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Abstract

The neural plausibility of backpropagation has
long been disputed, primarily for its use of non-
local weight transport — the biologically dubi-
ous requirement that one neuron instantaneously
measure the synaptic weights of another. Until re-
cently, attempts to create local learning rules that
avoid weight transport have typically failed in the
large-scale learning scenarios where backpropa-
gation shines, e.g. ImageNet categorization with
deep convolutional networks. Here, we investi-
gate a recently proposed local learning rule that
yields competitive performance with backpropa-
gation and find that it is highly sensitive to meta-
parameter choices, requiring laborious tuning that
does not transfer across network architecture. Our
analysis indicates the underlying mathematical
reason for this instability, allowing us to identify
a more robust local learning rule that better trans-
fers without metaparameter tuning. Nonetheless,
we find a performance and stability gap between
this local rule and backpropagation that widens
with increasing model depth. We then investi-
gate several non-local learning rules that relax
the need for instantaneous weight transport into
a more biologically-plausible “weight estimation’
process, showing that these rules match state-of-
the-art performance on deep networks and oper-
ate effectively in the presence of noisy updates.
Taken together, our results suggest two routes to-
wards the discovery of neural implementations
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for credit assignment without weight symmetry:
further improvement of local rules so that they
perform consistently across architectures and the
identification of biological implementations for
non-local learning mechanisms.

1. Introduction

Backpropagation is the workhorse of modern deep learning
and the only known learning algorithm that allows multi-
layer networks to train on large-scale tasks. However, any
exact implementation of backpropagation is inherently non-
local, requiring instantaneous weight transport in which
backward error-propagating weights are the transpose of
the forward inference weights. This violation of locality
is biologically suspect because there are no known neural
mechanisms for instantaneously coupling distant synaptic
weights. Recent approaches such as feedback alignment
(Lillicrap et al., 2016) and weight mirror (Akrout et al.,
2019) have identified circuit mechanisms that seek to ap-
proximate backpropagation while circumventing the weight
transport problem. However, these mechanisms either fail
to operate at large-scale (Bartunov et al., 2018) or, as we
demonstrate, require complex and fragile metaparameter
scheduling during learning. Here we present a unifying
framework spanning a space of learning rules that allows
for the systematic identification of robust and scalable alter-
natives to backpropagation.

To motivate these rules, we replace tied weights in back-
propagation with a regularization loss on untied forward and
backward weights. The forward weights parametrize the
global cost function, the backward weights specify a descent
direction, and the regularization constrains the relationship
between forward and backward weights. As the system
iterates, forward and backward weights dynamically align,
giving rise to a pseudogradient. Different regularization
terms are possible within this framework. Critically, these
regularization terms decompose into geometrically natural
primitives, which can be parametrically recombined to con-
struct a diverse space of credit assignment strategies. This
space encompasses existing approaches (including feedback
alignment and weight mirror), but also elucidates novel
learning rules. We show that several of these new strategies
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are competitive with backpropagation on real-world tasks
(unlike feedback alignment), without the need for complex
metaparameter tuning (unlike weight mirror). These learn-
ing rules can thus be easily deployed across a variety of
neural architectures and tasks. Our results demonstrate how
high-dimensional error-driven learning can be robustly per-
formed in a biologically motivated manner.

2. Related Work

Soon after Rumelhart et al. (1986) published the backpropa-
gation algorithm for training neural networks, its plausibility
as a learning mechanism in the brain was contended (Crick,
1989). The main criticism was that backpropagation requires
exact transposes to propagate errors through the network
and there is no known physical mechanism for such an “op-
eration” in the brain. This is known as the weight transport
problem (Grossberg, 1987). Since then many credit assign-
ment strategies have proposed circumventing the problem by
introducing a distinct set of feedback weights to propagate
the error backwards. Broadly speaking, these proposals fall
into two groups: those that encourage symmetry between
the forward and backward weights (Lillicrap et al., 2016;
Ngkland, 2016; Bartunov et al., 2018; Liao et al., 2016; Xiao
et al., 2019; Moskovitz et al., 2018; Akrout et al., 2019), and
those that encourage preservation of information between
neighboring network layers (Bengio, 2014; Lee et al., 2015;
Bartunov et al., 2018).

The latter approach, sometimes referred to as target propa-
gation, encourages the backward weights to locally invert
the forward computation (Bengio, 2014). Variants of this
approach such as difference target propagation (Lee et al.,
2015) and simplified difference target propagation (Bar-
tunov et al., 2018) differ in how they define this inversion
property. While some of these strategies perform well on
shallow networks trained on MNIST and CIFARI10, they fail
to scale to deep networks trained on ImageNet (Bartunov
et al., 2018).

A different class of credit assignment strategies focuses on
encouraging or enforcing symmetry between the weights,
rather than preserving information. Lillicrap et al. (2016)
introduced a strategy known as feedback alignment in which
backward weights are chosen to be fixed random matrices.
Empirically, during learning, the forward weights partially
align themselves to their backward counterparts, so that the
latter transmit a meaningful error signal. Ngkland (2016)
introduced a variant of feedback alignment where the error
signal could be transmitted across long range connections.
However, for deeper networks and more complex tasks, the
performance of feedback alignment and its variants break
down (Bartunov et al., 2018).

Liao et al. (2016) and Xiao et al. (2019) took an alternative

route to relaxing the requirement for exact weight symmetry
by transporting just the sign of the forward weights during
learning. Moskovitz et al. (2018) combined sign-symmetry
and feedback alignment with additional normalization mech-
anisms. These methods outperform feedback alignment on
scalable tasks, but still perform far worse than backpropa-
tion. It is also not clear that instantaneous sign transport
is more biologically plausible than instantaneous weight
transport.

More recently, Akrout et al. (2019) introduced weight mirror
(WM), a learning rule that incorporates dynamics on the
backward weights to improve alignment throughout the
course of training. Unlike previous methods, weight mirror
achieves backpropagation level performance on ResNet-18
and ResNet-50 trained on ImageNet.

Concurrently, Kunin et al. (2019) suggested training the
forward and backward weights in each layer as an encoder-
decoder pair, based on their proof that Ly-regularization
induces symmetric weights for linear autoencoders. This
approach incorporates ideas from both information preser-
vation and weight symmetry.

A complementary line of research (Xie & Seung, 2003; Scel-
lier & Bengio, 2017; Bengio et al., 2017; Guerguiev et al.,
2017; Whittington & Bogacz, 2017; Sacramento et al., 2018;
Guerguiev et al., 2019) investigates how learning rules, even
those that involve weight transport, could be implemented
in a biologically mechanistic manner, such as using spike-
timing dependent plasticity rules and obviating the need for
distinct phases of training. In particular, Guerguiev et al.
(2019) show that key steps in the Kunin et al. (2019) regu-
larization approach could be implemented by a spike-based
mechanism for approximate weight transport.

In this work, we extend this regularization approach to
formulate a more general framework of credit assignment
strategies without weight symmetry, one that encompasses
existing and novel learning rules. Our core result is that the
best of these strategies are substantially more robust across
architectures and metaparameters than previous proposals.

3. Regularization Inspired Learning Rule
Framework

We consider the credit assignment problem for neural net-
works as a layer-wise regularization problem. We consider a
network parameterized by forward weights 8¢ and backward
weights 6. Informally, the network is trained on the sum
of a global task function 7 and a layer-wise regularization
function' R:

L(Of,0) = T(0f) +R(0).

"R is not regularization in the traditional sense, as it does not
directly penalize the forward weights 6 from the cost function 7.
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Figure 1. Notational diagram. The forward weight W, propa-
gates the input signal z; downstream through the network. The
backward weight B; propagates the pseudogradient V41 of J
upstream through the network. The regularization function R
is constructed layer-wise from x;, x;4+1, W; and B;. Similar to
Akrout et al. (2019), we assume lateral pathways granting the
backward weights access to x and the forward weights access to
V. Biases and non-linearities are omitted from the diagram.

Formally, every step of training consists of two updates, one
for the forward weights and one for the backward weights.
The forward weights are updated according to the error sig-
nal on J propagated through the network by the backward
weights, as illustrated in Fig. 1. The backward weights are
updated according to gradient descent on R.

Af; xVJ  Af, x VR
Thus, R is responsible for introducing dynamics on the
backward weights, which in turn impacts the dynamics of
the forward weights. The functional form of R gives rise
to different learning rules and in particular the locality of
a given learning rule depends solely on the locality of the
computations involved in R.

3.1. Regularization Primitives

In this work, the regularization function R is built from
a set of simple primitives P, which at any given layer [
are functions of the forward weight W; € 60, backward
weight B; € 6y, layer input x;, and layer output x; ;1 as de-
picted in Fig. 1. These primitives are biologically motivated
components with strong geometric interpretations, from
which more complex learning rules may be algebraically
constructed.

The primitives we use, displayed in Table 1, can be or-
ganized into two groups: those that involve purely local
operations and those that involve at least one non-local op-
eration. To classify the primitives, we use the criteria for
locality described in Whittington & Bogacz (2017): (1)
Local computation. Computations only involve synaptic
weights acting on their associated inputs. (2) Local plastic-
ity. Weight modifications only depend on pre-synaptic and
post-synaptic activity. A primitive is local if it satisfies both
of these constraints and non-local otherwise.

We introduce three local primitives: P, PP and

Local Py VP
decay 1Bl B,
amp —tr(z] Bizi41) fxlle_H
null %HBZIZ—HHQ Bl$l+11';r+1
Non-local Py VP
sparse 1| Bi|[? z12] By
self —tr(B,W;) -w

Table 1. Regularization primitives. Mathematical expressions
for local and non-local primitives and their gradients with respect
to the backward weight B;. Note, both z; and x; are the post-
nonlinearity rates of their respective layers.

Pl The decay primitive can be understood as a form
of energy efficiency penalizing the Euclidean norm of the
backward weights. The amp primitive promotes alignment
of the layer input x; with the reconstruction B;x;,1. The
null primitive imposes sparsity in the layer-wise activity
through a Euclidean norm penalty on the reconstruction
Biz1.

We consider two non-local primitives: P%2¢ and P!,
The sparse primitive promotes energy efficiency by penaliz-
ing the Euclidean norm of the activation ] B;. This prim-
itive fails to meet the local computation constraint, as B
describes the synaptic connections from the [ + 1 layer to
the [ layer and therefore cannot operate on the input x;.

The self primitive promotes alignment of the forward and
backward weights by directly promoting their inner product.
This primitive fails the local plasticity constraint, as its
gradient necessitates that the backward weights can exactly
measure the strengths of their forward counterparts.

3.2. Building Learning Rules from Primitives

These simple primitives can be linearly combined to en-
compass existing credit assignment strategies, while also
elucidating natural new approaches.

Feedback alignment (FA) (Lillicrap et al., 2016) corre-
sponds to no regularization, Rga = 0, effectively fixing the
backward weights at their initial random values?.

The weight mirror (WM) (Akrout et al., 2019) update,
AB; = nxlmlTH — Awm B, where 7 is the learning rate and
Awm is a weight decay constant, corresponds to gradient
descent on the layer-wise regularization function

Ram= Y aP™ 4 gpE,

l€layers
forae = 1and 8 = ’\%

2We explore the consequences of this interpretation analytically
in Appendix D.2.
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~ | Information v v v
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Table 2. Taxonomy of learning rules based on the locality and
composition of their primitives.

If we consider primitives that are functions of the pseu-
dogradients V; and V;;1, then the Kolen-Pollack (KP)
algorithm, originally proposed by Kolen & Pollack (1994)
and modified by Akrout et al. (2019), can be understood in
this framework as well. See Appendix D.3 for more details.

The range of primitives also allows for learning rules not
yet investigated in the literature. In this work, we introduce
several such novel learning rules, including Information
Alignment (IA), Symmetric Alignment (SA), and Activa-
tion Alignment (AA). Each of these strategies is defined by
a layer-wise regularization function composed from a linear
combination of the primitives (Table 2). Information Align-
ment is a purely local rule, but unlike feedback alignment or
weight mirror, contains the additional null primitive. In §4,
we motivate this addition theoretically, and show empirically
that it helps make IA a higher-performing and substantially
more stable learning rule than previous local strategies. SA
and AA are both non-local, but as shown in §5 perform
even more robustly than any local strategy we or others have
found, and may be implementable by a type of plausible
biological mechanism we call “weight estimation.”

3.3. Evaluating Learning Rules

For all the learning rules, we evaluate two desirable target
metrics.

Task Performance. Performance-optimized CNNs on Ima-
geNet provide the most effective quantitative description of
neural responses of cortical neurons throughout the primate
ventral visual pathway (Yamins et al., 2014; Cadena et al.,
2019), indicating the biological relevance of task perfor-
mance. Therefore, our first desired target will be ImageNet
top-1 validation accuracy, in line with Bartunov et al. (2018).

Metaparameter Robustness. Extending the proposal of
Bartunov et al. (2018), we also consider whether a proposed
learning rule’s metaparameters, such as learning rate and
batch size, transfer across architectures. Specifically, when
we optimize for metaparameters on a given architecture (e.g.
ResNet-18), we will fix these metaparameters and use them
to train both deeper (e.g. ResNet-50) and different variants
(e.g. ResNet-v2). Therefore, our second desired target will
be ImageNet top-1 validation accuracy across models for
fixed metaparameters.

4. Local Learning Rules

Instability of Weight Mirror. Akrout et al. (2019) report
that the weight mirror update rule matches the performance
of backpropagation on ImageNet categorization. The pro-
cedure described in Akrout et al. (2019) involves not just
the weight mirror rule, but a number of important addi-
tional training details, including alternating learning modes
and using layer-wise Gaussian input noise. After reimple-
menting this procedure in detail, and using their prescribed
metaparameters for the ResNet-18 architecture, the best top-
1 validation accuracy we were able to obtain was 63.5%
(Rwwm in Table 3), substantially below the reported perfor-
mance of 69.73%. To try to account for this discrepancy,
we considered the possibility that the metaparameters were
incorrectly set. We thus performed a large-scale metapa-
rameter search over the continuous «, 3, and the standard
deviation o of the Gaussian input noise, jointly optimizing
these parameters for ImageNet validation set performance
using a Bayesian Tree-structured Parzen Estimator (TPE)
(Bergstra et al., 2011). After considering 824 distinct set-
tings (see Appendix B.1 for further details), the optimal
setting achieved a top-1 performance of 64.07% (R in
Table 3), still substantially below the reported performance
in Akrout et al. (2019).

Considering the second metric of robustness, we found that
the WM learning rule is very sensitive to metaparameter
tuning. Specifically, when using either the metaparameters
prescribed for ResNet-18 in Akrout et al. (2019) or those
from our metaparameter search, directly attempting to train
other network architectures failed entirely (Fig. 3, brown
line).

Why is weight mirror under-performing backpropagation on
both performance and robustness metrics? Intuition can be
gained by simply considering the functional form of Rw,
which can become arbitrarily negative even for fixed values
of the forward weights. Rw is a combination of a primitive
which depends on the input (P*"P) and a primitive which
is independent of the input (P%¢%), Because of this, the
primitives of weight mirror and their gradients may operate
at different scales and careful metaparameter tuning must be
done to balance their effects. This instability can be made
precise by considering the dynamical system given by the
symmetrized gradient flow on Ry at a given layer /.

In the following analysis we ignore non-linearities, include
weight decay on the forward weights, set « = 3, and con-
sider the gradient with respect to both the forward and back-
ward weights. When the weights, w; and b;, and input,
xy, are all scalar values, the gradient flow gives rise to the
dynamical system

0 wq o wq
aln) =)o
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Figure 2. Unstable dynamics (a-c). Symmetrized gradient flow
on Rwwm at layer [ with scalar weights and x; = 1. The color
and arrow indicate respectively the magnitude and direction of the
flow. Empirical instability (d-f). Weight scatter plots for the first
convolution, an intermediate convolution and the final dense layer
of a ResNet-18 model trained with weight mirror for five epochs.
Each dot represents an element in layer I’s weight matrix and its
(z,y) location corresponds to its forward and backward weight
values, (Wl(i’j )| Bl(j ’i)). The dotted diagonal line shows perfect
weight symmetry, as is the case in backpropagation. Different
layers demonstrate one of the the three dynamics outlined by the
gradient flow analysis in §4: diverging, stable, and collapsing
backward weights.

where A is an indefinite matrix (see Appendix D.1 for de-
tails.) A can be diagonally decomposed by the eigenba-
sis {u, v}, where u spans the symmetric component and v
spans the skew-symmetric component of any realization of
the weight vector [wl bl] T Under this basis, the dynami-
cal system decouples into a system of ODEs governed by
the eigenvalues of A. The eigenvalue associated with the
skew-symmetric eigenvector v is strictly positive, implying
that this component decays exponentially to zero. However,
for the symmetric eigenvector u, the sign of the correspond-
ing eigenvalue depends on the relationship between Awwm
and z7. When A\wm > 27, the eigenvalue is positive and
the symmetric component decays to zero (i.e. too much
regularization). When Awy < 7, the eigenvalue is neg-
ative and the symmetric component exponentially grows
(i.e. too little regularization). Only when Awm = 7 is the
eigenvalue zero and the symmetric component stable. These
various dynamics are shown in Fig. 2.

This analysis suggests that the sensitivity of weight mirror
is not due to the misalignment of the forward and backward
weights, but rather due to the stability of the symmetric
component throughout training. Empirically, we find that
this is true. In Fig. 2, we show a scatter plot of the backward
and forward weights at three layers of a ResNet-18 model

trained with weight mirror. At each layer there exists a
linear relationship between the weights, suggesting that
the backward weights have aligned to the forward weights
up to magnitude. Despite being initialized with similar
magnitudes, at the first layer the backward weights have
grown orders larger, at the last layer the backward weights
have decayed orders smaller, and at only one intermediate
layer were the backward weights comparable to the forward
weights, implying symmetry.

This analysis also clarifies the stabilizing role of Gaussian
noise, which was found to be essential to weight mirror’s
performance gains over feedback alignment (Akrout et al.,
2019). Specifically, when the layer input ; ~ N (0, 0?)
and 02 = Awwm, then z7 &~ Awy, implying the dynamical
system in equation (1) is stable.

Strategies for Reducing Instability. Given the above anal-
ysis, can we identify further strategies for reducing instabil-
ity during learning beyond the use of Gaussian noise?

Adaptive Optimization. One option is to use an adaptive
learning rule strategy, such as Adam (Kingma & Ba, 2014).
An adaptive learning rate keeps an exponentially decaying
moving average of past gradients, allowing for more effec-
tive optimization of the alignment regularizer even in the
presence of exploding or vanishing gradients.

Local Stabilizing Operations. A second option to improve
stability is to consider local layer-wise operations to the
backward path such as choice of non-linear activation func-
tions, batch centering, feature centering, and feature nor-
malization. The use of these operations is largely inspired
by Batch Normalization (Ioffe & Szegedy, 2015) and Layer
Normalization (Ba et al., 2016) which have been observed
to stabilize learning dynamics. The primary improvement
that these normalizations allow for is the further condition-
ing of the covariance matrix at each layer’s input, building
on the benefits of using Gaussian noise. In order to keep
the learning rule fully local, we use these normalizations,
which unlike Batch and Layer Normalization, do not add
any additional learnable parameters.

The Information Alignment (IA) Learning Rule. There is a
third option for improving stability that involves modifying
the local learning rule itself.

Without decay, the update given by weight mirror, AB; =
nxx] 1> 1s Hebbian. This update, like all purely Hebbian
learning rules, is unstable and can result in the norm of B;
diverging. This can be mitigated by weight decay, as is done
in Akrout et al. (2019). However, an alternative strategy to
dealing with the instability of a Hebbian update was given
by Oja (1982) in his analysis of learning rules for linear
neuron models. In the spirit of that analysis, assume that
we can normalize the backward weight after each Hebbian
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update such that

¢
(t+1) Bz( ) +nrl

l - t ’
1B + naya], ||

and in particular HBl(t) || = 1 at all time ¢. Then, for small
learning rates 7, the right side can be expanded as a power
series in 7, such that

B = B o (au]y — BB 1) + 00)
Ignoring the O(n?) term gives the non-linear update
ABr=n (mlﬂclTﬂ — Biz{ Bizi41) -

If we assume xlTBl = 7741 and B; is a column vector rather
than a matrix, then by Table 1, this is approximately the
update given by the null primitive introduced in §3.1.

Thus motivated, we define Information Alignment (IA) as
the local learning rule defined by adding a (weighted) null
primitive to the other two local primitives already present in
the weight mirror rule. That is, the layer-wise regularization
function

Ria = Z aP™ 4 BRI 4 yppl,

lElayers

In the specific setting when x; 11 = Wjx; and a = ~y, then
the gradient of Ry, is proportional to the gradient with re-
spect to By of L ||z, — ByWiz||2 + 5 (||Wi]|2 + || Bi|[?). a
quadratically regularized linear autoencoder®. As shown in
Kunin et al. (2019), all critical points of a quadratically reg-
ularized linear autoencoder attain symmetry of the encoder
and decoder.

Empirical Results. To evaluate the three strategies for sta-
bilizing local weight updates, we performed a neural archi-
tecture search implementing all three strategies, again using
TPE. This search optimized for Top-1 ImageNet validation
performance with the ResNet-18 architecture, comprising a
total of 628 distinct settings. We found that validation per-
formance increased significantly, with the optimal learning
rule RFE, attaining 67.93% top-1 accuracy (Table 3). More
importantly, we also found that the parameter robustness
of RIFE is dramatically improved as compared to weight
mirror (Fig. 3, orange line), nearly equaling the parameter
robustness of backpropagation across a variety of deeper
architectures. Critically, this improvement was achieved not
by directly optimizing for robustness across architectures,
but simply by finding a parameter setting that achieved high
task performance on one architecture.

3In this setting, the resulting learning rule is a member of the
target propagation framework introduced in §2.

Learning Rule Top-1 Val Accuracy Top-5 Val Accuracy

Rwwm 63.5% 85.16%
RIS 64.07% 85.47%
R AD 64.40% 85.53%
R%‘}HMDJFOPS 63.41% 84.83%
RIFE 67.93% 88.09 %
Backprop. 70.06% 89.14%

Table 3. Performance of local learning rules with ResNet-18 on
ImageNet. Rww is weight mirror as described in Akrout et al.
(2019), RAFE is weight mirror with learning metaparameters cho-
sen through an optimization procedure. Riyyap is Weight mirror
with an adaptive optimizer. R\TX}’I\},EH Ap+ops involves the addition of
stabilizing operations to the network architecture. The best local
learning rule, R{x", additionally involves the null primitive. For
details on metaparameters for each local rule, see Appendix B.1.

To assess the importance of each strategy type in achieving
this result, we also performed several ablation studies, in-
volving neural architecture searches using only various sub-
sets of the stabilization strategies (see Appendix B.1.3 for
details). Using just the adaptive optimizer while otherwise
optimizing the weight mirror metaparameters yielded the
learning rule Rigy; , op> While adding stabilizing layer-wise
operations yielded the learning rule Rgy; , apops (Table 3).
We found that while the top-1 performance of these ablated
learning rules was not better for the ResNet-18 architecture
than the weight-mirror baseline, each of the strategies did
individually contribute significantly to improved parameter
robustness (Fig. 3, red and green lines).

Taken together, these results indicate that the regularization
framework allows the formulation of local learning rules
with substantially improved performance and, especially,
metaparameter robustness characteristics. Moreover, these
improvements are well-motivated by mathematical analy-
sis that indicates how to target better circuit structure via
improved learning stability.

5. Non-Local Learning Rules

While our best local learning rule is substantially improved
as compared to previous alternatives, it still does not quite
match backpropagation, either in terms of performance or
metaparameter stability over widely different architectures
(see the gap between blue and orange lines in Fig. 3). We
next introduce two novel non-local learning rules that en-
tirely eliminate this gap.

Symmetric Alignment (SA) is defined by the layer-wise

regularization function

Rsa= Y aPfll 4 ppe.

lElayers
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Figure 3. Performance of local and non-local rules across ar-
chitectures. We fixed the categorical and continuous metaparame-
ters for ResNet-18 and applied them directly to deeper and different
ResNet variants (e.g. v2). A performance of 0.001 indicates the
alignment loss became NaN within the first thousand steps of
training. Our local rule Information Alignment (IA) consistently
outperforms the other local alternatives across architectures, de-
spite not being optimized for these architectures. The non-local
rules, Symmetric Alignment (SA) and Activation Alignment (AA),
consistently perform as well as backpropagation.

When o = f3, then the gradient of Rga is proportional to
the gradient with respect to B; of 1||W; — B[ ||?, which
encourages symmetry of the weights.

Activation Alignment (AA) is defined by the layer-wise
regularization function

RAA = Z a,Plamp + B'P;parse.

l€layers

When z;11 = Wia; and o = 3, then the gradient of Rap is
proportional to the gradient with respect to B; of %HVlel —
BJ z]|?, which encourages alignment of the activations.

Both SA and AA give rise to dynamics that encourage the
backward weights to become transposes of their forward
counterparts. When B; is the transpose of W for all layers
[ then the updates generated by the backward pass are the
exact gradients of 7. It follows intuitively that throughout
training the pseudogradients given by these learning rules
might converge to better approximations of the exact gra-
dients of 7, leading to improved learning. Further, in the
context of the analysis in equation (1), the matrix A associ-
ated with SA and AA is positive semi-definite, and unlike
the case of weight mirror, the eigenvalue associated with the
symmetric eigenvector u is zero, implying stability of the
symmetric component.

While weight mirror and Information Alignment introduce
dynamics that implicitly encourage symmetry of the forward

Model Backprop. Symmetric  Activation
ResNet-18 70.06% 69.84% 69.98%
ResNet-50 76.05% 76.29% 75.75%

ResNet-50v2 77.21% 77.18% 76.67%
ResNet-101v2  78.64% 78.74% 78.35%
ResNet-152v2  79.31% 79.15% 78.98%

Table 4. Symmetric and Activation Alignment consistently
match backpropagation. Top-1 validation accuracies on Ima-
geNet for each model class and non-local learning rule, compared
to backpropagation.

and backward weights, the dynamics introduced by SA and
AA encourage this property explicitly.

Despite not having the desirable locality property, we show
that SA and AA perform well empirically in the weight-
decoupled regularization framework — meaning that they
do relieve the need for exact weight symmetry. As we will
discuss, this may make it possible to find plausible biophys-
ical mechanisms by which they might be implemented.

Parameter Robustness of Non-Local Learning Rules.
To assess the robustness of SA and AA, we trained ResNet-
18 models with standard 224-sized ImageNet images (train-
ing details can be found in Appendix B.2). Without any
metaparameter tuning, SA and AA were able to match back-
propagation in performance. Importantly, for SA we did
not need to employ any specialized or adaptive learning
schedule involving alternating modes of learning, as was
required for all the local rules. However, for AA we did find
it necessary to use an adaptive optimizer when minimizing
Raa, potentially due to the fact that it appears to align less
exactly than SA (see Fig. S3). We trained deeper ResNet-50,
101, and 152 models (He et al., 2016) with larger 299-sized
ImageNet images. As can be seen in Table 4, both SA and
AA maintain consistent performance with backpropagation
despite changes in image size and increasing depth of net-
work architecture, demonstrating their robustness as a credit
assignment strategies.

Weight Estimation, Neural Plausibility, and Noise Ro-
bustness. Though SA is non-local, it does avoid the need
for instantaneous weight transport — as is shown simply
by the fact that it optimizes effectively in the framework of
decoupled forward-backward weight updates, where align-
ment can only arise over time due to the structure of the
regularization circuit rather than instantaneously by fiar at
each timepoint. Because of this key difference, it may be
possible to find plausible biological implementations for
SA, operating on a principle of iterative “weight estimation”
in place of the implausible idea of instantaneous weight
transport.

By “weight estimation” we mean any process that can mea-
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Figure 4. Weight estimation. (a) The notational diagram, as
shown in Fig. 1, is mapped into a neural circuit. The top and
bottom circuits represent the forward and backward paths respec-
tively. Large circles represent the soma of a neuron, thick edges
the axon, small circles the axon terminal, and thin edges the den-
drites. Dendrites corresponding to the lateral pathways between
the circuits are omitted. (b) A mechanism such as regression dis-
continuity design, as explained by Lansdell & Kording (2019)
and Guerguiev et al. (2019), could be used independently at each
neuron to do weight estimation by quantifying the causal effect of
Ty 0N Xj41.

sure changes in post-synaptic activity relative to varying
synaptic input, thereby providing a temporal estimate of the
synaptic strengths. Prior work has shown how noisy pertur-
bations in the presence of spiking discontinuities (Lansdell
& Kording, 2019) could provide neural mechanisms for
weight estimation, as depicted in Fig. 4. In particular, Guer-
guiev et al. (2019) present a spiking-level mechanism for
estimating forward weights from noisy dendritic measure-
ments of the implied effect of those weights on activation
changes. This idea, borrowed from the econometrics litera-
ture, is known as regression discontinuity design (Imbens
& Lemieux, 2008). This is essentially a form of iterative
weight estimation, and is used in Guerguiev et al. (2019)
for minimizing a term that is mathematically equivalent to
Pl Guerguiev et al. (2019) demonstrate that this weight
estimation mechanism works empirically for small-scale
networks.

Our performance and robustness results above for SA can
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Figure 5. Symmetric Alignment is more robust to noisy up-
dates than backpropagation. (a) Symmetric Alignment is more
robust than backpropagation to increasing levels of Gaussian noise
added to its updates for ResNet-18. (b) Symmetric Alignment
maintains this robustness for deeper models. See Appendix B.3 for
more details and similar experiments with Activation Alignment.

be interpreted as providing evidence that a rate-coded ver-
sion of weight estimation scales effectively to training deep
networks on large-scale tasks. However, there remains a
gap between what we have shown at the rate-code level
and the spike level, at which the weight estimation mecha-
nism operates. Truly showing that weight estimation could
work at scale would involve being able to train deep spiking
neural networks, an unsolved problem that is beyond the
scope of this work. One key difference between any weight
estimation process at the rate-code and spike levels is that
the latter will be inherently noisier due to statistical fluctua-
tions in whatever local measurement process is invoked —
e.g. in the Guerguiev et al. (2019) mechanism, the noise in
computing the regression discontinuity.

As a proxy to better determine if our conclusions about the
scalable robustness of rate-coded SA are likely to apply
to spiking-level equivalents, we model this uncertainty by
adding Gaussian noise to the backward updates during learn-
ing. To the extent that rate-coded SA is robust to such noise,
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Figure 6. Neural fits to temporally-averaged V4 and IT re-
sponses. Neural fits to V4 (top) and IT (bottom) time-averaged
responses (Majaj et al., 2015), using a 25 component PLS mapping
on a ResNet-18. The median (across neurons) Pearson correlation
over images, with standard error of mean (across neurons) denot-
ing the error bars. “Random” refers to a ResNet-18 architecture at
initialization. For details, see Appendix B.5.

the more likely it is that a spiking-based implementation
will have the performance and parameter robustness charac-
teristics of the rate-coded version. Specifically, we modify
the update rule as follows:

Aby x VR +N(0,0%), A0y xVJ.

As shown in Fig. 5, the performance of SA is very robust
to noisy updates for training ResNet-18. In fact, for com-
parison we also train backpropagation with Gaussian noise
added to its gradients, A x VJ + N(0,0?), and find
that SA is substantially more robust than backpropagation.
For deeper models, SA maintains this robustness, imply-
ing that pseudogradients generated by backward weights
with noisy updates leads to more robust learning than using
equivalently noisy gradients directly.

6. Discussion

In this work, we present a unifying framework that allows
for the systematic identification of robust and scalable al-
ternatives to backpropagation. We obtain, through large-

scale searches, a local learning rule that transfers more
robustly across architectures than previous local alternatives.
Nonetheless, a performance and robustness gap persists
with backpropagation. We formulate non-local learning
rules that achieve competitive performance with backpropa-
gation, requiring almost no metaparameter tuning and are
robust to noisy updates. Taken together, our findings suggest
that there are two routes towards the discovery of robust,
scalable, and neurally plausible credit assignment without
weight symmetry.

The first route involves further improving local rules. We
found that the local operations and regularization primitives
that allow for improved approximation of non-local rules
perform better and are much more stable. If the analyses
that inspired this improvement could be refined, perhaps
further stability could be obtained. To aid in this exploration
going forward, we have written an open-source TensorFlow
library*, allowing others to train arbitrary network architec-
tures and learning rules at scale, distributed across multiple
GPU or TPU workers. The second route involves the further
refinement and characterization of scalable biological imple-
mentations of weight estimation mechanisms for Symmetric
or Activation Alignment, as Guerguiev et al. (2019) initiate.

Given these two routes towards neurally-plausible credit
assignment without weight symmetry, how would we use
neuroscience data to adjudicate between them? It would be
convenient if functional response data in a “fully trained”
adult animal showed a signature of the underlying learning
rule, without having to directly measure synaptic weights
during learning. Such data have been very effective in
identifying good models of the primate ventral visual path-
way (Majaj et al., 2015; Yamins et al., 2014). As an initial
investigation of this idea, we compared the activation pat-
terns generated by networks trained with each local and
non-local learning rule explored here, to neural response
data from several macaque visual cortical areas, using a
regression procedure similar to that in Yamins et al. (2014).
As shown in Fig. 6, we found that, with the exception of
the very poorly performing feedback alignment rule, all the
reasonably effective learning rules achieve similar V4 and
IT neural response predictivity, and in fact match that of
the network learned via backpropagation. Such a result sug-
gests the interesting possibility that the functional response
signatures in an already well-learned neural representation
may be relatively independent of which learning rule created
them. Perhaps unsurprisingly, the question of identifying
the operation of learning rules in an in vivo neural circuit
will likely require the deployment of more sophisticated
neuroscience techniques.

*nttps://github.com/neurocailab/neural-
alignment
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