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ABSTRACT

A coherent Ising machine (CIM) is a network of optical parametric oscillators (OPOs), in which the “strongest” collective mode of
oscillation at well above threshold corresponds to an optimum solution of a given Ising problem. When a pump rate or network coupling
rate is increased from below to above threshold, however, the eigenvectors with the smallest eigenvalue of the Ising coupling matrix [Jij]
appear near threshold and impede the machine to relax to true ground states. Two complementary approaches to attack this problem are
described here. One approach is to utilize the squeezed/anti-squeezed vacuum noise of OPOs below threshold to produce coherent spreading
over numerous local minima via quantum noise correlation, which could enable the machine to access either true ground states or excited
states with eigen-energies close enough to that of ground states above threshold. The other approach is to implement a real-time error correc-
tion feedback loop so that the machine migrates from one local minimum to another during an explorative search for ground states. Finally,
a set of qualitative analogies connecting the CIM and traditional computer science techniques are pointed out. In particular, belief propaga-
tion and survey propagation used in combinatorial optimization are touched upon.

VC 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0016140

I. INTRODUCTION

Recently, various heuristics and hardware platforms have been pro-
posed and demonstrated to solve hard combinatorial or continuous opti-
mization problems. The cost functions to be minimized in those
problems are either the Ising Hamiltonian,HIsing ¼

P
Jijrirj, for binary

variables ri ¼ 61 or the XY Hamiltonian, HXY ¼
P

Jijcos hi � hj
� �

,
for continuous variables hi ¼ 0; 2p½ �, which is mapped to the energy
landscape of classical spins,1–3 quantum spins,4,5 solid state devi-
ces,6–8 or neural networks.9,10 Convergence to a ground state is
assured for a slow enough decrease in the temperature in simulated
annealing.11 An alternative approach based on networks of optical
parametric oscillators (OPOs)12–18 and Bose-Einstein conden-
sates19,20 has been also actively pursued, in which the target function
is mapped to a loss landscape. Intuitively, by increasing the gain of
such an open-dissipative network with a slow enough speed by
ramping an external pump source, a lowest-loss ground state is
expected to emerge as a single oscillation/condensation mode.13,21 In
practice, ramping the gain of such a system results in a complex

series of bifurcations that may guide or divert evolution toward opti-
mal solution states.

One of the unique theoretical advantages of the second approach,
for instance, in a coherent Ising machine (CIM),12–16 is that quantum
noise correlation formed among OPOs below oscillation threshold could,
in principle, facilitate a quantum parallel search across multiple regions
of phase space.22 Another unique advantage is that following the
oscillation-threshold transition, exponential amplification of the ampli-
tude of a selected ground state is realized in a relatively short time scale
of the order of a photon lifetime. In a non-dissipative degenerate para-
metric oscillator, two stable states at above the bifurcation point co-exist
as a linear superposition state.23,24 On the other hand, the network of dis-
sipative OPOs13–17 changes its character from a quantum analog device
below threshold to a classical digital device above threshold. Such quan-
tum-to-classical crossover behavior of the CIM guarantees a robust clas-
sical output as a computational result, which is in sharp contrast to a
standard quantum computer based on linear amplitude amplification
realized by the Grover algorithm and projective measurement.25
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A CIM based on coupled OPOs, however, has one serious draw-
back as an engine for solving combinatorial optimization problems:
mapping of a cost function to the network loss landscape often fails
due to the fundamentally analog nature of the constituent spins, i.e.,
the possibility for constituent OPOs to oscillate with unequal ampli-
tudes. This problem is particularly serious for a frustrated spin model.
The network may spontaneously find an excited state of the target
Hamiltonian with lower effective loss than a true ground state by
self-adjusting oscillator amplitudes.13 An oscillator configuration with
frustration and thus higher loss may retain only small probability
amplitude, while an oscillator configuration with no frustration and
thus smaller loss acquires a large probability amplitude. In this way, an
excited state can achieve a smaller overall loss than a ground state (see
Fig. 6 of Ref. 13). Recently, the use of an error detection and correction
feedback loop has been proposed to suppress this amplitude heteroge-
neity problem20 and the improved performance of such a feedback
controlled CIM has been numerically confirmed.26 The proposed sys-
tem has a recurrent neural network configuration with asymmetric
weights (Jij 6¼ Jji) so that it is not a simple gradient-descent system any
more. The machine can escape from a local minimum by a diverging
error correction field andmigrate from one local minimum to another.
The ground state can be identified during such a random exploration
of the machine.

In this Letter, we present several complementary Perspectives for
this computing machine, which are based on diverse, interdisciplinary
viewpoints spanning quantum optics, neural networks, and message
passing. Along the way, we will touch upon connections between the
CIM and foundational concepts spanning the fields of statistical
physics, mathematics, and computer science, including dynamical sys-
tems theory, bifurcation theory, chaos, spin glasses, belief propagation,
and survey propagation. We hope the bridges we build in this article
between such diverse fields will provide the inspiration for future
directions of interdisciplinary research that can benefit from the cross-
pollination of ideas across multifaceted classical, quantum, and neural
approaches to combinatorial optimization.

II. OPTIMIZATION DYNAMICS IN CONTINUOUS
VARIABLE SPACE

CIM studies today could well be characterized as experimentally
driven computer science, much like contemporary deep learning
research and in contrast to the current scenario of mainstream quan-
tum computing. Large-scale measurement feedback coupling coherent
Ising machine (MFB-CIM) prototypes constructed by NTT Basic
Research Laboratories15 are reaching intriguing levels of computa-
tional performance that, in a fundamental theoretical sense, we do not
really understand. While we can thoroughly analyze some quantum-
optical aspects of CIM component device behavior in the small size
regime,27–29 we lack a crisp understanding of how the physical dynam-
ics of large CIMs relate to the computational complexity of combina-
torial optimization. Promising experimental benchmarking results30

are thus driving theoretical studies aimed at better elucidating funda-
mental operating principles of the CIM architecture and at enabling
confident predictions of future scaling potential. We thus face comple-
mentary obstacles to those of mainstream quantum computing, in
which we have long had theoretical analyses pointing to exponential
speedups while even small-scale implementations have required sus-
tained laboratory effort over several decades.

What is the effective search mechanism of large-scale CIMs?
Are quantum effects decisive for the performance of current and
near-term MFB-CIM prototypes, and if not, could existing archi-
tectures and algorithms be generalized to realize quantum perfor-
mance enhancements? Can we relate exponential gain (as
understood from a quantum optics Perspective) to features of the
phase portraits of CIMs viewed as dynamical systems, and thereby
rationalize its role in facilitating rapid evolution toward states with
low Ising energy? Can we rationally design better strategies for
varying the pump strength?

Generally speaking, CIMs may be viewed as an approach to map-
ping combinatorial (discrete variable) optimization problems into
physical dynamics on a continuous variable space, in which the
dynamics can furthermore be modulated to evolve/bifurcate the phase
portrait during an individual optimization trajectory. The overarching
problem of the CIM algorithm design could thus be posed as choosing
initial conditions for the phase-space variables together with a modula-
tion scheme for the dynamics such that we maximize the probability
and minimize the time required to converge to states from which we
can infer very good solutions to a combinatorial optimization problem
instance encoded in parameters of the dynamics. While our initializa-
tion and modulation scheme obviously cannot require prior knowl-
edge of what these very good solutions are, it should be admissible to
consider strategies that depend upon inexpensive structural analyses
of a given problem instance and/or real-time feedback during dynamic
optimization. The structure of near-term-feasible CIM hardware pla-
ces constraints on the practicable set of algorithms, while limits on our
capacity to prove theorems about such complex dynamical scenarios
generally restrict us to the development of heuristics rather than algo-
rithms with performance guarantees.

We may note in passing that in addition to lifting combinatorial
problems into continuous variable spaces, analog physics-based
engines such as CIMs generally also embed them in larger model
spaces that can be traversed in real time. The canonical CIM algorithm
implicitly transitions from a linear solver to a soft-spin Ising model,
and a recently developed generalized CIM algorithm with feedback
control can access a regime of fixed-amplitude Ising dynamics as
well.26 Given the central role of the optical parametric amplifier
(OPA) in the CIM architecture, it stands to reason that it could be pos-
sible to transition smoothly between XY-type and Ising-type models
by adjusting hardware parameters that tune the OPA between non-
degenerate and degenerate operation.31 Analog physics-based engines
thus motivate a broader study of relationships among the landscapes
of Ising-type optimization problems with fixed coupling coefficients
but different variable types, which could further help to inform the
development of generalized CIM algorithms.

The dynamics of a classical, noiseless CIM can be modeled using
coupled ordinary differential equations (ODEs),

dxi
dt

¼ �x3i þ axi �
X

Jijxj; (1)

where xi is the (quadrature) amplitude of the ith OPO mode (spin), Jij
are the coupling coefficients defining an Ising optimization problem of
interest (here, we will assume Jii ¼ 0), and a is a gain-loss parameter
corresponding to the difference between the CIM’s parametric (OPA)
gain and its round trip (passive linear) optical losses (e.g., Refs. 13
and 32). We note that similar equations appear in the neuroscience
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literature for modeling neural networks (e.g., Ref. 33). In the absence
of couplings among the spins ( Jij ! 0), each OPO mode indepen-
dently exhibits a pitchfork bifurcation as the gain-loss parameter a
crosses through zero (increasing from the negative to positive value),
corresponding to the usual OPO “lasing” transition. With non-zero
couplings, however, the bifurcation set of the model is much more
complicated.

In the standard CIM algorithm, the Jij matrix is chosen to be
(real) symmetric although current hardware architectures would easily
permit asymmetric implementations. With Jij symmetric, it is possible
to view the overall CIM dynamics as gradient descent in a landscape
determined jointly by the individual OPO terms and the Ising poten-
tial energy. Following recent practice in related fields,33,34 we may
assess generic behavior of the above model for a large problem size
(large number of spins, N) by treating Jij as a random matrix whose
elements are drawn i.i.d. from a zero mean Gaussian with variance
1=N . This choice corresponds to the famous Sherrington–Kirkpatrick
(SK) Ising spin glass model.35 The origin xi ¼ 0 is clearly a fixed point
of the dynamics for all parameter values, and in the loss-dominated
regime (a negative, and less than the smallest eigenvalue of the Jij
matrix), it is the unique stable fixed point. Assuming Jij is symmetric
as implemented, the first bifurcation as a is increased (pump power is
increased) necessarily occurs as a crosses the smallest eigenvalue of Jij
and results in destabilization of the origin, with a pair of local minima
emerging along positive and negative directions aligned with the
eigenvector of Jij corresponding to this lowest eigenvalue. If we assume
that the CIM is initialized at the origin (all OPO modes in vacuum)
and the pump is increased gradually from zero, we may expect the
spin-amplitudes to adiabatically follow this bifurcation and thus take
values such that the xi are proportional to the eigenvector with a
smallest eigenvalue of Jij just after a crosses the smallest eigenvalue.
The sign structure of this eigenvector is known to be a simple
(although not necessarily very good) heuristic for a low-energy solu-
tion of the corresponding Ising optimization problem. For example,
for the SK model, the spin configuration obtained from rounding the
eigenvector with a smallest eigenvalue of Jij is thought to have a 16%
higher energy density (energy per spin) than that of the ground state
spin configuration.36

In the opposite regime of high pump amplitude, a � Jijj j, we can
infer the existence of a set of fixed points determined by the indepen-
dent OPO dynamics (ignoring the Jij terms) with each of the xi assum-
ing one of the three possible values 0;6

ffiffiffi
a

p� �
. The leading-order

effect of the coupling terms can then be considered perturbatively,
leading to the conclusion37 that the subset of fixed points without any
zero values among the xi are local minima having energies,

E xð Þ ¼ � a2

4
þ
X
i;j

Jij
xi
xij j

xj
xjj j

þ O a�3ð Þ; (2)

With the energy-distance relation

E xð Þ ¼ � 1
4

X
i

x4i :

Here, the bar above x means an ensemble average over many trajecto-
ries, when there exists stochastic noise in the system.

It follows that the global minimum spin configuration for the
Ising problem instance encoded by Jij can be inferred from the sign

structure of the local minimum lying at the greatest distance from
the origin and that very good solutions can similarly be inferred
from local minima at large squared-radius. We may see in this some
validation of the foundational physical intuition that in a network of
OPOs coupled according to a set of Jij coefficients, the strongest
(largest amplitude, for a given pump strength) collective mode of
oscillation should correspond somehow with an optimum solution
(having a minimum value of the Jij coupling term) of an Ising prob-
lem defined by these Jij.

A big picture thus emerges in which initialization at the origin
(all OPOs in vacuum) and adiabatic increase in the pump amplitude
induce a transition between a low-pump regime in which the spin-
amplitudes assume a sign structure determined by the minimum
eigenvector of Jij and a high-pump regime in which good Ising solu-
tions are encoded in the sign structures of minima sitting at the great-
est distance from the origin37 Apparently, complex things happen in
the intermediate regime. Qualitatively speaking, the gradual increase
in a in the above equations of motion induces a sequence of bifurca-
tions that modify the phase portrait in which the CIM state evolves. In
simple cases, the state variables xi could follow an “adiabatic
trajectory” that connects the origin (at zero pump amplitude) to a
fixed point in the high-pump regime (asymptotic in large a) whose
sign structure yields a heuristic solution to the Ising optimization. In
general, one observes that such adiabatic trajectories include sign flips
relative to the first-bifurcated state proportional to the eigenvector
with a smallest eigenvalue of Jij. In a non-negligible fraction of cases,
as revealed by numerical characterization of the bifurcation set for ran-
domly generated Jij with N � 102, the adiabatic trajectory starting
from the origin is at some point interrupted by a subcritical bifurcation
that destabilizes the local minimum being followed without creating
other local minima in the immediate neighborhood. (Indeed, some
period of evolution along an unstable manifold would seem to be
required for the observation of a lasing transition with exponential
gain.) For such problem instances, a fiduciary evolution of the CIM
state cannot be directly inferred from computation of fixed-point tra-
jectories as a function of a.

Generally speaking, in the “near-threshold” regime with a � 0;
we may expect the CIM to exhibit “glassy” dynamics with pervasive
marginally stable local minima, and as a consequence, the actual solu-
tion trajectory followed in a real experimental run could depend
strongly on exogenous factors such as technical noise and instabilities.
Hence, it is not clear whether we should expect the type of adiabatic
trajectory described above to occur commonly, in practice. Indeed, fluc-
tuations could potentially induce accidental asymmetries in the imple-
mentation of the Jij coupling term, which could, in turn, induce chaotic
transients that significantly affect the optimization dynamics. We note
that the existence of a chaotic phase has been predicted33 on the basis
of mean-field theory (in the sense of statistical mechanics) for a model
similar to the CIM model considered here, but with a fully random
coupling matrix without symmetry constraint. Characterization of the
phase diagram for near-symmetric Jij (nominally symmetric but with
small asymmetric perturbations) seems feasible and is currently being
studied.38 It is tempting to ask whether a glassy phase portrait for the
classical ODE model in the near-threshold regime could correspond in
some way with non-classical behavior observed in full quantum simula-
tions of optical delay line coupled coherent Ising machine (ODL-CIM)
models near threshold, as reviewed in Sec. III. It seems natural to
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conjecture that quantum uncertainties associated with anti-squeezing
below threshold could induce coherent spreading over a glassy land-
scape with numerous marginal minima, with associated buildup of
quantum correlation among spin-amplitudes.

The above picture calls attention to a need to understand the
topological nature of the phase portrait and its evolution as the pump
amplitude, a, is varied. Indeed, we may restate in some sense the
abstract formulation of the CIM algorithm design problem: Can we
find a strategy for modulating the CIM dynamics in a way that enables
us to predict (without prior knowledge of actual solutions) how to ini-
tialize the spin-amplitudes such that they are guided into the basin of
attraction of the largest-radius minimum in the high pump regime?
Or into one of the basins of attraction of a class of acceptably large-
radius minima (corresponding to very good solutions)? Of course, an
additional auxiliary design goal will be to guide the CIM state evolu-
tion in such a way that the asymptotic sign structure is reached
quickly.

In the near/below-threshold regime, we may anticipate at least
two general features of the phase portrait that could present obstacles
to rapid equilibration. One would be the afore-mentioned prevalence
of marginal local minima (having eigenvalues with very small or van-
ishing real part), but another would be a prevalence of low-index sad-
dle points. Trajectories within either type of phase portrait could
display intermittent dynamics that impede gradient-descent toward
states of lower energy. Focusing on the below-threshold regime in
which the Ising-interaction energy term may still dominate the phase
portrait topology, we might infer from works such as Ref. 39 that for
large N with Jij symmetric-random-Gaussian, fixed points lying well
above the minimum energy could dominantly be saddles with strong
correlation between the energy of a fixed point and its index (fraction
of unstable eigenvalues), as discussed in Ref. 34. If such features of the
landscape for random-Gaussian Jij generalize to instances of practical
interest, as a gradient-descent trajectory approaches phase space
regions of lower and lower energy, results from Refs. 34 and 39 suggest
that the rate of descent could become limited by escape times
from low-index saddles whose eigenvalues are not necessarily small
but whose local unstable manifold may have dimensions small
relative toN .

One wonders whether there might be CIM dynamical regimes in
which the gradient-descent trajectory takes on the character of an
“instanton cascade” that visits (neighborhoods of) a sequence of saddle
points with decreasing index,40 leading finally to a local minimum at
low energy. If such dynamics actually occurs in relevant operating
regimes for CIM, we may speculate as to whether the overall gradient
descent process including stochastic driving terms (caused by
classical-technical or quantum noise) could reasonably be abstracted
as probability (or quantum probability-amplitude) flow on a graph.
Here, the nodes of the graph would represent fixed points and the
edges would represent heteroclinic orbits, with the precise structure of
the graph of course determined by a and Jij. If the graph for a given
problem-instance exhibits loops, we could ask whether interference
effects might lead to different transport rates for quantum vs classical
flows (as in quantum random walks41). Such effects, if they exist,
would provide intriguing examples of ways in which limited transient
entanglement (localized to the phase space-time volume of traversing
a graph loop) could impact optimization dynamics in a computational
architecture.

III. QUANTUM NOISE CORRELATION FOR PARALLEL
SEARCH

The first CIM demonstrated in 2014 uses (N � 1) optical delay
lines to all-to-all couple N-OPO pulses circulating in a ring cavity
according to the target HamiltonianH ¼

P
Jijxixj, where xi is the in-

phase amplitude of the ith OPO pulse (see Fig. 1 in Ref. 14). A cou-
pling field Ii is chosen as the gradient of the potential, Ii / �@H=@xi,
where the analog (quadrature) amplitude xi represents the binary spin
variable by xi ¼ ri xij j. When an Ising coupling coefficient Jij between
the ith and jth OPO pulses is positive (ferromagnetic coupling), an
optical delay line realizes in-phase coupling between (internal) ith and
(externally injected) jth OPO pulse amplitudes [see Fig. 1(a)]. The
OPO pulses incident upon an extraction beam splitter (XBS) carry
anti-squeezed vacuum noise along a generalized coordinate x at below
threshold, which produces a positive noise correlation between trans-
mitted and reflected OPO pulses after the XBS, while vacuum noise
from the XBS open port is negligible compared to the anti-squeezed
noise of the incident OPO pulse. Positive noise correlation is similarly
established between the ith and jth OPO pulses after combining the
injected jth OPO pulse and internal ith OPO pulse at an injection
beam splitter (IBS), as shown in Fig. 1(a). When the Ising coupling
coefficient Jij is negative (anti-ferromagnetic coupling), the optical
delay line realizes an out-of-phase coupling between the ith and jth
OPO pulse amplitudes. This setup of the optical delay line results in
the negative noise correlation between the two OPO pulse amplitudes.

Below threshold, each OPO pulse is in an anti-squeezed vacuum
state, which can be interpreted as a linear superposition (not statistical
mixture) of generalized coordinate eigenstates,

P
n cn xnij , if the deco-

herence effect by linear cavity loss is neglected. In fact, quantum coher-
ence between different xij eigenstates is very robust against small
linear loss.23 Figure 1(b) shows the quantum noise trajectory in
DX̂

2
� �

and DP̂
2

� �
phase space. The uncertainty product stays close

to the Heisenberg limit, with a very small excess factor of less than
30%, during an entire computation process, which suggests the purity
of an OPO state is well maintained.42 Therefore, the above-mentioned
positive/negative noise correlation between two OPO pulses depend-
ing on ferromagnetic/anti-ferromagnetic coupling implements a sort
of quantum parallel search. That is, if the two OPO pulses couple fer-
romagnetically, the formed positive quantum noise correlation prefers
ferromagnetic phase states j0ii 0ij

		 and jpiijpij, where
0i ¼

Ð1
0 cX xidxj

		 and jpi ¼
Ð 0
�1 cX xidxj . If two OPO pulses couple

anti-ferromagnetically, the formed negative quantum noise correlation
prefers anti-ferromagnetic phase states j0ii pij

		 and pii 0ij
				 .

Entanglement and quantum discord between two OPO pulses
can be computed to demonstrate such quantum noise correla-
tions.27–29 Figures 1(c) and 1(d) show the degrees of entanglement and
quantum discord vs normalized pump rate p ¼ E=Eth, where E is a
pump field amplitude incident upon the nonlinear crystal and Eth is
that at the oscillation threshold for a solitary OPO, for an ODL-CIM
with N¼ 2 pulses.29 In Fig. 1(c), it is shown that the
Duan–Giedke–Cirac–Zoller entanglement criterion43 is satisfied at all
pump rates. In Fig. 1(d), it is shown that the Adesso–Datta quantum
discord criterion44 is also satisfied at all pump rates.29 Both results on
entanglement and quantum discord demonstrate maximal quantum
noise correlation formed at threshold pump rate p¼ 1. On the other
hand, if a (fictitious) mean-field without quantum noise is assumed to
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couple two OPO pulses, there exists no quantum correlation below or
above threshold, as shown by open circles in Fig. 1(d).

Note that vacuum noise incident from an open port of the XBS
[see Fig. 1(a)] creates an opposite noise correlation between the inter-
nal and external OPO pulses so that it always degrades the preferred
quantum noise correlation among the two OPO pulses after the IBS.
Thus, squeezing the vacuum noise at the open port of the XBS is
expected to improve the quantum search performance of an
ODL-CIM, which is indeed confirmed in the numerical simulation.28

The second generation of CIM demonstrated in 2016 employs a
measurement-feedback circuit to all-to-all couple the N-OPO pulses
[see Fig. 1 of Ref. 16). The (quadrature) amplitude xj of a reflected
OPO pulse j after the XBS is measured by an optical homodyne detec-
tor and the measurement result (inferred amplitude) ~xj is multiplied
against the Ising coupling coefficient Jij and summed over all j pulses
in electronic digital circuitry, which produces an overall feedback sig-
nal

P
j Jij~xj for the ith internal OPO pulse. This analog electrical

signal is imposed on the amplitude of a coherent optical feedback sig-
nal, which is injected into the target OPO pulse i by the IBS. In this

MFB-CIM operating below threshold, if a homodyne measurement
result ~xj is positive and incident vacuum noise from the open port of
the XBS is negligible, the average amplitude of the internal OPO pulse
j is shifted (jumped) to a positive direction by the projection property
of such an indirect quantum measurement45 as shown in Fig. 2.
Depending on the value of a feedback signal Jij~xj, we can introduce
either positive or negative displacement for the center position of the
target OPO pulse i. In this way, depending on the sign of Jij, we can
implement either positive correlation or negative correlation between
the two average amplitudes xih i and xjh i for ferromagnetic or anti-

ferromagnetic coupling, respectively. Note that a MFB-CIM does not
produce entanglement among OPO pulses but generates quantum dis-
cord if the density operator is defined as an ensemble over many mea-
surement records.46 A normalized correlation function

N ¼ DX̂ 1DX̂ 2

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DX̂

2
1

D E
DX̂

2
2

D Er
is an appropriate metric for

quantifying such measurement-feedback induced search performance,
the degree of which is shown to govern final success probability of

FIG. 1. (a) An optical delay line couples two OPO pulses in the ODL-CIM.14 (b) Variances DX̂
2

� �
and DP̂

2
� �

in a MFB-CIM with N ¼ 16 OPO pulses. The uncertainty prod-
uct deviates from the Heisenberg limit by less than 30%.42 (c) Duan–Giedke–Cirac–Zoller inseparability criterion (e=2 < 1) vs normalized pump rate p ¼ E=Eth. Numerical
simulations are performed by the positive-P, truncated-Wigner, and truncated-Husimi stochastic differential equations (SDEs). The dashed line represents an analytical solu-
tion.29 (d) Adesso–Datta quantum discord criterion (D> 0) vs normalized pump rate p. The above three SDEs and the analytical result predict the identical quantum discord,
while the mean-field coupling approximation (MF-A) predicts no quantum discord.29
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MFB-CIM more directly than the quantum discord. In general, a
MFB-CIM has a larger normalized correlation function and higher
success probability than an ODL-CIM.46

In both the ODL-CIM and MFB-CIM, anti-squeezed noise below
threshold makes it possible to search for a lowest-loss ground state as
well as low-loss excited states before the OPO network reaches thresh-
old. The numerical simulation result shown in Fig. 3 demonstrates
the three step computation of CIM.28 We study an N ¼ 16
one-dimensional lattice with a nearest-neighbor anti-ferromagnetic
coupling and periodic boundary condition x1 ¼ x17ð Þ, for which
the two degenerate ground states are 0i1 pi2 � � � � � � 0i15 pi16

								 and
pi1 0i2 � � � � � � pi15 0i16

								 . Before a pump field E is switched on (t � 0
in Fig. 3), all OPOs are in vacuum states, for which optical homodyne
measurement results provide a simple random guess for each spin and
the corresponding success rate is Ps ¼ 1=216 � 10�5 as shown by the
horizontal solid line in Fig. 3. We assume that vacuum noise incident
from the open port of the XBS is squeezed by 10 dB in the ODL-CIM.
When the external pump rate is linearly increased from below to above
threshold, the probability of finding the two degenerate ground states

is increased by two orders of magnitude above the initial success prob-
ability. This enhanced success probability stems from the formation of
quantum noise correlation among 16 OPO pulses at below threshold.
The probability of finding high-loss excited states, which are not
shown in Fig. 3, is decreased to below the initial value. This “quantum
preparation” is rewarded at the threshold bifurcation point. When the
pump rate reaches threshold, one of the ground states
( 0i1 pi2 � � � � � � pi16

						 ) in the case of Fig. 3 is selected as a single oscilla-
tion mode, while the other ground state ( pi1 0i2 � � � � � � 0i16

						 ) as well
as all excited states are not selected. This is not a standard single oscilla-
tor bifurcation but a collective phenomenon among N ¼ 16 OPO
pulses due to the existence of anti-ferromagnetic noise correlation.
Above threshold, the probability of finding the selected ground state is
exponentially increased, while those of finding the unselected ground
state as well as all excited states are exponentially suppressed in a time
scale of the order of signal photon lifetime. Such exponential amplifica-
tion and attenuation of the probabilities is a unique advantage of a
gain-dissipative computing machine, which is absent in a standard
(unitary gate based) quantum computing system. For example, the
Grover search algorithm utilizes a unitary rotation of state vectors and
can amplify the target state amplitude only linearly.25 However, this dif-
ference does not mean the computational time of the CIM is sub-
exponential for hard instances. Recent numerical studies suggest that
the CIM has an improved but still exponentially scaling time.30 Note
that if we stop increasing the pump rate just above threshold, the prob-
ability of finding either one of the ground states is less than 1%.
Pitchfork bifurcation followed by exponential amplitude amplification
plays a crucial role in realizing high success probability in a short time.

For hard instances of combinatorial optimization problems, in
which excited states form numerous local minima, the above quantum
search alone is not sufficient to guarantee a high success probability.30

In Sec. IV, another CIM with error correction feedback is introduced
to cope with such hard instances.26 An alternative approach has
been recently proposed.42 If a pump rate is held just below threshold
(corresponding to t �60 in Fig. 3), the lowest-loss ground states and
low-loss excited states (fine solutions) have enhanced probabilities,
while high-loss excited states have suppressed probabilities. By using a
MFB-CIM, the optimum and good sub-optimal solutions are selec-
tively sampled through an indirect measurement in each round trip of
the OPO pulses. The latter approach is particularly attractive if the
computational goal is to sample not only optimum solutions but also
semi-optimum solutions.

IV. DESTABILIZATION OF LOCAL MINIMA

The measurement-feedback coherent Ising machine has been
previously described as a quantum analog device that finishes compu-
tation in a classical digital device, in which the amplitude of a selected
low energy spin configuration is exponentially amplified.22,23 During
computation, the sign of the measured in-phase component, noted ~xi
with ~xi 2 R, is associated with the boolean variable ri of an Ising
problem (whereas the quadrature-phase component decays to zero). A
detailed model of the system’s dynamics is given by the master equa-
tion of the density operator q that is conditioned on measurement
results,47,48 which describes the processes of parametric amplification
(exchange of one pump photon into two signal photons), saturation
(signal photons are converted back into pump photons), wavepacket
reduction due to the measurement, and feedback injection that is used

FIG. 3. The probabilities of finding two degenerate ground states in the ODL-CIM
for a one-dimensional lattice with the nearest-neighbor anti-ferromagnetic coupling
and periodic boundary condition (x1 ¼ x17).

28 Many trajectories produced by the
numerical simulation with the truncated-Wigner SDE are post-selected by the final
state 0i1 pi2 � � � � � � 0i15 pi16

								 and ensemble averaged.

FIG. 2. Formation of a ferromagnetic correlation between two OPO pulses in the
MFB-CIM.15,16 This example illustrates the noise distributions of the two OPO
pulses when the Ising coupling is ferromagnetic (Jij > 0) and the measurement
result for the jth pulse is ~Xj > 0.
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for implementing the Ising coupling. For the sake of computational
tractability, truncated Wigner28 or the positive-P representation49

can be used with Itoh calculus for approximating the quantum state to
a probability distribution PðxiÞ with PðxiÞ � Tr½jxiihxijq� from
which the measured in-phase component ~xi can be calculated with
~xi ¼ xih i þ cgi; where xih i ¼

Ð
xiPðxiÞdxi and gi are uncorrelated

increments with amplitude c > 0.
Although gain saturation and dissipation can, in principle, induce

squeezing and non-Gaussian states50 that would justify describing the
time-evolution of the higher moments of the probability distribution
P, it is insightful to limit our description to its first moment [the aver-
age xih i] in order to explain computation achieved by the machine in
the classical regime. This approximation is justified when the state of
each OPO remains sufficiently close to a coherent state during the
whole computation process. In this case, the effect of gain saturation
and dissipation on the average xih i can be modeled as a non-linear
function x 7!f ðxÞ and the feedback injection is given as
biRjJijg xih i þ cgj

� �
; where f and g are sigmoid functions, Jij the Ising

couplings, and bi represents the amplitude of the coupling. When the
amplitudes j xih ij of OPO signals are much larger that the noise ampli-
tude c, the system can be described by simple differential equations
given as ðd=dtÞ xih i ¼ f xih ið Þ þ bRjJijg xjh ið Þ for which we set bi ¼ b,
8i, and it can be shown that the time-evolution of the system is a
motion in-state space that seeks out minima of a potential function (or
Lyapunov function) V given as V ¼ Vb yð Þ þ bH yð Þ; where Vb is

a bistable potential with VbðyÞ ¼ �Ri
Ð yi f ðg�1ðyÞÞdy and HðyÞ

¼ �ð1=2ÞRijJijyiyj is the extension of the Ising Hamiltonian in the
real space with yi ¼ gð xih iÞ.9,21 The connection between such nonlin-
ear differential equations and the Ising Hamiltonian has been used in

various models such as in the “soft” spin description of frustrated spin
systems51 or the Hopfield-Tank neural networks9 for solving NP-hard
combinatorial optimization problems. Moreover, an analogy with the
mean-field theory of spin glasses can be made by recognizing that the
steady-states of these nonlinear equations correspond to the solution
of the “naive” Thouless–Anderson–Palmer (TAP) equations,52 which
arise from the mean-field description of Sherrington–Kirkpatrick spin
glasses in the limit of a large number of spins N and are given as
rih i ¼ tanhðð1=TÞRjJij rjh iÞ, with rih i being the thermal average at
temperature T of the Ising spin [by setting f ðxÞ ¼ atanhðxÞ and
gðxÞ ¼ x]. This analogy suggests that the parameter b can be inter-
preted as inverse temperature in the thermodynamic limit when the
Onsager reaction term is discarded.52 At b ¼ 0 ðT ! 1Þ, the only
stable state of the CIM is xih i ¼ 0, for which any spin configuration is
equiprobable, whereas at b ! 1ðT ¼ 0Þ, the state remains trapped
for an infinite time in local minima. We will discuss in much more
detail analogies between CIM dynamics and TAP equations, and also
belief and survey propagation, in the special case of the SK model in
Sec. V.

In the case of spin glasses, statistical analysis of TAP equations
suggests that the free energy landscape has an exponentially large
number of solutions near zero temperature53 and we can expect simi-
lar statistics for the potential V when b ! 1. In order to reduce the
probability of the CIM to get trapped in one of the local minima of V ,
it has been proposed to gradually increase b, the coupling strength,
during computation.16 This heuristic, that we call the open-loop CIM
in the following, is similar to mean-field annealing54 and consists in
letting the system seek out minima of a potential function V that is
gradually transformed from monostable to multi-stable [see Figs. 4(a)
and (b1)]. Contrary to the quantum adiabatic theorem55 or the

FIG. 4. (a) Schematic representation of the open- and closed-loop measurement-feedback coherent Ising machine whose computational principle in the mean-field approxima-
tion is based on two different types of dynamical systems: gradual deformation of a potential function V (b1) and chaotic-like dynamics (b2), respectively.

Applied Physics Letters PERSPECTIVE scitation.org/journal/apl

Appl. Phys. Lett. 117, 160501 (2020); doi: 10.1063/5.0016140 117, 160501-7

VC Author(s) 2020

https://scitation.org/journal/apl


convergence theorem of simulated annealing,56 there is, however, no
guarantee that a sufficiently slow deformation of V will ensure conver-
gence to the configuration of the lowest Ising Hamiltonian. In fact, lin-
ear stability analysis suggests, on the contrary, that the first state other
than the vacuum state ( xih i ¼ 0, 8 i) to become stable as b is increased
does not correspond to the ground-state. Moreover, added noise gi
may not be sufficient for ensuring convergence:57 it is possible to seek
global convergence to the minima of the potential V by reducing grad-
ually the amplitude of the noise c [with cðtÞ2 � c=logð2þ tÞ] and c
real constant sufficiently large,58 but the global minima of the potential
VðyÞ do not generally correspond to those of the Ising Hamiltonians
HðrÞ at a fixed b.13,21 This discrepancy between the minima of the
potential V and Ising Hamiltonian H can be understood by noting
that the field amplitudes xih i are not all equal (or homogeneous) at the
steady-state, that is, xih i ¼ ri

ffiffiffi
a

p
þ di; where di is the variation of the

ith OPO amplitude with di 6¼ dj and �a a reference amplitude defined
such that Rjdj ¼ 0. Because of the heterogeneity in amplitude, the
minima of Vð xh iÞ ¼ Vðr�aþ dÞ do not correspond to those of HðrÞ
in general. Consequently, it is necessary in practice to run the open-
loop CIM from multiple initial conditions in order to find the ground-
state configuration.

Because the benefits of using an analog state for finding the
ground-state spin configurations of the Ising Hamiltonian is offset by
the negative impact of its improper mapping to the potential function
V , we have proposed to utilize supplementary dynamics that are not
related to the gradient descent of a potential function but ensure that
the global minima ofH are reached rapidly. In Ref. 26, an error correc-
tion feedback loop has been proposed whose role is to reduce the
amplitude heterogeneity di by forcing squared amplitudes xih i2 to
become all equal to a target value a, thus forcing the measurement-
feedback coupling fRjJijgð xjh iÞgi to be colinear with the Ising internal
field h with hi ¼ RjJijrj. This can notably be achieved by introducing
error signals, noted ei with ei 2 R, that modulate the coupling
strength bi (or “effective” inverse temperature) of the ith OPO such
that bi ¼ beiðtÞ and the time-evolution of ei given as ðd=dtÞei
¼ �nðgð xih iÞ2 � aÞei, where n is the rate of change of error variables
with respect to the signal field. This mode of operation is called the
closed-loop CIM and can be realized experimentally by simulating
the dynamics of the error variables ei using the FPGA used in the
measurement-feedback CIM for the calculation of the Ising coupling16

[see Fig. 4(a)]. Note that the concept of amplitude heterogeneity error
correction has also been recently proposed in Ref. 20 and extended to
other systems such as the XY model.20,59,60

In the case of the closed-loop CIM, the system exhibits steady-
states only at the local minima of H.26 The stability of each local mini-
mum can be controlled by setting the target amplitude a as follows: the
dimension of the unstable manifold Nu (where Nu is the number of
unstable directions) at fixed points corresponding to local minima r

of the Ising Hamiltonian is equal to the number of eigenvalues liðrÞ
that are such that liðrÞ > FðaÞ, where liðrÞ are the eigenvalues of
the matrix fJij=jhijgi (with internal field hi ¼ RjJijrj) and F a function
shown in Fig. 5(a). The parameter a can be set such that all local min-
ima (including the ground-state) are unstable such that the dynamics
cannot become trapped in any fixed point attractors. The system then
exhibits chaotic dynamics that explores successively local minima.
Note that the use of chaotic dynamics for solving Ising problems has
been discussed previously,24,61 notably in the context of neural networks,

and it has been argued that chaotic fluctuations may possess better prop-
erties than Brownian noise for escaping from local minima traps. In the
case of the closed-loop CIM, the chaotic dynamics is not merely used as
a replacement to noise. Rather, the interaction between nonlinear gain
saturation and error-correction allows a greater reduction of the unstable
manifold dimension of states associated with lower Ising Hamiltonian
[see Fig. 5(b)]. Comparison between Figs. 5(c1–e1) and 5(c2–e2) indeed
shows that the dynamics of the closed-loop CIM samples more effi-
ciently from lower-energy states when the gain saturation is nonlinear
compared to the case without nonlinear saturation, respectively.

Generally, the asymmetric coupling between in-phase compo-
nents and error signals possibly results in the creation of limit cycles
or chaotic attractors that can trap the dynamics in a region that does
not include the global minima of the Ising Hamiltonian. A possible
approach to prevent the system from getting trapped in such non-
trivial attractors is to dynamically modulate the target amplitude such
that the rate of divergence of the velocity vector field remains posi-
tive.26 This implies that volumes along the flow never contract which,
in turn, prevents the existence of any attractor.

Figure 6(a) shows that the closed-loop CIM can find the ground-
states of Sherrington–Kirkpatrick spin glass problems with high suc-
cess probability using a single run even for a larger system size.
Moreover, the correction of amplitude heterogeneity allows for a sig-
nificant decrease in the time-to-solution compared to the open-loop
case which is evaluated by calculating the number of cavity round trip
of the OPO pulses, called number of iterations and noted ns, to
find the ground-state configurations with 99% success probability [see
Fig. 6(b)]. Because there is no theoretical guarantee that the system
will find the configuration with Ising Hamiltonian at a ratio of the
ground-state after a given computational time, the closed-loop CIM is
thus classified as a heuristic method. In order to compare it with other
state-of-the-art heuristics, the proposed scheme has been applied to
solving instances of standard benchmarks (such as the G-set) by com-
paring time-to-solutions for reaching a predefined target such as
the ground-state energy, if it is known, or the smallest energy known
(i.e., published), otherwise. The amplitude heterogeneity error correc-
tion scheme can, in particular, find lower energy configurations of
MAXCUT problems from the G-set of similar quality as the state-of-
the-art solver, called BLS62 (see the supplementary material of Ref. 26
for details). Moreover, the averaged time-to-solutions obtained using
the proposed scheme are similar to the ones obtained using BLS when
simulated on a desktop computer but are expected to be 100–1000
times smaller in the case of an implementation on the coherent Ising
machine.

V. QUALITATIVE PARALLELS BETWEEN THE CIM,
BELIEF PROPAGATION AND SURVEY PROPAGATION

As we have noted above, the CIM approach to solving combina-
torial optimization problems over binary valued spin variables
ri ¼ 61 can be understood in terms of two key steps. First, in the
classical limit of the CIM, the binary valued spin variables ri are pro-
moted to analog variables xi reflecting the (quadrature) amplitude of
the ith OPO mode and the classical CIM dynamics over the variables
xi can be described by a nonlinear differential equation [Eq. (1)].
Second, in a more quantum regime, the CIM implements a quantum
parallel search over this space that focuses quantum amplitudes on the
ground state. A qualitatively similar two step approach of state
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FIG. 6. (a) Success probability p0ðnÞ
� �

of finding the ground-state configuration after n iterations of a single run averaged over 100 randomly generated Sherrington-
Kirkpatrick spin glass instances and (b) 50th, 80th, and 90th percentiles of the iteration-to-solution distribution, where ns of a given instance is given as ns ¼ minnfnsðnÞg
and nsðnÞ ¼ n logð1� 0:99Þ=logð1� p0ðnÞÞ for the open-loop (in red) and closed-loop CIM (in green).

FIG. 5. (a) Stability of local minima in the space f�a; lg in the case of f sigmoid and linear, i.e., with and without gain saturation, respectively. The red and black crosses cor-
respond to the maximum values of liðrÞ for the ground-state and excited states, respectively, of an example spin-glass instance with N ¼ 26 spins. (b) Dimension of the
unstable manifold vs the target amplitude �a for the various local minima with Ising Hamiltonian H shown by the color gradient in the case of f sigmoid. (c1), (d1), and (e1)
show the time-evolution of in-phase components xih i, error variables ei , and Ising Hamiltonian in the case of f sigmoid. (c2)–(e2) same as (c1)–(e1) in the case of f linear. In
(e1) and (e2), the red lines show the Ising Hamiltonian of the local minima.
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augmentation and then parallel search has also been pursued in statis-
tics and computer science-based approaches to combinatorial optimi-
zation, specifically in the forms of algorithms known as belief
propagation (BP)63 and survey propagation (SP).64 Here, we outline
similarities and differences between the CIM, BP, and SP. Forming a
bridge between these fields can help progress through the cross-
pollination of ideas in two distinct ways. First, our theoretical
understanding of BP and SP may provide further tools, beyond the
dynamical systems theory approaches described above, to develop a
theoretical understanding of CIM dynamics. Second, differences
between CIM dynamics and BP and SP dynamics may provide further
inspiration for the rational engineering design of modified CIM
dynamics that could lead to improved performance. Indeed, there is a
rich literature connecting BP and SP to other ideas in statistical phys-
ics, such as the Bethe approximation, the replica method, the cavity
method, and TAP equations.65–69 It may also be interesting to explore
connections between these ideas and the theory of CIM dynamics.

We begin by discussing BP, which is a general method for com-
puting the marginal distribution PðriÞ ¼

P
r=i

Pðr1;…; rNÞ from a

complex joint distribution over N variables rj for j ¼ 1…N: Here, the
sum over r=i denotes a sum over all variables rj for j 6¼ i: For binary
spin variables rj ¼ 61, and for general joint distributions
Pðr1;… rNÞ, the computation of this marginal distribution is intracta-
ble, as it involves a sum over Oð2NÞ spin configurations. However, con-
sider the case where the joint distribution Pðr1;… rNÞ has a locally
factorizable structure of the form Pðr1;… rNÞ ¼ 1

Z

QP
a¼1 waðraÞ:

Here, we have P interaction terms indexed by a ¼ 1;…; P, and each
interaction term or factor wa depends on a subset of the spins denoted
by ra. Note that a parameter “a” represents an interaction term in this
section, while it means a target intensity in Sec. IV. For example, in the
case of Ising spin systems with pairwise interactions at inverse tempera-
ture b, each subset a corresponds to a pair of spins a ¼ fi; jg, the
corresponding factor is given by waðraÞ ¼ ebJijrirj , and Z is the usual
partition function that normalizes the distribution. The structure of the
joint distribution in Eq. (3) below can be visualized as a factor graph,
with N circular nodes denoting the variables ri and P square factor
nodes denoting the interactions wa [Fig. 7(a)]. A variable node i is
connected to a factor node a if and only if variable i belongs to the
subset a or equivalently if the interaction term wa depends on ri.

BP can then be viewed as an iterative dynamical algorithm for
computing a marginal PðriÞ by passing messages along the factor
graph. In the case of combinatorial optimization, we can focus on the
zero temperature b ! 1 limit. We will first describe the BP algo-
rithm intuitively and later give justification for it. BP employs two
types of messages: one from variables to factors and another from fac-
tors to variables. Each message is a probability distribution over a sin-
gle variable. We denote by Mt

j!bðrjÞ the message from variable j to
factor b at iteration time t: It can be thought of intuitively as an
approximation to the marginal distribution of rj induced by all other
interactions a 6¼ b: Thus,Mt

j!bðrjÞmodels the distribution over rj in
a cavity system in which interaction b has been removed.
Furthermore, we denote by Mt

b!iðriÞ the message from factor b to
variable i at iteration time t: Intuitively, we can think of Mt

b!iðriÞ as
the distribution on ri induced by the direct influence of interaction b.
These messages are called beliefs, as they indicate various probabilities
that different interactions believe a single variable should assume. The

BP equations amount to updating these beliefs to make them self-
consistent with each other. For example, the (unnormalized) update
equation for messages from factors to variables [see Fig. 7(b)] takes the
form Mtþ1

b!iðriÞ ¼
P

rb=j
wbðrbÞ

Q
j2 b=iM

t
j!bðrjÞ. Here, b=i denotes

the set of all variables in set b with variable i removed. Intuitively, the
direct influence Mtþ1

b!iðriÞ of interaction b on variable i is computed
by integrating out of the factor wbðrbÞ all variables j participating in
interaction b other than i, supplemented by accounting for the effect
of all other interactions besides b by the product of beliefs Mt

j!bðrjÞ
over all variables j 2 b=i. This product structure essentially encodes
an implicit assumption that the variables j 2 b would be independent
of each other if interaction b were removed. This would be exactly true
if the factor graph were a tree with no loops. Similarly, the messages
from variables to factors are updated via Mtþ1

i!aðriÞ
¼

Q
b2 i=aM

tþ1
b!iðriÞ [see Fig. 7(b)]. Intuitively, the belief Mtþ1

i!aðriÞ on
variable i induced by all other interactions besides a is simply the
product of the direct influences Mtþ1

b!iðriÞ of all interactions b that
involve variable i besides interaction a (this set of interactions is
denoted by i=aÞ: Belief propagation involves randomly initializing
the messages and repeating these iterations until convergence. If the
messages converge, the marginal distribution of any variable can be
computed as P(riÞ ¼

Q
a2 iM

t
a!iðriÞ. In essence, the marginal is the

FIG. 7. (a) A factor graph representation of a joint probability distribution where
each square is a factor node encoding an interaction waðraÞ: Each factor node is
connected to a subset a of variable nodes (circles) where each variable ri is con-
nected to factor a if and only if i 2 a, or equivalently if variable ri participates in
the interaction wa: (b) The flow of messages contributing to the BP update of the
message Mtþ1

i!aðriÞ: (c) For the special case of binary Ising variables ri , the BP
messages Mt

j!bðrjÞ and Mtþ1
b!iðriÞ can be parameterized in terms of the magnet-

izations mt
j!b and mtþ1

b!i . Furthermore, in the special case of pairwise interactions,

mtþ1
b!i is solely a function of mt

j!b (in addition to the coupling constant Jij and the
temperature), and so we can write the BP updates solely in terms of mt

j!b, which
we rename to mt

j!i , which can be thought of as the magnetization of spin rj in a
cavity system with the coupling Jij removed. (d) The flow of messages contributing
to the BP update of the cavity magnetization mtþ1

j!i in Eq. (3), again specialized to
the case of Ising spins with pairwise interactions.
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product of all direct influences Mt
a!iðriÞ over all interactions a that

contain variable i.
For a general factor graph, there is no guarantee that the BP

update equations will converge in finite time, and even if they do, there
is no guarantee the converged messages will yield accurate marginal
distributions. However, if the factor graph is a tree, then it can be
proven that the BP update equations do indeed converge and, more-
over, they converge to the correct marginals.63 Moreover, even in
graphs with loops, the fixed points of the BP update equations were
shown to be in one-to-one correspondence with extrema of a certain
Bethe free energy approximation to the true free energy associated
with the factor graph distribution.70 This observation yielded a seminal
connection between BP in computer science and the Bethe approxi-
mation in statistical physics. The exactness of BP on tree graphs, as
well as the variational connection between BP and Bethe free energy
on graphs with loops, motivated the further study of BP updates in
sparsely connected random factor graphs in which loops are of size
O(log N). In many such settings, BP updates converge and yield good
approximate marginals.65 In particular, if correlations between varia-
bles i 2 a adjacent to a factor a are weak upon removal of that factor,
then BP is thought to work well.

Now specializing to the case of Ising spins in which each variable
r ¼ 61, every message MðrÞ is a distribution over a single spin and
can be uniquely characterized by a field h via the relationMðrÞ / ebh

or equivalently through the magnetization m ¼ tanhðbhÞ: Thus, the
BP update equations for the beliefs Mt

j!bðrjÞ and Mt
b!iðriÞ can be

viewed as a discrete time dynamical system on a collection of real val-
ued fields htj!b and htb!i or equivalent magnetizations mt

j!b and
mt

b!i. Furthermore, in the case of pairwise interactions, where between
any pair of spins there is at most one interaction, we can further sim-
plify the BP equations. For instance, along any directed edge from spin
rj to spin ri passing through an interaction b with coupling constant
Jij, BP maintains two messages, parameterized by mt

j!b and mtþ1
b!i

wheremtþ1
b!i is solely a function ofmt

j!b, Jij, and b [Fig. 7(c)]. Thus, we
can write the BP update equations for Ising systems solely in terms of
one of the messages, which we rename to be mt

j!i 	 mt
j!b. Thus, for

each connection in the Ising system, there are now two magnetiza-
tions: mt

j!i and mt
i!j corresponding to messages flowing along the

two directions of the connection. Intuitively,mt
j!i is the magnetization

of spin rj in a cavity system where the coupling Jij has been removed.
Similarly, mt

i!j is the magnetization of spin ri in the same cavity sys-
tem with coupling Jij removed. Some algebra reveals65,67 that the BP
equations in terms of the cavity magnetizationsmt

j!i are given by

mtþ1
i!j ¼ tanh

X
k2 i=j

tanh�1 tanh bJikð Þ mt
k!i

� �
 �
: (3)

Here, the sum over k 2 i=j denotes a sum over all neighbors of spin i
other than spin j. See Fig. 7(d) for a visualization of the flow of mes-
sages underlying Eq. (3). These BP equations maintain twomagnetiza-
tions associated with each connection in the Ising system,
corresponding to the two directions of flow across each edge. The mes-
sages are initialized randomly and updated according to Eq. (3), with
the magnetizations thus flowing bi-directionally through the Ising net-
work, hopefully converging to a set of fixed point magnetizations. The
marginal of a spin ri at iteration t is then given by the magnetization

mt
i ¼ tanh

P
k2 i tanh

�1 tanhðbJikÞ mt
k!i

� �h i
. While this dynamics

promotes the spin variables to analog variables, like the classical CIM
dynamics in Eq. (1), it also bears three salient differences from the
CIM dynamics: it operates in discrete time, maintains two analog vari-
ables per edge, rather than one analog variable per spin, and uses a dif-
ferent nonlinearity. Of course, the specialized BP dynamics are
expected to work well specifically for classes of sparsely connected
tree-like Ising systems in which removing an interaction Jij from the
system makes the spins ri and rj approximately independent but are
not guaranteed to yield accurate marginals in more general settings.

The BP equations for Ising systems can also be used to derive the
famous TAP equations52 for the Sherrington Kirkpatrick (SK)
model,35 where each coupling constant Jij is chosen i.i.d from a zero
mean Gaussian distribution with variance 1=N: Because the couplings
are now O 1=

ffiffiffiffi
N

p� �
, we can Taylor expand Eq. (3) to obtain mtþ1

i!j

¼ tanh
P

k2 i=j bJik m
t
k!i

h i
: Now, this update equation is written in

terms of cavity magnetizationsmtþ1
i!j in a system in which a single cou-

pling Jij is removed. Because the SK model connectivity is dense with

each individual coupling O 1=
ffiffiffiffi
N

p� �
, each cavity magnetization mtþ1

i!j

with Jij removed is close to the actual magnetization mtþ1
i when Jij is

present. By Taylor expanding in the small difference between mtþ1
i!j

andmtþ1
i , one can write the BP update equations for the case of dense

mean field connectivity solely in terms of the variables mtþ1
i (see Ref. 67

for a derivation of the TAP equations from this BP Perspective),

mtþ1
i ¼ tanh

X
j

bJij m
t
j � b2 mt�2

i

X
j

J2ij
n
1� mt�1

j

� 2o" #
:

(4)

This achieves a dramatic simplification in the dynamics of Eq. (3)
from tracking 2N2 variables to only tracking N variables and as such is
more similar to the CIM dynamics in Eq. (1). Again, there are still sev-
eral differences: the dynamics in Eq. (4) is discrete time, uses a differ-
ent nonlinearity, and has an interesting structured history dependence
extending over two time steps. Remarkably, although BP was derived
with the setting of sparse random graphs in mind, the particular form
of the approximate BP equations for the dense mean field SK model
can be proven to converge to the correct magnetizations as long as the
SK model is outside of the spin glass phase.71

So far, we have seen a set of analog approaches to solving Ising
systems in specialized cases (sparse random and dense mean field con-
nectivities). However, these local update rules do not work well when
such connectivities exhibit spin glass behavior. It is thought that the
key impediment to local algorithms working well in the spin glass
regime is the existence of multiple minima in the free energy landscape
over spin configurations.65 This multiplicity yields a high reactivity of
the spin system to the addition or flip of a single spin. For example, if
a configuration is within a valley with low free energy and one forces a
single spin flip, this external force might slightly raise the energy of the
current valley and lower the energy of another valley that is far away
in spin configuration space but nearby in energy levels, thereby mak-
ing these distant spin configurations preferable from an optimization
perspective. In such a highly reactive situation, flipping one spin at a
time will not enable one to jump from valleys that were optimal (lower
energy) before the spin flip to a far away valley that is now more opti-
mal (even lower energy) after the spin flip. This physical picture of
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multiple valleys that are well separated in spin configuration space, but
whose energies are near each other and can, therefore, reshuffle their
energy orders upon the flips of individual spins, motivated the inven-
tion of alternative algorithms that extend belief propagation to survey
propagation. The key idea, in the context of an Ising system, is that the
magnetizations mi!j of BP now correspond to the magnetizations of
spin configurations in a single free energy valley (still in a cavity system
with the coupling Jij removed). SP goes beyond this to keep track of
the distribution of BP messages across all the free energy valleys. We
denote this distribution at iteration t by Ptðmi!jÞ. The distribution
over BP beliefs is called a survey. SP propagates these surveys, or distri-
butions over the BP messages across different valleys, taking into
account changes in the free energy of the various valleys before and
after the addition of a coupling Jij: This more nonlocal SP algorithm
can find solutions to hard constraint satisfaction problems in situa-
tions where the local BP algorithm fails.64 Furthermore, recent work
going beyond SP, but specialized to the SK model, yields message pass-
ing equations that can proveably find near ground state spin configu-
rations of the SK model (under certain widely believed assumptions
about the geometry of the SK model’s free energy landscape) but with
a time that grows with the energy gap between the found solution and
the ground state.36

Interestingly, the promotion of the analog magnetizations mtþ1
i!j

of BP to distributions Ptðmi!jÞ over these magnetizations is qualita-
tively reminiscent of the promotion of the classical analog variables of
the CIM to quantum wavefunctions over these variables. However,
this is merely an analogy to be used as a potential inspiration for both
understanding and augmenting current quantum CIM dynamics.
Moreover, the SP picture cannot account for quantum correlations.
Overall, much further theoretical and empirical work needs to be done
in obtaining a quantitative understanding the behavior of the CIM in
the quantum regime, and the behavior of SP for diverse combinatorial
Ising spin systems beyond the SK model, as well as potential relations
between the two approaches. An intriguing possibility is that the quan-
tum CIM dynamics enables a nonlocal parallel search over multiple
free energy valleys in a manner that may be more powerful than the
SP dynamics due to the quantum nature of the CIM.

VI. FUTURE OUTLOOK

While current MFB-CIM hardware implementations would not
seem capable of sustaining even limited transient entanglement
because of their continual projection of each spin-amplitude on each
round trip, it is possible that near-term prototypes could probe
quantum-perturbed CIM dynamics at least in the small-N regime. A
recent analysis72 of a modified MFB-CIM architecture utilizing entan-
glement swapping-type measurements shows that it should be possible
to populate entangled states (of specific structure determined by the
measurement configuration) of the spin-amplitudes, if the round trip
optical losses can be made sufficiently small. This type of setup could
be used to enable certain entanglement structures to be created by
transient non-local flow of quantum states through phase space or to
create specific entangled initial states for future CIM algorithms that
exploit quantum interference in some more directed way. One may
speculate that the impact of quantum phenomena could become more
pronounced in CIMs with extremely low pump threshold, for which
quantum uncertainties could potentially be larger relative to the scale
of topological structures in the mean-field (in a quantum-optical

sense) phase space in the critical near-threshold regime. Prospects for
realizing such low-threshold CIM hardware have recently been
boosted by progress toward the construction of optical parametric
oscillators using dispersion-engineered nanophotonic lithium niobate
waveguides and ultra-fast pump pulses.73

For methods that rely on the relaxation of a potential function,
either a Lyapunov function for dynamical systems or free energy land-
scape for Monte Carlo simulations, it is generally believed that the
exponential increase in the number of local minima is responsible for
the difficulty in finding the ground-states. It has been suggested that
the presence of an even greater number of critical points may prevent
the dynamics from descending rapidly to lower energy states.74 On the
other hand, several recently proposed methods that rely on chaotic
dynamics instead of a potential function have achieved good perfor-
mance in solving hard combinatorial problems,24,26,61,75–77 but the
theoretical description of the number of non-trivial traps (limit-cycles
or chaotic attractors) in their dynamics is lacking. It is of great interest
to extend the study of complexity74 (that is, the enumeration of local
minima and critical points) to the case of chaotic dynamics for identi-
fying the mechanisms that prevent these heuristics to find optimal sol-
utions of combinatorial optimization problems and to derive
convergence theorems and guarantees of returning solutions within a
bounded ratio of the ground-state energy.

The closed-loop CIM has been proposed for improving the map-
ping of the Ising Hamiltonian when the time-evolution of the system
is approximated to the first moment of the in-phase component distri-
bution. Because the CIM has the potential of quantum parallel
search22 if dissipation can be reduced experimentally, it is important
to extend the description of the closed-loop CIM to higher moments42

in order to identify possible computational benefits of squeezed or
non-Gaussian states. In order to investigate this possibility but abstain
from the difficulties of reaching a sufficiently low dissipation experi-
mentally, the simulation of the CIM in digital hardware is necessary.

Another interesting prospect of the CIM is its extension to neuro-
science research. One possibility is about merged quantum and neural
computing concept. In the quantum theory of the CIM, we start with
a density operator master equation which takes into account a para-
metric gain, linear loss, gain saturation (or back conversion loss), and
dissipative mutual coupling. By expanding the density operator with
either a positive P-function (off diagonal coherent state expansion),
truncated Wigner-function, or Husimi-function, we can obtain the
quantum mechanical Fokker–Planck equations. Using the Ito rule in
the Fokker–Planck equations, we finally derive the c-number stochas-
tic differential equations (c-SDEs).27–29,49 We can use them for numer-
ical simulation of the CIM on classical digital computers. This phase
space method of quantum optics can be readily modified for numeri-
cal simulation of an open-dissipative classical neural network embed-
ded in thermal reservoirs, where vacuum noise is replaced by thermal
noise. We note that an ensemble average over many identical classical
neural networks driven by independent thermal noise can reproduce
the analog of quantum dynamics (entanglement and quantum dis-
cord) across the bifurcation point. This scenario suggests a potential
“quantum inspired computation” might be already implemented in
the brain. Using the c-SDE of the CIM as the heuristic algorithm in
classical neural network platform, we can perform a virtual quantum
parallel search in cyber space. In order to compute the dynamic evolu-
tion of the density operator, we have to generate numerous trajectories
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by the c-SDE. This can be done by ensemble averaging or time
averaging.

However, what we need in the end is only the CIM final state,
which is one of the degenerate ground states, and in such a case, pro-
ducing just one trajectory by c-SDE is enough. This is the unique
advantage of the CIM approach and provided by the fact that this sys-
tem starts computation as a quantum analog device and finishes it as a
classical digital device. It is an interesting open question if the classical
neural network in the brain implements such c-SDE dynamics driven
by thermal reservoir noise. One of the important challenges in theoret-
ical neuro-science is to answer how a large number of neurons collec-
tively interact to produce a macroscopic and emergent order such as
decision making, cognition, and consciousness via noise injected from
thermal reservoirs and critical phenomena at the phase transition
point.78–81 The quantum theory of the CIM may shed a light on this
interesting frontier at physics and neuro-science interface.

Above, we also reviewed a set of qualitative analogies connecting
the CIM approach to combinatorial optimization with other
approaches in computer science. In particular, we noted that just as
the CIM dynamics involves a promotion of the original binary spin
variables to classical analog variables and then quantum wave func-
tions associated with these classical variables, computer science-based
approaches to combinatorial optimization also involve a promotion of
the spin variables to analog variables (cavity magnetizations in BP for
sparse random connectivities and magnetizations in TAP for dense
mean field connectivities) and then distributions over magnetizations
in SP. These analogies form a bridge between two previously separate
strands of intellectual inquiry, and the cross-pollination of ideas
between these strands could yield potential insights in both fields. In
particular, such cross-pollination may both advance the scientific
understanding of and engineering improvements upon CIM
dynamics.

For example, can convergence proofs of BP or TAP equations for
special classes of Ising systems shed light on CIM dynamics in these
same systems? Can differences between BP, TAP, or SP dynamics and
CIM dynamics suggest the rational design of better hardware modifi-
cations to the CIM, and would such modifications yield improved per-
formance in Ising systems where BP, TAP, and SP are known to
converge? How would such modifications fare in more difficult set-
tings where BP/TAP and even SP do not converge? Can the success of
the CIM in problems other than random Ising systems for which BP,
TAP, and SP are specialized suggest more general algorithms that
work in other classes of Ising systems? Can the success of the CIM
motivate other types of annealing schedules to the energy landscape
that could serve as improvements on existing BP, TAP, or SP algo-
rithms? Overall, the parallels and differences between BP, TAP, SP,
and CIM thus motivate many intriguing directions for future research
that are as of yet completely unexplored.

Recently, a variety of different experimental platforms have been
proposed and demonstrated for the implementation of Ising spin
models.82–88 It is expected that theoretical and experimental studies of
coherent Ising machines mutually motivate and accelerate the
advancement of the field synchronously.

More generally, we hope this article provides a sense of the rich
possibilities for future interdisciplinary research focused around a mul-
tifaceted theoretical and experimental approach to combinatorial opti-
mization uniting Perspectives from statistics, computer science,

statistical physics, and quantum optics and making contact with
diverse topics like dynamical systems theory, chaos, spin glasses, and
belief and survey propagation.
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