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1. Introduction

In the new Scottish book, Steinhaus posed the following problem.

Problem 1.1 (Problem 126, The New Scottish Book). Does there exist a family F of 
measurable functions, such that for each f ∈ F , |f(t)| = 1, and for each sequence of 
functions (fn)∞

n=1 in F , the sequence

1
n

n∑
k=1

fk(t)

is divergent for almost all t?

Révész produced the following solution, phrased in the language of probability theory.

Theorem 1.2 ([75, Theorem 1]). Let (ξn)∞
n=1 be a sequence of random variables, such 

that for some positive constant K, the expectations of the squares are bounded, that is 
E(ξ2

n) ≤ K, for all n ≥ 1.
There then exists an increasing sequence n1 < n2 < · · · of integers, and a random 

variable η, such that the (Cesàro) averages converge to η, with probability equal to 1,

P

(
ξn1 + ξn2 + · · · + ξnk

k
→ η

)
= 1.

This result follows easily from the following more general result of Révész.

Theorem 1.3 (Révész’ Theorem [75, Theorem 2]). Let (ξn)∞
n=1 be a sequence of random 

variables, such that for some positive constant K, the expectations of the squares are 
bounded, E(ξ2

n) ≤ K, for all n ≥ 1.
There then exists an increasing sequence n1 < n2 < · · · of integers, and a random 

variable η, such that for any sequence (cn)∞
n=1 of real numbers, satisfying 

∑∞
n=1 c2

n < ∞, 
the series

∞∑
k=1

ck(ξnk
− η)

is convergent with probability equal to 1.

Révész’ study concluded with the following problem: Can the condition E(ξ2
n) < K

be loosened to E(ξ1+ε
n ) < K, for 0 < ε < 1? Komlós not only provided an affirmative 

solution, but showed that the family of random variables need only be bounded in L1.

Theorem 1.4 (Komlós’ Theorem [54, Theorem 1a]). Let (ξn)∞
n=1 be a sequence of random 

variables, such that lim infn→∞ E(ξn) < ∞, then there exists a subsequence (ηn)∞
n=1 of 
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(ξn)∞
n=1, and an integrable random variable η, such that for any subsequence (η̃n)∞

n=1 of 
(ηn)∞

n=1, we have that

P

(
lim

n→∞
η̃1 + η̃2 + · · · + η̃n

n
= η

)
= 1.

Loosely, Komlós’ result may be thought of as the claim that every sequence of in-
tegrable random variables contains a subsequence which behaves as a collection of 
independent random variables, in that it satisfies a kind of strong law of large num-
bers. However this elides the strength of the choice of subsequence. Consider that as we 
may choose arbitrary subsequences of (ηn)∞

n=1, we may choose two disjoint subsequences, 
and yet their Cesàro averages will still converge almost everywhere to the same limit.

Trautner [86] remarks that although the results of Révész and Komlós are stated in 
the language of probability theory, they are actually analytic claims. In particular, these 
results all state that, in essence, various Lp-spaces are compact with regard to Cesàro 
means, and almost everywhere convergence. Rephrased as such, what was an interesting 
statement about probability theory becomes a useful feature of the geometry of function 
spaces.

Even without this general motivation, the probabilistic interpretation is a strong im-
petus for the study of these results. The view of the Komlós theorem as an analogue of 
the strong law of large numbers has been sufficient to motivate a substantial body of 
research in the commutative setting, such as the generalisations of Aldous [1], Balder 
[5–7], Balder and Hess [8], Berkes [10,11], Cassese [17], and Chatterji [18], and the sim-
plified proofs of Guessous [35], Schwartz [78], and Trautner [86]. See also the discussion 
of subsequence principles in [76, Chapter 5].

Our interest lies not only in the study of classical probability theory and analysis, but 
in the more general study of noncommutative integration. Driven by a desire to find a 
suitable framework for the description of quantum mechanical systems, it was already 
apparent in the original works of Murray and von Neumann that von Neumann algebras 
provided what could be understood as a noncommutative analogue of integration theory. 
However, it was with the pioneering work of Irving Segal [79], driven by the study of 
representations of noncommutative groups and harmonic analysis, that it was discovered 
that von Neumann algebras recovered and generalised the theory of integration. In the 
time since, von Neumann algebras have found substantial application not only in physics, 
through quantum mechanics [14,15], quantum statistical mechanics [59], and quantum 
information theory [36], but also in harmonic analysis [57,81], ergodic theory [52], geome-
try [21], and random matrix theory [62]. There have also been substantial developments 
in quantum and noncommutative probability, including deep results on martingales, 
probabilistic inequalities, and stochastic processes (see, for example, [12,23,47,45,65])

It is then natural for us to ask if more subtle results in probability such as the Komlós 
theorem can be extended to noncommutative probability, and indeed, Randrianantoan-
ina was able to develop a partial noncommutative extension of the Komlós theorem. In 
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order to make sense of the result in the noncommutative setting, almost everywhere con-
vergence is replaced by bilateral almost uniform convergence. Noncommutative notions 
of almost everywhere convergence are defined and discussed in Section 2.

Theorem 1.5 ([73, Theorems 3.1, 3.8]). Let M be a semifinite von Neumann algebra, 
with a distinguished faithful normal semifinite trace τ . Fix 1 ≤ p < ∞. If p = 1, we 
additionally require that M is hyperfinite.

Let (fn)∞
n=1 ⊆ Lp(M, τ) satisfy supn≥1 ‖f‖p < ∞. There exists a subsequence 

(gn)∞
n=1 ⊆ (fn)∞

n=1, and an operator f ∈ Lp(M, τ), such that for every subsequence 
(hn)∞

n=1 ⊆ (gn)∞
n=1, the sequence of Cesáro means,

(
1
n

n∑
k=1

hk

)∞

n=1

,

converges to f bilaterally almost uniformly.

Randrianantoanina concludes his result by asking if the hyperfiniteness condition can 
be removed for L1-bounded sequences [73, Problem 3.15]. This is an important question 
not only because it is often natural and necessary to work with von Neumann algebras 
which are not hyperfinite, but because the techniques Randrianantoanina used closely 
parallel those in classical analysis. A resolution of this problem then requires substantial 
new methods for the study of almost everywhere convergence. Here we give an affirmative 
answer, proving the Komlós theorem for arbitrary finite von Neumann algebras. We also 
extend the Révész theorem to the noncommutative setting, which had not been studied 
before.

The key to our resolution of Randrianantoanina’s problem is an appeal to ultrapower 
techniques. In particular, the Révész and Komlós theorems are traditionally proved by 
passing to simple functions, each contained in a finite dimensional subspace. This is 
most clear in Randrianantoanina’s proof [73], wherein the hyperfinite structure of the 
algebra induces a natural martingale filtration. At each stage of the filtration, the finite 
dimensional spaces allow one to pass from weak to strong convergence. Then, having 
strong convergence, one may apply the Doob martingale convergence theorem to pass to 
bilateral almost uniform convergence.

Rather than appealing to an internal structure, such as given by hyperfiniteness, to 
determine bilateral almost uniform convergence, we appeal to an external structure, given 
to us by iterated ultrapowers. Namely, we consider the countably iterated ultrapower 
of the noncommutative L2-space, and then show that this forms a filtration of some 
large external von Neumann algebra. We then show in Section 4 that the maximal 
inequalities, given here by the Doob martingale convergence theorem, induces bilateral 
almost uniform convergence in the original algebra. This completes the missing part of 
the puzzle, allowing the result to be extended to arbitrary finite von Neumann algebras.
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While ultrapower techniques stem from model theory, their use in Banach space theory 
is extensive, yielding many difficult results. The interested reader should consult the 
papers of Heinrich [39], and Sims [80], as well as the book of Diestel, Jarchow, and 
Tonge [26]. Moreover, while (finitely) iterated ultrapowers have been studied in the 
Banach space setting, they have been very poorly researched for von Neumann algebras 
and noncommutative integration.

After recalling the basic details of noncommutative integration, noncommutative mar-
tingales, and bilateral almost uniform convergence in Section 2, we develop the theory of 
iterated ultrapowers of von Neumann algebras, and their martingale structure, in Sec-
tion 3. The key difficulty of the paper lies in the proof of Theorem 4.2, which requires 
a careful diagonalisation argument, and is proved in Section 4. Coarsely, we may under-
stand Theorem 4.2 as a very specialised diagonalisation result. If a family of bounded 
sequences can be made to correspond to a martingale difference sequence, associated to 
the iterated ultrapower of a finite von Neumann algebra, then we may find a sequence of 
terms derived from the family of sequences, such that weighted series over these terms 
converge bilaterally almost uniformly, and so that the series also converge as such for 
series over any further subsequence.

Having shown this result, the proofs of the noncommutative Révész and Komlós theo-
rems are not too far removed from the classical proofs, with the key changes being those 
necessary modifications for noncommutative integration, and some setup to work with 
the iterated ultrapower construction. In Section 5 we prove the noncommutative Révész 
theorem, and in Section 6 we prove the noncommutative Komlós theorem.

2. Background

In this section we review the necessary aspects of the theory of noncommutative in-
tegration. In particular, we discuss noncommutative Lp-spaces, and the various modes 
of convergence which we will study throughout the paper, and we will prove some sup-
plemental lemmas. Moreover, we will review the necessary aspects of maximal functions 
in the noncommutative setting, as viewed through vector-valued noncommutative Lp-
spaces, and their application through the noncommutative Doob maximal inequality.

For any necessary background on von Neumann algebras, see the books of Takesaki 
[83], and Strătilă and Zsidó [82], and for further information about noncommutative 
integration, see the survey of Pisier and Xu [72].

2.1. Noncommutative measure and integration

Let M be a semifinite von Neumann algebra, acting upon some fixed Hilbert space 
H, and let τ be a faithful normal semifinite trace over M.

A closed, densely defined operator x : Dom(x) → H, with Dom(x) ⊆ H, is said to be 
affiliated to M, if x commutes with every unitary operator in the commutant M′ of M.
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An operator x, affiliated to M, is said to be τ -measurable if for every ε > 0, there 
exists a projection p ∈ M, such that τ(p) ≤ ε, and (1 − p)H ⊆ Dom(x). Let S(M, τ)
denote the space of all τ -measurable operators.

For any 0 < p < ∞, the noncommutative Lp-space over M is defined by the set

Lp(M, τ) = {x ∈ S(M, τ) : τ (|x|p) < ∞} ,

and is endowed with the norm

‖x‖p = τ (|x|p)
1/p

,

for each x ∈ Lp(M, τ), where |x| = (x∗x)1/2 is the modulus of x.
For p = ∞, let L∞(M, τ) = M, and is endowed with the norm ‖·‖∞ = ‖·‖M.
For any fixed 1 ≤ p ≤ ∞, we will call a sequence (xn)∞

n=1 ⊆ Lp(M, τ) Lp-bounded if 
supn≥1 ‖xn‖p < ∞.

Much as for classical function space theory, we may define a weak and a strong topol-
ogy upon Lp(M, τ), with 1 ≤ p < ∞. The strong topology is simply the topology induced 
by the Lp-norm, and the weak topology is the σ(Lp, Lq)-topology, where q is the conjugate 
exponent of p. As in the classical setting, L2(M, τ) is weakly sequentially compact.

For any τ -measurable operator x ∈ S(M, τ), the decreasing rearrangement of x is the 
function μ(t; x), defined by

μ(t; x) = inf
{

s ≥ 0 : τ
(
χ(s,∞)(|x|) ≤ t

)}
,

for all real numbers t > 0, where χ(s,∞)(|x|) is the characteristic function of |x|, over the 
interval (s, ∞), as given by the functional calculus.

2.2. The measure topology

In order to bridge convergence in the Lp-norm, and convergence “almost everywhere”, 
we may appeal to a natural topology on the space of measurable operators. The measure 
topology on S(M, τ) is the linear Hausdorff topology, generated by the fundamental 
system {V (ε, δ) : ε, δ > 0} of neighbourhoods around zero, where for any ε, δ > 0,

V (ε, δ) = {x ∈ S(M, τ) : there exists a projection p ∈ M,

such that ‖xp‖∞ ≤ ε and τ(1 − p) ≤ δ}.

The measure topology is used throughout in order to pass from convergence in the 
Lp-norm to bilateral almost uniform convergence.

Lemma 2.1 ([29, Theorem 3.7]). For any 0 < p < ∞, let (xn)∞
n=1 and x lie in Lp(M, τ). 

The following are equivalent.
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i. The sequence (xn)∞
n=1 converges strongly to x, that is

lim
n→∞

‖x − xn‖p = 0.

ii. The sequence (xn)∞
n=1 converges to x in the measure topology, and

lim
n→∞

‖xn‖p = ‖xn‖p .

The measure topology also allows us to recover noncommutative analogues of impor-
tant results in measure theory.

Lemma 2.2 ([29, Theorem 3.5]). Let (xn)∞
n=1 be a sequence of positive τ -measurable 

operators, which are convergent in the measure topology to some x ∈ S(M, τ).

i. (Fatou’s Lemma)

τ(x) ≤ lim inf
n→∞

τ(xn).

ii. (Monotone Convergence Theorem) If xn ≤ x for each n ≥ 1, or if μ(t; xn) ≤ μ(t; x)
for each n ≥ 1 and t > 0, then

τ(x) = lim
n→∞

τ(xn).

Lemma 2.3 (Noncommutative Borel–Cantelli Lemma [77]). Let (pn)∞
n=1 be any se-

quence of projections in M. If 
∑∞

n=1 τ(p) < ∞, then τ(
∧∞

n=1
∨∞

k=n pk) = 0, and 
limn→∞ τ(

∨∞
k=n pk) = 0.

2.3. Almost uniform convergence

It is not immediate how one should define almost everywhere convergence in the non-
commutative setting, as we cannot speak of points on which a function acts. While many 
noncommutative analogues of almost everywhere convergence have been studied, origi-
nating with Segal’s investigation of “nearly everywhere” convergence [79, Section 2.6], we 
will study almost uniform convergence, which arises naturally through Egorov’s theorem.

Theorem 2.4 ([38, §21, Theorem A]). For any measure space (X, μ), let E be a mea-
surable set of finite measure. If (fn)∞

n=1 is a set of measurable functions over E, which 
converge almost everywhere to a measurable function f , then for every ε > 0, there exists 
a measurable subset F ⊆ E, such that μ(F ) < ε, and (fn)∞

n=1 converges uniformly to f
over E \ F .

This leads to a description of almost everywhere convergence without reference to 
individual points.
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Definition 2.5. A sequence (xn)∞
n=1 of τ -measurable operators is said to converge almost 

uniformly to x ∈ S(M, τ) if for every ε > 0, there exists a projection pε ∈ M, such that 
τ(1 − pε) < ε, and limn→∞ ‖(x − xn)pε‖∞ = 0.

The sequence (xn)∞
n=1 is said to converge bilaterally almost uniformly to x if for 

every ε > 0, there exists a projection pε ∈ M, such that τ(1 − pε) < ε, and 
limn→∞ ‖pε(x − xn)pε‖∞ = 0.

It is clear that every almost uniformly convergent sequence is necessarily bilaterally 
almost uniformly convergent, however there are bilaterally almost uniformly convergent 
sequences which are not almost uniformly convergent (see, for example, [25, Corollary 6.4, 
Example 6.5]).

In the commutative setting, almost uniform convergence recovers almost everywhere 
convergence, even for spaces with infinite measure.

Theorem 2.6 ([38, §21, Theorem B]). If (fn)∞
n=1 is a sequence of measurable functions 

which converge to f almost uniformly, then (fn)∞
n=1 converges to f almost everywhere.

We note that over a measure space of infinite measure, almost uniform convergence is 
stronger than almost everywhere convergence. For example, consider the counting mea-
sure over the positive integers, and the sequence of characteristic functions (χ[1,n])∞

n=1. 
The sequence converges everywhere to the identity function 1 = χ[1,∞), however it does 
not converge almost uniformly. That is to say that on spaces of infinite measure, almost 
everywhere convergence is strictly weaker than almost uniform convergence.

Throughout, the following results concerning almost uniform convergence will be use-
ful.

As for function spaces, every sequence convergent in the measure topology contains a 
subsequence which converges almost uniformly.

Proposition 2.7 ([31, Proposition 1]). If (xn)∞
n=1 ⊆ S(M, τ) converges to zero with re-

spect to the measure topology, then there exists a subsequence (yn)∞
n=1 ⊆ (xn)∞

n=1, which 
converges almost uniformly to zero.

Almost uniform convergence is also well behaved with regard to addition of sequences, 
and Cesàro averages.

Lemma 2.8 ([77]). For any two sequences (xn)∞
n=1, (yn)∞

n=1 ⊆ S(M, τ), such that (xn)∞
n=1

converges (bilaterally) almost uniformly to x ∈ S(M, τ), and (yn)∞
n=1 converges (bilater-

ally) almost uniformly to y ∈ S(M, τ), we have that (xn +yn)∞
n=1 converges (bilaterally) 

almost uniformly to x + y.

Lemma 2.9 ([77]). Let (xn)∞
n=1 ⊆ S(M, τ) be any sequence of measurable operators which 

converges (bilaterally) almost uniformly to zero. For any 1 ≤ p < ∞, the sequence
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(
1

np

n∑
k=1

xk

)∞

k=1

also converges (bilaterally) almost uniformly to zero.

It is interesting to note that even in the classical setting, convergence in measure is 
not well behaved with respect to the Cesàro averages. A sequence which is convergent 
in measure may have Cesàro averages which diverge in measure, and a sequence which 
vanishes in measure may have Cesàro averages which converge in measure to the identity. 
For details of these constructions, see Bikchentaev and Sabirova [13, Section 3.4].

The following lemma is a mild extension of [73, Proposition 2.3].

Lemma 2.10 ([77]). Let 1 ≤ p < ∞, and let (xn)∞
n=1 ⊆ Lp(M, τ).

i. If 
∑∞

n=1 ‖xn‖p < ∞, then the series 
∑∞

n=1 xn converges bilaterally almost uniformly.
ii. If p = 2, and 

∑∞
n=1 ‖xn‖2

2 < ∞, then the sequence (xn)∞
n=1 converges almost uniformly 

to zero.

Our final lemma regarding almost uniform convergence is a minor extension Kroneck-
er’s lemma, showing that it holds much as expected, with regard to both convergence in 
the Lp-norm, and almost uniform convergence.

Lemma 2.11 (Kronecker’s Lemma for Lp-Operators [77]). Fix 1 ≤ p ≤ ∞. For any 
sequence (xn)∞

n=1 ⊆ Lp(M, τ), such that 
∑∞

n=1 xn ∈ Lp(M, τ), and any sequence 
(bn)∞

n=1 ⊆ C, such that (|bn|)∞
n=1 is an increasing sequence, with limn→∞ bn = ∞, we 

have that

lim
n→∞

1
bn

n∑
k=1

bkxk = 0,

where the limit is taken in the Lp-topology.
If 
∑∞

n=1 xn is converges (bilaterally) almost uniformly, then the sequence

(
1
bn

n∑
k=1

bkxk

)∞

n=1

converges (bilaterally) almost uniformly to zero.

2.4. Integration for diffuse von Neumann algebras

A von Neumann algebra is said to be diffuse, or (purely) non-atomic, if it contains no 
minimal projections. While many results in noncommutative integration are stated for 
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diffuse von Neumann algebras, they may be extended to arbitrary finite algebras through 
a careful choice of embedding.

In particular, we appeal to the following result, which is key to simplifying our proof 
of the Komlós theorem. The general theory of symmetric spaces is unnecessary for our 
work here, however the interested reader may consult Krĕın, Petun̄ın, and Semënov 
[56, Section II.4] for the classical theory, and Dodds, Dodds, and de Pagter for the 
noncommutative theory, and the definition of E(M, τ) [27].

Proposition 2.12 ([28, Proposition 2.7]). Let E be a separable symmetric function space, 
which satisfies the Fatou property, and acts upon (0, ∞). Let M be a diffuse von Neumann 
algebra, with a distinguished faithful normal semifinite trace τ .

For any sequence (xn)∞
n=1 ⊆ E(M, τ), of self-adjoint operators, such that

supn≥1 ‖xn‖E(M,τ) < ∞, there exists a subsequence (x′
n)∞

n=1 ⊆ (xn)∞
n=1, which satis-

fies the following properties.

i. The sequence (x′
n)∞

n=1 admits a splitting

x′
n = yn + zn + dn,

for each n ≥ 1, such that (yn)∞
n=1, (zn)∞

n=1, and (dn)∞
n=1 are bounded sequences in 

E(M, τ).
ii. The sequence (yn)∞

n=1 consists only of equimeasurable operators, which is to say that 
for every n ≥ 1, μ(t; yn) = μ(t; y1).

iii. The sequence (zn)∞
n=1 converges to zero in the measure topology.

iv. The sequence (dn)∞
n=1 converges to zero in the norm of E(M, τ).

If, additionally, M is a finite von Neumann algebra, and the sequence (xn)∞
n=1 is weakly 

null, in the Banach space sense, then the sequences (yn)∞
n=1 and (zn)∞

n=1 may also be 
chosen as to be weakly null.

It is sufficient for us to find a subsequence which admits a splitting into equimeasurable 
operators, and a sequence which converges in measure to zero.

Consider, for an arbitrary von Neumann algebra M, the tensor product N =
M⊗L∞([0, 1]; μ), where μ is the Lebesgue measure. We may embed M into N with 
the map x 
→ x ⊗ 1, where 1 is the identity of L∞([0, 1]; μ).

Then let τ be a distinguished faithful normal tracial state on M. If τ̃ = τ ⊗
∫

(·)dμ, 
then μ(t; x) = μ(t; x ⊗ 1), for any τ -measurable operator x, where the rearrangement on 
the right is relative to τ̃ .

As the decreasing rearrangements are the same, any equimeasurable operators in M ⊗1
will also be equimeasurable in M, and the measure topology on M ⊗1 is homeomorphic 
to that on M.

The following lemma is then clear from Proposition 2.12.
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Lemma 2.13. Let M be an arbitrary finite von Neumann algebra, with a distinguished 
faithful normal tracial state τ . If (xn)∞

n=1 ⊆ L1(M, τ) is an L1-bounded sequence of 
self-adjoint operators, then there exists a subsequence (x′

n)∞
n=1 ⊆ (xn)∞

n=1, satisfying the 
following properties.

i. For each n ≥ 1, there exists a splitting

x′
n = yn + zn,

such that the sequences (yn)∞
n=1 and (zn)∞

n=1 are L1-bounded.
ii. The sequence (yn)∞

n=1 consists only of equimeasurable operators, which is to say that 
for every n ≥ 1, μ(t; yn) = μ(t; y1).

iii. The sequence (zn)∞
n=1 converges to zero in the measure

Moreover, if (xn)∞
n=1 is weakly null, then the sequences (yn)∞

n=1 and (zn)∞
n=1 may also 

be chosen as to be weakly null.

For further details on the embedding of von Neumann algebras into a diffuse algebra, 
see [29,19,28].

2.5. Noncommutative vector-valued Lp-spaces and maximal inequalities

One of the substantial difficulties in the study of noncommutative analogues of almost 
everywhere convergence is that there is no notion of a maximal operator. Pisier [70]
reconciled this difficulty by studying vector-valued noncommutative Lp-spaces associated 
to hyperfinite von Neumann algebras. This construction was later extended to arbitrary 
von Neumann algebras [47], and serves as a powerful substitute for the lack of maximal 
operators. Indeed, in the commutative setting, a sequence of functions lies in the vector-
valued Lp-space if and only if the maximal function lies in the corresponding Lp-space 
[24]. Here we will review the necessary aspects of the theory of noncommutative vector-
valued Lp-spaces.

Let M be a semifinite von Neumann algebra, with distinguished faithful normal semifi-
nite trace τ . For 1 ≤ p ≤ ∞, the vector-valued noncommutative Lp-space Lp(M; 	∞) is 
the space of all sequences (xn)n∈N ⊆ Lp(M), which admit a factorisation of the follow-
ing form. For some a, b ∈ L2p(M), and a sequence (yn)n∈N in M, xn = aynb, for each 
n ∈ N. The norm of a sequence (xn)n∈N ∈ Lp(M; 	∞) is defined by

‖(xn)n∈N‖Lp(M;�∞) = inf
{

‖a‖2p sup
n∈N

‖yn‖∞ ‖b‖2p

}
,

where the infimum runs over all suitable factorisations of (xn)n∈N . The space Lp(M; 	∞)
is then a Banach space under this norm, for all 1 ≤ p ≤ ∞.
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We note that if (xn)n∈N is a sequence of positive operators, then (xn)n∈N ∈
Lp(M; 	∞) if and only if there exists a positive operator a ∈ Lp(M), and a sequence 
of positive contractions (yn)n∈N ∈ M, such that xn = a1/2yna1/2, for each n ∈ N [52, 
p. 392]. In particular, given such a factorisation, xn ≤ a for all n ∈ N, and

‖(xn)n∈N‖Lp(M;�∞) ≤ inf
{

‖a‖p

}
,

where the infimum is taken over all positive operators a ∈ Lp(M), such that xn ≤ a for 
all n ∈ N.

Note that we may also consider finite sequence variants of such vector-valued Lp-
spaces. For any fixed integer m ≥ 1, and any 1 ≤ p ≤ ∞, let Lp(M; 	∞

m ) denote the 
space of all sequences (xn)m

n=1 ⊆ Lp(M), which admit a factorisation of the following 
form. For some a, b ∈ L2p(M), and a sequence (yn)m

n=1 in M, xn = aynb, for each 
1 ≤ n ≤ m. The norm of a sequence (xn)n∈N ∈ Lp(M; 	∞

m ) is defined by

‖(xn)m
n=1‖Lp(M;�∞

m ) = inf
{

‖a‖2p sup
1≤n≤m

‖yn‖∞ ‖b‖2p

}
,

where the infimum runs over all suitable factorisations of (xn)m
n=1. The space Lp(M; 	∞

m )
is similarly a Banach space under this norm.

In order to pass from a maximal bound, such as knowing that (xn)n∈N ∈ Lp(M; 	∞)
to bilateral almost everywhere convergence, we will relate the sequence of operators to 
those support projections for which every operator in the sequence attains a minimal 
height. To do so, we modify the “column tail probability”

ProbC

(
sup
n∈N

‖xn‖ > t

)
= inf

{
s > 0 : e ∈ Proj(M); τ(1 − e) < s, sup

n∈N
‖xne‖∞ ≤ t

}
,

introduced in the thesis of Konwerska [55, Definition 3.15], which was also further studied 
in by Zeng [89]. We may then find a Chebyshev type inequality, which relates the norm of 
the maximal Lp-space and projections on which the sequence of operators are uniformly 
bounded.

Definition 2.14. Given a sequence of self-adjoint operators (xn)n∈N ⊆ S(M, τ), the max-
imal rearrangement function

μ
(
t; (xn)n∈N

)
= inf

{
s > 0 : e ∈ Proj(M), τ(1 − e) < s, sup

n∈N
‖exne‖∞ ≤ t

}
.

We may now extend [55, Lemma 3.16] to a give bilateral tail variant of the Chebyshev 
inequality.

Lemma 2.15. For any fixed 1 ≤ p < ∞, if (xn)n∈N ∈ Lp(M; 	∞) is a sequence of self-
adjoint operators, then
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μ
(
t; (xn)n∈N

)
≤ t−2p

∥∥(xn)n∈N

∥∥p

Lp(M;�∞) ,

for all t > 0.

Proof. By characterisation of the space Lp(M; 	∞), there exists a sequence of pos-
itive contractions (yn)n∈N ⊆ M, and a positive operator a ∈ Lp(M), such that 
xn = a

1/2yna
1/2 for each n ∈ N [52, p. 392]. As such, let e = χ[0,t](a1/2). We then 

have that

‖exne‖∞ =
∥∥∥χ[0,t](a

1/2)xnχ[0,t](a
1/2)
∥∥∥

∞

=
∥∥∥χ[0,t](a

1/2)a1/2yna
1/2χ[0,t](a

1/2)
∥∥∥

∞

≤ t,

for each n ∈ N. To see that e lies in the set of projections which the infimum of the 
maximal rearrangement runs over, let us find a suitable estimate,

τ(1 − e) = τ
(

χ(t,∞)

(
a

1/2
))

= τ

(
χ(t,∞)

(
a

1/2
)2p
)

≤ τ

((
χ(t,∞)

(
a

1/2
) a1/2

t

)2p
)

≤ t−2p ‖a‖p
p .

This inequality holds for all a for which the factorisation a1/2yna1/2 = xn, and so if we 
take the infimum, the result follows from the characterisation of vector-valued noncom-
mutative Lp-spaces. �
Remark 2.16. If Lemma 2.15 is an analogue of the Chebyschev inequality, then it is natu-
ral to ask about maximal analogues of weak Lp-spaces (see, for example, [9]). If one views 
the maximal rearrangement function as an extension of the decreasing rearrangement to 
sequences, then we see that the space Λp,∞(M; 	∞) studied in [43,44,46] may be under-
stood as the noncommutative weak Lp-space given when one substitutes the decreasing 
rearrangement by maximal rearrangement. Similarly, the “weak column quasi-norm”, 
defined in [44, p. 1481], is given by substituting the decreasing rearrangement by ProbC .

2.6. Noncommutative martingales

Finally, let us briefly recall the necessary details of noncommutative martingale theory, 
and present a suitable restatement of the noncommutative Doob maximal inequality. The 
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interested reader should consult any of [22,71,47] for further details on noncommutative 
martingales.

Let M be a finite von Neumann algebra, with a distinguished faithful normal tracial 
state τ . Let (Mn)n∈N be an increasing sequence of von Neumann subalgebras of M, 
such that 

⋃
n∈N Mn is w∗-dense in M. We will call the sequence (Mn)n∈N a filtration

of M.
Given a von Neumann subalgebra N ⊆ M, a conditional expectation is a map E :

M → N , which is a positive contractive projection. Say that the conditional expectation 
E is normal if the adjoint map E∗ satisfies E∗(M∗) ⊆ N∗. For any normal conditional 
expectation E , there exists a map E∗ : M∗ → N∗, whose adjoint is E , and so we may 
assume without loss of generality that E extends to L1(M).

We will always assume that given a filtration (Mn)n∈N of N , there exists a normal 
conditional expectation En : M → Mn, for each n ∈ N.

A noncommutative martingale, with respect to the filtration (Mn)n∈N is a sequence 
(xn)n∈N in L1(N ), such that for every n ∈ N, En(xn+1) = xn. As for a classical mar-
tingale, we may equivalently consider a noncommutative martingale difference sequence
(dxn)∞

n=1, defined by dxn+1 = xn+1 − xn, for all n ≥ 1, and dx1 = x1. It is immediate 
that a sequence (dxn)∞

n=1 in L1(M) forms a martingale difference sequence if and only 
if En(dxn+1) = 0, for every n ≥ 1.

A noncommutative martingale is said to be L1-bounded if supn∈N ‖xn‖1 < ∞, in 
which case there exists an operator x ∈ L1(M), such that xn = En(x), for each n ∈ N. 
Similarly, a noncommutative martingale is said to be L2-bounded if supn∈N ‖xn‖2 <

∞. It is expedient for us to appeal to Pisier and Xu’s characterisation of L2-bounded 
martingales.

Theorem 2.17 ([71, Theorem 2.1]). A noncommutative martingale sequence (xn)n∈N in 
L2(M) is L2-bounded if and only if (xn)n∈N ∈ H2(M).

Here, H2(M) is the noncommutative Hardy space, for p = 2, with the norm given by

‖(x)n∈N‖2 = max
{

‖(dxn)n∈N‖L2(M;�2
C) , ‖(dxn)n∈N‖L2(M;�2

R)

}
.

The spaces L2(M; 	2
C) and L2(M; 	2

R) are column and row vector-valued noncommuta-
tive L2-spaces, with these further norms given by

‖(dxn)n∈N‖L2(M;�2
C) =

∥∥∥∥∥∥
(∑

n∈N

|dxn|2
)1/2
∥∥∥∥∥∥

2

,

and

‖(dxn)n∈N‖L2(M;�2
R) =

∥∥∥∥∥∥
(∑

n∈N

|dx∗
n|2
)1/2
∥∥∥∥∥∥ .
2
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Key to our extension of the Révész and Komlós theorems to finite von Neumann 
algebras is the noncommutative Doob maximal inequality, which we present here in 
terms of vector-valued Lp-spaces.

Theorem 2.18 ([47, Theorem 0.2]). Let M be a finite von Neumann algebra, with a 
distinguished faithful normal tracial state τ . Assume that (Mn)n∈N is an increasing 
filtration of M, with associated normal conditional expectations En : M → Mn, for each 
n ∈ N.

For any fixed 1 < p ≤ ∞, and any operator x ∈ Lp(M), there exist operators a, b ∈
L2p(M), and a sequence of contractions (yn)n∈N ⊆ M, such that En(x) = aynb, for each 
n ∈ N, and ‖a‖2p ‖b‖2p ≤ Kp ‖x‖p, for some constant Kp > 0.

In particular, the martingale (En(x))n∈N is contained in Lp(M; 	∞), and

‖(En(x))‖Lp(M;�∞) ≤ Kp ‖x‖p .

3. Iterated ultrapowers of von Neumann algebras

The key to our proof of the noncommutative Komlós and Révész theorems lies in find-
ing a substitute for the natural filtration induced by hyperfiniteness. While martingale 
structures are a convenient tool to prove almost uniform convergence (see, for example, 
[30]) such convergence is intrinsic to the von Neumann algebra. However, without an 
internal structure (e.g. the hyperfinite filtration) to reveal this behaviour, we look for a 
suitable external structure. This structure is provided by the theory of iterated ultra-
powers, and studying martingales in the algebra given by the limit of these iterations. 
In this section we will review the construction of ultrapowers of finite von Neumann 
algebras, and the structure of the associated Lp-spaces. In doing so, we will also discuss 
the embeddings of noncommutative Lp-spaces into their ultrapowers, and how one may 
return to an algebra from its ultrapower. We will also discuss the theory of iterated 
ultrapowers of von Neumann algebras, and the corresponding martingale structure.

3.1. Ultrapowers in noncommutative integration

Let us start with the basic theory of ultrapowers of Banach spaces, as detailed in 
the paper of Heinrich [39], the book [26], and then we will discuss ultrapowers for von 
Neumann algebras, and noncommutative Lp-spaces.

An ultrafilter U over a set X is a collection of subsets of X, such that the following 
conditions are satisfied.

i. X ∈ U , and ∅ /∈ U .
ii. If E, F ∈ U , then E ∩ F ∈ U .

iii. If E ∈ U , and E ⊆ F , then F ∈ U .
iv. For any set E ⊆ X, either E ∈ U , or X \ E ∈ U .
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An ultrafilter U is said to be non-principal, or free, if there does not exist a set A ⊆ X

such that

U = {E ⊆ X : A ⊆ E} .

For our purposes, ultrafilters are useful because they allow us to extend the notion of 
limits to non-convergent sequences.

Let U denote an ultrafilter over the index set I. A family (xi)i∈I ⊆ X is said to 
converge along U to x ∈ X if for any open neighbourhood O of X, the set

{i ∈ I : xi ∈ O}

is an element of U . Denote this point by

x = lim
i,U

xi.

The limit is unique, if the topology is Hausdorff.
The limit along an ultrafilter may be defined as such with respect to any topology 

on X.
If X is a Banach space, a family (xi)i∈I ⊆ X is said to converge along U to x ∈ X, 

if for every ε > 0, the set

{i ∈ I : ‖xi − x‖X < ε}

is an element of U . Again, this is denoted by

x = lim
i,U

xi.

For a given Banach space X, and an index set I, let

	∞(I; X) =
{

(xi)i∈I : xi ∈ X for all i ∈ I, and sup
i∈I

‖xi‖X < ∞
}

.

Under the norm

‖(xi)i∈I‖ = sup
i∈I

‖xi‖X ,

	∞(I; X) forms the Banach space of all bounded X-valued sequences over I.
Given a non-principal ultrafilter U over N, and a Banach space X, the (Banach space) 

ultrapower is defined to be the quotient space

Xω = 	∞(N; X)/NU ,
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where

NU =
{

(xn)n∈N ∈ 	∞(N; X) : lim
n,U

‖xn‖X = 0
}

.

We may also denote Xω by Xω
U when we wish to make the choice of ultrafilter explicit.

Note that the quotient norm on Xω may be evaluated simply as the limit over the 
ultrafilter [39],

‖(xi)•
i∈I‖

Xω = lim
i,U

‖xi‖X .

It is tempting to define the ultrapower of a von Neumann algebra in a similar manner, 
and indeed one may very successfully do so following the Groh–Raynaud construction 
[34,74]. However, there are substantial costs associated to this construction, in that the 
ultrapower of a semifinite and σ-finite von Neumann algebra need not again be semifinite, 
nor σ-finite [2]. Instead, we will study the Ocneanu construction [64], which extends the 
prior constructions of McDuff [61] and Vesterstrøm [87]. For complete proofs of the 
properties of the Ocneanu construction, see [64,2,37].

Let U be a non-principal ultrafilter over some index set I, and let M be a σ-finite 
von Neumann algebra, with a distinguished faithful normal semifinite trace τ .

Consider the two-sided closed ideal

IU =
{

(xi)i∈I : lim
i,U

τ(x∗
i xi) = 0

}
,

contained in 	∞(I; M). The quotient space

Mω = Mω
U = 	∞(I; M)/IU

is not only a C∗-algebra, but also a von Neumann algebra. Moreover, if M is finite, then 
so too is Mω. Let

π : 	∞(I; M) → Mω (3.1)

denote the quotient map, defined for each sequence (xn)n∈N ∈ 	∞(I; M) by

π
(
(xi)i∈I

)
= (xi)•

i∈I ,

where (xi)•
i∈I denotes the equivalence class of (xi)i∈I in Mω.

The algebra Mω admits a faithful normal tracial state,

τU (x̃) = lim
i,U

τ(xi),

where x̃ = (xi)•
i∈I .
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Note that we never consider the Banach space ultraproduct of M, and so the notation 
Mω is unambiguous for our purposes.

Before we may consider the iterated ultraproduct construction, we must find what 
Hilbert space Mω acts upon. Assume that a von Neumann algebra acts upon the Hilbert 
space H. Following Raynaud [74, Section 1], let Hω denote the ultrapower of H. There 
exists a unital isometry

j : B(H)ω ↪→ B(Hω),

defined by the map

(j(T̃ ))(x̃) = (Ti(xi))•
i∈I ,

where T̃ = (Ti)•
i∈I ∈ B(H)ω, and x̃ = (xi)•

i∈I ∈ Hω. Note that Hω is indeed a Hilbert 
space, as it may easily be verified that it satisfies the parallelogram identity. This in-
clusion will be necessary for us to define the iterated ultrapower of a von Neumann 
algebra.

Let us now return to noncommutative Lp-spaces. Given that Lp(Mω) �= Lp(M)ω, 
how should we understand the relationship between the McDuff ultrapower, and the 
ultrapowers of noncommutative Lp-spaces? To start, we do have the following inclusion,

Lp(Mω, τU ) ↪→ Lp(M, τ)ω,

and more precisely, the noncommutative Lp-space associated to the McDuff ultrapower 
is a corner of the ultrapower of the Lp-space associated to original algebra. We are then 
able to find an explicit condition for when an element of Lp(M, τ)ω lies in Lp(Mω, τU ), 
following the technique of [37].

For 1 ≤ p < ∞, let Y p denote the closure of 	∞(I; M) in 	∞(I; Lp(M)). By [37, 
Lemma 2.13], the quotient map π, defined by (3.1), admits a unique bounded extension, 
π̃ : Y p → Lp(Mω, τU ), such that for any (xi)i∈I ∈ Y p,

‖π̃ ((xi)i∈I)‖Lp(Mω,τU ) = lim
i,U

‖xn‖Lp(M,τ) .

Let ρ : 	∞(Lp(M, τ)) → Lp(M, τ)ω denote the quotient map given by the ultrapower 
construction. As noted following [37, Lemma 2.13], there exists a unique isometric em-
bedding ι : Lp(Mω) → Lp(M)ω, such that the following diagram commutes,

Lp(Mω)

Y p Lp(M)ω

ιπ̃

ρ

.

As this embedding holds for all 1 ≤ p < ∞, we may unambiguously represent any element 
of Lp(Mω) as an equivalence class of sequences, by considering its representation ι(x) ∈
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Lp(M)ω. We will not distinguish between an element of Lp(Mω) and its equivalence 
class representation in Lp(M)ω.

We may determine if some element of Lp(M)ω is an element of Lp(Mω), using the 
following lemma.

Lemma 3.1 ([51, Lemma 18]). Let 1 ≤ p < ∞, and let x̃ = (xi)•
i∈I ∈ Lp(M, τ)ω. If 

((|xi|p)i∈I)• ∈ L1(M, τ)ω is uniformly integrable, in the sense that for all ε > 0, there 
exists K > 0 such that

τ
(
|xi|p χ(K,∞)(|xi|)

)
< ε,

for all i ∈ I, then

x̃ ∈ Lp(Mω, τU ).

Remark 3.2. Note that if a sequence (xk)k∈N is equimeasurable, then (|xk|p)k∈N is uni-
formly integrable. This is immediate from the definition of the decreasing rearrangement.

We wish to consider an increasing sequence of the form

M ⊆ Mω ⊆ (Mω)ω ⊆ ((Mω)ω)ω ⊆ · · · ,

contained in some enveloping algebra, such that we have a filtration of a finite von 
Neumann algebra. This sequence of embeddings provides the foundation of the exter-
nal structure that we require in order to prove our results. We will first consider the 
inclusions, and then we will consider the enveloping structure.

It is easy to verify that the constant mapping κ0 : M → Mω, defined by x 
→ x̃ =
(x)•

i∈I defines an isometric and injective ∗-homomorphism. In the reverse direction, we 
expect that as Mω is finite, there should be a normal conditional expectation E0 : Mω →
M.

Proposition 3.3. The mapping E0 : Mω → M, defined by

E0(x̃) = lim
i,U

xi,

where x̃ = (xi)•
i∈I ∈ Mω, and with the limit taken with respect to the weak operator 

topology on M, forms a normal conditional expectation, and extends to L1(Mω), by

E0(x̃) = w- lim
i,U

xi,

for x̃ = (xi)•
i∈I ∈ L1(Mω), where the limit is taken L1-weak topology, that is the 

σ(L1(M), M)-topology.
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For 1 < p < ∞, it follows by interpolation that the conditional expectation extends to 
Lp(Mω), and is defined by

E0(x̃) = w∗-Lp- lim
i,U

xi,

for x̃ = (xi)•
i∈I ∈ Lp(Mω), where the limit is taken in the weak∗-topology on Lp(Mω).

Proof. These results are known, but are detailed here for the reader’s convenience. We 
repeat here the details of the construction given in [49, Section 2.2], see also [3, Propo-
sition 2.4]. Consider the constant mapping κ0 : L1(M) → L1(Mω), which is trace 
preserving, and as such must be isometric. Let

E0 = (κ0)∗ : Mω → M

be the adjoint map, explicitly given by

E0(x̃) = wo- lim
i,U

xi,

for each x̃ = (xi)i∈I ∈ Mω, where the limit is taken with respect to the weak operator 
topology. Note that such a limit exists on any representative element (xi)i∈I ∈ 	∞(I; M), 
as the sequence is bounded, and is well-defined, as the equivalence class (xi)•

i∈I is defined 
to be the set of all sequences with null differences in the L2-topology.

To verify that this is indeed the conditional expectation, let us consider trace invari-
ance. For any operator y ∈ M, and any x̃ = (xn)n∈N ∈ Mω, we have that

τ(E0(x̃ · y)) = τ(E0(x̃)y = τω ((xn)n∈N · E∗
0(y)) = lim

n,U
τ(xny),

where the multiplication x̃ · y is given by the natural M-bimodule structure of Mω, 
such that x̃ · y = (xny)•

n∈N . It is then clear that this is the correct construction for the 
conditional expectation.

It is immediate that E0 is a normal conditional expectation on Mω, as it is necessarily 
contractive, trace preserving, and invariant on the embedding κ0(M), in the sense that 
E0 ◦ κ0 is the identity map on M.

We then wish to extend E0, using the density of Mω in L1(Mω), and continuity given 
by normality. We will denote the natural extension by

E0 : L1(Mω) → L1(M),

which is defined by

E0(x̃) = w-L1- lim xi,

i,U
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for all x̃ = (xi)•
i∈I ∈ L1(Mω), where the limit is taken over the ultrafilter, and with 

respect to the weak-L1 topology. Note that as L1(Mω) embeds into L1(M)ω, we may 
see that this limit is again well defined, in much the same way as for the conditional 
expectation from Mω to M.

As Lp(Mω) is constructed with respect to a tracial state, we have the inclusion 
Lp(Mω) ⊆ Lq(Mω), for any 1 ≤ p ≤ q ≤ ∞. Again, let us note that for any ele-
ment x̃ = (xn)•

n∈N ∈ Lp(Mω), and any 1 < p < ∞, every representative sequence 
(xn)n∈N is bounded in the Lp-norm. Then, we may apply [88, Theorem V.1.3], which 
states that for a norm-bounded sequence, it is sufficient for weak convergence to only 
consider functionals from a strongly dense subset of the dual. In particular, the conver-
gence holds for all functionals in L∞(Mω), the weak limit in L1(Mω) is sufficient to 
determine weak-Lp convergence. That is to say that the conditional expectation E0 then 
may be restricted from L1(Mω), and explicitly calculated by

E0(x̃) = w∗-Lp- lim
i,U

xi,

for x̃ = (xi)•
i∈I ∈ Lp(Mω), where we may now consider the weak∗-topology, as this 

coincides with the weak topology. �
Let us now consider a sequence (Un)n∈N of non-principal ultrafilters, each over the 

natural numbers N. Let Mω,1 = Mω
U1

, and let us inductively define Mω,n+1 for each 
n ≥ 1 by Mω,n+1 = (Mω,n)ω

Un
. For each von Neumann algebra Mω,n, let τn denote the 

trace given inductively by the ultrapower construction, starting with the trace τ on M.
It is clear that the constant inclusion mapping Mω,n ↪→ Mω,n+1 may be used to 

define the sequence of inclusions

M ⊆ Mω,1 ⊆ Mω,2 ⊆ · · · Mω,n ⊆ Mω,n+1 ⊆ · · · ,

however it is not apparent how we may easily express the elements of Mω,n, which are 
equivalence classes of equivalence classes of equivalence classes. To make these spaces 
easier to work with, let us consider the (tensor) products of ultrafilters.

Definition 3.4. Given ultrafilters U and V over the natural numbers, the product ultra-
filter is defined to be the set

U ⊗ V = {S ⊆ N × N : {s ∈ N : {t ∈ N : (s, t) ∈ S} ∈ U } ∈ V } .

Although not immediate, we will see that this is a natural definition for the product of 
ultrafilters. It is also important to note that if U and V are non-principal, then U ⊗ V

is also non-principal [80, Proposition 13.1]. The reader is also warned that the ordering 
of the product U ⊗ V is sometimes reversed in the literature.

We would like to prove the finite iteration theorem for ultrapowers of von Neumann 
algebras, which states that the ultrapower of an ultrapower is again an ultrapower. To 
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do so, let us first consider the iteration of limits over ultrafilters. The following lemma is 
an immediate modification of [16, Theorem 1.3], which is stated for convergence of real 
numbers, although the proof remains identical for convergence in a Banach space.

Lemma 3.5. For any two ultrafilters U and V , we have that for any sequence (xj,k)j,k∈N

in a given Banach space X, the iterated limits over U and V may be amalgamated into 
a limit over U ⊗ V , in the sense that

lim
j,U

lim
k,V

xj,k = lim
j,k,U ⊗V

xj,k,

where each limit exists if and only if the other does.

It is also clear that the amalgamation of limits also applies to convergence over ultra-
filters in a topological space. While we may replace the two limits with one limit over 
a product ultrafilter, it is not true in general that we may commute the two limits. For 
further details, see [48], which discusses a Fubini theorem for tensors in noncommutative 
Lp-spaces, and [60], which shows the failure of the interchange for sums.

Proposition 3.6 ([80, Theorem 13.2]). Let U and V be non-principal ultrafilters over N. 
For any Banach space X, there exists an isometric isomorphism

(Xω
U )ω

V
∼= Xω

V ⊗U .

3.2. Martingales and infinitely iterated ultrapowers

Having established the basic machinery of ultrapowers of von Neumann algebras and 
noncommutative Lp-spaces, let us detail the constructions which we will work with, in 
order to find our necessary external structure for the proof of our key results.

We may consider the first n iterated ultrapowers of M, Mω,1, . . . , Mω,n, as von 
Neumann subalgebras of B(Hω,n), where Hω,n is the n-th iterated ultrapower of H, the 
Hilbert space that M acts upon. Namely, given a sequence of non-principal ultrafilters, 
(Un)n∈N , we let the iterated ultrapower of H be the inductively defined Hilbert space 
Hω,n+1 = (Hω,n)ω, where the n + 1-th ultrapower is taken with respect to the ultrafilter 
Un+1. Similarly, we may inductively define the iterated von Neumann algebras, such 
that Mω,n+1 = (Mω,n)ω, again with the n + 1-th ultrapower taken with respect to the 
ultrafilter Un+1. This gives a family of inclusions, following from repeated application of 
Raynaud’s isometric embedding of ultrapowers of Hilbert spaces [74], such that

B(Hω,1) ↪→ B(Hω,2) ↪→ · · · B(Hω,n) ↪→ B(Hω,n+1) ↪→ · · · ,

which in turn gives the sequence of unital inclusions

M ↪→ Mω,1 ↪→ Mω,2 ↪→ . . . Mω,n ↪→ Mω,n+1 ↪→ · · · .
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This sequence of inclusions suggests how we may find a sensible enveloping algebra for 
the family (Mω,n)n∈N .

Let us recall the basic aspects of the theory of inductive limits of Banach spaces. For 
further details on these constructions, see [69, Section 10], and [85, Chapter XIV].

Let (En)n∈N be a sequence of Banach spaces, paired with a sequence (jn : En →
En+1)n∈N of isometric embeddings. Let X denote the space of all sequences (xn)n∈N

in the set product 
∏

n∈N En, such that for all sufficiently large n, xn+1 = jn(xn). As 
‖xn‖En

= ‖xn+1‖En+1
for all sufficiently large n, for any sequence (xn)n∈N ∈ X, the 

seminorm ‖(xn)n∈N‖X = limn∈N ‖xn‖En
is well-defined. Let X0 = {x ∈ X : ‖x‖X = 0}

denote the kernel of the seminorm. The quotient X/X0 is then a normed space, and we 
may define E∞ to be the completion of X/X0. We will call the space E∞ the (inductive) 
limit of the sequence {En, jn}n∈N . One may verify that the inductive limit of a sequence 
of Hilbert spaces satisfies the parallelogram identity, and so is again a Hilbert space.

Let hn : Hω,n → Hω,n+1 denote the constant embedding map for the ultrapower 
Hilbert spaces. The system {Hω,n, hn}n∈N defines the inductive limit Hω,∞, which 
is again a Hilbert space. Let h∞,n : Hω,n → Hω,∞ denote the induced isometric 
embeddings of each Hω,n. These embeddings extend naturally to unital embeddings 
B(Hω,n) ↪→ B(Hω,∞). As such, there exists an embedding of every space Mω,n into 
B(Hω,∞). Moreover, this embedding is compatible with the embeddings of Mω,n into 
Mω,n+1, in the sense that the following diagram commutes, for all n, k ∈ N,

Mω,n B(Hω,n)

Mω,n+k B(Hω,n+k)

B(Hω,∞)

.

This follows immediately from the construction of each of these embeddings.
Under the embedding into B(Hω,∞), we may consider the union

Mω
∪ =
⋃

n∈N

Mω,n,

and define Mω,∞ to be the w∗-closure of Mω
∪. We will call Mω,∞ the iterated ultra-

power of a von Neumann algebra, although one could in principle continue to iterate the 
ultrapower construction so far as set theory allows.

Proposition 3.7. The space Mω,∞ is a finite von Neumann algebra, with some faithful 
normal tracial state τ∞ defined on the positive cone Mω,∞

+ by

τ∞(x) = sup τn(λ)(xλ),

λ∈Λ
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where (xλ)λ∈Λ is an increasing net of positive operators in 
⋃

n∈N Mω,n, which converge 
to x in the strong operator topology, and n(λ) is the least integer such that xn(λ) ∈ Mω,n.

Proof. It is immediate that Mω,∞ is a von Neumann algebra, and it will follow that it is 
finite if we may show that τ∞ is a well-defined faithful normal tracial state, as claimed.

As Mω
∪ is dense in Mω,∞, there must exist, for any x ∈ Mω,∞, a bounded and 

increasing net in Mω
∪ which converges in the strong operator topology to x. As the trace 

is necessarily normal on bounded increasing nets, the definition is natural, and well-
defined, as the conditional expectation between any two subalgebras Mω,n and Mω,n is 
trace preserving.

The construction of τ∞ makes clear that it is tracial, normal, and faithful. Finally, it 
follows from the sequence of unital embeddings which defines Mω

∪ that the identity of 
Mω,∞ lies in every Mω,n, and as each τn is a state, so too is τ∞. �

As such, we now have a “noncommutative probability space” (Mω,∞, τ∞), and a filtra-
tion (Mω,n)n∈N . The restriction τ∞ �Mω,n recovers τn, by construction, and so for each 
n ∈ N, there exists a conditional expectation En : Mω,∞ → Mω,n [84, Theorem IX.4.2]. 
Moreover, if xn+k ∈ Mω,n+k, for any n, k ∈ N, then by uniqueness of the conditional 
expectation,

En(xn+k) = (En ◦ En+1 ◦ · · · ◦ En+k−2 ◦ En+k−1)(xn+k). (3.2)

As we do not consider the space L1(Mω,∞), we do not need to show that En is normal.
This construction forms the foundation of our proof, wherein we will show that suit-

able maximal inequalities hold, as a result of the noncommutative Doob martingale 
convergence theorem, at the level of Mω,∞.

While it will be more or less straightforward to show that the necessary bilateral 
almost uniform convergence holds in the iterated ultrapower, it is not at all clear how 
to show that this implies bilateral almost uniform convergence in the original algebra. 
This is a subtle problem, and requires a careful construction. The following result will be 
key to allowing us to drag almost everywhere convergence back to the original algebra. 
Before we prove Proposition 3.9, we will need a small technical lemma. This will allow 
us to decompose an element of Mω into a bounded sequence in M, and a fixed element 
of Lq(M) of arbitrarily small norm.

Lemma 3.8. Let ỹ = (y(j))•
j∈N ∈ Mω. For any ε > 0, and any fixed 1 < q < ∞, there 

exists a sequence (z(j))j∈N ⊆ M, and an operator σ ∈ Lq(M), such that

y(j) = z(j) + σ,

for all j ∈ N,

sup ‖z(j)‖M ≤ (1 + ε) ‖y‖Mω ,

j∈N



M. Junge et al. / Journal of Functional Analysis 280 (2021) 108782 25
and ‖σ‖q ≤ ε.

Proof. In order to find a suitable decomposition, we will use the Kaplansky density the-
orem. It is immediate that the quotient map π, given by (3.1), is a surjective contraction 
map,

π : 	∞(M) � Mω.

By duality, and the isomorphism L1(Mω)∗ ∼= Mω, we have that

L1(Mω) ↪→ L1(Mω)∗∗ ∼= (Mω)∗ ↪→ 	∞(Mω)∗.

Applying duality again, now to the induced map

s : L1(Mω) ↪→ 	∞(Mω)∗,

we find that there exists a contractive normal surjection

s∗ : 	∞(M)∗∗ � Mω.

There then exists, for any x ∈ Mω, with ‖x‖ ≤ 1, some x∗∗ ∈ 	∞(M)∗∗, such that 
‖x∗∗‖ ≤ 1, and s∗(x∗∗) = x.

By the Kaplansky density theorem (see, for example, [53, Theorem 5.3.5]), there exists 
a net (xλ)λ∈Λ ∈ 	∞(M), such that (xλ)λ∈Λ converges in the strong operator topology 
to x∗∗. In turn, (s∗(xλ))λ∈Λ converges to x in the strong operator topology. Applying 
[4, Lemma 2.5], given that M is a finite von Neumann algebra, that convergence in the 
strong operator topology implies that the net (s∗(xλ) · 1)λ∈Λ, where 1 is the identity 
operator, converges in the L1-topology. Moreover, by [50, Lemma 2.3], the net converges 
in the Lq(Mω)-topology. As this is a metrisable topology, it is sufficient to consider a 
sequence.

In particular, if we apply the quotient mapping π, we see that every element 
ỹ ∈ Mω is approximated in the strong Lq-topology by some sequence (ỹn)n∈N ⊆ Mω, 
and so there exists some ỹm ∈ Mω, such that ‖ỹ − ỹm‖q < ε. We may then set 
σ = w∗-Lq- limn∈N(y(n) − ym(n)), where ỹ = (y(n))•

n∈N , and ỹm = (ym(n))•
n∈N , for 

each m ∈ N.
By construction of the sequence (ỹm)m∈N , using the Kaplansky density theorem, we 

have that ‖ỹm‖Mω ≤ ‖ỹ‖Mω . As the norm on Mω is given by a quotient norm on 
	∞(M), there must exist a representative sequence (zn)n∈N of the equivalence class ỹm, 
such that supn∈N ‖zn‖M ≤ (1 +ε) ‖ỹm‖Mω , and in particular such that supn∈N ‖zn‖M ≤
(1 + ε) ‖ỹ‖Mω .

This gives the necessary decomposition. �
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Proposition 3.9. For any finite von Neumann algebra M, and any sequence (Un)n∈N of 
non-principal ultrafilters over N, let (Mω,n)n∈N denote the sequence of iterated ultra-
powers of M.

For any integer m ≥ 1, and any choice of indices 1 < p̃ < p < ∞, consider the 
sequence (ỹk)m

k=1 ∈ Lp(Mω,1; 	∞
m ), where ỹk = (yk(j))•

j∈N , for each k. We then have that

lim
j,U1

‖yk(j)‖Lp̃(M;�∞
m ) ≤ ‖ỹk‖Lp(Mω,1;�∞

m ) . (3.3)

Moreover, for any n ≥ 1, if there exists a sequence (ỹk)m
k=1 ∈ Lp(Mω,n; 	∞

m ), such that 
for each 1 ≤ k ≤ m, ỹk = (y(11, . . . , in))•

i1,...,in∈N , then we have that

lim
jn,Un

lim
jn−1,Un−1

· · · lim
j1,U1

‖yk(j1, j2, . . . , jn−1, jn)‖Lp̃(M;�∞
m ) ≤ ‖ỹk‖Lp(Mω,n;�∞

m ) . (3.4)

Proof. Given (ỹk)m
k=1 ∈ Lp(Mω; 	∞

m ), let α = ‖(ỹk)m
k=1‖Lp(Mω;�∞

m ). By definition of the 
space Lp(Mω; 	∞

m ), see Subsection 2.5, there exists a decomposition for any ε > 0 and 
each 1 ≤ k ≤ m, ỹk = ãz̃k b̃, such that

‖ã‖L2p(Mω) =
√

(1 + ε)α, ‖b̃‖L2p(Mω) =
√

(1 + ε)α,

and

‖z̃k‖Mω ≤ 1.

Let us fix any p̃, with 1 < p̃ < p, and then let q be such that 1/p̃ = 1/p + 1/q.
Let us apply Lemma 3.8 to each z̃k. Let (zk(n))n∈N be a representative sequence for 

z̃k, for each k. Then there exists a sequence (z′
k(n))n∈N , and an operator σk ∈ Lq(M), 

for each k, such that zk(n) = z′
k(n) + σk, and ‖σk‖q ≤ 2−kε. We also have that

‖(z′
k(n))n∈N‖�∞(M) ≤ (1 + ε) ‖z̃k‖Mω .

Combining our decompositions,

yk(n) = a(n)z′
k(n)b(n) + a(n)σkb(n), (3.5)

for each 1 ≤ k ≤ m, and n ∈ N.
Setting xk(n) = a(n)z′

k(n)b(n), for each 1 ≤ k ≤ m, and n ∈ N, we have that

lim
n,U1

‖(xk(n))m
k=1‖Lp̃(M;�∞

m ) ≤ (1 + ε)α = (1 + ε) ‖(ỹk)m
k=1‖Lp(Mω;�∞

m ) . (3.6)

Let us then find a suitable estimate on the sequence ((a(n)σkb(n))n∈N)m
k=1,

lim
n,U

‖(a(n)σkb(n))m
k=1‖

Lp̃(M;�∞
m ) ≤ lim

n,U
sup ‖a(n)‖2p ‖σk‖q ‖b(n)‖2q
1 1 1≤k≤m
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≤ lim
n,U1

m∑
k=1

‖a(n)‖2p ‖σk‖q ‖b(n)‖2p

=
m∑

k=1

lim
n,U1

‖a(n)‖2p ‖σk‖q ‖b(n)‖2p

=
m∑

k=1

‖ã‖2p ‖σk‖q

∥∥∥b̃∥∥∥
2p

≤
m∑

k=1

2−kε(1 + ε)α

≤ ε(1 + ε)α.

Taking the limit over all decompositions as in (3.5), and taking the limit ε → 0 in the 
choice of such decompositions, we have that

lim
n,U1

‖(a(n)σkb(n))m
k=1‖Lp̃(M;�∞

m ) = 0.

By the triangle inequality, and equation (3.6)

lim
n,U1

‖(yk(n))m
k=1‖Lp̃(M;�∞

m )

≤ lim
ε→0

lim
n,U1

(
‖(a(n)zk(n)b(n))m

k=1‖Lp̃(M;�∞
m ) + ‖(a(n)σkb(n))m

k=1‖
Lp̃(M;�∞

m )

)
= lim

ε→0
(1 + ε) ‖(ỹk)m

k=1‖Lp(Mω ;�∞
m ) + 0

= ‖(ỹk)m
k=1‖Lp(Mω ;�∞

m ) ,

which gives (3.3).
It is clear that the result may be iterated to give (3.4). �

4. An iterated ultrapower martingale convergence theorem

The following result is a substantial application of the Doob maximal inequality at 
the level of the iterated ultrapower. It allows us to take a weakly null sequence, such that 
some natural martingale in L2(Mω,∞) is L2-bounded, and find a subsequence such that 
the series over all further subsequences converge bilaterally almost uniformly. This is not 
difficult in classical proofs of the Komlós and Révész theorems, however the process of 
passing back down from the iterated ultrapower is substantial, and requires a careful 
diagonalisation argument. While the following result is hard, once it is shown, the proofs 
of the Komlós and Révész theorems are more or less straightforward.

With the goal of applying the Doob maximal inequality, let us consider a sequence 
of embeddings of a given element w̃ ∈ L1(Mω,1) into L1(Mω,k), such that we have a 
martingale difference sequence.
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For each k ≥ 1, define the mapping

πk : 	∞(N; M) → 	∞(Nk; M)

by πk(x)(a1, . . . , ak) = x(ak), for any indices a1, . . . , ak ∈ N, and each sequence 
(x(k))k∈N ∈ 	∞(M). It is easy to see that πk induces a well-defined mapping on Mω, 
which we will again denote by πk : Mω,1 → Mω,k.

Moreover, πk naturally extends to a mapping πk : L2(M)ω
U1

→ L2(M)ω,k
U1⊗···⊗Uk

, 
defined by

πk(x̃) = (πk(x)(a1, . . . , ak))•
a1,...,ak∈N = (x(ak))•

ak∈N ,

for every equivalence class x̃ = (x(n))•
n∈N . If x̃ ∈ L2(M)ω

U1
is such that (|xk|2)k∈N is 

uniformly integrable, then (|πk(x̃)(a1, . . . , ak)|2)a1,...,ak∈N is also uniformly integrable, 
by the definition of the trace on Mω,k

U1⊗···⊗Uk
and so πk also induces a bounded linear 

map from L2(Mω,1) to L2(Mω,k).
Given that equimeasurable sequences of operators are uniformly integrable, as per 

Remark 3.2, it follows that (|πk(x̃)(a1, . . . , ak)|2)a1,...,ak∈N is uniformly integrable, which 
allows us consider πk(x̃) as an element of L2(Mω,k), by Lemma 3.1.

Remark 4.1. If (wk)k∈N is a representative sequence of w̃ ∈ L2(M)ω
U1

, which has a null 
limit in the weak-L2 topology, with respect to the limit over the ultrafilter U1, then it is 
immediate from the definition of the conditional expectation, (3.2), that Ek−1(πk(w̃)) =
0, for every k ≥ 1, and so (πk(w̃))k∈N forms a martingale difference sequence.

The following theorem is central to the resolution of Randrianantoanina’s question. 
It shows that given a sequence of operators in a finite von Neumann algebra, which is 
weakly null, we have that the martingale convergence structure, given by an embedding 
into the iterated ultrapower, yields a diagonalisation, such that there exists a subsequence 
of operators, for which all further subsequences generate series which converge bilaterally 
almost uniformly. Moreover, this may be done for any countable family of weakly null 
sequences, and so the following result is indeed a specialised diagonalisation argument, 
which is facilitated through the machinery of the iterated ultrapower.

Theorem 4.2. Let M be a finite von Neumann algebra, with a distinguished faithful 
normal tracial state τ . Then let (Mω,n)n∈N denote the increasing filtration of Mω,∞, 
following the construction discussed in Subsection 3.2.

Let (xn)n∈N be a weakly null sequence of equimeasurable operators in L1(M), which 
is uniformly bounded in the L1-norm. Let x̃ = (xn)•

n∈N ∈ L1(Mω). Given a sequence 
(ck)k∈N ∈ 	2, such that (

n∑
ckπk(x̃)

)∞
k=1 n=1
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is a L2(Mω,∞)-bounded martingale, there exists a sequence (yk)k∈N ⊆ (xk)k∈N , such 
that for every further subsequence (zk)k∈N ⊆ (yk)k∈N , the series

∞∑
k=1

ckzk

converges bilaterally almost uniformly.
Moreover, let ((xk,n))k,n∈N be a countable family of sequences, such that for every 

k ∈ N, (xk,n)n∈N is a weakly null sequence of equimeasurable operators in L1(M). Let 
x̃k = (xk,n)•

n∈N , for each k ∈ N. Given a sequence (ck)k∈N ∈ 	2, such that(
n∑

k=1

ckπk(x̃k)
)∞

n=1

is a L2(Mω,∞)-bounded martingale, there exists an increasing sequence of indices, 
(sn)n∈N , such that for every subsequence (tn)n∈N ⊆ (sn)n∈N , the series

∞∑
k=1

ckxk,tk

converges bilaterally almost uniformly.

Proof. The proof consists of three parts. Firstly, we must pass from convergence at 
the level of L2(Mω,∞) to convergence in Lp̃(M), for some 1 < p̃ < 2, and we will 
do so in a way that gives us a sequence of maximal inequalities, each given by a limit 
over the product ultrafilters. Secondly, because these maximal inequalities only hold in 
the limit, we must find a sequence which approximates these inequalities, and we must 
find such a sequence such that all further subsequences approximate these inequalities. 
This diagonalisation argument forms the heart of the proof. Finally, we make use of the 
maximal inequalities in order to find projections which show that the bilateral almost 
uniform convergence holds. This will follow from Lemma 2.15.

It is clear that the claimed first result for a fixed element x̃ ∈ L1(Mω) follows from 
the general result for a sequence (x̃k)k∈N , and so we only consider the later case.

Let, for each n ∈ N,

Mn =
n∑

k=1

ckπk(x̃k)

denote the n-th term in the martingale sequence. As the sequence (Mn)∞
n=1 is L2(Mω,∞)-

strongly convergent, there exists some constant C > 0, and some increasing family of 
indices (Ik)k∈N , with I1 = 0, where M0 = 0, such that∥∥MIk+1 − MIk

∥∥ ≤ 32−kC,
2
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for every k ∈ N. Let Jk = Ik+1 − Ik, for each k ∈ N.
If we consider only the tail of the series, we see that (Mn − MIk

)n>Ik
still forms an 

L2-bounded martingale, and an easy application of the noncommutative Doob maximal 
inequality to finite martingales (Theorem 2.18) shows that there exists a constant C2 > 0, 
such that∥∥∥∥∥∥∥

⎛⎝ n∑
j=Ik+1

ckπj(x̃j)

⎞⎠Ik+1

n=Ik+1

∥∥∥∥∥∥∥
L2(Mω,Ik+1 ;�∞

Jk
)

≤
∥∥MIk+1 − MIk

∥∥
L2(Mω,Ik+1 ) (4.1)

≤ 32−kC2,

for each k ∈ N, where we may consider the norm for L2(Mω,Ik+1) in place of L2(Mω,∞)
because of the isometric embedding of these Hilbert spaces [74, Section 1]. Applying 
Proposition 3.9 to (4.1), we find that

lim
(a1,...,aJk

)∈NJk

UIk+1⊗···⊗UIk+1

∥∥∥∥∥∥∥
⎛⎝ n∑

j=Ik+1
cjxj,aj

⎞⎠Ik+1

n=Ik+1

∥∥∥∥∥∥∥
Lp̃(M;�∞

Jk
)

≤ 32−kC2, (4.2)

for some fixed 1 < p̃ < 2, and each k ∈ N.
This leads us to the second part of the proof, where we will use a diagonalisation 

argument to find sequences which approximate the limit (4.2). In particular, for any 
fixed index k ∈ N, and any fixed finite sequence (aIk+1, . . . , aIk+1) ∈ NJk , let us say that 
the sequence satisfies condition (Ck) if the inequality∥∥∥∥∥∥∥

⎛⎝ n∑
j=Ik+1

cjxj,aj

⎞⎠Ik+1

n=Ik+1

∥∥∥∥∥∥∥
Lp̃(M;�∞

Jk
)

≤ 2C2 · 32−k (Ck)

holds true. Let us say that an infinite sequence (aj)j∈N satisfies condition (Ck) if the 
finite subsequence (aIk+1, . . . , aIk+1) satisfies condition (Ck).

We wish to find an infinite sequence which satisfies condition (Ck) for every k ∈ N, 
and such that every further subsequence satisfies condition (Ck) for every k ∈ N. To do 
so, we will iterate an induction argument to find a suitable sequence for each condition 
(Ck). This iterated induction will give us a suitable diagonalised sequence.

Let us start by considering condition (C1). It is immediate from (4.2) that there must 
exist some set A ∈ U1 ⊗· · ·⊗UI2 , such that every sequence in A satisfies condition (C1), 
as otherwise the limit in equation (4.2) cannot be achieved.

We now wish to find a sequence (aj)j∈N , such that every finite subsequence of length 
J1 satisfies condition (C1). For a fixed finite sequence b = (b1, . . . , bm), of length m < J1, 
and a fixed set A ∈ U1 ⊗ · · · ⊗ UI2 , let Ab denote the set of all finite sequences c =
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(cm+1, . . . , cJ1), such that (b1, . . . , bm, cm+1, . . . , cJ1) ∈ A. By construction of the product 
ultrafilter, Ab ∈ Um+1 ⊗· · ·⊗UI2 . Moreover, as the ultrafilter product is associative, the 
stripe A+

b , defined by

A+
b = {cm+1 : ∃(cm+1, . . . , cJ1) ∈ Ab} ,

must be an element of Um+1. This follows as U1 ⊗ · · · ⊗ UI2 = U1 ⊗ (U2 ⊗ · · · (UI2−1 ⊗
UI2)), by associativity, and so A+

b is the set of admissible first elements of sequences in 
Um+1 ⊗ · · · UI2 , which must be an element of Um+1, by the definition of tensor products 
of ultrafilters. In order to find a sequence such that all further subsequences satisfy (C1), 
we must consider the intersection of these stripes.

Let us assume that V is a fixed non-principal ultrafilter, and that U1 = U2 = · · · =
UI2 = V . Now let us fix a1 as any element of A+

∅
, the stripe of all possible first elements 

of sequences in A. Then consider the stripe A+
a1

. By closure under finite intersection, the 
set A+

∅
∩A+

a1
∩(a1, ∞) is infinite, and contained in V , and so we may choose any element 

in this set to be a2.
To find a3, we must consider the intersection of A+

a1
, A+

a2
, A+

(a1,a2), and (a2, ∞), such 
that a3 > a2, and such that (a1, a2, a3), (a1, a3), and (a2, a3) are all admissible heads for 
sequences which satisfy condition (C1).

Given a sequence (a1, . . . , am), for m < I2, we may choose am+1 by taking the in-
tersection of (am, ∞) and each of the stripes A+

c , where c is any finite subsequence of 
(a1, . . . , am).

If we have a sequence (a1, . . . , am), with m ≥ I2, for which every subsequence of length 
J1 satisfies condition (C1), then we may extend the sequence another term by choosing 
any element am+1 of the intersection

(am, ∞) ∩

⎛⎜⎜⎝ ⋂
c⊆(a1,...,am)

|c|<J1

A+
c

⎞⎟⎟⎠ ,

where |c| denotes the length of the subsequence c. The set of all possible subsequences 
c is finite, and so this is still a finite intersection of elements of V , and is therefore also 
an element of the ultrafilter V .

By induction, we have constructed a sequence (aj)j∈N , which satisfies condition (C1). 
Note that at this point, V is still an arbitrary non-principal ultrafilter. By the ultrafilter 
lemma [20, Theorem 7.1], there exists a non-principal ultrafilter on N, containing the 
set {aj : j > aI2}. Then let V2 be any such ultrafilter, and set UI2+1 = UI2+2 = · · · =
UI3 = V2. Fix (t1, t2, . . . , tI2) = (a1, a2, . . . , aI2).

Repeating the construction of the sequence (aj)j∈N , now for condition (C2), we may 

construct a sequence (a(2)
j )j∈N , such that every subsequence of length J2 satisfies condi-

tion (C2). Moreover, if we take the intersection with {aj : j ∈ N} ∈ V2 at each stage, we 
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may assume that (a(2)
j )j∈N ⊆ (aj)j∈N . Then set (tI2+1, . . . , tI3) = (a(2)

1 , . . . , a(2)
J2

), and 

let V3 be any non-principal ultrafilter containing the set {a
(2)
j : j > J2}.

Let (a(k)
j )j∈N be a given sequence, such that every subsequence satisfies condition (Cj) 

for all j ≤ k, where k is fixed. We may reiterate this prior diagonalisation construction 
over some new non-principal ultrafilter Vk+1 containing 

{
a

(k)
j : j > Jk

}
, giving us a 

new sequence (a(k+1)
j )j∈N , such that every subsequence satisfies condition (Cj), for all 

j ≤ k + 1. Then set (tIk+1+1, . . . , tIk+2) = (a(k+1)
1 , . . . , a(k+1)

Jk+1
).

This iterated induction gives us a strictly increasing sequence (tj)j∈N such that every 
subsequence satisfies condition (Ck), for every k ∈ N.

We are now able to complete the proof, and show that for every subsequence (sk)k∈N ⊆
(tk)k∈N , the series

∑
k∈N

ckxk,sk

converges bilaterally almost uniformly. To complete this part of the proof, we will use 
the maximal inequality given by condition (Ck) to induce a bound on the maximal re-
arrangement, which when combined with a noncommutative Chebyshev type inequality 
will allow us to construct projections which verify the bilateral almost uniform conver-
gence.

For the remainder of the proof, let us fix some subsequence (sk)k∈N ⊆ (tk)k∈N . To 
see that 

∑∞
k=1 ckxk,sk

converges bilaterally almost uniformly, let us consider the blocks ∑Ik+1
j=Ik+1 cjxj,sj

, for each k ∈ N. As (sj)j∈N satisfies condition (Ck), we may apply 
Lemma 2.15, to find that

μ

⎛⎜⎝ε−14−k;

⎛⎝ n∑
j=Ik+1

cjxj,sj

⎞⎠Ik+1

n=Ik+1

⎞⎟⎠ ≤ (4kε)2p̃ ·
(
2C2 · 32−k

)p̃
,

for any fixed ε > 0, where p̃ is the fixed index in the open interval (1, 2), chosen when 
we applied Proposition 3.9.

By definition of the maximal rearrangement, Definition 2.14, there must then exist a 
projection ek ∈ M, for each k ∈ N, such that

τ(1 − ek) ≤
(

ε2 · 4C2 · 32−k

4−2k

)p̃

=
(
ε24C2 · 2−k

)p̃
,

and

sup
Ik<n≤Ik+1

∥∥∥∥∥∥
n∑

j=I +1
ekcjxj,sj

ek

∥∥∥∥∥∥ ≤ ε−14−k, (4.3)

k ∞
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where the estimate on the trace is up to a factor of 2, as an approximation of the infimum 
which defines the maximal rearrangement.

Let e∞ =
∧

k∈N ek. On the one hand, we have that

τ(1 − e∞) ≤
∑
n∈N

τ(1 − en)

=
∑
n∈N

(
ε2 · 4C · 2−n

)p̃
≤ (ε2 · 4C)p̃.

We may then choose ε, such that τ(1 − e∞) is arbitrarily small.
On the other hand, we may write

∞∑
k=n

ckxk,sk
=

Ik(n)∑
k=n

ckxk,sk
+

∞∑
j=k(n)

Ij+1∑
l=Ij+1

ckxl,sl
,

for each n ∈ N, where k(n) is the least integer k such that n ≤ Ik, which gives us that

∥∥∥∥∥e∞

( ∞∑
k=n

ckxk,sk

)
e∞

∥∥∥∥∥
∞

≤

∥∥∥∥∥∥e∞

⎛⎝Ik(n)∑
k=n

ckxk,sk

⎞⎠ e∞

∥∥∥∥∥∥
∞

+
∞∑

j=k(n)

∥∥∥∥∥∥e∞

⎛⎝ Ij+1∑
l=Ij+1

ckxl,sl

⎞⎠ e∞

∥∥∥∥∥∥
∞

≤ 2ε−14−(k(n)−1) + ε−1
∞∑

j=k(n)

4−j ,

where the second inequality follows by application of equation (4.3).
It follows that

lim
n→∞

∥∥∥∥∥e∞

( ∞∑
k=n

ckxk,sk

)
e∞

∥∥∥∥∥
∞

≤ lim
n→∞

2ε−14−(k(n)−1) + ε−1
∞∑

j=k(n)

4−j = 0,

and so the series

∞∑
k=1

ckxk,sk

converges bilaterally almost uniformly for every subsequence (sk)k∈N of (tk)k∈N . The 
necessary bilateral almost uniform convergence then holds. �
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5. The noncommutative Révész theorem

Theorem 5.1. Let M be a finite von Neumann algebra, with distinguished faithful normal 
tracial state τ . For any sequence (fn)n∈N ⊆ L2(M, τ), such that supn∈N ‖fn‖2 < ∞, 
and any fixed sequence (cn)n∈N , there exists a subsequence (gn)n∈N ⊆ (fn)n∈N , and an 
operator f ∈ L2(M, τ), such that for every further subsequence (hn)n∈N ⊆ (gn)n∈N , the 
series ∑

n∈N

ck(hk − f)

converges bilaterally almost uniformly.

Proof. To start, let us consider the real and imaginary decomposition of each operator 
fn, such that fn = an + ibn, with every an and bn self-adjoint. By Lemma 2.8, if (an)n∈N

and (bn)n∈N converge bilaterally almost uniformly, to a and b, respectively, then the 
sequence (an + ibn)n∈N converges bilaterally almost uniformly to a + ib. We may then 
assume that (fn)n∈N is a sequence of self-adjoint operators, without loss of generality. As 
an L2-bounded sequence of self-adjoint operators, there exists a subsequence of (fn)n∈N

which is weakly convergent to some self-adjoint f ∈ L2(M).
By relabelling the sequence (fn)n∈N , we may assume that the sequence is weakly 

convergent to f . As we only wish to determine a suitable subsequence of (fn)n∈N , we 
may do so without loss of generality, and we will repeat this technique in the sequel.

In order to pass from weak to strong convergence, we will pass to the finite dimensional 
setting. Let L2

∞ = span {fn − f : n ∈ N} denote the L2-closure of the space generated by 
(fn − f)n∈N . L2

∞ is then a separable Hilbert space, and admits some orthonormal basis 
(xn)n∈N . For each n ∈ N, let L2

n = span {xk : 1 ≤ k ≤ n}, and let Pn : L2(M) → L2
n

denote the orthogonal projection onto L2
n.

We claim that there exist two increasing sequences (nk)∞
k=1 and (vk)∞

k=1 of positive 
integers, such that for every k ≥ 2,∥∥Pvk−1(fnk

− f)
∥∥

2 < 4−k, (5.1)

and

‖(fnk
− f) − Pvk

(fnk
− f)‖2 < 4−k. (5.2)

We show that such sequences exist by an inductive diagonalisation argument. For 
every operator x ∈ L2

∞, limn→∞ ‖x − Pn(x)‖2 = 0. There then exists some v1 ≥ 1, such 
that ‖(f1 − f) − Pv1(f1 − 1)‖2 < 4−1.

Let n1 = 1. As (fn)∞
n=1 converges weakly to f in L2(M, τ), we have that the sequence 

(Pk(fn −f))∞
n=1 is weakly null, for every k ≥ 1. As L2

k is finite dimensional, the weak and 
strong topologies on L2

k coincide. As the strong topology on L2
k is the subspace topology 
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from L2(M, τ), it follows that for any fixed k ≥ 1, the sequence (Pk(fn−f))∞
n=1 converges 

to zero in L2(M, τ). There then exists some n2 > n1 = 1, such that ‖Pv1(fn2 − f)‖2 <

4−2. We may then choose some v2 > v1, such that ‖(fn2 − f) − Pv2(fn2 − f)‖2 < 4−2, 
following much the same argument that let us choose v1.

By induction, it follows that sequences (nk)∞
k=1 and (vk)∞

k=1 which satisfy (5.1) and
(5.2) for all k ≥ 2 exist.

Now, for each k ≥ 2, define

Dk(x) = Pvk
(x) − Pvk−1(x).

For any k > j ≥ 2, and any x ∈ L2(M, τ), it follows by construction that Dk(x)
and Dj(x) are orthogonal with respect to the L2(M, τ)-inner product. Moreover, by 
orthogonality of the basis (xn)∞

n=1 of L2
∞, we have that for any operators x, y ∈ L2(M, τ), 

and any k > j ≥ 2, the operators Dk(x) and Dj(y) are also orthogonal.
The essential difficulty of the proof is to show that for a fixed sequence (ck)k∈N ∈

	2(C), the series

∞∑
k=2

ckDjk
(fnjk

− f) (5.3)

converges bilaterally almost uniformly, for all subsequences (jk)k∈N of some increasing 
sequence (ik)k∈N . We will address this difficulty before we consider how to recover the 
series 

∑
k∈N ck(fk − f).

Before we address bilateral almost uniform convergence, let us check that the series

∞∑
k=2

Djk
(fnjk

− f)

converges in the L2-strong topology, for any increasing sequence (jk)k∈N ⊆ N. It is 
sufficient to note that the operators Djk

(fnjk
− f) are pairwise orthogonal, and that ∥∥∥Djk

(fnjk
− f)
∥∥∥

2
is bounded, uniformly in k, by 4 supn∈N ‖fn‖2. The convergence of 

(5.3), in the L2-strong topology, then follows by use of the triangle inequality, and from 
the fact that (|ck|)k∈N ∈ 	2.

We may now focus on the heart of the proof, at which point we must make a substantial 
departure from classical techniques. We will show that there is a natural embedding of 
the partial sums of (5.3), for all sequences (jk)k∈N ⊆ N, into the L2-space associated 
to the iterated ultrapower Mω,∞, and then using the noncommutative maximal Lp-
spaces, we will be able to show that there exist suitable projections, such that the series 
converges bilaterally almost uniformly.

Following the constructions in Section 3 let (Un)n∈N denote a sequence of non-
principal ultrafilters on N. For each n ≥ 1, let Mω,n denote the n-th iterated ultrapower 
of M, that is (((Mω

U )ω
U ) · · · )ω

U , such that

1 2 n
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Mω,n = (Mω,n−1)ω
Un

.

Then let Mω,∞ denote the w∗-completion of ∪n∈NMω,n, with the union taken over the 
natural embeddings.

The algebra Mω,∞ is again a finite von Neumann algebra (see Subsection 3.2), and 
the sequence (Mω,n)n∈N , under the natural embeddings into Mω,∞, forms a filtration. 
For each n ∈ N, let En : Mω,∞ → Mω,n denote the normal conditional expectation. 
As there exists a normal conditional expectation E0 : Mω,1 → M, then by composition 
there also exists a normal conditional expectation E0 : Mω,∞ → M.

In order to consider an equivalence class in L2(Mω), we must find a sequence which 
is not only L2-bounded, but is equimeasurable, and which we will also require to be 
weakly null, for later calculation. For each k ∈ N, let xk = Dk(fnk

− f). Let us pass to 
a subsequence of (xk)k∈N which is weakly convergent, with limit x, and relabel (nk)k∈N

and (vk)k∈N , such that (xk)k∈N is weakly convergent to x.
Let wk = xk −x, for each k ∈ N. By Lemma 2.13, there exists a subsequence (w′

k)k∈N

of (wk)k∈N , such that for each k, wk = yk +zk, where (zk)k∈N vanishes bilaterally almost 
uniformly, and (yk)k∈N is equimeasurable. Without loss of generality, let us relabel the 
sequence (nk)k∈N , (vk)k∈N , such that wk is the sequence given by Lemma 2.13. We may 
also choose this sequence to be such that (ckzk)z∈N vanishes sufficiently quickly, in the 
sense that ∑

k∈N

ckzk

converges bilaterally almost uniformly. We then simply assume that (wk)k∈N is equimea-
surable, and can again do so without loss of generality.

As (wk)k∈N is an L2-bounded sequence, w̃ = (wk)•
k∈N defines an equivalence class 

in L2(M)ω, and as (wk)k∈N is equimeasurable, we have that (|wk|2)k∈N is uniformly 
integrable (see Remark 3.2), and so w̃ ∈ L2(Mω,1).

We may now consider convergence of the sums

Mn =
n∑

k=1

ckπk(w̃) ∈ L2(Mω,n) ⊆ L2(Mω,∞),

defined for each n ∈ N. Note that, as per the discussion in Section 4, (Mn)n∈N forms a 
martingale, as w̃ is weakly null. We claim that (Mn)n∈N is an L2-bounded martingale 
in L2(Mω,∞), under the natural inclusion of each Mn into L2(Mω,∞), with limit

M∞ =
∞∑

k=1

ckπk(w̃).

To see this, let us apply Pisier and Xu’s characterisation of Lp-bounded martingales, 
Theorem 2.17. Note that
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‖πk(w̃)‖L2(Mω,∞) = ‖πk(w̃)‖L2(Mω,k)

≤ sup
n∈N

‖wn‖2

≤ sup
n∈N

‖xn − x‖2

≤ 2 sup
j∈N

∥∥Dj(fnj
− f)
∥∥

2

≤ 8 sup
j∈N

‖fj‖2 < ∞.

It is then immediate, as (ck)k∈N ∈ 	2(C), that

‖(πk(w̃))k∈N‖L2(Mω,∞;�2
C) =

∥∥∥∥∥∥
(∑

k∈N

|ck|2 |πk(w̃)|2
)1/2
∥∥∥∥∥∥

2

< ∞,

with the row estimate given by much the same calculation, and so (Mn)n∈N is an L2-
bounded martingale, which must then converge strongly to M∞. We may then apply 
Theorem 4.2, to see that there exists an increasing sequence (sk)k∈N ⊆ N, such that for 
every subsequence (tk)k∈N ⊆ (sk)k∈N , the series

∞∑
k=1

ckwtk

converges bilaterally almost uniformly.
We chose to denote xk = Dk(fnk

− f), such that (xk)k∈N is weakly convergent to x. 
We then set wk = xk − x, for every k, and proved that there exists a sequence (ik)k∈N , 
such that for every further subsequence (jk)k∈N , the series

∞∑
k=1

ckwjk
(5.4)

converges bilaterally almost uniformly. That is then to say, by adding the term 
∑∞

k=1 ckx, 
that the series

∞∑
k=1

ckDjk
(fnjk

− f)

converges bilaterally almost uniformly.
For each k ∈ N, let

Sk = Pvk−1(fnk
− f),

and
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Rk = (fnk
− f) − Pvk

(fnk
− f),

such that by the norm estimates (5.1) and (5.2),

‖Sk‖2 < 4−k,

and

‖Rk‖2 < 4−k.

Given the growth conditions from (5.1) and (5.2), we can find a relabelling, by passing 
to a subsequence, of (ik)k∈N , such that

∞∑
k=1

‖ckSjk
‖2 < ∞,

and

∞∑
k=1

‖ckRjk
‖2 < ∞,

for every subsequence (jk)k∈N ⊆ (ik)k∈N .
It follows that the series

∞∑
k=1

ckSjk
, (5.5)

and

∞∑
k=1

ckRjk
(5.6)

must converge bilaterally almost uniformly, by Lemma 2.10.
Finally, as we have that fnjk

− f = wjk
+ Sjk

+ Rjk
, we may add together the three 

series, (5.4), (5.5), and (5.6), to see that

∞∑
k=1

ck(fnjk
− f)

converges bilaterally almost uniformly, for all subsequences (jk) ∈ N of (ik)k∈N . La-
belling gk = fni

, for each k ∈ N, we have that the result holds. �

k
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6. The noncommutative Komlós theorem

Finally, we may answer Randrianantoanina’s question, and show that the Komlós 
theorem extends to arbitrary finite von Neumann algebras. For the most part, the proof 
is again classical. However, as for the proof of Theorem 5.1, a substantial appeal to the 
techniques of iterated ultrapowers is once again necessary, so as to compensate for the 
lack of an intrinsic martingale structure in a non-hyperfinite algebra.

Theorem 6.1. Let M be a finite von Neumann algebra, with a distinguished faithful nor-
mal tracial state τ . If (fn)∞

n=1 ⊆ L1(M, τ) is an L1-bounded sequence, then there exists 
a subsequence (gn)∞

n=1 ⊆ (fn)∞
n=1, and an operator f ∈ L1(M, τ), such that for every 

further subsequence (hn)∞
n=1 ⊆ (gn)∞

n=1, the sequence(
1
n

n∑
k=1

hk

)∞

n=1

(6.1)

converges bilaterally almost uniformly to f .

Proof. Without loss of generality, we may assume that the sequence (fn)∞
n=1 consists of 

only self-adjoint operators, by use of Lemma 2.8.
In order to show that the result holds, we will consider three approximations of the 

sequence (fn)∞
n=1. We will show that the sequence is equimeasurable, up to a sequence 

which converges bilaterally almost uniformly to zero, approximate the operators by trun-
cations of their height, and use a finite dimensional approximation.

These three approximations will allow us to decompose the sequence of Cesàro aver-
ages into three components, each of which we may show is bilaterally almost uniformly 
convergent, such that the assertion holds.

To start, we appeal to Lemma 2.13. There exists some subsequence (an)∞
n=1 ⊆ (fn)∞

n=1
such that for each n ≥ 1, an = bn + cn, where (bn)∞

n=1 and (cn)∞
n=1 are L1-bounded 

sequences, (bn)∞
n=1 is a sequence of equimeasurable operators, and (cn)∞

n=1 converges to 
zero in the measure topology.

Applying [31, Proposition 1], there exists a subsequence (cnk
)∞
k=1 which converges 

bilaterally almost uniformly to zero. Let (gn)∞
n=1 = (bnk

)∞
n=1. By Lemma 2.9, the Cesàro 

averages of (cnk
)∞
k=1 converge bilaterally almost uniformly to zero, and so if the Cesàro 

averages of (gn)∞
n=1 converge bilaterally almost uniformly, then by Lemma 2.8, the Cesàro 

averages of (ank
)∞
k=1 must also converge bilaterally almost uniformly, and to the same 

limit as for (gn)∞
n=1.

We may then work with the sequence (gn)∞
n=1 in place of (ank

)∞
k=1 ⊆ (fn)∞

n=1.
For each j, k ≥ 1, let Tk(gj) = gjχ[0,k)(|gj |), the k-the truncation of gj . For any 

fixed k ≥ 1, the sequence (Tk(gj))∞
j=1 is equimeasurable, and thereby necessarily L2-

bounded. Note that the key distinction between the proofs of the Komlós and Révész 
theorems is that (Tk(gj))k,j∈N is now unbounded over k, in the L2-norm. As L2(M, τ) is a 
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Hilbert space, it is weakly sequentially compact. Using a standard diagonal subsequence 
argument, there exists some subsequence (g′

n)∞
n=1 ⊆ (gn)∞

n=1, such that for any fixed 
k ≥ 1, the sequence (Tk(g′

j))∞
j=1 is weakly convergent. We may then relabel the sequence 

(g′
n)∞

n=1 as (gn)∞
n=1.

For each k ≥ 1, let ϕk denote the weak limit of (Tk(gj))∞
j=1.

Before we may show that the Cesàro averages are well behaved, we must find a further 
subsequence of (gn)∞

n=1, satisfying two key estimates.
We claim that for every subsequence (hn)∞

n=1 ⊆ (gn)∞
n=1,

∞∑
n=1

∥∥∥∥Tn(hn)
n

∥∥∥∥2

2
< ∞, (6.2)

and

∞∑
n=1

τ
(
χ[n,∞)(|hn|)

)
< ∞. (6.3)

As the sequence (gn)∞
n=1 is equimeasurable, we have that for any k ≥ 1, the sequence 

(τ(χ[k−1,k)(gj)))∞
j=1 is constant. Then let αk = τ(χ[k−1,k)(g1)) and βk = τ(χ[k−1,k)(−g1), 

for each k ≥ 1.
Key to showing the estimates (6.2) and (6.3) are the bounds

∞∑
k=1

kαk < ∞, (6.4)

and

∞∑
k=1

kβk < ∞. (6.5)

We will show that (6.4) holds, and the proof of the bound (6.5) follows by an almost 
identical calculation.

To see that (6.4) holds, consider the bound

n∑
k=1

(k − 1)αk =
n∑

k=1

(k − 1)τ
(
χ[k−1,k)(g1)

)
≤

n∑
k=1

τ
(
g1χ[k−1,k)(g1)

)
= τ
(
g1χ[0,n)(g1)

)
.

Taking the limit over n, we have that
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∞∑
k=1

(k − 1)αk ≤ τ
(
g1χ[0,∞)(g1)

)
= ‖g1‖1 < ∞.

Then, for each k ≥ 2, (k − 1)αk ≥ αk, and so we also have that 
∑∞

k=1 αk < ∞. Adding 
the two series, we see that 

∑∞
k=1 kαk < ∞, and (6.4) holds.

We may now show that (6.2) and (6.3) hold. Let (hn)∞
n=1 be an arbitrary subsequence 

of (gn)∞
n=1. By the construction of (gn)∞

n=1, we have that

‖Tj(hj)‖2
2 ≤

j∑
k=1

k2τ
(
χ[k−1,k)(|hj |)

)
=

j∑
k=1

k2 (αk + βk) ,

for any j ≥ 1.
It follows that

∞∑
n=1

∥∥∥∥Tn(hn)
n

∥∥∥∥2

2
≤

∞∑
n=1

(
1
n2

n∑
k=1

k2αk + βk

)

=
∞∑

k=1

(
k2(αk + βk)

∞∑
n=k

1
n2

)

≤
∞∑

k=1

(
2k2(αk + βk)

k

)

= 2
∞∑

k=1

k(αk + βk) < ∞,

with the estimate on 
∑∞

n=k n−2 given by

∞∑
n=k

1
n2 ≤

∞∫
x=1

1
x2 dx = 1

k − 1 ≤ 2
k

.

Then (6.2) holds.
To show that (6.3) holds, we take a decomposition over the spectrum and apply 

Chebyshev’s inequality,

τ
(
χ[n,∞)(hn)

)
=

⎛⎝ n2∑
k=n+1

τ
(
χ[k−1,k)(hn)

)⎞⎠+ τ
(
χ[n2,∞)(hn)

)

=

⎛⎝ n2∑
k=n+1

αk

⎞⎠+
‖g1‖1

n2

≤
∞∑

k=n+1

αk +
‖g1‖1

n2
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Summing over n,

∞∑
n=1

τ
(
χ[n,∞)(hn)

)
≤

∞∑
n=1

( ∞∑
k=n+1

αk +
‖g1‖1

n2

)

=
∞∑

k=2

k−1∑
n=1

αk +
∞∑

n=1

‖g1‖1
n2

=
∞∑

k=2

(k − 1)αk +
∞∑

n=1

‖g1‖1
n2

< ∞.

The right hand series is finite, and the series 
∑∞

k=2(k − 1)αk is finite as per the proof of 
(6.4). The estimate (6.3) then holds.

Recall that for each k ≥ 1, ϕk is the L2-weak limit of the sequence (Tk(gj))j∈N . We 
claim that there exists some subsequence (g′

n)∞
n=1 of (gn)∞

n=1, such that for every further 
subsequence (hn)∞

n=1 ⊆ (g′
n)∞

n=1, the sequences of Cesàro averages,

(
1
n

n∑
k=1

(Tk+1(hk) − ϕk+1)
)∞

n=1

(6.6)

and (
1
n

n∑
k=1

(hk − Tk+1(hk))
)∞

n=1

, (6.7)

converge bilaterally almost uniformly to zero, and the series

∞∑
n=1

(ϕn+1 − ϕn) (6.8)

converges bilaterally almost uniformly to some operator f ′ ∈ L1(M, τ). Having shown 
these three convergences, the Komlós theorem will follow easily.

To start, let us show that (6.6) holds. In doing so, we will determine the subsequence 
(g′

n)∞
n=1 ⊆ (gn)∞

n=1.
For each j, k ≥ 1, let

fk,j = Tk+1(gj) − ϕk+1. (6.9)

Then let L2
∞ = span {fk,j : j, k ≥ 1}, where the closure is taken in the L2-norm. Then 

L2
∞ is a closed separable subspace of L2(M, τ), and admits some orthonormal basis 

(xn)∞
n=1. For each n ≥ 1, let L2

n = span {x1, . . . , xn}, and let Pn : L2(M, τ) → L2
n

denote the orthogonal projection onto L2
n. We will use these subspaces to form finite 
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dimensional approximations of the operators fk,j , which will allow us to pass from weak 
to strong convergence in L2(M, τ).

We wish to find two increasing sequences of indices, (nk)∞
k=1 and (vk)∞

k=1, such that

‖Pvk−1(fs,nk
)‖2 < 4−k (6.10)

and

‖fs,nk
− Pvk

(fs,nk
)‖2 < 4−k, (6.11)

for every k ≥ 2, and any 1 ≤ s ≤ k. To do so, we appeal to an inductive construction.
To start, note that for each f ∈ L2

∞, limn→∞ ‖f − Pn(f)‖2 = 0. Then, if we set 
n1 = 1, there must exist some v1 ≥ 1, such that

‖f1,1 − Pv1(f1,1)‖2 < 4−1.

Moreover, weak and strong convergence coincide over L2
n, for each n ≥ 1, as these spaces 

are finite dimensional. As L2
n inherits the topology of L2(M, τ), and so weak convergence 

in L2
n implies strong convergence in L2(M, τ).

For any fixed k ≥ 1, the sequence (fk,j)∞
j=1 converges weakly to zero, by construction, 

and so the finite approximation (Pv1(fk,j))∞
j=1 also converges weakly to zero with respect 

to L2
n, and in turn must converge strongly to zero with respect to L2(M, τ). There must 

exist some index n2 > n1, such that for each s ∈ {1, 2},

Pv1(fs,n2) < 4−1.

Repeating this procedure, we generate the desired sequences (nk)∞
k=1 and (vk)∞

k=1, such 
that the estimates (6.10) and (6.11) are satisfied.

Let (mk)∞
k=1 ⊆ (nk)∞

k=1 be an arbitrary subsequence, such that mk = nj(k) for each 
k ≥ 1. The equations (6.10) and (6.11) then become∥∥Pvj(k)−1(fs,mk

)
∥∥

2 < 4−j(k) (6.12)

and ∥∥fs,mk
− Pvj(k)(fs,mk

)
∥∥

2 < 4−j(k), (6.13)

for any k ≥ 1 and 1 ≤ s ≤ k. As the sequence (j(k))∞
k=1 is necessarily increasing, 

j(k − 1) ≤ j(k) − 1, for any k ≥ 2, and so we find from (6.12) that∥∥Pvj(k−1)(fs,mk
)
∥∥

2 < 4−j(k), (6.14)

for any k ≥ 1 and 1 ≤ s ≤ k.
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Now, for each k ≥ 2, let

sk = Pvj(k−1)(fk,mk
),

wk =
(
Pvj(k) − Pvj(k−1)

)
(fk,mk

),

and

rk = fk,mk
− Pvj(k)(fk,mk

).

Then

fk,mk
= sk + wk + rk (6.15)

for each k ≥ 2. The equations (6.12) and (6.13) respectively show that ‖rk‖2 < 4−j(k)

and ‖sk‖2 < 4−j(k), and so 
∑∞

k=2 ‖rk‖2
2 < ∞ and 

∑∞
k=2 ‖sk‖2

2 < ∞. Applying 
Lemma 2.10 (ii), we conclude that the sequences (rk)∞

k=2 and (sk)∞
k=2 converge bilat-

erally almost uniformly to zero.
This leaves the sequence (wk)∞

k=2, which is a pairwise orthogonal sequence in 
L2(M, τ). As each Pn is a contraction on L2(M, τ), for each n ≥ 1, ‖wk‖2 ≤ 2 ‖fk,mk

‖2 ≤
4 
∥∥Tk+1(hmk+1)

∥∥
2, for every k ≥ 2. Then

∞∑
k=2

∥∥∥wk

k

∥∥∥2

2
≤ 4

∞∑
k=2

∥∥∥∥fk,mk

k

∥∥∥∥2

2
≤ 16

∞∑
k=2

∥∥∥∥Tk+1(hmk+1)
k

∥∥∥∥2

2
< ∞, (6.16)

with finiteness given by (6.2).
Now let us again apply the iterated ultrapower technique to find a sequence (sk)k∈N ⊆

(mk)k∈N , such that for every further subsequence (tk)k∈N , the series

∞∑
k=2

(
Pvj(k) − Pvj(k−1)

)
(fk,tk

)

converges bilaterally almost uniformly. For each pair k, l ∈ N, let

wk,l =
(
Pvj(k) − Pvj(k−1)

)
(fk,nj(l)).

As, for any fixed index k, the sequence (fk,nj(l))l∈N is L2-weakly null, it is easy to see 
that (wk,l)l∈N is also weakly null. Then, as for the proof of Theorem 5.1, let us apply 
Lemma 2.13, such that we may pass to a subsequence, which we will also label (wk,l)l∈N , 
without loss of generality, which we may again assume is equimeasurable.

Then let us consider the equivalence classes w̃k = (wk,l)l∈N ∈ L1(Mω), defined for 
each k ∈ N. As each sequence (wk,l)l∈N is weakly null, the partial sums of
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∞∑
k=1

πk(w̃k)
k

forms a martingale in L1(Mω,∞), see the discussion in Remark 4.1. However we must 
verify that it is an L2-bounded martingale before we may apply Theorem 4.2.

To see this, let us again apply Theorem 2.17, which we may do so, as

‖(πk(w̃k))k∈N‖L2(Mω,∞;�2
C) =

∥∥∥∥∥∥
(∑

k∈N

(
|πk(w̃k)∗|

k

)2
)1/2
∥∥∥∥∥∥

2

< ∞,

with finiteness following from (6.16), which shows that

∞∑
k=2

wk

k

is absolutely convergent with respect to the L2-norm. The necessary estimate for the 
row norm again follows from an almost identical calculation.

We may then apply Theorem 4.2, to see that there must exist some increasing sequence 
(sk)k∈N ⊆ N, such that for all further subsequences (tk)k∈N , the series

∞∑
k=2

wk,tk

k
(6.17)

converges bilaterally almost uniformly.
Let us again relabel the sequence such that wk = wk,tk

, for each k ∈ N, for some fixed 
sequence (tk)k∈N .

As Kronecker’s Lemma preserves bilateral almost uniform convergence, see
Lemma 2.11, the sequence of Cesàro averages (n−1∑n+1

k=2 wk)∞
n=1 must converge bi-

laterally almost uniformly to zero. By Lemma 2.9, with p = 1, the sequences 
(n−1∑n+1

k=2 rk)∞
n=1 and (n−1∑n+1

k=2 sk)∞
n=1 also converge bilaterally almost uniformly to 

zero. By (6.15), we may add these sequences, such that the Cesàro averages

1
n

n+1∑
k=2

(sk + wk + rk) = 1
n

n+1∑
k=2

fk,mk
= 1

n

n+1∑
k=2

(Tk+1(gmk
) − ϕk+1)

converge bilaterally almost uniformly to zero, by Lemma 2.8. If we relabel (gnk
)∞
k=1 as 

(gn)∞
n=1, then we have a sequence (gn)∞

n=1, for which every subsequence thereof satisfies 
(6.6). This completes the most difficult part of the proof, however it remains to show 
that (6.7) and (6.8) hold.

To show that (6.7) holds, it is sufficient to use (6.3) and the noncommutative Borel–
Cantelli lemma, Lemma 2.3.
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For clarity of notation, let un = hn − Tn+1(hn), for each n ≥ 1, where (hn)∞
n=1 is 

an arbitrary subsequence of (gn)∞
n=1, and let vn = χ[n+1,∞)(hn), such that un = hnvn. 

From (6.3), 
∑∞

k=1 τ(vn) < ∞, and so we may apply Lemma 2.3. This gives us that 
limn→∞ τ(

∨∞
k=n vk) = 0. To show that (6.7) converges bilaterally almost uniformly to 

zero, fix ε > 0. There then exists some index N , and a projection pε = 1 −
∨∞

k=N vk, 
such that τ(1 − pε) < ε. However, for any n ≥ N , pε is orthogonal to vn, and so 
‖pεunpε‖∞ = 0. Obviously lim

n→∞
‖pεunpε‖∞ = 0, and so un converges bilaterally almost 

uniformly to zero. Applying Lemma 2.9, the Cesàro averages of the sequence (un)∞
n=1

must also converge bilaterally almost uniformly to zero, which is to say that (6.7) holds 
under the appropriate conditions.

We may now show that (6.8) converges bilaterally almost uniformly to some limit in 
L1(M, τ). This follows in much the same way as in [73]. Namely, it is sufficient to show 
that ‖ϕk+1 − ϕk‖1 ≤ (k + 1)(αk+1 + βk+1), for any k ≥ 1, where αk = τ(χ[k−1,k)(g1)), 
and ϕk is the L2-weak limit of (Tk(gj))∞

j=1, for each k ≥ 1. As L2(M, τ) has the Banach–
Saks property (see, for example [28, Theorem 2.14]), which is to say that every weakly 
null sequence admits a “Banach–Saks” subsequence, for each k ≥ 1, there exists an 
increasing sequence (nj)∞

j=1, such that

lim
n→∞

∥∥∥∥∥∥ 1
n

n∑
j=1

(
Tk+1(gnj

) − Tk(gnj
) − (ϕk+1 − ϕk)

)∥∥∥∥∥∥
2

= 0.

Then the sequence⎛⎝ 1
n

n∑
j=1

(
Tk+1(gnj

) − Tk(gnj
) − (ϕk+1 − ϕk)

)⎞⎠∞

n=1

converges to (ϕk+1 −ϕk) in measure Lemma 2.1, and so we may use the noncommutative 
Fatou lemma, Lemma 2.2, to find an estimate for ‖ϕk+1 − ϕk‖1.

In order to find an estimate on ‖ϕk+1 − ϕk‖1, let us decompose each ϕk into a positive 
and negative component, such that ϕk = φ+

k − φ−
k , for each k ≥ 1. We then see that

∥∥φ+
k+1 − φ−

k

∥∥
1 ≤ lim inf

n→∞

∥∥∥∥∥∥ 1
n

n∑
j=1

(
Tk+1(gnj

) − Tk(gnj
)
)∥∥∥∥∥∥

1

= lim inf
n→∞

∥∥∥∥∥∥ 1
n

n∑
j=1

gnj
χ[k,k+1)(gnj

)

∥∥∥∥∥∥
1

≤ lim inf
n→∞

1
n

n∑
j=1

∥∥gnj
χ[k,k+1)(gnj

)
∥∥

1

= lim inf 1
τ
(
gnj

χ[k,k+1)(gnj
)
)

n→∞ n
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≤ lim inf
n→∞

(k + 1)
n

n∑
j=1

τ
(
χ[k,k+1)(gnj

)
)

= (k + 1)αk+1,

where αk = τ(χ[k−1,k)(g1)), for each k ≥ 1. By (6.4), we have that

∞∑
k=1

∥∥φ+
k+1 − φ+

k

∥∥
1 ≤

∞∑
k=1

(k + 1)αk+1 < ∞.

An almost identical calculation for the negative component, φ−
k , shows that

∞∑
k=1

∥∥φ−
k+1 − φ−

k

∥∥
1 ≤

∞∑
k=1

(k + 1)βk+1 < ∞,

where βk = τ
(
χ[k−1,k)(−g1)

)
, with finiteness following from (6.5).

Applying Lemma 2.10 (i), we have that the series (ϕn − ϕ1)∞
n=1 converges bilaterally 

almost uniformly to some operator f ′ ∈ L1(M, τ). If we let f = f ′ + ϕ1, then (ϕn)∞
n=1

converges bilaterally almost uniformly to f . In turn, the Cesàro averages of (ϕn)∞
n=1 must 

converge bilaterally almost uniformly to f . Adding these averages to (6.6) and (6.7), we 
have that the Cesàro averages

1
n

n∑
k=1

hk

converge bilaterally almost uniformly to f , for any choice of subsequence (hn)∞
n=1 ⊆

(gn)∞
n=1. This completes the proof of Theorem 6.1. �

Although this resolves Randranintoanina’s problem, it remains to be seen what can be 
said for the setting of arbitrary σ-finite von Neumann algebras, and in particular type III

factors. The underlying difficulty here is not the ultrapower construction, which has been 
extensively studied in the setting of arbitrary σ-finite algebras, but the nature of suitable 
analogues of almost everywhere convergence. While there have been several attempts at 
defining such an extension, see for example any of the papers [24,32,33,40–42,58,63,66–
68], it is not clear that any of these are the correct notion, and all face substantial 
limitations and difficulties.

Problem 6.2. Can the Komlós and Révész theorems be extended to arbitrary σ-finite von 
Neumann algebras? What is the correct extension of almost everywhere convergence in 
this general setting?
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