-LSI is to derive hypercontractivity
from heat kernel estimates and then use the Rothaus lemma to derive LSI from
hypercontractivity. In this argument, ergodicity of the underlying semigroup
appears to be crucial.

A major breakthrough in this development is Talagrand’s inequality
which connects entropic quantities with a given distance. A triple (Q, u,d)
given by a measure and a metric satisfies Talagrand’s inequality if

Wifu,p) < wnft(f)
Here
Witew) = inf [ uiney) = s | [owavte) - [o@ine)

(1.2)

is the Wasserstein 1-distance, and the second equality is the famous
Kantorovich-Rubinstein duality (see [56,99]). The infimum is taken over all
joint probability measures 7 on €2 x {2 with marginals as v and p. Using the tri-
angle inequality for the Wasserstein distance, it is easy to derive the geometric
Talagrand’s inequality

d(A,B) > h = pu(Au(B) < e .

If in addition u(A4) > 1/2 and Bj, = {z|d(z, A) > h}, this inequality implies
exponential decay of u(Bp,) in h, i.e., concentration of measure usually proved
via isoperimetric inequalities. We refer to Tao’s blog for applications of Tala-
grand’s inequality [93] in particular to eigenvalues of random matrices [96,97].

As pointed out by Otto and Villani [76], Talagrand proved a much
stronger inequality for 2-Wasserstein (in short A-TA,), namely

Wa(fu, p) < mnft(f) (1.3)

for Q = [0,1]™ with respect to the Euclidean distance and for {0,1}" with
respect to the Hamming distance, with a constant A not depending on n. Here
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the 2-Wasserstein distance is obtained by replacing the L;-norm by the Lo-
norm of Lo (€2 x ) in the middle term of (1.2). Indeed, in the insightful paper
by Otto and Villani [76], they point out that the correct way to understand
Talagrand’s inequality consists in pushing the semigroup into the state space
of the underlying commutative C*-algebra. Then, Talagrand’s concentration
inequality can be reformulated as a convexity condition for the Riemannian
metric associated with the 2-Wasserstein distance. In that sense, Otto and
Villani reconnects to the geometric aspect of concentration inequalities. The
key idea in the Otto—Villani approach is to define the Riemannian metric such
that the relative entropy function

dv
Dlle) = [ tog Fraw

admits the semigroup Tt(%) as a path of steepest descent. Here, g—” is the
Radon—Nikodym derivative. A key tool in their analysis was to con51der the

modified version of the logarithmic Sobolev inequality, (in short A-MLSI)

ABnt(f) < [ A(f)log fd = Za(f) (1.4)

and show that it implies A-TAs. The right-hand side is known as Fisher infor-
mation and turns out to be the energy functional for the relative entropy with
respect to the Riemannian metric.

In this paper, we extend the theory of logarithmic Sobolev inequalities
in two directions, by including matrix-valued functions and non-ergodic semi-
groups. The main road block, discovered in the quantum information theory
literature, is that the Rothaus lemma ( [86])

(3350 Vets=o - AD(PIIE(S) < £(1))
L (350 Yr : ADPIE() < E(7) (15)

may fail for matrix-valued functions f. Here, E(f?) is the mean of the matrix-
valued f2. The failure of (1.5) forces us to introduce new tools. Recently, and in
part parallel to the refereeing process of this paper, Talagrand’s inequalities in
the noncommutative setting have made very significant progress, in particular
through the work of Rouzé and Datta [84], and the continuation of the seminal
work [25] by Carlen and Maas in [26]. On the other hand, we are not aware of
any investigation of Talagrand’s inequality in the non-ergodic setting even in
the commutative cases. For self-adjoint semigroups, the fixpoint algebra N =
{z : ¥y Ti(x) = x} admits a normal conditional expectation Ey;, onto N. This
remains true in the noncommutative setting, i.e.,for a semigroup (73) of (sub-
Junital completely positive maps on a finite von Neumann algebra M provided
each T; is self-adjoint with respect to the inner product (x,y) = 7(z*y) of a
normal faithful tracial state 7. The reader less familiar with von Neumann
algebras is welcome to think of M = Lo(9, u, m), the space of bounded
random matrices equipped with 7(f) = [, 2 tr(f(w))du(w) and 7(T;(z*)y) =

(@ Ti(y)).
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Let us consider examples of the form 7; = S; ® idy,,, where S; is a
nice ergodic semigroup. These examples are natural in the context of operator
spaces (see [81] and [33] for more background), despite being obviously not
ergodic. We say that a self-adjoint semigroup T} or its generator A satisfies
A-MLST ( A-modified logarithmic Sobolev inequality) if

AD(pl|Efiz(p)) < Za(p) = 7(A(p)Inp) .

The right-hand side is the noncommutative Fisher information introduced
under the name entropy production by Spohn [92], which is well known in
the quantum information theory. At the time of this writing, it is not known
whether \-MLSI is stable under tensorization. However, tensorization is an
important feature and allows us to deduce the Gaussian log-Sobolov inequal-
ity from an elementary 2-point inequality, see, e.g., [7]. Therefore, we introduce
the complete logarithmic Sobolov inequality (in short A-CLSI) by requiring that
T, ®idy,, satisfies A-MLSI for all m € N. Using the data processing inequality,
it is easy to show that the CLSI is stable under tensorization (c.f. Proposition
2.9). Before this paper, the list of examples which satisfy good tensorization
properties could all be deduced from the following key example, due to Bardet
[1] (see also [8,57]):

Lemma 1.1 (Examples 3.10f [1]). Let E : M — N be a conditional expectation.
Then, Ty = e *U—E) satisfies 1-CLSI.

Indeed, for conditional expectation, we have

Zi-u(p) = D(llE(p)) + D(E(p)llp) = D(pllE(p)) -

In this case, CLSI follows from non-negativity of relative entropy. The mid-
dle term is the original symmetrized divergence introduced by Kullback and
Leibler [54], which is interesting from a historical point of view. Using the
tensorization, one can now deduce that Gaussian systems (and certain depo-
larizing channels) also satisfy CLSI (see [8,23]).

Our new tool to prove CLSI is based on the gradient form:

2a(f.9) - = A(f")g+ [TA(g) — A(f79) -
We say that the generator A satisfies A-T'E if
A -y (oo f)lig < [Lalfy fr)lis

holds for all finite families (fy). The next lemma states the two new basic facts
used in this paper. The second assertion (ii) is the tensorization property of
CLSI.

Lemma 1.2. (i) \-T'E implies \-CLSI. (ii) If the generators A and B satisfy
A-CLSI, then A ®id+id ® B satisfies \-CLSI.

Inspired by the work of Saloff-Coste [89], we find that I'E is a strong
condition that implies the following L,-return time estimate, to our knowledge
new even in the commutative setting.
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Theorem 1.3. If T} satisfies A\-I'E, then for all x,
ITi(z) = E(@)|h < e ||z — B(z)||x -

Note that A-MLST implies exponential decay of relative entropy, D(T:(p)||E(p))
< e MD(p||E(p)) and hence of Li-norm via Pinsker inequality D(p||o) > 3 ||
p — o ||3. However, the initial term D(p||E(p)) has linear growth with respect
to the number of tensor products. Theorem 1.3 is strong in the sense that
llp — E(p)||1< 2 for any density p.

Our main contribution is to identify large classes of examples from rep-
resentation theory satisfying I'. Recall that the definition of a Hérmander
system on a Riemannian manifold (M, g) is given by a family of vector fields
X = {X1,..., X, } such that the iterated commutators [X;,, [Xi,,...]] gener-
ate the tangent space T, M at every point x € M. Building on the famous
heat kernel estimates from [87], see also [67], and the work of Saloff-Coste
on return time, we find entropic concentration inequalities for subordinated
sub-Laplacians.

Theorem 1.4. Let X be a Hormander system on a compact Riemannian man-
ifold, and the self-adjoint generator Ax = Ej X,;"X; be the corresponding
sub-Laplacian. Then, for any 0 < 6 < 1, (Ax)? satisfies \-TE, and hence
A-CLSI for some constant A = A\(X,0).

It is widely open whether the Ax itself satisfies CLSI, even when Ay
is the Laplace-Beltrami operator on a compact Riemannian manifold. For
Q = S! the Torus the standard semigroup given by A = —f—; satisfies 1-
CLSI however fails A-T'E. For more information on Bakry—FEmery theory for
sub-Laplacians, we refer to the deep work of Baudoin and his coauthors [2—
4,11,13,15]. Subordinated semigroups (in a slightly different meaning) have
also been investigated in the Gaussian setting, see [66,68]. From a rough kernel
perspective (see [29,34,42]), it may appear less surprising that subordinated
semigroups outperform their smooth counterparts.

In the context of group actions, we can transfer logarithmic Sobolev
inequalities. Indeed, let o : G — Aut(M) be a trace-preserving action on a
finite von Neumann algebra (M, 1), i.e., « is strongly continuous group homo-
morphism with values in the set of trace-preserving automorphisms on M. A
semigroup S; : Loo(G) — Loo(G) which is invariant under right translations is
given by an integral operator of the form

Si(F)g) = / Fe(gh™) £ (B)dp(g)

where p is the Haar measure. We will assume that G is compact and p is a
probability measure. Then, we may define the transferred semigroup on the
von Neumann algebra M,

Ty(z) = / (g™ ety (2)dpa(g) -
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For ergodic S;, the fixpoint algebra of the transferred semigroup 7; is then
given by the fixpoint algebra of the action N¢ = {x|V,a,(x) = x}, which is
in general not a trivial subalgebra.

Theorem 1.5. Let G be a compact group acting on a finite von Neumann alge-
bra (M, 7). If S; = e~ 4 satisfies \-CLSI (resp. \-T'E ), then Ty satisfies \-CLSI
(resp. A-T'E).

For a compact Lie group G, a generating set X = {X,..., X} of the
Lie-algebra g defines a Hormander system X = {Xj,...,X,} given by the
corresponding right translation invariant vector fields. Then, we conclude that
for any group representation the semigroup 77 transferred from S; = e~ tA%
satisfies A-I'€. Our motivation is from quantum information theory and pre-
vious results of hypercontractivity. Starting with the seminal papers [30,65],
Temme and his coauthors [22,57,58,94,95] made hypercontractivity on matrix
algebras available in the ergodic setting (see [45-47,88] for results in group von
Neumann algebras). Using transferred semigroups and the so-called Lindblad
generators, we can prove the following density result of CLSI on matrix alge-
bras:

Theorem 1.6. The set of self-adjoint generators of semigroups on M, satisfy-
ing L€ and CLSI is dense.

Indeed, combining all the results from above, we can show that for such
self-adjoint generators A the subordinated AY satisfies A(6)-T'€ for all 0 < § <
1. Let us mention the deep work of Carlen-Maas [24,25]. They translate the
work of Otto-Villani [76] to the state space of matrices and identify a truly
noncommutative Wasserstein 2-distance d4 2(p, o). They also showed (in the
ergodic setting) that A-MLSI implies

D(pl|E(p))
-

An analogue of an intrinsic Wasserstein distance has already been introduced
in [49,52]:

daz2(p, E(p)) < 2

dr(p,o) = sup i7(pf) —7(af)].
f=fTa(f.f)<1
Based on [48] we show that dr < 2\/§dA72, and hence, we see that \-MLSI
does indeed imply a noncommutative geometric Talagrand’s inequality: Let ey
and e; be projections in M such that for some test function f with T4(f, f) <1
we have

7(e1f) _ 7(e2f)

m(er)  7(e2)
where C only depends on the A-MLSI constant of the generator A. Thus, we
have identified large classes of new examples which satisfy the Talagrand’s
concentration inequality, not only for T, = e~*4, but also for the n-fold tensor

product (T2™).

>h = 7(e1)7(e2) < e_hz/c,
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The paper is organized as follows: We discuss gradient forms, deriva-
tions, and Fisher information in Sect. 2. In Sect. 3, we first consider kernel
and decay time estimates in the ergodic and then in the non-ergodic case. The
latter analysis relies on the theory of mixed L,(L,) spaces from [44], which
has been recently used in [20]. We discuss group representations in Sect. 4 and
the density result in Sect. 5. Section 6 is devoted to geometric applications
and concentration inequalities. In Sect. 7, we discuss examples and counterex-
amples. A chart of the different properties considered in this paper is given in
the following diagram:

Cor.2.10 [Carlen—Maas]
—

A-TE = A-CLSI =  A-MLSI A-TA5
Urhm2.13 YProp 2.9 YRem6.10
Lyp-return time A-CLSI for Tt®" quant. metric Pmp:'>6'14 geom. Talag.

Open problems will be mentioned at the end of Sect.7. In fact, we expect CLSI
to hold for the smooth generators of semigroups as well. Due to space restric-
tions, we ignore the deep and interesting connection to free Fisher information.

2. Gradient Forms and Fisher Information

2.1. Modules and Gradient Forms

Let (M, 7) be a finite von Neumann algebra M equipped with a normal faith-
ful tracial state 7. We denote the noncommutative L,-spaces by L,(M,T) or
L, (M) if the trace is clear from the context. Throughout the paper, we consider
that T, = e % : M — M is a strongly continuous semigroup of completely
positive, unital and self-adjoint maps. Then, 7(x*T;(y)) = 7(Ti(z)*y) for all
x,y € M and hence T; is also trace preserving. The generator A is the (possibly
unbounded) positive operator on La(M, 7) given by Az = lim;_o +(z — T}(z))
(see [28] for more background.) We will assume that there exists a weakly
dense *-subalgebra A C M such that

(i) A C dom(A)N{z|A(x) € M};

(ii) Ty (A) C Afor all t > 0.
In most cases, it is enough to assume that A C dom(A'/?) and the I-regularity
from [48]. The gradient form of A is defined as

Ca(z,y)(z): = %(T(A(:E)*yz) +7(z*A(y)z) — T(z*yA(z)))

We say the generator A satisfies I'-regularity if T'a(x,y) € Li(M,7) for all
z,y € dom(A'/?).

Theorem 2.1 [48]. Suppose I'(x,x) € Ly(M, ) for all x € dom(A'/?). Then,
there exists a finite von Neumann algebra (M, 7) containing M with 7|y = T,
and a self-adjoint derivation & : dom(A'Y/?) — Ly(M) such that for all z € M,

T(Ca(z,y)z) = 7(6(x)"3(y)2) .

2
Equivalently, Ep(6(z)*0(y)) = Ta(x,y) where Ery : M — M is the condi-
tional expectation.
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The I'-regularity allows us to define the right Hilbert W*-module Qr as

the completion of dom(A'/?) ® M with I'-inner product
(1 ® 22,91 @y2)r = 230 (T1,91)Y2 -

Here, we use the canonical right action (z ® y) - b = = ® yb and the left action
is given by

L(z,a-y) = E(6(x)"ad(y)) = E(6(x)"d(ay)) — E(0(z)"0(a))y

=T (z,ay) —T(z,a)y .
Namely7 a-y=ay®@x—a® zy. Note that in Theorem 2.1 the completion of
M with respect to M-valued inner product
(@, 9) By = Em(@™y), z,ye M

also gives rise to a W*-module, which we denote as LS (M C M) =
——————STOP
M@ M , see also [50,51]. Recall that for a W*-module H of M, the

norm is given by its M-valued inner product (-, )3 as follows:

l€llre = 116E )l
Then, it is readily verified that the map
75 : Qp — LS (MCM) | ms(z®y) = d(z)y
is an isometric right M/-module map. Moreover, thanks to [77] (see also [50]),
the range ms(Qr) is 1-complemented in LS (MCM).

Remark 2.2. Our notation Qr is motivated by the universal bimodule of 1-
forms
VA= {zey—1owy|z,yc AACARA

from noncommutative geometry (see [27]). Indeed, the map IIs induces a rep-
resentation of the universal derivation é(z) =z ®1—-1® z.

We refer to [48] for the proof of Theorem 2.1. Here, we discuss the follow-
ing special case. Let T : M — M be a unital completely positive self-adjoint
map. Recall that the W*-module M ® M is given by GNS construction

(11 @ 22,y1 @ Y2)7 = 23T (T7Y1)Y2 -

with left module action a- (z®y) =ar®y and (z®y)-b=r®ybon AR A.
Note that this implies the ‘differential left action’ ad(b) = 6(ab) —(a)b on Q'A
which is shared by all representations. It is shown in [48](see also [91]) that
there exists a finite von Neumann algebra M containing M and a self-adjoint

element & € Lo(M) of norm 1 such that
T(z) = Enm(Exs) . (2.1
This gives an isometric M-module map ¢ : M @7 M — L¢ (McM)
Pz ®@y) = z8y

with respect to the right module action ¢((z ® y) - z) = z€yz = ¢(z @ y)z.
On the other hand, let I : M — M be the identity map. The map A =
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I —T is a generator of a semigroup of completely positive maps (see [79] for a
characterization of generators of trace-preserving self-adjoint semigroups). Its
gradient form is

Lior(z,y) = %(w*y —T(x)'y —2*T(y) + T(:E*y)) )

The gradient form of this generator can be realized as a right submodule of
M @1 M via the map

V:Qr, > MerM, pay) = r@y—10T(x)y) . (2.2)

L(
V2
Indeed, this follows from
1
((zey) v ey)r =gy ("’ -2 T(@") = T(2")’
+T(z"2"))y =y Tr-r(2,2")y .
This means for the semigroup generators of the form A = I — T, the deviation

§: M — M and the module isometry 75 : Qp, , — M can be obtained as a
composition w5 = P:

1
0(x) = —(x§ —&T(x)) , ms5(x ® =
(z) \/Q(ﬁf()) s(z®y)
where the vector £ is as in (2.1).
In the following, we will use the completely positive order in two ways.
For two completely positive maps 7T and S, we write T <., S if S — T is
completely positive. For two gradient forms I',I”, we write I' <, I if

(@i z)li; < (i)l

holds for all finite sequence (z;) in the domain of T'.

1

\/E(fcf—éT(x))y-

Lemma 2.3. (i) Let T : M — M be a completely positive unital map. Then,
for any state p,

P& € ) = inf (e~ 10 g —180r).

(i) Let Ty, To : M — M be two completely positive unital maps. Given A\ > 0,
AT <op Ty implies NU'p—p, <¢p Uiy,

Proof. We choose a module basis {&;}icr of M @7 M (see [50,77]) and let
& =1® 1. Then,

(&, &)r = dijeq
where (e;)i;cr C M is a family of projections and eg = 1. Let P: M @1 M —
1 ® M be the orthogonal projection given by

P) = P(Z&(l@?ai)) = {H(1l®ay), €M

Note that
I@z,zy)r = 2'T(@)y = 1®2,1T(x)y)r .
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This implies that P(z ® y) = 1 ® T'(x)y and hence for £ = ). &(1 ® a4), we
find that

(€ Ers_r = ($(€), (€)1 = (€ — P(€),¢ Yo=Y ajei,
i7#0
where ¢ is the isometric module map in (2.2). On the other hand, for any
ce M,
E-1®c¢e—1®0c)r = (ag—0c) (g —¢) —l—Zafeiai .
i#£0
This exactly implies that for any ¢ € M,
(&&rr <l -1®cE-10r

and clearly for any state p,
P& &, 1) = Inf p({{ —1®cE-1@0)7) -
For (ii), for any state p we can find a ¢ € M such that

P& &) _r,) = p((E— 1@~ 1@ C)1) 2 M((E ~1@ € ~1@c),)
> Ap(<£?§>F1—T1) .

Here, we used i) twice. The argument for arbitrary matrix levels is the
same. O

Our next observation is based on operator integral calculus (see [82] and
references therein for more information). Let F' : R — R be a continuously
differentiable function and § be a derivation as in Theorem 2.1. Then, for a
positive p € A, the functional calculus for § is given by the following operator
integral:

s = [ [ P anesa (2.3)
R, JRy s—t

where E°((s,t]) = 1(54(p) is the spectral projection of p. Indeed, this is obvi-
ous for monomials

n—1
=Y p(p)p / / dE”(S( YAE? .
j=0 Ry JRy -

The convergence of (2.3) in Ly (M) follows from the boundedness of the deriv-
ative F’ (and in L, (M) from the theory of singular integrals, see again [82]).
Let us introduce the double operator integral

= / / F) = F) ggoyapy |
R, JRy s—t

For p = )", prey with discrete spectrum, this simplifies to a Schur multiplier

To(y) = Z F(px) — F(p1)

ol PE — Pl

eryep .

At k=1, W is understood as F'(p;).
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Lemma 2.4. Let F': R — R be a continuously differentiable monotone increas-
ing function and p € M be positive. Let A and B be two generators of semi-
groups on M with corresponding derivation § 4 and 0. Suppose their gradient
forms satisfy that for some A > 0,

ALy < T
Then, dom(Bz) C dom(A2) and for any = € dom(B2),
AT(En(0a(2)"Jp(0a(@)))) < 7(Em(0p(x)" Jp(05(x)))) -

Proof. Let us first assume that @ = >, Agex has discrete spectrum. Using
(2.3) we find

r(Bar (54(2)" T3 04())) ) = 3 Fw) = F(N)

(5A( )* ek(SA(:r)el>

o Ak — N
F(A
; Ak - )He’“af‘( el i) -

Recall that Qr, (resp. Qr,) is a submodule of LS (MCMy) (resp. LS (MC
Mp)), and hence, there is an M-module projection Pp onto . Our assump-

tion implies that the right module map
O :Qr, — L (MCMa), ®(x@y) = da(a)y

—1/2

is well defined and of norm less than A . Now consider the composition

®=>do0Pg: LS (MCMp) — LS (MCMy) , ®(8p(x)y) = da(x)y
It follows from the Leibniz rule that @ is also a left A-module map,
b(adp(z)y) = ®(6p(ax)y — 5p(a)ry) = Sa(ax)y —da(a)zy = ada(z)y.

Using strongly converging bounded nets from the weak*-dense algebra A C
dom(A1/2), we deduce that ® extends to a M-bimodule map with | ®
Lo(Mpg) — La(M4)||< A=Y/2. Hence for all k, I,

Vllexda(@)erll iy < lewdn@enll iy -
Since F' is increasing, % and F'(\p) are positive. Therefore, we
obtain

)\T(EM((;A(:U)*JI@((SA(x)))) < T(EM(aB(x)*J;(aB(x)))) :

This implies the assertion for p with discrete spectrum.
Let p € M be a general positive element. Then, we can approximate
F(s,t) = w by the sequence

F(nl3)) - F(nl3))
n(lz]) —n(lz))

and find lim Jg () = Jp(x) (with respect to convergence in Ly). O

n—oo

F,.(s,t) =
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2.2. Fisher Information

Recall that the Fisher information of a generator A is defined as
Za(z) = 7(A(x)In(x)) , x € ANM, |

provided that A(x) € Ly (M) and Inx is bounded. Equivalently, one can define
Ta(x) = ].iII(l) 7(A(z) In(x 4+ €1)). In the quantum information theory literature,
E—

T4 is also called entropy production (see [92]).

Corollary 2.5. LetT'4,T'p be the gradient forms of two semigroups on M. Sup-
pose \I'4 <., I'p. Then, forx € AN M,

Ma(z) < Ip(z).
Proof. Let x € dom(B'/?) N M. Then, by the Leibniz rule,
1BY2 (2" @) 2oy = 108" 2) | Ly ) = 108 )7 + %05 (@) 1 a1,
< lop(@)l2llzllco + 12" loc 05 (2)]]2
< 2|a||[| B2 ()]l -

Hence, z*z is also in the domain of B'/2. Thus, we have enough positive
elements in dom(B'/2)N M. Take the function F(t) = Int. Then, using Lemma
2.4,

7(B(z) In(z + 1)) = T(aB(x)aB(ln(x n 51))) - T(aB(x)J;fffl (53(9[;)))
> Ar (5A(x)J;z+61 (5A(x))) = M (A(x)In(z +€1)) .
The assertion follows from sending € — 0. O

Let N C M be a von Neumann subalgebra and Ex be the conditional
expectation (or shortly E for Ey if no ambiguity). We define the Fisher infor-
mation for the subalgebra N with the help of the generator I — E:

In(p) = Z1-5(p) =T((p—E(p))1np) :

Recall that for two positive elements p,c € M, the relative entropy is

D(pllo) T(plnp) —1(plno), fp<Ko
o):= ,
r +o0, otherwise.

Equivalently, one can define D(p||o) = lims_.o D(p||c+061). When 7(p) = 7(0),
D(pl|o) is always positive. The relative entropy with respect to N is defined
as
D = D(p||E = inf D(pllo) .
wp) = DOIBE) = | int Do)

See [37,74] for more information on Dy as an asymmetry measure. The fol-
lowing result is due to [1] (see [57] for the primitive case), but the simple proof
is crucial for this paper.
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Lemma 2.6. The Fisher information satisfies

In(p) = D(pllE(p)) + D(E(p)llp)

and hence Dy < Iy.

Proof. We first note that
In(p) =7(plnp) —7(E(p)Inp) = 7(plnp) —7(pn E(p))
+7(E(p) In E(p)) — 7(E(p) In p)
= D(pllE(p)) + D(E(p)llp) -

The non-negativity of the relative entropy implies the assertion. O

Now let T, = e=4* : M — M be a self-adjoint semigroup of completely
positive unital maps and N C M be the fixpoint algebra of T;. It is easy to
see that

Eoly,=T,oFE=F.

It is well known that the Fisher information I4 appears as the negative deriv-
ative of relative entropy Dy under the semigroup T} (see also [92]).

Proposition 2.7. Suppose that
ADn(p) < Za(p), Vp=>0.
Then,
Dy(Ti(p)) < e MDn(p), ¥V p=0.
Proof. Take f(t) = Dn(T:(p)). The idea is to differentiate
£(t) = D (Tu(p) = (L) InTi(p)) — 7(E(Ti(p) In E(T(p)))
=7(T2(p) n Ty(p)) — 7(E(p) In E(p)) .

For a function F : Ry — R with bounded continuous derivatives F’, we have
(see, e.g., [101, Corollary 5.10])

li—I%T(F([)‘FSU?_T(F(p)) _ T(F/(p)O').

Note that lim,_o L L(Ti+s(p) — Ty(p)) = —A(Ty(p)). Now we use the chain rule
for F(s) =slns and F'(s) =1+ Ins and deduce that

7ty =r(=ATp)) +7( = AT) W (Ti(p)) = ~Ta(Tilp) -

Here, the first term vanishes because A is self-adjoint and A(1) = 0. Thus, the
assumption implies that

F'(t) = =Za(Ti(p)) < —ADN(Ti(p)) = —Af(2).

Then, the assertion follows from Gronwall’s lemma. g

Definition 2.8. The semigroup T; or its generator A with fixpoint algebra N
is said to satisfy:
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(a) the gradient condition A-I'E for some A > 0 if
)\FI—EN Scp FA .
(b) the modified logarithmic Sobolev inequality A-MLSI if for all positive p,

AD(pl|En(p)) < Zalp) -
(c) the complete logarithmic Sobolev inequality A-CLSI if A ® idyy,, satisfies
A-MLSI for all m € N.

We also say that T} or A has I'E (resp. MLSI, CLSI) if it satisfies A-T'E (resp.
A-MLSI, A-CLSI) for some A > 0.

It is an immediate consequence of the data processing inequality that
CLSI has the tensorization property.

Proposition 2.9. Let T; : My — My and S; : My — My be two self-adjoint
semigroup that both satisfy \-CLSI. Then, the tensor product semigroup Ty ®
Sy My @ My — My ® Ms also satisfies A\-CLSI.

Proof. Let Ay (resp. As) be the generator of T; (resp. S;.). Then, A = A; ®
1d+1d ® Ay gives the generator of T; ® Sy. Let p € L1(M; ® Ms) and Eq, Es be
the conditional expectation onto the fixpoint algebras. Then, we deduce from
the data processing inequality that

D(p||Er @ E2(p)) = T(pInp) — 7(pIn E1 ® Ex(p))
= D(pl|Ex ®@id(p)) + D(E1 @ id(p)||Er @ E2(p))
< D(pl|Er @ id(p)) + D(p|lid ® E2(p))
<A 'Za,wid(p) + A Tiawas (p) = A 'Za(p) . O

Another immediate corollary is that A-I'€ implies A-CLSI.

Corollary 2.10. If the generator A satisfies \-I'E, then A ® idyr has A\-T'E for
any finite von Neumann algebra M. In particular, \-T'E implies A-CLSI.

Proof. Let T'pr(a,b) = a*b be trivial gradient form on M. Then, the generator
A ® Iy has gradient form T'y @ Ty (2 ® a,y @ b) = Ta(z,y) ® a*b. The first
assertion follows from [52, Lemma 6.1]. The second follows from Corollary 2.5
and Lemma 2.6. O

In the rest of this section, we discuss some interesting consequences of the
T'E condition. The first result is related to the symmetrized version of relative
entropy.

Proposition 2.11. Let (T}) : M — M be a semigroup of completely positive
unital self-adjoint maps with fixpoint algebra N C M. Then,

Mn(p) < Za(p)
implies

In(Ty(p)) < e MIn(p) -
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Proof. Let us consider the function
F(t) = In(Tulp)) = D(Ti(p)lIE(Ti(p)))
+ D(E(Ty(p)||Te(p))
= D(Ti(p)[1E(p)) + D(E(p)I|Te(p)) -

We have seen in Proposition 2.7 that the derivative of the first term is —Z4
(T (p)). Write h(t) = D(E(p)||T(p)) as the second term. By data processing
inequality, we have

W(s +1) = D(E()Ti+s(p) = D(T(E)IT.(Tu(p) ) < D(E()IT()) .
for any s > 0. Thus, h'(t) < 0, and hence,

SINT) < ~Talp) < ~NIx(Tilp))

We conclude that f satisfies f/(t) < —Af(t) and hence, f(t) < e f(0). O

Another application of noncommutative derivation calculus can be used
to show I'E gives exponential decay of L,-distance for all 1 < p < oo.

Lemma 2.12. Let A\I'y <., I'p and N C M be the fizpoint subalgebra of both
semigroups e 4 and e7'B. Let 1 < p < co. Then, for x € M self-adjoint, the
functions

fa) = I 4@ = E@IE o F5() = e B@) — E@IL o,
satisfy —Afy(t) < —fgp(t) for allt > 0.

Proof. Let © € M be self-adjoint. Then, a = x — E(z) is again self-adjoint.
We use the notation a4 and a_ for the positive and negative part of a. Recall
that the spectral projections of a; and a_ are mutually disjoint and commute
with a. Thus, |a|? = a + a”. Note that

Fa(t) = e @) = B@)I15, ) = le™ (2 = E@) I, oy = e @I% oy
Differentiating f4 at t = 0, we obtain that
F4(0) = —pr(ala[’~*A(lal))
— —p(r (" Ala)) + 7(aF Ala)) + 7 (@ Alan))
+T@%4A@+»).
Let 64 be the derivation of A. Write a_ = (\/a=)? = b*. Then, (2.3) implies

that
1,2 2
r2—w
@ sy = [ f
Ry xRy JRy xRy S0 r—v

T(dEs0(ay)dEdF,.0(b)dE,)
where Ej (resp. F).) are spectral projections of a (resp. \/a_). Because Fy and

F,. are orthogonal, we obtain T(a’flA(a )) = 0. The same argument applies to
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T(ZTIA( +))- By Lemma 2.4, \E(4(a”")da(ay)) < E(65(d% ")dg(as)),

E(6a(a”)éa(a-)) < E(65(a” ")op(a-))
This implies
“Af4(0) = Ap(7(0a(ah)da(ar) + 7(4(@ M )oala-)))
< p(7(05(a s (ar)) +7(0n(a? )op(a-)) = ~f5(0).
Replacing = by e~*4(z), we obtain that —Af/(t) < —fi(t) forall t > 0. O

Theorem 2.13. Let T, = e ' be a self-adjoint semigroup satisfying A\-TE.
Then, for all 1 <p < oo,

ITi(@) = E@)llz,an) < e Mlla = E@)lr, o) -

Proof. Let us first assume that @ = T,(y) for some y so that x belongs to the
domain of A and Az. Then, we note that

Ti((I = E)x)) = Ti(x) — E(z) .

Write a = 2 — E(z) and Sy = e *!=F), According to Lemma 2.12, we have
that

d P
_/\all‘gt( )HL (M) ”Tt( )||Lp(M) :

Note that En(a) = 0, and hence, S¢(a) = e *a. Then,

1@ ary = Dl oy
We apply Lemma 2.12 and deduce that
Apfa(0) = Mpllally = =Afr_p(0) < —f4(0).
Repeat the argument for a; = T;(a) and deduce
Apfa(t) < —fa(t) .
This implies f4(t) < e *P*f4(0). Taking the p-root, we obtain that
T ()|, ary < e Mlallz,

For general self-adjoint x, the assertion follows from the approximation z =

lim,_,0 Ts(z). By considering the 2 x 2 matrix a?* g , we deduce the asser-
tion for all z. The cases p = 1 and p = oo are obtained by passing to the limit
forp — 1 or p— oo. O

The next corollary studies the L,-distance decay under tensor product.

Corollary 2.14. Let th : My — M; be a family of semigroups with fixpoint
subalgebras N; C Mj. Then, the tensor product semigroup Ty = T @ T? ®
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- @T] on M = ®}_ M; has the fizpoint algebra N = ®7_; N;. Suppose for
each j, T} satisfies \j-T'E. Then,

IT: = En(@)ll,an < 2D e | Izl -

Proof. Let us consider a twofold tensor product S; = T}} @ T72. Then,
S, — En, @ En, = Si(id — En, ® Ex,) = S ((id — En,) ®idar,

+ En, @ (idpg, — EN2)>
= (T} —En,)) ®T? + En, ® (T? — Eu,) .

Since T? and Ey, are completely contractive on L, spaces, we deduce from
Theorem 2.13 that

1St — En, ® En, (2)]l1, ()
< T = Exy) @ T2@) 1,00 + id ® (T2 = Ex,) @)z,
<2 M a1, an) + lid @ (T2 — Exy) (@)1,
<2(e M+ e @l L, ar) -

For the n-fold tensor product, we may use induction. O

3. Kernel Estimates and Module Maps

3.1. Kernels on Noncommutative Spaces

In this part, we derive kernel estimates for ergodic and non-ergodic semigroups
and their matrix-valued extension. Let N, M be two von Neumann algebras
and N, be the predual of N. The kernel of maps between noncommutative
measure spaces is given by the following theorem due to Effros and Ruan [33]:

CB(N,,M) = N&M (3.1)

which states that the space of completely bounded maps CB(N,, M) is com-
pletely isometrically isomorphic to the von Neumann algebra tensor prod-
uct N®M. Let us now assume that N is semifinite with trace ¢r. The linear
duality bracket (x,y) = tr(zy) gives a completely isometric pairing between
Ly (N, 7) and N°P, the opposite algebra of N. More precisely, for every kernel
K € N°°®QM the linear map

Tk(z) = (trid)(K(z® 1))

satisfies ||K||min = ||Tk : L1(N,7) — M]||. Let us pause for a moment and
consider M = My and N = M}, and denote Sf for the trace class. For a linear
map T : S¥ — My, the Choi matrix is given by

Z\ s| @ T(|r)(s|]) € Mz ® My .
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The map ¢(a) = a® given by the transpose is a *~homomorphism between My,
and M}”. Therefore, we should consider

Kr = Z |s)(r| @ T(Jr)(s]) € M* ® My,

rs

and find
Trer(|r)(s]) = tr(Kr(|r)(s|® 1)) Ztr [t)l|r)(s]) T(|v)(t]) = T(|r)(s]) .

Equivalently, this shows that our descrlptlon via kernels in N°°@M is com-
patible with the standard choice of a Choi matrix, see also [78].

3.2. Saloff-Coste’s Estimates

After these preliminary observation, we now assume that 7} is a semigroup of
(sub-)unital completely positive, self-adjoint maps on a finite von Neumann
algebra M so that T} : L1 (M) — M are completely bounded. According to the
previous section, the kernels of T} are given by positive element K; € M°PQM.
Let N C M be the fixpoint subalgebra of the semigroup 7; and £ : M — N
be the conditional expectation. Recall that Ty o F = EoT, = FE by the
self-adjointness on Lo(M).

Lemma 3.1. Let (T}) : M — M be a semigroup of self-adjoint *-preserving
maps. Then, for anyt >0,

(i) T2t : L1(M) — Loo(M)|| = | T3 : La(M) — Loo(M)]?;

(i) [T2e — E: Li(M) — Loo(M)|| = |(T; = E) : L2(M) — Loo(M)]|*.
The same estimates also hold for cb-norm, instead of the operator norm.
Proof. We start by recalling a general fact. Let v : X — H be a linear map
from a Banach space X to a Hilbert space H. By H* =2 H, we have for any
z,y € X,

(W), v(@)a = (y, 0" 0(2))(x x-) -

Here, o* : H — X* is the conjugate adjoint of v and the right-hand side is the
sesquilinear bracket between X and its conjugate dual X*. Then, we have

lo: X = HIP = sup (v(@),v@)) = sup  |(y,5°0()
|z <1 lz]l;[ly|I<1
= ||o*v: X — X*|| . (3.2)

In our situation, we use X = L1 (M) and v =T} : X — Lo(M). Note that
(Ti(2), Ty (y)) = 7(Te(x)"Te(y)) = (¢, Tar(y)) -
and the anti-linear bracket
(z,y) = 7(27y)

gives a complete isometry between M and L, (M )* Therefore,

[ T2e : Li(M) — Loo(M)|| = ||T} : Ly(M) — Lao(M)]* .
Similarly, we deduce (ii) from

(Tt—E)(Tt—E) = TQt—ETt—TtE+E = TQt—E.
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For the cb-norm estimate, we take X = S3(Li(N)) from [81] (see also
Sect. 3.4). For the Schatten 2-space S, the trace bracket (z,y) = tr(z*y)
identifies S5 with S5. Thus,

lid & T, : $2(La(M)) = Sa(La(M))|

= l[id ® Ty = Sa(L1 (M) — Sa(Leo(M))]|

follows again from the general principle. The same argument applies to (T} —
E)? =Ty — E. O

The following observation is essentially due to Saloff-Coste ( [89]).
Proposition 3.2. Let (T}) be a semigroup of self-adjoint and *-preserving maps
such that

() |7y : Li(M) = Loo(M)||ey < ct=%? for some c¢,d >0 and all0 <t < 1;
(ii) the self-adjoint positive generator A satisfies the A-spectral gap condition:
|A NI — E): Ly(M) — Ly(M)|| < X1
Then,

2ct—d/2 0<t<1

Ty — E: Li(M) — Lo (M) <
T 1(M) (M)]leb {C(d,)\)e"\t .

where C(d, \) is a constant depending only on d and X.

Proof. First, note that T;(I — E) = T; — E and || — E : Loo(M) —
Loo(M)|ley < 2. Then, the estimate for ¢t < 1 follows from the assumption 1i).
For t > 1/2, we use functional calculus so that

|Ty_1/a(I — E) : Lo(M) — Lo(M)|| < e =1/

Note that Ly(M) is an operator Hilbert space, and hence, the above operator
norm coincides with the completely bounded norm ([80, Proposition 7.2]).
Thus, we obtain

(Tt — E) : L1 — La||e
< NTi1yaI = E) = Loy(M) — Lo(M)l|ep|[T1 /4 : La(M) — Lo(M)]|cs
< e_/\(t_1/4)HT1/2:L1(M) —’Loo(M)Hng < \@2d/46>\/4e—>\t.

Applying Lemma 3.1 yields the assertion for ¢/ =2t > 1. O

3.3. From Ultracontractivity to Gradient Estimates

In this part, we use the kernel estimate discussed above to prove I'E for (gener-
alized) fractional powers, including generators of so-called subordinated semi-
groups. This is a classical construction in harmonic analysis. Recall that (I—T5%)
is a semigroup generator. For a positive function F on [0, 00), we can define a
new generator

wra) = | “u-mrnd

t
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provided the integral is well defined. Then, the gradient form of ®(A) is given
by

° dt
F(bp(A) (l’,y) = 0 FI—Tt (.’I},y)F(t)7 . (33)

We also define the modified Laplace transform

¢Fu>=.4wa—e*MFwd?

t

For positive F', we may use the integrability (I), quasi-monotonicity (QM), or
the well-known (Asz) conditions:

oo

(I) Cp ::/ min(l,t)F(t)% < 00

0
(QM) For some 0 < p < 1, there exists C,, > 0 such that F(ut) < C,F(¢)
for all t > 0.
(As) For some 0 < g1 < 1, there exists 0 < a < 1, to > 0, ¢, > 0 such that
F(ut) < cqu *F(t) for to < pt <t.

Since 1 — e~ < min(1, M) < (14 A)min(1,t), we deduce that
or(A) < Cr(l1+2A)
and hence
Pp(A) < Cr(I+A).

Then, ®r(A) is a closable operator well defined on the domain of A, and hence
according to our assumptions also defined on the dense subalgebra A.

Remark 3.3. Our calculus is closely related to the theory of symmetric positive
definite functions on R, which can be represented as:

va(N) = /]R(l —COS(SA))G(S)% ,

S

where G is a positive function such that

/mlnls ds / min(1,#)G )d—<oo

Let g be a Gaussian distribution. Then, we obtain a randomized, new, positive
definite function
~ 4222 ds o0 a2 dt
o) = BieN) = -6 T = [Ta-eMevh T
0
Thus, for any positive definite function ¥, the function ¢(\) = 1/3(\”\) can

be used for the Laplace transform in (3.3) and hence defines a generalized
subordinated semigroup.

In particular, all fractional power of generators are examples of our cal-
culus.
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Ezample 3.4. Let 0 < a < 1 and F,(t) = c(a)t~. Then,

O A A A

t S

holds for a suitable choice of the normalization c(«). It is clear that F, sat-
isfies the condition (I) and (QM). We refer to [36] for monotonicity results
overlapping with our approach.

Let us now fix an F satisfying the condition (I) and (QM). A key technical
tool for our estimates is the following family of unital completely positive
maps:

we(r) = g) [ TEOS >0,

where g(r) is the normalization constant given by

g(r) = /O b e’r/tF(t)% .

Lemma 3.5. Let Ty be a semigroup of unital completely positive, self-adjoint
maps. Suppose the generator A satisfies T'-reqularity and F satisfies (I). Then,

(i) Forr > s, g(r) < g(s) and g(r)Vp(r) < g(s)¥r(s);

(ii) lim, o g(r)(I — Yr(r)) = ®p(A), lim, o g(r)T1_w, ) = Tap(a);
(iil) ®r(A) satisfies T'-regularity.

Proof. Let r > s> 0. Then, obviously e~"/* < e~*/* and hence

g(r) < g(s) . g(r)¥r(r) <cp g(s)¥p(s)
For (ii), since ¥ pr(r) is completely positive and self-adjoint, then A, := g(r)(I—
Up(r)) is a generator of a semigroup of unital completely positive and self-

adjoint maps. Let us consider the function

> dt
w) = g [ eu- e Mre
0
Using
(1—e ™) < min(1,Xt) < (14 A)min(1,¢)
we deduce from the dominated convergence theorem that

lim g(r)ior(A) = ¢r(N) -

Note that g(r)v, < g(s)ys if r > s. Applying the monotone convergence
theorem, we have that for any x € A,

o0

lim (, g(r)r(A)z) = lim [ g(r)r(N)dps(A) = (2, Pp(A)z) .

r—0 0

Here, dj,()) is the spectral measure d(z, 1{s<x}x). This implies that for any
e A,

lim g(r)(I = Up(r))e = Up(A)x

r—0
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in the weak topology on Lo(M). Thus, for all z,y € A,
lim g(r)Cr—w () (,y) = lim T () (7, 9)

in the weak topology on Lo (M) and also in the weak™* topology in M. For (iii),
we split the function ¢ into two pieces

—At dt

0r() = Sr N+ o) = [ —Fmars [Ta-ern g

and correspondingly ®r(A) = &= (A) + @7 (A). According to our assumption,

oo

1
dt
both /0 F(t)dt and / F(t)T are finite. For any z,y € A, 1I'1_r,(z,y)

1
is uniformly bounded in L;(M). Therefore, the gradient form of ®%(A) is
well defined on A and has range in Ly(M). On the other hand, the map
T; : M — M is completely positive and bounded from Lo, (M) to itself. Then,
®%(A) converges, and the gradient forms I'gr () take range in Lo (M) and in
particular also in L;(M). O

A direct consequence of the above lemma is as follows:
Corollary 3.6. For every r > 0,
I 1wty Sep Topy s 91 Z1—vptr) < Zap(a) -

Proof. The previous lemma shows that g(r)¥p(r) is decreasing in cp-order as
r — 0. By Lemma 2.3, the gradient form g(r)I';_y (- is also decreasing in
cp-order. Then, the assertion follows from the limits in Lemma 3.5 (iii) and
Corollary 2.5. O

We say a self-adjoint semigroup T} is ergodic if its fixpoint subalgebra
N = C1. In this situation, the conditional expectation is the trace E.(x) =
7(x)1 and the kernel is Kg =1® 1 in M°PQM.

Proposition 3.7. Assume that a semigroup (T}) of unital completely positive
and self-adjoint maps satisfy the conclusion of Proposition 3.2 with respect to
E.(x) =71(x)1. Suppose F satisfies (I) and (QM). Then, there exists arg >0
such that for all r > 1y,

(i) [[®p(r) = Er: Ly(M) = Loo(M)ller < 1/2;

(i) Er <¢p 2¥p(A);

(111) g(T>FI—ET Scp 2F<I>F(A)~
Proof. Write E,; = E. For i) we use the assumption and Proposition 3.2,

[Wp(r) = E: Li(M) = Loo(M)cs
dt

<o) [T - B5 100 — L0 P ()

-1 2 Ot gt at g A
< g(r) 2¢ [ e F(t)T +C(d,\) e e F(t)T
0 1

=: g(r) " (2l + C(d, M1I) .
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Then, the condition (QM) of F' implies that for some 0 < p < 1,

I = r_d/z/ F(r/u)ud/ze_"d?u

a/2 o du
< r4%¢(d, u)/ F(r/pu)e " —
” U
—d/2 - —wdw —d/2
=r c(d, ) F(r/we— < r e(d, mw)g(r) .
pr w
Here, we have used the change of variables v = r/t and w = pu. Indeed, the
same change of variable shows that

e _,du
o) = [ e
0 u
For the second part, we see that
" d " d
II:/ e*%F(r/u)e*“—u < e*)‘/ F(r/u)e*“—u < e Pg(r).
0 u 0 u

Hence, there exists a ro which only depends to ¢, d, C(d, ) and C}, so that for
all r > rg

1
Wr(r) = Bl < 3 -

[\]

This proves i). Let K, be the kernel of Up(r) in M°P@M and recall that
Kg =1®1 is the kernel of E. Then, by (3.1),

1
1K = 1@ 1 prorgm < 5

[\]

which implies K, > 31® 1 = £Kg, where (ii) follows. The assertion (iii)
follow from Lemma 2.3 and Corollary 3.6. 0

Remark 3.8. The polynomial decay || T : L1 — Loo||es <t %% for 0 <t < 1
is not really needed. Indeed, if

IT:: L1 — Loolley < Cae®et ”

holds for some a < 1 for all ¢ > 0, then we can choose 5 > 0 such that
CaCF(p)e*kTuﬁ < i and choose r large enough so that c,r=¢ < %51’0‘.
Thus, we find that

x

# —r/t di
I3 ::/ e ||Tt—E:L1(M)—>LOO(M)||CbF(t)7
0

dt

% —a
< / Cpeet "F(t)—
0 t

11—«

< Cp(u)Ca / e a0 (e e
B

o0

< Cp(p)Caef%%/ F(r/w)efwd—w .
u w
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Let IIg be the corresponding integral on the integral [r/8,4o00). Using a
small modification in Proposition 3.2, the spectral gap allows us to estimate

g(r) Iy < C(B,\)e™ 7
Motivated by the discussion above, let us introduce the return time

to: = inf{t | |[Kr, = 1@ 1 prorgns < 1/2}

= inf{t| |Ty — E:: L1(M) = Lo (M)]|ep < 1/2}. (3.4)
Under the assumption of Proposition 3.2,  is always finite.

Proposition 3.9. Assume that F satisfies (I) and (Ag). Let r = max{tg,to}
where tq, is the parameter in (As). Then,

F(r)
2acy,

Le.(a) Zep I'r g

Proof. Recall that I'p is linear with respect to B. Therefore, we deduce from

IKr, —1®1]] < 1/2 and Lemma 2.3 that T';_p, > %FI_E holds for t > tg.
Then, we note that the (As) condition implies

F(r) = F (gt) <ep Calt/r)F(t)

for all r < t. Therefore,

o dt iy e dt
Poon = [ TrenPOF 20 255 [ FOT

2 t
I'r g o [T -0ty . Li-E
Zcp KF(T‘)T‘ /T t dt = 2aca F(T’)
which completes the proof. O

Theorem 3.10. Let T; be an ergodic semigroup of completely positive self-
adjoint maps such that

() T} : Ly(M) — Loo(M)]||ep < ct=¥? for 0 <t <1 and c,d > 0.
(i) the generator A has a spectral gap omin > 0.

Let F be a function satisfying the condition (I)+(QM) or (I)+(As). Then,
Dp(A) satisfies A-T'E and hence \-CLSI for some A depending on ¢,d, F' and

Omin-

Proof. Let E = E, be the conditional expectation F.(z) = 7(z)l. For F
satisfying (I)+(QM), we deduce from Proposition 3.7 that

9(ro)lr-p, <ep 2Le 0 (a)

for some ry depending on oy, ¢ and d. Then, one can choose A = g(;‘)).

Similarly, for F satisfying (I)4+(Az), we apply Proposition 3.9. O
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3.4. Non-ergodic Semigroups

In this part, we want to adapt the kernel techniques for ergodic maps to
the non-ergodic situation. This requires more operator space theory from the
work in [44] on vector-valued noncommutative L,-spaces associated with an
inclusion of von Neumann algebras. As usual, we assume that (T3) : M — M
is a semigroup of unital completely positive self-adjoint maps and N C M is
the fixpoint subalgebra. Whenever N is infinite dimensional, we can no longer
hope for an ultracontractivity of T; : L1(M) — Lo (M) for operator norm or
cb-norm, because the identity map

id: L1(N) — Loo(N)

is already unbounded. This leads us to use vector-valued L, norms. Let 1 <
p.¢,r < oo and fix the relation 1 = |% - %| Recall that the L,(L4) norms for
the inclusion N C M is defined as:

Ii:r;fyb||a||L2T(N)Hy||Lq(M)”bHLzr(N) P=q,

lzllLa(verry = sup lawble o a<p. (3.5)

lall Ly, (n)y=lbll Lo, (n) <1

Here, for p < g, the infimum takes over all factorization x = ayb with a,b €
Ly (N),y € Ly(M) and for p > ¢, the supremum runs over all a,b € Ly, (N)
with [la[[z,, vy = [|bl|2,, vy < 1. The Banach space Lj(N CM) is then the
completion of M with respect to the corresponding norm. It follows from the
Holder inequality that for p = ¢, LE(NCM) = L,(M). These norms have been
extensively studied in the quantum information theory and operator space
community [20,37,72]. For the special cases M = RQN and M = M (N),

LYNCR®N) = L,(R,Ly(N)) ,LY{NCM(N)) = SE(Ly(N)) .

which are the vector-valued L, spaces introduced in [80]. In the following, we
mention the properties of LI(NCM) needed in our discussion and refer to [44]
for a detail account of these L,-spaces. First, we will use a duality relation that
the anti-linear trace bracket (z,y) = 7(2*y) provides an isometric embedding

LI(NCM) C L, (NCM)* , (3.6)

1 1 1 1
for 1 <p,g<oco, —+— =-+— =1, and it is indeed an equality when for

7
1< p,qg < oo. We will glso need tqhe following factorization property that
Ly(M) = Lop(N)LE (NCM)Ly(N) 3.7)
which reads as
lzllz,an= 0t llalli.,mlylceoean bl w) -

This can be verified by interpolation. Indeed, it is obvious for p = oco. For
p = 1 let us assume that x is positive and 7(x) = 1. Then, 7(E(x)) = 1, and
we may write

v = BE(@)*(B(x) Y 2B(x)"/*)E(2)"/? = E(2)"/*yB(x)"/? .
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Note that for every a € La(N),
r(a*ye) = T(E(z)"V2E(x) B(z)"Yaa") = 7(aa”) = [al.

Using the positivity of y and a Cauchy—Schwarz type argument, it follows that
Iyl (vcary < 1. This factorization property is closely related to the following
fact.

Lemma 3.11 (Lemma 4.9 of [44]). Let x € M. Then
lzllzy oveany = _inf (B2 B(ag) |27

The following fact is an extension of Lemma 1.7 of [80]. Recall that 7" :
M — M is a N-bimodule map if for any a,b € N,z € M, T(axb) = aT'(x)b.

Lemma 3.12. Let T : M — M be a N-bimodule map and 1 < p,q < oo. Then,
forany 1 < s < oo,

|T: LE (NCM) — LI (NCM)|| = ||T: LE(NCM) — LI(NCM)||
Proof. Let us introduce the short notation ||T|||s = |7 : LE(NCM) — LI(NC
M)||. We first prove “>" for s = 1. For an element = € LY(NCM) of norm less
than 1, we have a decomposition x = ayb with a,b € Ly (N), and y € L,(M)
all of norm less than 1. Using the factorization (3.7), we may further write

y = oY § with a, € Lop(N) and Y € LE (M) all of norm less than 1.
Therefore, we have shown that © = (aa)Y (8b) with Y € L2 (NCM), and

laall,vy <1, (180l Lyvy <1
Thus, we may write aac = @'’ and 8b = 3’V such that
max{[|V'l|z,, vy, 181 Lagvys 10 | 2 vy 18 Eag iy} < 1
Then, we deduce from the module property that
T(z) = ddTY)BVY = (T

and [|[T(Y)llze (vem)y < T ||oo- Using (3.7) again, (o/T(Y)3') € Ly(M) of
norm less than [[|T']||c and hence we have shown that || T'(x) |[Le(nvcan<
7|l By interpolation, we deduce that

ITNs < 7Nso
for all 1 < s < co. We dualize this inequality by applying it to T and obtain
Tl = |IT*: LL(NCM) — LE(NCM)|| < [|T* : L (NCM)
— L2 (NcM)|
= 7l -
Then, we dualize again to get
TN < NTMls < WTs < NT Moo -

Hence, all these norms coincide. O



Vol. 21 (2020) Complete logarithmic Sobolev inequality 3435

Thanks to the independence of s, we may now introduce the short nota-
tion

IT|lp—q = [IT: LE(NCM) — LE,(NCM)]| .
and similarly, the cb-version

ITNlp—q,co = sup ||idp,, @ T : LB, (Mm(N)CMm(M))

— L% (ML, (N)CM,, (M) -

In particular, we understand L2 (NCM) as an operator space with operator
space structure

Mo (LE(NCM)) = L2 (Mo (N)CM (M)
The analogue of Lemma 3.1 reads as follows:

Lemma 3.13. Let (T}) be a semigroup of self-adjoint *-preserving N -bimodule
maps. Then,

(1) [Tt 100 = (T2 ]IT -2
(ii) |72t — Elli—oo = (Tt — E)

The same equality holds for cb-norms.

Proof. Because Ty are N-bimodule maps, we know by Lemma 3.12 that
T2t ll1—c0 = T2t : Ly(N € M) — LE(N € M),
| Telh—2 = Ty : Ly(N € M) — Ly(M)]|

Take X = LY(N C M) and H = Ly(M) = L3(N C M). The anti-linear
bracket (z,y) = 7(z*y) gives a complete isometric embedding L (NCM) C
X*. Then, using the general principle in the proof of Lemma 3.1 implies the
assertion because T} is *-preserving and self-adjoint. The cb-norm case follows
similarly with X = So(LY(NCM)) and H = Sy ®3 Lo(M), where S is the
Schatten 2-class. O

‘We have seen in the last subsection that a complete positive order inequal-
ity E; <. T can be deduced from kernel estimates. For non-ergodic cases, we
have to modify the argument by introducing the appropriate Choi matrix for
bimodule maps. Let us recall that the conditional expectation £ : M — N
generates a Hilbert W*-module Hp = L (NCM) with N-valued inner prod-
uct

(e = E(@"y).
As observed in [50,51], it is easy to identify the completion of this module
in B(L2(M)), namely the strong closure of Hp = Mpg, where pp = E :
Lo(M) — Ly(N) is the Hilbert space projection onto the subspace La(N) C

Lo (M). The advantage of a complete W*-module is the existence of a module
basis (&;)icr such that

(&, &) = Oijpi
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where p; € N are the projections. Note that in our situation the inclusion
Mpg C Lo(M) is faithful and hence, the basis elements & (or more precisely
& obtained from the GNS construction) are in Lo(M). In particular, every
element x in Lo(M) has a unique decomposition

z = Zfzil?z

so that x; = p;z; € N. Indeed, we have x; = (&, 2)s,. For a N-bimodule map
T:LL(NCM)— M, we may therefore introduce the Choi matrix

xr = Y 1)Ul eTEE) .
,J
Lemma 3.14. Let T : M — M be a N-bimodule map. Then,
[Tl1=00c0 = lIxTllB(ES(T)EM -
Proof. Let ¢ = 37, [i)(j| ® /& € B({2(I))@M. Viewing g as a kernel, the
corresponding map Ty : S1(¢2(I)) — M is given by
To(li)(51) = &°¢;

Let us show that T, : Sy(¢2(I)) — L. (N C M) is completely contractive.
Indeed, using operator space version of (3.1)

1Tq lleb = 1 qllBes (1) @min Lt (Narr) = 11 L1 B(e2(1)) @rmin N CB(Es (1)@ min M)
= |lid ® E(q) llsea(ryan = 11> 10){i] @ pi llpea(ryom < 1
Here, we have used the fact ¢ is positive and p; are projections. Note that the

kernel of T o T, : S1(¢2(I)) — M is exactly the Choi matrix yp. Therefore,

thanks to (3.1) again, we deduce that
Ixrll = T o Ty S1(6(1) = Mlley < [[T]hi—o0,cb -

Now let x € LI (NCM) of norm less than 1. According Lemma 3.11, we have
a factorization x = y;y2 such that E(yiy;1) < 1 and E(y3y2) < 1. This means
we find coefficients a;, b; such that

v =) aiEEh;
.7

and ) . a;a; <1 and Zj bjbj < 1. Therefore, we deduce that

1T ()l [ar = |l ZG?T(iff.j)bjll = (Z@'I ® af) > DGl ® T(EE)

( 4,3

x| Dol @by | i
j
S D e P [t
i i
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This implies
1T()]| < HXTHl_ZiglfyzI\E(yly’f)l\mI\E(y§y2)||1/27
or equivalently

1Tl = lIxrll -
The same argument applies for idy, ® T, and we have the equality
[Tl =06 = lIxrll- U

We are now in a position to prove a version of Proposition 3.7 ii) in the
non-ergodic situation

Lemma 3.15. Let T : M — M be a unital completely positive N -bimodule map
such that

—_

|IT — En : Li(NCM) — My < 3 .

[\)

Then, En <, 27T

Proof. Let xr (resp. xg) be the Choi matrix of T (resp. En). We known by
Lemma 3.14 that

1
IxT — xEllBU()an < 3"

Since T' and E are completely positive, x and x g are positive. Thus, we may
. . 1 . N
write xg — x7 = a — 3 with 0 < a, 3 < 3 Write a =}, ; 4) (j| ® @ ; and

B = 22,100 ® Bi;. It is clear that a;; — Bi; = E(§&;) — T(§7§;). Let
x = y*y be a positive element in M and y = Zj &jy; with coeflicients y; € N
in the module basis. Then, we deduce that

Z yipyi = EW'y) = (E=T)(y"y) + T(y"y)

= yiiigpiy; — Y yipiBiipiy; + T(Y*y)
i i

1 * *
<5 | 2owpivi | +TWw) - (3.8)
J
Indeed, in the last step we use the fact that

nypiai,jpjyj=<z ®y1pz> Z\ jleai | [ D17 @pjy;
j

ij i

IN
DN | =

i

(Z |®yzpz> ZU ® pjy;
1 *
=5 | 2 virivs
J
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Subtracting %(Zj y;p;y;) in (3.8), we obtain

E(y*y) =Y iy < 2T(y"y) .
J
The same argument holds for matrix coefficients. Hence, E <., 27 O

Thus, in the non-ergodic situation, we can now state the analogue of
Theorem 3.10.

Theorem 3.16. Let T; be a semigroup of completely positive self-adjoint maps
and N be the fizpoint subalgebra. Suppose that
Q) |7y : LL(NCM) — Loo(M)|lay < ct=¥2 for 0 <t <1 and c > 0,
d > 0;
(ii) | T:(I — EN) : Lo(M) — Lo(M)|| < e 7=int for some opmin > 0.
Let F' be a function satisfying (I)+(QM) or (I)+(Az). Then, ®p(A) satisfies
A-I'E and hence A\-CSLI for some A depending on ¢,d, F and oy .

Proof. The fixpoint algebra N is the common multiplicative domain of T}
for all . Hence, T; are N-bimodule maps. Then, the assertion follows from
combining Lemma 3.15 with argument in Theorem 3.10. U

4. Riemannian Manifolds and Representation Theory

In this section, we find heat kernel estimates, which allow us to apply Theorem
3.16.
4.1. Riemannian Manifolds

Let (M, g) be a d-dimensional compact Riemannian manifold without bound-
ary. A Hormander system is a finite family of vector fields X = {X;,..., X, }
such that for some global constant Iy, the set of iterated commutators (no
commutator if k = 1)

U {[Xj1>[Xj27"'7[Xjk—17Xij] | L<ji,. 5k < T}
1<k<lx

spans the tangent space T, M at every point z € M. We consider the sub-
Laplacian

Ax =) X:X;.
j=1

where X7 is the adjoint operator of X; with respect to Lo (M, ). Here, dp is
the volume measure of the metric g, which in local coordinates is given by

du(z) = Vglder A~ A day | |gl(2) = |det (g5 (2))] -
For compact M, Ax extends to a self-adjoint operator on Lo(M, w). It follows
from the famous Rothschild-Stein estimate [87] (see also [65]) that Ax is hypo-
elliptic. This leads to the estimate (see, e.g., [75])

(F, AT )y < CUL AN+ 1 F113) (4.1)
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where A is the Laplace—Beltrami operator on M. Using the Hardy-Littlewood—
Sobolev inequality in the Riemannian setting, we have the following Sobolev-
type inequality (see, e.g., [67]):

Lemma 4.1. Let M be a compact Riemannian manifold and X be a Hormander

system of M. Let g = d?ile' Then,

Ifls < CUAXE P+ 1FI2)Y2.

Now it is time to invoke the Varopoulos theorem about the dimension of
semigroups.

Theorem 4.2 [100]. Let T} : Loo (€2, 1) — Loo (2, 1) be a semigroup of measure
preserving maps and A be its generator. The following conditions are equiva-
lent: for m € N,

() T3 : L1( 1) — Loo(, )| < C1t=™/2 for all 0 <t <1 and some Cy;
() 1/, < Co(AF1)H | FIB);

i) [FIHY™ < Cs(Af, DIFIY™.

Remark 4.3. Varopoulos theorem remains valid for semi-finite von Neumann
algebras. For the proof, the only part which requires modification is i)=- ii)
(see [52] and independently [102]). The completely bounded norm analog is
significantly more involved [53], and it will be used later.

It is well known that the Laplace—Beltrami operator Ay g on a compact
Riemannian manifold has a spectral gap. Similarly, Ax also has a spectral
gap. Combining Lemma 4.1 and Theorem 4.2, we obtain the kernel estimates
in Proposition 3.2 for m = dlx. As a consequence of Theorem 3.10, we have:

Theorem 4.4. Let (M, g) be a compact Riemannian manifold and X = {X;,
..., X} be a Hormander system. Then, there exists m = dlx € N and ¢ > 0
such that S, = e~ 'A% satisfies

IS¢ = Ly (M, 1) = Loo (M, p)|ap < ct™™2
Moreover, for every 0 < 6 <1, S% = e~tA% satisfies A-I'E and \-CLSI with
A =coty?(1 — 0)62. Here, to = to(Ax) is the return time of Ax in (3.4) and

co 18 an absolute constant.

As mentioned in Corollary 2.10, the '€ condition automatically extends
to the operator-valued setting for any finite von Neumann algebra M. Here, we
note that the kernel estimates for Hormander systems also extend to M-valued
functions.

Corollary 4.5. Let M be a finite von Neumann algebra with tracial state 7. Let
(M, g) be a compact Riemannian manifold and X be a Hormander system as
above. Then,

lid ® Sy : Loo(M; Ly(M)) = Loo(M; Loo(M))|| < ct™™/?
holds for 0 <t <1 and some ¢ > 0.
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Proof. Let E(f) = M) / f(x)du(z) be the conditional expectation onto

1

Vol(M)
M,ie,E(f)lp = EM( ). Then a positive element f € L1 (MCLy(M)®M)
has norm < 1if |E(f)|la < 1. Let h € Loy(M) be a unit vector. Consider the
scalar function fy,(x) = (h, f(z)h)L,r). We deduce that

:/nmwm:wﬂmmw@gl
M

and therefore, ||S;(f)n .. (rm) < ct~™/2. This means

sup sup (h, S¢(f)(@)h) ) < ct—m/2
[|h|l2<1xzEM

Interchanging the double supremums, with the help of the duality L;(M,
Li(M))* = Loo (M)®M, implies the assertion O

4.2. Group Representation

Let G be a compact group with Haar measure p. We consider a semigroup of
measure preserving maps St : Loo(G) — Loo(G) that is also right translation
invariant. Suppose that S; is given by the kernel

=Lm@wwww.

The right translation invariance means that for any f € Lo(G) and ¢,s € G
we have

/mwmwmww /m% F(hs)du(h)

:/mmM*mmwm.

Thus, K;(gs,h) = Ki(g,hs™') and hence K;(g,h) = k;(gh~') for some single
variable function k;. Conversely, K;(g,h) = k;(gh~') implies right invariance.

Now let (M, 7) be a finite von Neumann algebra and o : G — Aut(M)
be an action G on M of trace-preserving automorphisms. Using the standard
co-representation,

T: M — Loo(G; M), n(x)(g9) = ag-1(x).

we define the transferred semigroup on M
Ti@) = [ ooy (@)dnto).

Lemma 4.6. The semigroups Sy and Ty satisfy the following factorization prop-
erty:

moTy = (S;®idy)om

Proof. We include the proof for completeness. Indeed, for x € M

w@@MF=thW)%dﬁMm
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- /G k(9™ ™ ) gy 1 (@)da(h)
- /G ke(gh™ D, (2)du(h) = (S; @ id)(x(2))(g) . O

Let us denote by N = {z |ag(xz) = x V g € G} the fixpoint subalgebra.
Note that we have the following commuting diagram:

M = Lo (G, M)
| En LEv . (4.2)
N & M

Here, M C, Lo(G, M) is considered as operator-valued constant functions

and, as seen in Corollary 4.5, the conditional expectation is given by averaging.
Then, for any x € M,

E(n(z)) /G ayr (2)du(g) = En(x)

is exactly the conditional expectation form M onto the fixpoint algebra V.
Since Fjs is a unital completely positive N-bimodule map, we see that

Enar : LY(MCLoo(G, M)) — LI(NCM)
is completely contractive for all 1 < p,q < co. This implies that the inclusion
7 LI(NCM) C Li(MC Lx(G,M)) is a completely isometric embedding
(see [44] for details). The next proposition shows that A-T'E and A-CLSI of the
semigroup S on the group G pass to the transferred semigroup 7; on M.

Proposition 4.7. Let S; : Loo(G) — Loo(G) be an ergodic, right invariant semi-
group and Ty : M — M be the transferred semigroup defined as above. Then,
(i) Ty — En : La(M) — Lo(M) ||<|| St — E : Lo(G) — Lo(G) || for allt >0
and hence the spectral gap for Ty (with respect to Ey ) is not less than the
spectral gap of St.
(i1) (T3) satisfies A-TE (resp. \-MLSI, \-CLSI) if (Sy) does.

Proof. By the diagram (4.2), the transferred semigroup Ty on M can be viewed
as a restriction of semigroup S; ® idy; on Lo (G, M). By definition, A-I'€ and
A-CLST of Sy on the group G naturally extends to S; ® idys, which implies
corresponding property for T;. O

We obtain the following application of transference:

Theorem 4.8. Let S; : Loo(G) — Loo(G) be an ergodic right invariant semi-
group with kernel function ky. Let 0y, be the spectral gap of Sy and suppose
sup, |ki(g9)] < ct=™/2 holds for some c,m > 0 and 0 < t < 1. Then, the
transferred semigroup Ty : M — M and its generator A satisfy:

1) |1y : Ly(M) — LE(NCM) || < ct—m/? or0<t<1, and
@ | 1
2ct—m/? 0<t<1,

c(m, omin)e mint 1<t < oo.

IT — B2 Li(M) — L¥(NCM) oy < {
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(ii) For every function F satisfying condition (I)4+(QM) or (I)+(As3), the
generator ®p(A) satisfies T'E and hence CLSL

Proof. Let Tk (f)(9) = [ K(g,h)f(h)dh be an integral operator. Then, we see
that

Ti(Pla)| < sup|K (g )] [ I5(m]an
h

implies that
[Tk : L1(G) = Loo(G)|| = ess supg j, [K(g,h)]

is given by the essential supremum. For a right invariant kernel K(g,h) =
ki(gh™1), we deduce || Tk | = ||k¢|loo. Therefore, our assumption implies
IS¢ = Li(G) = Loo(@) b = [1S: : L1(G) — Loo(G)|| < et™™/2.
Combined with the assumption on spectral gap o, we know by Proposition
(3.2) that
2ct—m/? 0<t<1
S —E: Li(G Loo(G)]|er < -~
IS0~ B £ Li(G) = LelG)l {C(dvgmm)en i

where E is the conditional expectation from L., (G) onto the constant func-
tions. Note that Ty = Sy @ idns|r(ar), E = E®idpr|(ar) by restriction because
the transference homomorphism 7 gives completely isometric inclusion (by the
diagram (4.2))

Li(M) Cr Li(G, Li(M)) ,  LE(NCM) Cp LE(M € Loo(G, M))
Then, i) follows from
ITy — B Ly(M) — LE(N € M)l
< [[(Se = E) @idar : Li(G, Li(M)) — LT (MCLoo (G, M)) ||et
=15t =E: L1(G) = Loo(G) [les -
The assertion (ii) follows from (i) via Theorem 3.16. O
Now we combine Theorem 4.8 with the kernel estimates for a Hérmander
systems on a Lie group. Let G be a compact Lie group and g be its Lie algebra

(of right invariant vector fields). A generating set X = {X1,...,X,} of gis a
right invariant Hérmander systems on G. Indeed,

d
X(f) = af(exp(tX)g)lt:Q ;
is right translation invariant because the left and right translations commute.

”

Then, the sub-Laplacian Ax = ZXj*Xj generates a right invariant semi-
j=1

group S; = e 1Ax

Corollary 4.9. Let X be a generating set of g and Sy = e 'A% : Loo(G) —

Lo (G) be the right invariant semigroup given by the sub-Laplacian Ax. Then,

the transferred semigroup Ty : M — M and its generator A satisfy
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(i) For every function F satisfying condition (I) + (QM) or (I)+ (A2), the
generator ®p(A) satisfies T'E and hence CLSL.

(ii) In particular, for all 0 < @ < 1 the generator A? satisfies \-T'E with
constant M0, X) = coty ?0%(1 — 0). Here, ty = to(Ax) is the return time
of Ax and co an absolute constant.

Proof. This is an special case of Theorem 4.4 for a compact Lie group G. O

4.3. Finite-Dimensional Representation of Lie Groups

Let M,,, be the m x m matrix algebra and U, be its unitary group. A unitary
representation v : G — U, induces a representation @ : g — u, of the
corresponding Lie algebra, where u,, = i(M,,)s, is the Lie algebra of U,
and (M,,)sq are the self-adjoint matrices in M,,. Let X = {X;,..., X,.} be a
generating set of g and Y7,...,Y, € (M,,)sq be their images under . Indeed,
for the exponential map, we have

u(exp(tX;)) = 'Y

and ¢Y; € iM;¢ is the corresponding generator for the one parameter unitary
u(exp(tX;)) C M,,. Let us consider the (self-adjoint) Lindblad generator given
by

.
L(p) = Y Yip+pY] —2Y;pY; .

j=1

Then, we have a concrete realization of Lemma 4.6.
Lemma 4.10. Let 7 : M, — Lo (G,M,,) be given by

m(z)(9) = ulg) " zu(g)
Then,

Ax ®id,, (w(p) = T(L(p)) , X; ®idu,, (n(x)) = —in([¥;,a]).

tL

In particular, e=** is a transferred semigroup of e~ **% on G.

Proof. Let v € M,,, and h,k € [5* being two vectors. We consider the scalar
function

f(g) = (h,ul(g) ' zu(g) k)

Then, we have

X;(f)g) = %f(exp(th)g)\t:o = %Uz,u(g)‘le‘”yfﬂceity"U(g)kﬂtzo

= i(h,u(g) " (2Y; = Yiz)u(g)k) = —ilh,u(g) 'Y}, 2]u(g)k) -

Since h, k are arbitrary, we deduce the second assertion. Note that X; = —X;*.
Then,

X Xym(a) = w((¥,,[¥y,2)) = 7(Va+a¥? - 2¥aY)).
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and hence

Ax(n(z)) = | Y Yiw+aY] -2z
J

This implies that the semigroup S; = e **x on G satisfies

(S;@id)om =moe £, O

Theorem 4.11. Let X = {X1,...,X,} be a generating set of g and u : G — U,
be a unitary representation such that u(X;) =Y;. Let

L(x) = > Yiw+Y] Yy,
J

Then, for any 0 < 6 < 1, A = L% satisfies \-T'E and hence \-CLSI with
MX,0) = coty 6%(1 — ) depending on the return time to = to(e "2X) defined
n (3.4) and 6.

Proof. By Lemma 4.10, e~** is a transferred semigroup of S; on G. The asser-
tion follows from Proposition 4.7 and Corollary 4.9. O

We obtain the following corollary from the cb-version of Varopoulos’ the-
orem [53].

Corollary 4.12. Let G be a d-dimensional Lie group and X be a generating set
of g using iterated Lie brackets up to order lx —1 (with lx many elements from
X). Let u : G — U, be a unitary representation and L be as above. Suppose
Sy = e B is a semigroup of completely positive self-adjoint trace-preserving
maps on M,, such that

(i) The fizpoint algebra N of e *£ is contained in the firpoint algebra Np

for e tB;
(il) (z,L%) < c((z, Ba)y+ [|z]|3) for some 0 < a < %x.

Then, for all 0 < @ < 1, BY satisfies TE and hence CLSI.

Proof. Denote dx = dlx. The cb-version of Varopoulos theorem implies that

(7 +£)77% : Ly(Myn) — LY(NLCMin) v < (q)

holds for % = % - % provided 2« < dx. By our assumption, we have

I+ £)*2(@)l2 ~ (lzllz + 1£% @)]l2) < elllzllz + 1B x]l2) -
Using Ny C Np, we deduce that
I+ B)~Y/2: La(My) — LYNECM) |l < ¢(a) -
By ii) = 4) in Varopoulos Theorem (4.2), we deduce that
le=tB : LI (NpCM)p — Myl < ct= /2

Thanks to the spectral gap for B, we may again use Theorem 3.10 and deduce
the assertion. g
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5. A Density Result

In this section, we show that on matrix algebras, the set of self-adjoint gen-
erators satisfying I'€ is dense. Let T} = e~ *4 : M,, — M,, be a semigroup of
self-adjoint and unital completely positive maps. Using the Lindblad form, we
may assume that

m m

L(z) = Z air + xai — 2apxay, = Z[ak, [ak, z]] .

k=1 k=1

with aq, ..., a,, self-adjoint. The corresponding derivation is given by

6 : My — @FL My, 6(x) = ([iag, 2])ily
and the fixpoint algebra is
N = {z|d(z) = 0} = {a1,...,am} .
It is easy to check that

Te(x,z) = Z[iak,x*][iak,x] = Z[ak,x]*[ak,x] .
k k
Let X = {ia1,...,ia}, and g be the matrix Lie algebra generated by X. Note
that for two anti-selfadjoint operators A* = —A, B* = —B, the commutator
is still anti-selfadjoint [A, B]* = (AB — BA)* = B*A* — A*B* = [B, A]. Then,
g is a Lie subalgebra of the anti-selfadjoint matrices u,. The following lemma
is probably well known. We include a proof for completeness.

Lemma 5.1. Let g be a Lie subalgebra of w,,. Then, g is a Lie algebra of some
connected compact Lie group.

Proof. Recall that the Killing form on u,, is given by
K(A,B) =tr(adj o adp) ,

where ad4(Y) = [4,Y] is the adjoint transformation on u,,. We first show that
the killing form K is negative semi-definite. For matrices x and y, define the
real inner product (x,y) = Retr(z*y). It is clear that (-,-) is unitary invariant,
i.e., for all unitary u, (uzu*, uyu*) = (x,y). This yields that for anti-selfadjoint
A

([Avx]ay) + (l‘, [A7y]) =0,
which means the adjoint transformation ada is skew-symmetric on some
orthonormal basis with respect to the inner product. Then, the Killing form
is negative semi-definite because for all skew-symmetric matrix T', tr(T?) =
—tr(T*T) < 0. On the other hand, g C u, is matrix Lie algebra invariant
under *-operation (conjugate transpose). According to [55, Prop 1.56], we see
that g is reductive. Hence, g = g, + [g, g] where gg is abelian and [g, g| is semi-
simple. Then, by [55, Theorem 1.42], we know that the Killing form on [g, g] is
non-degenerate and hence negative-definite. According to [55, Prop 4.27], [g, g]
is the Lie algebra of some compact Lie group Gg. Therefore, the Lie group G
corresponding to g can be a product of a finite-dimensional tori and Gy, which
is indeed compact. O
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Our aim now is to find a suitable approximation of the form B, = ¢, (L),
which satisfies a I'E estimate and is close to £ in operator norm on Lo (M, tr).
We apply the technique from Sect. 3 and define for a fixed o > 0 the function

Foo(t) = 1y ()2 + Ly og ()t~
Lemma 5.2. Let € > 0. Define

oo

6o0(N) = (—Ine)"! / (1= e ) (1)dt .

€

Then,

o_—l L 2
(1) 12 = deo(L)]] < 2plel;
(2) If (L) 1—p <¢p Tr—1, holds fort > tg > 1, then

(L)

— T g <T .

o|lne|tg I=B = % ¢e0(£)
Proof. Using differentiation, we have that x — %2 < 1-—e* < z. Define

1
q/;()\):/ (l—e_/\t)%.Then,
A2 ! A2 dt Looat
el -2 < / ()\t—Q)tQ < ¥ < / MG = el

5 o0 dt 5
Write ¥(\) = / (1-— e_’\t)tHU. Note that 0 < ¢(\) < o~!. Then, we find
1

A— A < deo(A) < A4 !
2llneg| — 77 -
By functional calculus, we deduce that
1 I£l* _ 207t + L]
ollnel = 2|lne] — 2| Ine|

ollne|

1£ = ¢e0 (D) <

For the second assertion, we observe that by linearity of I'4 in A

_ dt c(L o
Ly ey 2 e(L)[Inel 1</t t1+o>FI—E > L) to Tk -

) ~ o|lne|

This completes the proof of (ii). O

Remark 5.5. (a) An interesting choice is o = ﬁ Then, we find

oD It
ellnel

—FE >

Ly, ooy 2

and ||£— ¢ o (L) < W (b) We can also slightly improve the lower
estimate. Let 8 > 0. The function g(z) = 1 — e™* is concave and hence
% > (1 — %) implies

B

: Ldt  T—e gy Ae?
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Thus, assuming |Ine| > %| In %| implies

1
_Qﬁ)\ < (baa()‘)_)‘ <
’ o|llne|
and hence, for 0 = =t > 1 we get
lnto
(L) =Ll < 28|L .
600~ €1 < 28121+ T

(c) Estimating the return time tg through the Hormander system may not
be very concrete. Nevertheless, we only need to know an upper bound for
Ty /2 : Ly(M,) — L§°(NCM,)||cp and the spectral gap of £ to control Zo.

Theorem 5.4. Let L be the generator of a semigroup of unital completely pos-
itive and self-adjoint maps T, = e~ on M,,. Then, there exists a constant
a(L) such that for every e > 0 there exists a generator B, obtained from
functional calculus of L, such that

|£— B:: La(M,,) — Lo(M,,)|| < € and ea(L)T—py < I'p. .
Moreover, we have the estimate
lnto
all)> —————r,
(L) = e(2Inty + [|£]|?)

where ty is the return time of L.

Proof. According to Lemma 5.1, we have a generating set X = {X1,..., X}
of a compact Lie algebra g and a representation m : g — u,, satisfies
m(Xy) = dag. Let G be the corresponding Lie group and Ax be the sub-
Laplace of X = {Xi,...,X,}. Since X = {Xy,..., X, } is generating and
hence a Hormander system, we have by Lemma 4.1 and Theorem 4.2 that .S;
satisfies Proposition 3.2 and hence has a return time to(Ax) by Proposition
3.7. Note that T, = e *£ is a transferred semigroup of S; ® idy,, and the

commutant N = {ay,...,a,}’ is the fixpoint algebra of e~**. Thus, we have
Lir, > %FI,EN for t > tg. Now, we choose o = ﬁ and deduce that for
0<eg <1,
2| Into| + [|£]?
L)—-L] < ——M -/
[6000(0) - 2] < 225HE
and F¢50,a(£) > Q‘ellrl’rle(]ll"[,@. Thus, we may choose 0 < g9 < 1 such that
[Ineg| = Intol+ILI%/2 o4 obtain
€
elntg
r > ———— T/ k.
00 (B = @Ity + [L]2) T
That completes the proof. O

Remark 5.5. We can improve the dependence in ||£| using Remark 5.3 (b).
We choose = m and eg such that

2 In | I2l, _ el 21l

1 > Lind !}
[Ingof > 23 € 5

2
| Ineg| > B|ln
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Then, we obtain the estimate

eln to

T > I
Be = 16elL]| L[| + [Intol)

Note that ¢, = % only depends linearly on 1/0m;n(L£). Hence, our

estimate just depends on the minimal and maximal eigenvalue of L.

Corollary 5.6. The set of generators of unital completely positive self-adjoint
semigroups on My, satisfying T'E and hence CLSI is dense.

Remark 5.7. In [43] it was shown that in primitive semigroup (with an unity
full-rank invariant state) there exists an entanglement-breaking time ¢gp such
that T; is entanglement-breaking for ¢ > tpp. A completely positive trace
preserving map is called entanglement-breaking if its Choi matrix is a convex
combination of tensor product positive matrices. Our kernel estimate can be
used to estimate this entanglement breaking time tgpg.

6. Geometric Applications and Deviation Inequalities

The aim of this section is to derive several concentration inequalities for semi-
groups satisfying MLSI in the non-ergodic and possibly infinite-dimensional
situation. The starting point is a version of Rieffel’s quantum metric space. Let
T; : M — M be a semigroup of unital completely positive and self-adjoint maps
and A be the generator of Tj. As usual, we will assume that A C dom(A'/?) is
a dense *-algebra and invariant under T;. On M we define the Lipschitz norm
via the gradient form,

1 lipe = max{ITa(fs AlIz DA F3 ) f e A.

This induces a quantum metric on the state space by duality

r- = sup{|T(pf)[ | E(f) =0, [[fllLipr <1}.

Usually, such a Lipschitz norm is considered in the ergodic setting, where the
fixpoint subalgebra N = C1 and hence the conditional expectation is given
by E(f) = 7(f)1. Since for states 7(p) = 1, one can assume the additional
condition E(f) = 0 when calculating the distance dr(p,o) = ||p — o||r~. This
is crucial in the non-ergodic situation, see the last section of [49] for more
detailed discussion. Let § : dom(A'/2) — Ly(M) be the derivation which
implements the gradient form

Talz,y) = Ex(0(x)"0(y)) -

In the construction of a derivation in [48], the following additional estimate
was also proved.

18]y < 2v2max{||[T(z,2) )% IT(*, 2%} = 2v2/|z]|Lipy - (6.1)

ird
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6.1. Wasserstein 2-Distance and Transport Inequalities

The Otto-Vilani’s theory [76] of Wasserstein 2-distance transport inequality
has been adapted to discrete commuting setting by Mass [32,69] and primitive
finite-dimensional setting noncommutative by Carlen-Maas [25] (see also [24,
26]). In this part, we review and extend their approach to the non-ergodic self-
adjoint setting. Let p be a positive density operator. Following [25, Lemma
5.8] we use the symbol

) = [ o =as

for the multiplier operator, and

P () = / Tt talp+ 1) dt

for the inverse. The need of the symmetric two-sided multiplication is a major
difference between the commutative and noncommutative setting. Let us recall
a key formula which recovers the generator from the logarithm as follows:

Alp) = 0" (Iplo(i p — n (E(p)) ) (6.2)

Indeed, let us assume that p and z € A and p > cl for some ¢ > 0. Write
o = E(p). Using the operator integral Jg (as in Sect. 2.1) for F/(z) = In(z), we

know d(In p) = Jp(d(p)) is well-defined in Lo(M). Since In(o) € N, we deduce
from d(Ino) = 0. Hence,

(2.6 013 (p —n(E(p)) ) = 7(8(")[pl3(np)) ) = 7(6(") 6] (501 0)) )
r(8")pl 75 (0(0) ) = () lollel " (5(0)))
= 7(0(.) = 3 (r(A@)0) +7(" Alp) ~ 7(AG ) = (" Alp))

which verifies (6.2) weakly in Lo(M). Here, we used A = A* and A(1) =
0. The expression Inp — In E(p) itself occurs by differentiating the relative
entropy Dy (p) = D(p||E(p)). Consider g(t) = p + t§ with a self-adjoint
with 7(8) = 0. Using the derivation formula (2.3) for F(z) = zlnz with
derivative F'(z) = 1+ Inz, we deduce from the tracial property that

d d d

&DN(P +t3)|t=0 = aT(F(P +t3)) — &T(F(E(P +t6))) li=o

= 7(F'(p)B) — 7(F'(E(p))E(8))

7(8) + 7((Inp)B) — 7(E(B)) — 7(In E(p) E(B))
T((lnp - lnE(p))ﬁ) .

This means the Radon-Nikodym derivative of Dy with respect to the trace
satisfies

dDy (p)

= Inp—InE(p) . (6.3)
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In the following, we will identify a normal state ¢,(z) = 7(zp) of M and its
density operator p.

Definition 6.1. Given a faithful normal state p € M, we define the weighted
Lo-norm on Lo(M) by the inner product

1
e I R At
0
If p is invertible and pul < p < p~ 11, we have
&€ < (68, < nHEE) .

Hence, for all invertible p, the weighted Lo-norm || ||, is equivalent to the

trace LQ(M ,7)-norm. However, this change of metric is crucial in introducing
the following (pseudo-)Riemannian metric. Recall that Qr = H is the W*-
submodule of LS (MCM) generated by 6(A)A.

Lemma 6.2. Let p be a faithful normal state of M. For z € Ran(6*) C M,
define

12l17an, = inf{[I€]l, | 5°([pl6) = 2} -

Here, the infimum is taken over all & € H satisfying 6*([p]€) = z. Then,
there exists a sequence (an) C A such that ||0(an)|, < [|2|ltan, and z =
lim,, §*([p]d(an)) holds weakly.

Proof. We follow the argument of [25, Theorem 7.3] in the primitive case.
Observe that for x € A, [p](d(x)) belongs to the closure of H. We say that &
in H is divergence-free if 6*(£) = 0. Let &y be in the closure of H such that

121 Fan, = &I}, 8" ([o](€0)) = = -
Write & = & + g[p] 71 (€). Tt satisfies
€0ll7 < ll€0 + el @I = lI€oll; + 2eRe(€o, [o) 7 (€)), + 2 lllo] ™ (O)II
and hence (&, [p]1(£)), = 0 for all divergence-free £. Equivalently, we find
T (65€) = T(&[pllel 7€) = 0.
Note that £ € dom(0*) is divergence-free if and only if for all z € A,
T(0%(§)x) = 7(£6(x)) = 0.

Hence, & is orthogonal to the divergence-free forms if and only if &; is in the
closure of 6(A). In other words, there exists a sequence (a,) C A such that
& = lim, d(ay) with respect to |- ||,. This implies

r(b°2) = (0" lplo) = limr (b5 ([p]6(an))

for all b € A. Renormalizing a, as a, = T (;H(i‘)”)"’l an, We can assume
n)ll p

16(an) | ,<II€0ll,=Il # | Tan, and deduce the assertion. O
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Remark 6.5. (a) If z is selfadjoint, we may use the fact that § is *-preserving
to show that & € M is also self-adjoint. Thus, we may replace a,, by their
self-adjoint parts using the fact that [p| also preserves self-adjointness.

(b) Since A is self-adjoint, we know that the range of A is dense in (I —
E)Ls(M), the orthogonal complement of Ly(NN), and hence contained in the
closure of §*(5(A)A) C Lo(N)*t. In fact, the Lo-closure of §*(5(A).A)
ran(6*) is exactly (I — E)La(M).

In the following, we denote by H, the closure of §(A).A with respect to
the |- ||, norm. H, is viewed as the tangent space at the point p and |- ||Tan,
gives a pseudo-Riemannian metric at p. (When N is not a trivial subalgebra,
ran(0*) does not contain all traceless elements). The following inequalities in
ergodic (primitive) setting were derived in [25,84].

Corollary 6.4. Let p be a faithful normal state of M. Then,
lzllr- < 2V2|2]|7an, -
Proof. Let a,, € A such that lim 6*([p]d(an)) = x. We may assume that
n—oo

16(an)ll, < (14 €)[|2]lran,
for a given € > 0. Then, we deduce that for f € A we have

()| = lim |7(£*6"([plo(an)))] = lim |7(6(f)"[p]é(an))]
< limsup [|6(f)ll,llo(an)ll, < (1 +&)[0(A)lollz]Tan, -

Furthermore, we deduce from the fact that the inclusion M C M is trace
preserving that

I8CHIZ = T(B()*[p)o(f)) = /0 T(8(f)"p'*6(f)p")ds

<IN [ 10,
<8 f i -

Thus, the estimate (6.1) implies the assertion, after sending ¢ to 0. 0

Lol s < 18OIE

Denote S(M) as the set of faithful normal states of M. Let F : S(M) — R
be a real function defined on S(M). We say that I admits the gradient grad,, I’
with respect to the tangent metric, if for every p there is an vector £ € H,
such that for every differentiable path p: (—¢,¢) — S(M) with p(0) = p

d

PO) = 0%([plko) = ZF(p®))l=0 = (£ 0o

and we write grad, F' = £. Our control function is the relative entropy with
respect to the fixpoint algebra

F(p) = Dn(p) = D(pl|E(p)) -
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Let p: (—¢,e) — S(M) be a smooth path. Using the directional derivative of
Dy from (6 3), we find that at p = p(0)

DN = +((1mp—mB(p)5* (4l60)) = 7(5(1p 1 B o)

= <5(1np)750>p

By definition that means
grad,Dy = d(Inp) . (6.4)

Note that in [25] the inner product with the modified multiplication was
exactly designed to satisfy this property. Moreover, we find that the corre-
sponding tangent direction in the dual of the state space is given by

5*([p]grad, Dn) = *([plo(lnp)) = 6*([pllp)'6(p)) = Alp) -

A curve 7 in the state space is said to follow the path of steepest descent or
gradient flow with respect to F' if for any ¢,

Y (t) = " ([y(t)] grad, ) F) -
This implies
dF(~(t))
dt

We denote En(p) := | grad, F||2 as the energy function with respect to F. In
our special case F' = Dy, we find

En(p) = |l grad, D7 = (3(Inp),(In(p)), = {lp]~"6(p), [Plle]~'6(0)) 1, ()
=7(0(p)[p]~"0(p)) = T(ps*6(Inp)) = 7(pA(In(p)))
= 7(A(p)Inp) = Zalp) -

This means the pseudo-Riemannian metric is chosen so that the semigroup
exactly follow the path of steepest descent with respect to F' = Dy,

a "
With (6.2), we summarizes the above discussion as follows.

= —|lgrad, ) FII3 0

o = —Za(p) = —|grad, Dx||;

Proposition 6.5. Suppose a differentiable curve v : (a,b) — S(M) satisfies
that

Y (t) = —A(p(t))
Then, the curve v follows the path of steepest descent with respect to Dy . In

particular, the semigroup path v(t) = Ti(p) is a curve of steepest descent for
Dy.

We include the following standard argument for completeness.

Lemma 6.6. Let F'(p) = Dn(p) and En(p) = Za(p). Let p : [0,00) — S(M)
be a path of steepest descent with respect to F' and A > 0. Then,

2AF(p(t)) < En(p(t)) implies F(p(t)) < e *F(p(0))
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Proof. According to the above discussion, we have

#(t) = =Alp(t) = =8 (Ip(t)] rad ) F) ) .

dF(p(t))
dt

Then, our assumption implies that

LD — pufpie)) < 207 (ol1)

and hence F(p(t)) < e 2MF(p(t)) by Grénwall’s Lemma. O

= <gradp(t) F, _gradp(t) F>p(t) = —En(p(t)) -

Denote S; (M) be the space of all normal faithful states of M. The
pseudo-Riemannian distance on Sy (M) of our metric is given by

daz2(p,0) = inf{L(v) : v(0) = p,y(1) = o}

where the infimum runs over all piecewise smooth curve in S(M) and the
length function is defined by

1
L0) = [ I Ol ot
Thanks to Corollary 6.4 and the definition, we have the distance estimate

= < 2\/5 dA’Q(p, 0') . (65)

lp = ol

The following result follows similarly from [25, Theorem 8.7] using the path
of steepest descent and the relative entropy. Note that in [25] the modified
log-Sobolev inequality is defined with constant 2.

Theorem 6.7. The A\-MLSI inequality
AD(pllE(p)) < Zalp)
implies
D(pl|E(p))
S .

We say the generator A satisfies \-TAj if the above inequality (6.6) holds.
Combining with the distance estimate (6.5), we have the following corollary of
I" -Lipschitz distance:

das(p E(p) < 2 (6.6)

Corollary 6.8. \-MLSI implies

2D(pl|E(p))
A

< < \/D<p1||E<p1>> N \/D<p2|f<p2>>> ,

lo = E(p)[r < 4

and

[p1 — p2 3



3454 L. Gao et al. Ann. Henri Poincaré

The first inequality is just a combination of Corollary 6.4 and Theorem
6.7. For the second inequality, we observe that ||E(p)||r~ = 0, and hence the
triangle inequality implies

T* . O

lp1 = palle- < lp1 = E(pr)l[r- + llp2 = E(p2)]

Remark 6.9. Let e € M be a projection. Then, p. = % is the normalized
state which satisfies

D(pellE(pe)) = T(pelnpe) — T(E(pe) In E(pe))
< —In7(e) — 7(pe) InT(pe) = —In7(e) .

Let e1,e2 € M be two projections. Assume that there exists a self-adjoint y
such that

T(e1y)  T(e2y)

T(e1) B 7(e2)
Then, we find the geometric version of Talagrand’s inequality (see [93] and
also [52])

and  [[D(y,y)ll < 1.

AR2

T(e1)T(ez) < e 64
Indeed, this follows from Corollary 6.8
h < pey = pesllv- < 4V2372 (/= In7(e1) + /= In7(e2))
< 8A2y/—In7(e1) — In7(ey) .

The constant 64 is probably not optimal in general.

6.2. Wasserstein 1-Distance and Concentration Inequalities

In [52], the commutative characterization of Wasserstein entropy estimates
in terms of concentration inequalities was extended to the noncommutative
setting. In the non-ergodic setting, we have the following result.

Theorem 6.10. Let (M, T) be a finite von Neumann algebra and (Ty) be a self-
adjoint semigroup of completely positive trace reducing maps. Let N be the
fixpoint subalgebra. Then, the following conditions are equivalent

(i) There exists a constant Cy > 0 such that for allp > 2 and f € M with
E(f) =0,

I fllze.veny < Civ/Dl fllipr 5

(ii) There exists a constant Cy > 0 such that for all normal states p

r- < Ca/D(p||E(p)) -

In the following, we say that (7}) or its generator A satisfies A\-WA; if

Ird

- = avs,[DAEED)

Note that the factor 41/2 is chosen so that A-MLST implies A-WA; (via \-TA,).

ol
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Proof. Fix % + ﬁ = 1. Recall that the relative p-Rényi entropy

DP(PHU) = p/1n||‘771/2p p071/2p Hp

i t € (1,00]. H , DY = inf D tisfi
is monotone over p € (1, co]. Hence, DX, (p) O’EN,T(IOI'I)ZLO'ZO »(p||o) satisfies

pl
D(plIE(p)) = Dy(p) =p'Inlployvenny = Zlelzpivenr -

for any € > 0. Therefore, we deduce from (ii) that for positive p,

\/ IIPIIfEHPIILP :

Let us consider % = é + é. We improve upon the well-known inequality

[L007L€</>]1/4,00 - [LOOﬂLg;}7/8 = Lg/o

by using the modified four term K, functional from [JP05]. Indeed, ||a|l2q> < 1
implies

n
1Y mi@@za)lle,, (o) < llallz HZ% ) 1 (o -

j=1
By duality, for every p = p* € LY(NCM) of norm < 1, we can find a decompo-
sition p = 37, Ajy;, 325 Aj < cand y; = azb; such that [lajaj|l1+t;]lajaf| Lz <

14 The same estimate with the same t; holds for bib;. Using the positive

ajaj a;b;
bja; bib;

ly;1 e < ACVPIIE YL < 4oy < acy .
By convexity we deduce that

v = 1D Awilles < deo/Plplls-
i

By duality we deduce that for E(f) = 0 we have
1 £llL, verry < 8coV2y/PC flIr -

However, for a given ¢’ < oo we may always choose p’ = %q’ , and hence replace

" b 8./¢. This concludes the proof of i) = 7). Conversely, again we have
VP by (/24 p y, ag
by [44] that for % = 5. the inclusion

LL,(NCM) = [Loo(M), L3, (NCM)]. 2 C [Loo(M), L3, (NCM)]. /2,00
is bounded by a universal constant. This means i) implies that

S
a2 e < CVAIS I = VB i -

By duality we deduce for s = p’ that

[p 1_¢ B
« < V2€O ;Hp‘ll 2||p||l2/f(NCM)'

2 X 2 matrix Y; = < ) we deduce

r- < [|Yj]

ol
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Thus, for a state p such that D(p||E(p)) < oo , we may choose ¢ =
(In|[pllr(neary) ™! and obtain that

e < \/%C\/p’lnllpHLf(NCM)-

By sending p — 1, we deduce (ii). O

I

Remark 6.11. Recall that in the ergodic case N = C1, the relative entropy
coincides with the entropy functional Ent(p) := 7(plnp) = D(p||1). It was
proved in [52] that ||p|lr~ < Cy/Ent(p) for all density p is equivalent to that
for p > 2,

If = BNz, on < C'VolfllLipr -

In that sense, the estimate in the non-ergodic case with respect to Dy is sig-
nificantly stronger, because the inclusion L (NCM) C L,(M) is contractive
for all finite M.

Lemma 6.12. For a positive density p,
D(pl|E(p)) = sup(p(lno —In E(0)) )
where the supremum is taken over all positive density o with bounded inverse.

Proof. Using the convexity of F(p) = D(p||E(p)), we know that
F(p) = F(o)+ F'(o)(p—o0)
We observed in (6.3) that the total derivative is

F'(0)(8) = 7(8no — n E(0)))
Then, for = p—o,
F(o)+ F'(o)(p—0)=7(clnoc —clnE(0)) + T((p —o)(Ino — lnE(a)))
=7(plno —pln E(0)) ,

which proves one direction. Conversely, we have equality for o = p as states,
and hence, homogeneity implies the assertion for strictly positive p. Note also
that we may replace ¢ by o + €l to guarantee that the relative entropy is
well-defined. The extra scaling factor 7(o) + € cancels thanks to the loga-
rithm. ]

Proposition 6.13. Let (T}) be a semigroup as in Theorem 6.10. The condition
(iil) There exists a ¢ > 0 such that
EN(etf) < ect2
for all self-adjoint f with T(f, f) <1, En(f) =0 and t > 0.

implies A-WA7 for some \. If in addition N is contained in the center of M,
then (iii) is equivalent to WA;.
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Proof. Let us assume that (iii) holds and that f = f* satisfies I'(f, f) < 1. We
define p = T(%ff,) and deduce that for every state ¢

D@IEW) = 7(¢(np-mE(p)) = 7(v(tf - mEE))).
This implies

D(wllE(¢))+T(¢lnE(etf)) <« DWIE®))
t t = t

Now we may choose t = 4/ w to deduce the condition (ii) in Theorem

6.10 with constant C' = 2+/c. For the converse, we assume that N is in the
center, f = f* and T'(f, f) <1 and E(f) = 0. Then, we deduce from condition
(i) in Theorem 6.10 that

T(of) < T(olfP)VP = o' /2P fat 2P, < C\p

for all o € Ny, 7(0) = 1. E(f) = 0 implies that the first-order term in the
exponential expansion vanishes and hence

k - 2
rope) <1+ 3 COVE oy 5o (Gl 5 KO

E>2 ’ E>2 j=1

+ct .

Here, we use that for & = 2j we have (2j)% > 2757 > jl. A slightly more
involved estimate works for kK = 2j — 1, j > 2 and leads to the constant
K. O

Let us recall the definition of the Orlicz space Ly (M, 7) of a Young func-
tion ® by the Luxembourg norm

s = e e (o (1)) <1}

It is well known that for the convex function Exp,(t) = e’ — 1, the Orlicz

llzllp

N

Corollary 6.14. Assume that the generator A satisfies \-WA71. Then,
1 2e0r, < EX2fllzipr

holds for all f with E(f) =0 and some universal constant K.

norm ||z[|1y,,, is equivalent to sup,, - o

Proof. Indeed, we have two ways of proving this. By Holder’s inequality, we
have a contraction

L (NCc M)cC L,(M).
Then, the assertion follows from the equivalence in Theorem 6.10. On the other
hand, we note that A-WA; implies that
Ent(p)
T
Then, Remark 6.11 also implies the assertion. O

r~ < 2

ol
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Remark 6.15. Similar concentration inequalities for a fixed reference state o
can be found in [84]. They deduced an estimate for 7(cel) using the gradient
norm of o'/2fo~1/2. Here, we also need information for o~', unless N is

central.

In [49], the cb-version of having finite diameter was used for approxi-
mation by finite-dimensional systems. It is shown that the famous rotation
algebras Ay have finite cb-diameter. Let us recall that for the intrinsic met-
ric || flloipr = [|0(f)|| one can define a natural operator space structure as
intersection of a column and a row space in a Hilbert C*-module, or cb-
equivalently as a subspace d(dom(A'/2)) c M. Thus, it makes sense to say
that (A, || |Lipr, M) has finite cb-diameter Dy, if

I —En: (A | lipe) = Mllew < Dep -

Corollary 6.16. Let A be a generator of a self-adjoint semigroup on a finite
von Neumann algebra M. If (A, || ||Lipr) as a quantum metric space has finite
cb-diameter, then A satisfies WA, for A ® idy,, for allm € N and A ® idy;

for any finite von Neumann algebra M.

Proof. We just have to note that the inclusion

Loo(M&M) C LE(NOMCM&M)
is a contraction. Then, Theorem 6.10 implies the assertion. In particular, the
norm from the Lipschitz functions to L space is smaller than 2,/pD¢,. O

We see that both conditions A-CLSI and D, < oo imply A-WA; on all
matrix levels. We say a semigroup (73) or its generator A satisfies \-CWA; if
for all n, idy, ® T} satisfies A\-WA;. Note that according to Remark 6.9, A-
CWA implies the geometric Talagrand’s inequality on all matrix levels, which
we will call matricial Talagrand’s inequality.

Let (M, g) be a d-dimensional compact Riemannian manifold with sub-
Laplacian Ax and sub-Riemannian (or Carnot—Caratheodory) metric dx
induced by a Hérmander system X (see [85]). This gives a corresponding gra-
dient form:

k
() = SIX P

For matrix-valued functions f : M — M,,, the natural operator space struc-
ture is given by

1F It ey = maxc & 11D 1GNP
: j

J
Thanks to Voiculescu’s inequality, this is equivalent to

1 I (Lipr) ~ | Zgj © X;(N

J
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where g; are freely independent semicircular (or circular) random variables (
[81]). For matrix-valued functions, it is therefore better to use the free Dirac
operator D = ;95 ® X; and the Laplace-Beltrami operator in contrast to
the spin Dirac operator D = 3 ;6 ® X; which is more common in noncom-
mutative geometry [27]. Let us now consider a manifold M with finite diam-
eter diamyx (M) = sup, ,dx(v,y) and a normalized volume form p. Here,
dx is the Carnot—Caratheodory distance given by the Hormander system. Let
f: M — M be an M-valued Lipschitz function. Let h,k € Lo(M). Then,
fnr(x) = (h, f(x)k) is a complex valued function and hence (following Connes’
27))

((hy (F(2) — B f)R)| = |foi(z) — /M Fui()du(y)|

1/2

< [ 1nal@) = Fur@)idn(y) < dinmx(Mysup | | 71, fun(2)F

J

1/2

= diamX(M)sgp Z(h,Xj(f)(Z)k>

J

IN

diamx (M)|[RJ[[KIII D 1)1
J

Actually, the inequality |f(z) — f(v)| < ||fllipdx (z,y) follows directly from
the definition of the distance using connecting path. Therefore, we have shown
the following easy fact:

Lemma 6.17. Let Ax be the sub-Laplacian on M given by a Hérmander sys-
tem X. Then,

ch(Ax) < dlamx(M)

Theorem 6.18. Let X be a Hormander system on a connected compact Rie-
mannian manifold. Then, Ax satisfies CWA;.

Proof. According to the Chow-Rashevskii theorem (see [85, Theorem 3.29]
and [83]), the Carnot—Caratheodory distance d : M x M — R is continuous
with respect to the original topology of the Riemannian metric. Thus, by
compactness diamx (M) is finite. Then, Corollary 6.16 and Lemma 6.17 imply
the assertion. 0

Corollary 6.19. Let L be the generator of a self-adjoint semigroup on M,,.
Then, L satisfies CWA;.

Proof. According to Lemma 5.1, we find a connected compact Lie group G
and a generating set X of g such that the transference Theorem 4.8 applies.
That is, via the co-representation 7(z)(g) = u(g)zu(g)~', e ** is a subdynam-
ical system of e 'A% ® idy;, . According to Theorem 6.18, we know that Ax
has A(X)-CWA; for some constant A(X), and hence, £ inherits this property

(compare to Proposition 4.7). O
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Remark 6.20. We conjecture that on compact Riemannian manifolds the
Laplace—Beltrami operator satisfies A-CLSI. However, since I'E fails in gen-
eral, new techniques will be needed to approach this problem.

We end up this section with the “complete” analogues of the ‘triangle’
inequality for the Wasserstein 1-distance from [70,71].

Proposition 6.21. Assume that (M;,T 4,) satisfies 071 CWA, forj=1,.

Let F =E®--®E, P M — ®7_N; be the conditional expectatzon
onto the ﬁmpomt algebra of tensor product Then, for any density operator 1
and self-adjoint f in ®@7_ M; with E(f) =0,

1/2

[r(W.f)] < 2V2¢/D@)||E(¥)) ZC;'HFAj(f,f)II2

In particular, the tensor product generator A(n) = A1 1Q@ - QT +IR Ay ®
@I +1®---® A, satisfies C-CWA; for C = (3, Cj)~1/2
Proof. We use a martingale argument by denoting
Ei:M® @M, > M ® - QM;@N; 11 ® @ N, ,
the corresponding conditional expectation and Ey=E.E, = id®;_b=1 ;- Let f

be a mean 0 element and write d;(f) = E;(f) — Ej_1(f). The gradient form
['4; trivially extends to the tensor product, by identifying

Ai=10 @A a1 (6.7)

with the generator applied in the jth-component. For a positive ¢, we deduce
from the CWA property that

|r(wf|<2|rwd \—DTEJ H

<2f2\/CD )1Bs 1 ()T, (s (1), ds ()2

1/2 1/2
<2V2 (ZD(E] NE;—1(¥ ))) (ZCj||FAj(dj(f),dj(f))||) :

Note, however, that E=Fo E- implies
DB ZD OIIE; 1)

For each Aj, we have 'y, (z,2) = Ej(éj(x)*éj(x)) for the self-adjoint deriva-
tion ; from Theorem 2.1 extended canonically to the tensor product. Recall
that the derivation J; only depends on the j-the tensor component and hence
commutes with Ej. By Kadison’s inequality,

Ta, (d;(f),d;(f))
=T, (Ej(f) = Ejm1 (1) Bi(F) — Ej—1(f)) = Ta, (B5(F), E;(f))
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= (0 (B;(N) 8 (B5(N)) = E;(Ei(5,(0)" Ei (5;(6))
< B (E;(5;(£)*0;(1) = Ei(Ta,(£.1)

Taking norms implies the first assertion. For the second we just observe that
for each j

ITa; (£, I <l ZFAj ol

holds by positivity. O

This implies that if T} satisfies A-CWA, its tensor product T°" satisfies
%—CWAl. This is enough to imply Talagrand’s inequality for matrix-valued
functions on {—1,1}" and [—1,1]", see [62] for details in the scalar case.

7. Examples and Counterexamples

This section discusses examples of ['€ and CLSI and some related counterex-
amples. Section 7.1 proves the stability of ' with respect to free products.
Section 7.2 considers I'€ for the graph Laplacian on weighted finite graphs.
Section 7.3 discusses the Schur multiplier semigroup on group von Neumann
algebras. We also provide counterexamples of additivity of Fisher information
in Sect.7.4. Section 7.5 gives a counterexample of Rothaus lemma for matri-
ces. We end up the discussion with a summary and some open questions in
Sect. 7.6.

7.1. Free Products

Following the lead of [52], we discuss the stability of I'€ with respect to free
products. We refer to [98] for the definition and general facts on amalgamated
free products. Let N C M; be finite von Neumann algebras with trace preserv-
ing conditional expectation E; : M; — N. According to [18], a family of unital
completely positive 77 : M; — M; that leave N invariant can be extended to
the free product with amalgamation M = *g\,Mj via

T(ay - am) = T (a1) - T (am)
provided a; € M;, and iy # iz # -+ # im.

Lemma 7.1. Let A;,B;,1 < j < n be generator of self-adjoint semigroup on
M, with same fixpoint algebra N C M;. Let A(n) (resp. B(n)) be the gener-
ator of the free product semigroup e~tAM) = *}L:le_tAj (resp. e tB(n) =
=
Catm) < Ty

* leftAJ') on amalgamated free products. If T'a; < T'p, for all j, then

Proof. Let us briefly sketch the argument for readers familiar with free prob-
ability. For simplicity of notations, we assume that all the algebras M; = M
are the same, and all the generators A = A; and B = B; are the same. Our
first task is to identify the derivation for free product generator A(n). Let d4
be the derivation for A. We observe that d4,(xb) = xé4,(b) holds for z € N.
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Let us recall from [51, Proposition 2.8] that for the conditional expectation
E : M — N, there exists a right N-module map u : LS (N C M) — Loo(N,I15)
such that

w(@) = (uj(@)); , Ele"y) = u(z) uly) == Zuj(x)*Uj(y) :

For a word w = ay - - ap, so that a; € M;, are mean zero element and i, # iy #
-+ % im, we define the vectors & = (e, , ..., e;,) € lo(N!) for each 1 <1 < m.
Then, the derivation of A(n) can be defined as follows,

v(w) = Z’Uz(w) = Zgl 0 (U(al) Q- & u(al_1)>5A(al)al+1 gy, -
=1

l

Here we view

u(al) Q- ® u(a‘lfl) = (ujl (a1> Crr UGy (al*1)> € LOO(N, l%(Nl_l))

(J1seesdi—1)

and one can check that

(ubr) @+ @ulbn) (wa) @ - @ula 1))
=Bl 1E(bi—2--E(bia1) - aj—2)a;—1)
=E(bi_1--biay - ai_1)
To explain the cancellation in the gradient form, let us consider the example
w = bibs, by € A, and W' = ajazaz, ar € A,,. We use the notation a° =
a — E(a) for the mean 0 part. We have the following decomposition in terms
of mean 0 words,
w*w’ = bzblalagag
= bg(b1a1)°a2a3 + ng(blag)ag(Ig
= bg(b1a1)°a2a3 + (ng(blal)ag)oag, + EN(bgblalag)ag .

Here the second equality holds if [y = r; and the third equality holds if [ = ry
and 12 = T2. If ll 7é 71 and ZQ 7£ T9 WE think (b1a1)° = blal, (b2a2)° = b2a2 the
latter terms vanish. Then, for the free product generator A(n)
A(n)(w*w')

= A(n)(bg(b1a1)oa2a3) + A(n)((b2E(b1a1)a2)°a3) + A(n)(E(bngalag)ag)

= A(bg)(b1a1)°a2a3+b2A(b1a1)a2a3+b2(blal)oA(ag)agerg(blal)oagA(ag)

+ A((bQE(blal)CLQ)O)(Lg + (ng(blal)ag)oA(ag) + E(bgbzalag)A(ag) .

Recall that 2T'(w,w’) = A(w*)w’ +w*A(w') — A(w*w’). We calculate
An)(w")w’ + w*A(n)(w')

= A(bz)blalaza;g + bQA(bl)a1a2a3 =+ bzblA(al)a2a3 + bzblalA(az) + bzblalazA(ag)

= A(bg)(b1a1)0a2a3 + A(bg)E(blal)a2a3 + by (blal)oA(az)ag + ng(blal)A(az)ag
+ bo (b1a1)°a2A(a3) + ng(blal)agA(ag) =+ b2A(b1)a1a2a3 =+ b2b1A(a1)a2a3
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We first observe that the A(as) terms cancel, because they can not interact
with anything from b. If [y = ry and ro = [, we have the additional term

A(bo)E(biar)asas + baE(bray)A(az)as — A((b2E(bray)az)®)as
= T4 (b5, E(brar)az)as .
So the gradient form of A(n) is
0, i1y #
Cag)(w, ') = ¢ oL a(b}, a1)asas, if Iy =ry,ly # 1o
bal' A (b3, ar)asas + T o (b5, E(biay)as)ag, if ly =ry,la =1,

and for each case I' () (w,w’) = v(w)*v(w’). In full generality, we have to use
an inductive procedure and obtain

F(bl ...bm7a1 ...an) — U(b] ...bm)*fv(al ...an) .
For a word w € A7 --- A7 , we denote o(w) = (i1,...,4) for the first
indices. Let z =
indices. Let z Zihm’im)
A2 ... A2 . Then

FA(n) z, l’ Zzéol(w),ol(w’)vl (w) U ( )
< Z Zéaz )00 (w’) Ul (w)*vl (w/)

w,w’

= FB(n) (CL‘, CL‘) .

W(i1, .. i) With w(iy, ..., 4,,) in the linear span

Here for each [ we have used that for any fixed ag, Ok, v € M,
> BT alow, By ) ) B = D > BT aw; (v vk, w (v ) ouwe ) B

k,k’ kK" g

<Y BT (wj () ak, wj (e )euwr) B

Kok J
= BiT sk, B(vimw o) B -
kK

which follows from the assumption I'y <), I'p. O

A particularly interesting case is given by th = e tU=EN) for all j. The
corresponding free product semigroup is the so-called block-length semigroup

Ti(ay---an) = e ™ay---ay

for all (free) products of mean 0 terms ai,...,a,. Note that here we use
E: M — N for the conditional expectation on a single component and Ey :7_;
M — N on the free product.

Lemma 7.2. Let A(n) be the generator of the block-length semigroup Then

1
—“Tr—p < Taw) -
n
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Proof. For I — E the gradient form
X p(z,y) = (v —E()"(y— E@y) + E((z — E(2))"(y — E(y))
= v1(2)"v1(2) + v2(z)v2 ()

splits into two forms vy (x) = (x — E(z)) and vy(x) = u(x — E(x)). Therefore,
of we may use our argument from above and find two orthogonal forms

vl(a1~~-am) Zfl@)u a1 @ - Qa—1)a; - G

1}2(a1"'am) Zfl@u(al®"‘®al)al+1"'am7

I=1
and
2L 4(n) (W, ) = v' ()" 0! (W) + v* (W) V* (W) .
Let @ = 32 yw(it,... ip) with w(iy,...,i;) in the linear span of A7

-+ A9 . We deduce from the mean 0 property of the products that
=Y Ew'w) < (). (7.1)

Moreover, let P; be the projection onto words starting with 7; = j. Then, we
see that for mean 0 words

x'r = ZPj( Py(z) < nZP
4.k

<n Z 6al(w),al(w’)vl1(w)*vll(wl) < n‘vl(]")|2 ’

> 1lw,w

because the term [ = 1 exactly corresponds to i1 = ¢}. Therefore, we find that
for mean 0 element x,
x*x + Ey(z*x)
2
n 1 n
< Tl @R+ 5kA@P < S0 @)P + 1) P)

= nl'(_pyn(z,2) .

-FleN (JJ,LL‘) =

By taking words a; of length 1 and F(aja;) very small, we see that n is indeed
optimal. O

Combining Lemma 7.1 and Lemma 7.2, we have the similar result for the
general free products.

Theorem 7.3. Let A; be generators such that

)\Fle' Scp FAj
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holds for j = 1,...,n. Then, the generator A(n) of the free product semigroup

#_\ T} satisfies

A
T gy <ep Tam) -
n I EN —=Ccp A( )
7.2. Graph Laplacians
Let (V, E) be a finite graph and w : E — R4 be a positive symmetric weight

function on edges. Let us consider the commutator derivation d(a) = [¢,a]
with £ € B(l2(V')). The induced gradient form for f € I (V) is
T(f D)) = 3 lal*1F (@) = F)1 - (72)

Y

is always given by a set of weights wy, = |£,y|?. Using the uniform probability
measure g on lo(V'), we have

1 _ _
(0(f1),6(f2))p = m 2 Z Way f1(2) f2(x) — 2 Z Way f1(2) f2(y)
T#y T#y
Thus we have a one to one correspondence between the weight w, the derivation
d(-) = [¢, -] and the weighted graph Laplacian

4 = {z:y;mwwy7 ife=y
wy =

—Wgy, otherwise.

When the graph is connected, the semigroup Ty = e=4* : [ (V) — I(V)
is ergodic because the only invariant elements are the constant functions on
V. For this situation the conditional expectation E : [,o(V) — C1 is given

by the trace E(f) = ﬁ > ey f(i) and the gradient form I';_p corresponds
g = ﬁ It follows from (7.2) that for two gradient forms
I'y <T'p if and only if the weights w;f.‘y < wfy for any z,y € V.

to weights w

Corollary 7.4. An ergodic graph Laplacian A satisfies A\-I'E if and only if

A
wmyzm forallx #£y .

In particular, the weights wy, (0) for the subordinated generator A® are strictly
positive.

Proof. For an ergodic graph Laplacian we have a spectral gap o and ||T} :
[1(V) = leo(V)|| € ¢1 < 00. Thanks to Proposition 3.2 and Theorem 3.10, we
obtain that A% satisfies A(9)-T'€ for some A(f) > 0 and hence wy, (0) > 206

2|V
is strictly positive. Conversely, we know that by the above discussion that
Wy (6) > ﬁ for all z,y € E implies \[';_g <., Ta. O

Remark 7.5. Of course, we expect CLSI for every finite graph. The above
corollary shows that a finite graph with positive weights has I'€ if and only if
it is a complete graph. Also, it is not clear how expander graphs fit into this
picture since they are in certain sense opposite to complete graphs (see [21]
for more information).
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7.3. Fourier Multiplier and Discrete Groups

In this part we discuss group von Neumann algebras and their Fourier multi-
pliers. Let G be a discrete group and L(G) be its group von Neumann algebra.
Denote A(g) as the left shifting unitary of g € G. We consider the multiplier
semigroup

T, : L(G) — L(G) , Ti(A(g)) = e @(g)

for a conditional negative function ¢ (see [17,19] for more information). The
gradient form is given by

Ly(A(9), A(h)) = K(g,h)A(g~"'h) .
where K is the Gromov distance
2Ky(g9,h) = ¥(g) +¢(h) — (g~ 'h),

It is easy to see that for two multiplier generators 1) and ¢ the relation AT & Sep
I'y is equivalent to AK, S Ky in the usual order of matrices. The conditional
expectation onto C is the canonical trace E(A(g)) = 7(A(g))1 = d4,11. Then,
I — FE is a Fourier multiplier and

1
Kr-p(g,h) = 5(1=08g1)(1 = 0n1)(1 +Gg1) -

Tt therefore suffices to consider the matrix K;_ g on G\{1}. Let us now consider
the specific example G = Z and (k) = |k| given by the Poisson semigroup.
Then

. k| + 5] — |k — ] 0 ifk<0<jorj<0<k
e .

min(|j], |k])  else.

Let B(j,k) = min(j, k) be the matrix on l3(N) and a = (a;) € l2(N) be a
finite sequence. Then, we see that

(o, B(a)) = Z&jakmin(j,k) = Z&jak Z 1= Z| Z aj|* .
jok jk 1<i<min(j,k) I>1 j>1

Using |a — b]?> < 2a® + 2b2, we deduce that

Dol =D e =) ay

1>1 1>1 |5 > 1 >l
2 2

22; Zaj + Zaj < 4(a, B(@)) .

j=>1 j>l

IN

This means 4B > 1y where 1y is the identity matrix on l3(N). Note that K
restricted on either the j, & > 0 part or the j, k < 0 part is a copy of B. Hence

1
2K, = 2AB®B) 2 Slz.
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where 17, is the identity matrix on I3(Z\ 0). On the other hand, let 1 denote
the matrix with all entries 1 on I3(N). Then, we certainly have
B > 1y

and therefore

1oy L1, (1 1) 1
K¢_B®<o 1)223‘8’(1 1)‘212\{0}'

Because 2K g = 17,0 + 12\ {0}, we deduce that
1 1
gKI—E < Ky ,grl—E <Ty.

Corollary 7.6. The Poisson semigroup on L(Z) = Lo (T) satisfies %—I‘é‘,
and hence %-CLSI. In particular, the Fourier multiplier associated with
Un(ki, ... ky) = Z?Zl |k;| on Z™ satisfies %—CLSI, but not T'E forn > 2.
The free product L(F,) with the word length function satisfies %-FS.

Proof. Let n = 2 and define the sequence a = (o) = (gjex) in 12(Z?) so
that

m

m
Zgj:O, Zs?:m, ande; =0if j >m .
j=1

j=1
Then, for
(o, Ky,a) = (g, Ky €)(e, Le) + (g, Le) (e, Ky,e) = 0.

On the other hand (e, 1yecr) = m? and K;_g > $1y2. Here I'€ cannot holds
for any constant for ¢. For free group, L(F,) = _; L(Z) and moreover the
free product of Poisson semigroup is the Poisson semigroup of L(F,). Then,
the last fact follows from Theorem 7.2. O

Proposition 7.7. Let Z,, = Z/nZ be the cyclic group of cardinality n € N and
the multiplier function be ¥(j) = (1 — cos(2%L)). Then, Ay satisfies 1-I'E for

n =2, 1/6-TE forn = 3. For n > 3, Ay, fails TE, although A}b_e satisfies
Ao(n)-T'E for some Ag(n).

Proof. Since we are working with a Fourier multiplier, we find

2K, (4,1) = <1 — cos (T)) + <1 — cos (T)) - <1 — cos (W))
o () (2 ()
2mj 2 2mj\ . (2w 2mj
() () (3) ()

(1= (52)) (1= (5)) oo (52) (55 -
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The gradient matrix K;_ g corresponding to I';_p is given by 2(1z \o +
17,\10y) and we shall consider them as (n —1) x (n — 1) matrices supported on

{|0y}+. Since K has rank at most 2, we deduce that for no n > 3 and A > 0
the property A\-I'E is satisfied. For n = 2 we have the standard Walsh system
and 1-T'E. For n = 3 we find the matrix

2Ky = (i/Z _11/2> :

We have to compare this to

2 1
e (21).

It is easy to see that for A = 6 we have
6(2K,) > 2K/ p .

Thus we have é—I‘S and %—CLSI. For n > 3 and 0 < 6 < 1. Then, Theorem
3.16 applies for d = 0 because ||T; : L1 — Loo|| < n. Moreover, and Ay has a
spectral gap of order n=2. We refer to [31] for the return time estimates to ~ n
and hence Corollary 4.9 gives an estimates of the order A\g(n) ~ n=2(1 — 0)
for I'E constant. O
7.4. Non-additivity of Z;_g,,
In the proof of tensorization of CLSI, we have used the following subadditivity
of relative entropy

DN1®N2 (p) < DN1®M2 (p) + DM1®N2 (P) )
where N; C Mj, 5 = 1,2 are finite von Neumann subalgebras. This is not true
for the symmetrized Kullback-Leibler divergence 7.

Proposition 7.8. The inequality

IN1®N2 < z.N1®1\42 +IM1®N2 : (73)
18 not valid in general.
Proof. Let E; : M; — N;,j = 1,2 be the conditional expectation. We note
that (7.3) is equivalent to
T((E1 ® id)(z) In x) + T((id ® Es)(x)In x) < 7(zlnz) + T(E1 ® Es(x)In a:) .
Let N1 = NQ = C and M1 = M2 = goo({l,Q,S}) We can write x € M1 X M2

in a 3 x 3 matrix form

—_ .. . . — .. 3
€T = E zij€; @ e; = [xm]i,jzl .
4,7

Then, the conditional expectation is given by row- and column-average. There-
fore it suffices to decide whether 7((x + 1 — By ® id(z) — id ® Ea(z))In(z)) is
always positive. Let § > 0 and
0 a «
[zij] = | v v
a v
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where v = 3/8 and v = 15/8 — . Then, the (1, 1)-entry of 1+ — By ®id(z) —
id ® E5(x) is given by
0

1
140-2/30+a+a) = 5—1—5

Note that lims_oy = 15/8 is away from 0 and $(Ind) — —oc. Thus for § — 0,
T((x4+1—Ey ®id(x) —id® F2(x)) In(z)) converges to —oo. (Although written
in a matrix form, z and z+1— F; ®id(x) —id® Eo(x) are really scalar functions
on {1,2,3} x {1,2,3}. Hence it suffices to argue that there is one entry goes
to —00). O

7.5. Failure of Rothaus Lemma for Matrix-Valued Functions

Let N =M, ® C1 ¢ M,, ® M,,. We will always use the normalized trace on
matrix algebras and the conditional expectation is the normalized partial trace
E=id® ttr.

Proposition 7.9. Forn > 2, there exists no constant Cy,Cs such that

Dy(|z]*) < Ci7(z*A(z)) + Callz — E(z)||* . (7.4)
Moreover, there are no constants C1,Cy such that
Dy(|z[*) < CiDn(|lz — E(x)*) + Collz — E(x)|? , (7.5)

holds for all self-adjoint x.

Let us start with the non-selfadjoint element in “bracket” notation

y = \/L;llﬂjjl-

n—1
The corresponding conditional expectation is given by

E(lyf*) = " E| > i)kl | = Liljﬂjl e
n—1 nflj:2 n—1 ’

3,k=2

where 1,,_1 = Z?:z |7)(j| has rank n — 1. Since y is rank one, we get

1
Du(lyP) = 7y lnlyl®) = r(EPmEly?) = —nlnn® —In—"—

= 2Inn—1In

n
n—1"
Now we modify this element
z = o){1@1)+y

by adding an element in M,, ® 1. Thus © — F(z) = y. We have to calculate
Dy (|2|?). Let us denote by f = [1){1| ® 1 the projection. First we observe
that

'z = o’ f+ay+yta+yty
and hence

n
E(z*z) = A2Vl + —1,_; .
("2) = (1] + 1
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This implies
o2
7(E(|z]*)n E(|z]?)) = —Ina?+1n
n

n
n—1"
In order to calculate the entropy for |z|?, we decompose f = [11){11|+1,_1 ®
[1)(1]. The second projection is orthogonal to the support of y, which we denote
by g. Hence 2 is unitarily equivalent to

a?  na 0

no  n? 0

0 0 o2g

2

The upper corner is of rank 1 with size n?a? and hence

2 2 2
2 2y _ Nt 2 9y, a°(n—1) 2
T(|z|* In|z|?) = 3 In(n® + « )—4—72 In(a®)
This yields
2 2 2 2
oy Nt 2 2 - 2 « 2
Dy (|z]?) = o In(n® + « )—|—;ln(o¢ )—ﬁln(a)
2
—a—ln(OzZ)—ln "
n n—1
5 5 a? n? n
=In(n +a)+ﬁln 1+£ —lnni1

In order to contradict (7.4) and (7.5), we observe that 7(zA(x)) = 7(xA(y)) =
7(yA(y)). Hence, the right-hand side in (7.4) and (7.5) is bounded, but the
left-hand side converges to +oo for o — 00, as long as n > 2. For self-adjoint
x see below. 0

We will now address cb-hypercontractivity (in the sense of [14]) at p = 2
by considering the self-adjoint element

. 0z
2=\ ,0)-

We have 7(|z|?In|2]?) = 7(|z|*In|z|?). For the conditional expectation, we

find
oy [ E(zz*) 0
(AP f+ E(n211)(11]) 0
o 0 Oézf—f—ﬁln_l ’
This gives
2 2
2 oy _ " o 1 n atn, o
7(|z]* In2]*) = 2nlna +2lnn_1+ o In(a® +n) .

The new part here is

n? + a?
n2

2
o tn In(a? +n)

Dy (za™) = In(n? 4+ o?) + — In(a?) —
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n? + o2 a? a? +n2 a? o?+n
=In +—Ihn—-———1In .
n+ o? n? o? n o?

Following our previous calculation, we find that

1 2 2
Dn(|z]?) = §<ln(n2 + a?) + %ln (1 + %) flnn:l 1)

() 4 g 0y, (22
2 n+a? n? o? n a?

n? + a? o2 n? + a2
) ()
2 n + a2 2n2 n+ a?
o? n? 1 n a? o2 +n
| (1 —)—71 ——1( )
+n2n +a2 o M1 o T\ 2
In order to keep the last term, we choose a? = n and then find
1
2n

1 1
:gln(n2+a2)+fln(

1 1 1 1
Dn(|2)?) = 3 Inn+ gln(n +1)+ 3 In(n+1) — 3 In2+4+ —(In(n+1) —1n2)

n

1 1 1
+£ln(n+1)—§ln —§ln2

n—1

1 3 1 1 n
==1 1+ — 1 HD—(1+4=—]In2—-=1 .
2 n”+< +2n> an+1) ( +2n> R R
Note that the logn term is the optimal rate for entropy as n — oo, and hence,
the example is rather extreme. Following the work of [14], we may formulate
this observation as follows.

Proposition 7.10. Let (A,,) be sequence of self-adjoint generators on M, such
that sup,, [|A, : La(M,) — La(M,)|| < co. Then, the 2-cb-hypercontractivity
constant of A, always converges to co.

For example, we may choose A,, = I — 7, on M,, has norm 1. In fact,
we only have to control the behavior of A, on some version of the maximally
entangled state.

Proof. We recall [14] that the cb-hypercontractivity constant \§® = inf A},
where A3 is the best constant such that for all x € M,,, ® M,,,

AP Dy (|2f?) < dr(z* (idpm ® An)z) = 4E(z) .

Note the trivial bound A5 > ﬁ Hence our choice of |z| in above discussion

shows that 1227 < |[|4,|| and hence, up to constant 4sup,, |4y, the trivial
bound cannot be improved as n tends to infinity. A limiting channel violates
2-cb-hypercontractivity. O

Remark 7.11. A counterexample of similar nature was constructed in [20],
which also shows that S2(S,) is not uniformly convex. Since our example is
the tracial setting, we think they are of independent interests.
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7.6. Conclusion and Open Problems

We end our discussion with a summary of examples that satisfy CLSI and I'E
obtained in this paper and also questions on CLSI that remain open.

Conclusion 7.12. (i) The (infinite) tensor products of self-adjoint semigroup
satisfying A-CLSI still satisfy A-CLSI.

(ii) The n-fold free product of generators satisfying \-T'E satisfies %—FS.

(iii) The weighted graph Laplacian of a complete graph satisfies T'E and hence
CLSI.

(iv) The subordinated semigroups of sub-Laplacians of Hormander systems on
compact Riemannian manifolds satisfy TE and CLSI.

(iv) The subordinated semigroups of self-adjoint semigroups on matriz alge-
bras satisfy I'E and CLSI.

In particular, combining (i)+(iil), (i)+(iv) and (i)+(v) gives infinite-
dimensional examples of semigroups satisfying CLSI and Talagrand’s inequal-
ity TAo, but not necessarily I'£. Based on iv), a natural open question is

Problem 7.13. Does every Laplace—Beltrami operator on a compact Riemann-

ian manifold satisfy CLSI?

If it is true, how does the optimal constant of CLSI compares to the optimal
constant of the non-complete version? Since I'E fails for the heat semigroup
on torus, new techniques are needed to approach this problem. The similar
question for matrix algebra is

Problem 7.14. Does every generator of a (self-adjoint) semigroup on a matriz
algebra satisfy CLSI?

Bardet proved in [1] via a compactness argument that every semigroup (not
necessarily self-adjoint) on a matrix algebra satisfies A-MLSI, and inquired
about the CLSI version. Motivated by the stability of '€ under free product,
one can ask

Problem 7.15. Is CLSI stable under free products?
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