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1. Introduction

In the new Scottish book, Steinhaus posed the following problem.

Problem 1.1 (Problem 126, The New Scottish Book). Does there exist a family F of
measurable functions, such that for each f € F, |f(t)] = 1, and for each sequence of
functions (f,,)22, in F, the sequence

is divergent for almost all ¢?
Révész produced the following solution, phrased in the language of probability theory.

Theorem 1.2 ([75, Theorem 1]). Let (£,)22, be a sequence of random variables, such
that for some positive constant K, the expectations of the squares are bounded, that is
E(¢2) < K, for alln > 1.

There then exists an increasing sequence ny < ng < --- of integers, and a random
variable n, such that the (Cesdro) averages converge to n, with probability equal to 1,

P<£m+§n2;r-~-+£nk %n> _

This result follows easily from the following more general result of Révész.

Theorem 1.3 (Révész” Theorem [75, Theorem 2]). Let (£,)22, be a sequence of random
variables, such that for some positive constant K, the expectations of the squares are
bounded, E(¢2) < K, for alln > 1.

There then exists an increasing sequence ny < ng < --- of integers, and a random
variable , such that for any sequence (c,)S% of real numbers, satisfying 270;1 e < oo,
the series

o0
Z cx(&ny — M)
k=1

is convergent with probability equal to 1.

Révész’ study concluded with the following problem: Can the condition E(£2) < K
be loosened to E(£11¢) < K, for 0 < € < 1? Komlés not only provided an affirmative
solution, but showed that the family of random variables need only be bounded in L'.

Theorem 1.4 (Komlds’ Theorem [5/, Theorem 1a]). Let (£,)5%, be a sequence of random
variables, such that liminf, . E(§,) < oo, then there exists a subsequence (1,)5, of
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(£0)21, and an integrable random variable n, such that for any subsequence (71,)52; of
(Mn)224, we have that

P(hm 7’1+"2+"'+’7”:n>:1.

n—oo n

Loosely, Komlés’ result may be thought of as the claim that every sequence of in-
tegrable random variables contains a subsequence which behaves as a collection of
independent random variables, in that it satisfies a kind of strong law of large num-
bers. However this elides the strength of the choice of subsequence. Consider that as we
may choose arbitrary subsequences of (1,)5 1, we may choose two disjoint subsequences,
and yet their Cesaro averages will still converge almost everywhere to the same limit.

Trautner [86] remarks that although the results of Révész and Komlds are stated in
the language of probability theory, they are actually analytic claims. In particular, these
results all state that, in essence, various LP-spaces are compact with regard to Cesaro
means, and almost everywhere convergence. Rephrased as such, what was an interesting
statement about probability theory becomes a useful feature of the geometry of function
spaces.

Even without this general motivation, the probabilistic interpretation is a strong im-
petus for the study of these results. The view of the Komlés theorem as an analogue of
the strong law of large numbers has been sufficient to motivate a substantial body of
research in the commutative setting, such as the generalisations of Aldous [1], Balder
[5—7], Balder and Hess [8], Berkes [10,11], Cassese [17], and Chatterji [18], and the sim-
plified proofs of Guessous [35], Schwartz [78], and Trautner [86]. See also the discussion
of subsequence principles in [76, Chapter 5].

Our interest lies not only in the study of classical probability theory and analysis, but
in the more general study of noncommutative integration. Driven by a desire to find a
suitable framework for the description of quantum mechanical systems, it was already
apparent in the original works of Murray and von Neumann that von Neumann algebras
provided what could be understood as a noncommutative analogue of integration theory.
However, it was with the pioneering work of Irving Segal [79], driven by the study of
representations of noncommutative groups and harmonic analysis, that it was discovered
that von Neumann algebras recovered and generalised the theory of integration. In the
time since, von Neumann algebras have found substantial application not only in physics,
through quantum mechanics [14,15], quantum statistical mechanics [59], and quantum
information theory [36], but also in harmonic analysis [57,81], ergodic theory [52], geome-
try [21], and random matrix theory [62]. There have also been substantial developments
in quantum and noncommutative probability, including deep results on martingales,
probabilistic inequalities, and stochastic processes (see, for example, [12,23,47,45,65])

It is then natural for us to ask if more subtle results in probability such as the Komlds
theorem can be extended to noncommutative probability, and indeed, Randrianantoan-
ina was able to develop a partial noncommutative extension of the Komlds theorem. In
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order to make sense of the result in the noncommutative setting, almost everywhere con-
vergence is replaced by bilateral almost uniform convergence. Noncommutative notions
of almost everywhere convergence are defined and discussed in Section 2.

Theorem 1.5 ([75, Theorems 8.1, 3.8]). Let M be a semifinite von Neumann algebra,
with a distinguished faithful normal semifinite trace 7. Fix 1 < p < co. If p = 1, we
additionally require that M is hyperfinite.

Let (fo)pzy C LP(M,T) satisfy sup,>q || fll, < oo. There exists a subsequence
(9n)521 C (fn)22y, and an operator f € LP(M,T), such that for every subsequence
(hn)221 C (gn)22 4, the sequence of Cesdro means,

1 =
- h ,

converges to f bilaterally almost uniformly.

Randrianantoanina concludes his result by asking if the hyperfiniteness condition can
be removed for L!-bounded sequences [73, Problem 3.15]. This is an important question
not only because it is often natural and necessary to work with von Neumann algebras
which are not hyperfinite, but because the techniques Randrianantoanina used closely
parallel those in classical analysis. A resolution of this problem then requires substantial
new methods for the study of almost everywhere convergence. Here we give an affirmative
answer, proving the Komlds theorem for arbitrary finite von Neumann algebras. We also
extend the Révész theorem to the noncommutative setting, which had not been studied
before.

The key to our resolution of Randrianantoanina’s problem is an appeal to ultrapower
techniques. In particular, the Révész and Komlés theorems are traditionally proved by
passing to simple functions, each contained in a finite dimensional subspace. This is
most clear in Randrianantoanina’s proof [73], wherein the hyperfinite structure of the
algebra induces a natural martingale filtration. At each stage of the filtration, the finite
dimensional spaces allow one to pass from weak to strong convergence. Then, having
strong convergence, one may apply the Doob martingale convergence theorem to pass to
bilateral almost uniform convergence.

Rather than appealing to an internal structure, such as given by hyperfiniteness, to
determine bilateral almost uniform convergence, we appeal to an external structure, given
to us by iterated ultrapowers. Namely, we consider the countably iterated ultrapower
of the noncommutative L?-space, and then show that this forms a filtration of some
large external von Neumann algebra. We then show in Section 4 that the maximal
inequalities, given here by the Doob martingale convergence theorem, induces bilateral
almost uniform convergence in the original algebra. This completes the missing part of
the puzzle, allowing the result to be extended to arbitrary finite von Neumann algebras.
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While ultrapower techniques stem from model theory, their use in Banach space theory
is extensive, yielding many difficult results. The interested reader should consult the
papers of Heinrich [39], and Sims [80], as well as the book of Diestel, Jarchow, and
Tonge [26]. Moreover, while (finitely) iterated ultrapowers have been studied in the
Banach space setting, they have been very poorly researched for von Neumann algebras
and noncommutative integration.

After recalling the basic details of noncommutative integration, noncommutative mar-
tingales, and bilateral almost uniform convergence in Section 2, we develop the theory of
iterated ultrapowers of von Neumann algebras, and their martingale structure, in Sec-
tion 3. The key difficulty of the paper lies in the proof of Theorem 4.2, which requires
a careful diagonalisation argument, and is proved in Section 4. Coarsely, we may under-
stand Theorem 4.2 as a very specialised diagonalisation result. If a family of bounded
sequences can be made to correspond to a martingale difference sequence, associated to
the iterated ultrapower of a finite von Neumann algebra, then we may find a sequence of
terms derived from the family of sequences, such that weighted series over these terms
converge bilaterally almost uniformly, and so that the series also converge as such for
series over any further subsequence.

Having shown this result, the proofs of the noncommutative Révész and Komlos theo-
rems are not too far removed from the classical proofs, with the key changes being those
necessary modifications for noncommutative integration, and some setup to work with
the iterated ultrapower construction. In Section 5 we prove the noncommutative Révész
theorem, and in Section 6 we prove the noncommutative Komlds theorem.

2. Background

In this section we review the necessary aspects of the theory of noncommutative in-
tegration. In particular, we discuss noncommutative LP-spaces, and the various modes
of convergence which we will study throughout the paper, and we will prove some sup-
plemental lemmas. Moreover, we will review the necessary aspects of maximal functions
in the noncommutative setting, as viewed through vector-valued noncommutative LP-
spaces, and their application through the noncommutative Doob maximal inequality.

For any necessary background on von Neumann algebras, see the books of Takesaki
[83], and Stratild and Zsid6 [82], and for further information about noncommutative
integration, see the survey of Pisier and Xu [72].

2.1. Noncommutative measure and integration

Let M be a semifinite von Neumann algebra, acting upon some fixed Hilbert space
H, and let 7 be a faithful normal semifinite trace over M.

A closed, densely defined operator z : Dom(z) — #H, with Dom(z) C H, is said to be
affiliated to M, if z commutes with every unitary operator in the commutant M’ of M.
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An operator z, affiliated to M, is said to be T-measurable if for every ¢ > 0, there
exists a projection p € M, such that 7(p) < ¢, and (1 — p)H C Dom(z). Let S(M, 1)
denote the space of all T-measurable operators.

For any 0 < p < oo, the noncommutative LP-space over M is defined by the set

LP(M,7) ={x € SIM,7) : 7 (]z]") < 0},
and is endowed with the norm
1 P
lall, = 7 (J=") ",

for each z € LP(M, 1), where |z| = (z*x)"/? is the modulus of x.

For p = oo, let L>(M,7) = M, and is endowed with the norm |-|| ., = ||-[| »,-

For any fixed 1 < p < oo, we will call a sequence (z,)52; C LP(M, 1) LP-bounded if
U1 ], < 0.

Much as for classical function space theory, we may define a weak and a strong topol-
ogy upon LP(M, 1), with 1 < p < co. The strong topology is simply the topology induced
by the LP-norm, and the weak topology is the o(LP, L?)-topology, where ¢ is the conjugate
exponent of p. As in the classical setting, L?(M,7) is weakly sequentially compact.

For any 7-measurable operator € S(M, 7), the decreasing rearrangement of z is the
function u(t; z), defined by

p(t;z) =inf {s > 0: 7 (X(s00) (J2]) < 1)},

for all real numbers ¢ > 0, where x (s o0)(|2|) is the characteristic function of |z|, over the
interval (s,00), as given by the functional calculus.

2.2. The measure topology

In order to bridge convergence in the LP-norm, and convergence “almost everywhere”,
we may appeal to a natural topology on the space of measurable operators. The measure
topology on S(M,7) is the linear Hausdorff topology, generated by the fundamental
system {V(e,6) : €, > 0} of neighbourhoods around zero, where for any €, > 0,

Ve, ) = {z € S(M, 7) : there exists a projection p € M,
such that |lzp||,, < e and 7(1 —p) <6}

The measure topology is used throughout in order to pass from convergence in the
LP-norm to bilateral almost uniform convergence.

Lemma 2.1 (/29, Theorem 3.7]). For any 0 < p < oo, let (x,)22 ¢ and x lie in LP(M, T).
The following are equivalent.
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i. The sequence (x,,)°° ; converges strongly to x, that is

nh—{& |z —znll, = 0.

1i. The sequence ()52, converges to x in the measure topology, and
Jim [lzg |, = [lzall, -

The measure topology also allows us to recover noncommutative analogues of impor-
tant results in measure theory.

Lemma 2.2 (/29, Theorem 3.5]). Let (x,)52; be a sequence of positive T-measurable
operators, which are convergent in the measure topology to some x € S(M, 7).

i. (Fatou’s Lemma)

T(z) < hggloréfT(xn)
it. (Monotone Convergence Theorem) If x, < x for each n > 1, or if p(t;z,) < p(t;x)
for eachmn>1 and t > 0, then

T(z) = nlLH;O 7(z4).
Lemma 2.3 (Noncommutative Borel-Cantelli Lemma [77]). Let (pn)32, be any se-
quence of projections in M. If Y00 7(p) < oo, then T(A\,~; VienPr) = 0, and
limy, 00 7(V e, ) = 0.

2.8. Almost uniform convergence

It is not immediate how one should define almost everywhere convergence in the non-
commutative setting, as we cannot speak of points on which a function acts. While many
noncommutative analogues of almost everywhere convergence have been studied, origi-
nating with Segal’s investigation of “nearly everywhere” convergence [79, Section 2.6], we
will study almost uniform convergence, which arises naturally through Egorov’s theorem.

Theorem 2.4 ([38, §21, Theorem A]). For any measure space (X, u), let E be a mea-
surable set of finite measure. If (f,)22, is a set of measurable functions over E, which
converge almost everywhere to a measurable function f, then for everye > 0, there exists

a measurable subset F' C E, such that u(F) < e, and ()52, converges uniformly to f
over E\ F.

This leads to a description of almost everywhere convergence without reference to
individual points.
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Definition 2.5. A sequence (z,,)22; of T-measurable operators is said to converge almost
uniformly to x € S(M, 1) if for every € > 0, there exists a projection p. € M, such that
T(1 —p) < &, and limy, o0 || (. — Zp)pe|l o = 0.

The sequence (x,)22; is said to converge bilaterally almost uniformly to x if for
every € > 0, there exists a projection p. € M, such that 7(1 — p.) < e, and

lim,, o0 [|pe (2 — xn)pEHOO =0.

It is clear that every almost uniformly convergent sequence is necessarily bilaterally
almost uniformly convergent, however there are bilaterally almost uniformly convergent
sequences which are not almost uniformly convergent (see, for example, [25, Corollary 6.4,
Example 6.5]).

In the commutative setting, almost uniform convergence recovers almost everywhere
convergence, even for spaces with infinite measure.

Theorem 2.6 (/38, §21, Theorem B]). If (fn)22, is a sequence of measurable functions
which converge to f almost uniformly, then (fn)52, converges to f almost everywhere.

We note that over a measure space of infinite measure, almost uniform convergence is
stronger than almost everywhere convergence. For example, consider the counting mea-
sure over the positive integers, and the sequence of characteristic functions (X(1,n))ne=1-
The sequence converges everywhere to the identity function 1 = x[1 ), however it does
not converge almost uniformly. That is to say that on spaces of infinite measure, almost
everywhere convergence is strictly weaker than almost uniform convergence.

Throughout, the following results concerning almost uniform convergence will be use-
ful.

As for function spaces, every sequence convergent in the measure topology contains a
subsequence which converges almost uniformly.

Proposition 2.7 ([31, Proposition 1]). If ()22, € S(M,T) converges to zero with re-
spect to the measure topology, then there exists a subsequence (y,)52 1 C (z)52 1, which
converges almost uniformly to zero.

Almost uniform convergence is also well behaved with regard to addition of sequences,
and Cesaro averages.

Lemma 2.8 ([77]). For any two sequences ()21, (yn)o2; C S(M, T), such that (x,)52
converges (bilaterally) almost uniformly to x € S(M, 1), and (y,)52, converges (bilater-
ally) almost uniformly to y € S(M, 1), we have that (z, +yn)5>, converges (bilaterally)

almost uniformly to x + y.

Lemma 2.9 ([77]). Let (z,)22, C S(M, T) be any sequence of measurable operators which
converges (bilaterally) almost uniformly to zero. For any 1 < p < oo, the sequence
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1<\
k=1 k=1

also converges (bilaterally) almost uniformly to zero.

It is interesting to note that even in the classical setting, convergence in measure is
not well behaved with respect to the Cesaro averages. A sequence which is convergent
in measure may have Cesaro averages which diverge in measure, and a sequence which
vanishes in measure may have Cesaro averages which converge in measure to the identity.
For details of these constructions, see Bikchentaev and Sabirova [13, Section 3.4].

The following lemma is a mild extension of [73, Proposition 2.3].

Lemma 2.10 ([77]). Let 1 < p < oo, and let (x,)52, C LP(M,T).

i IS [|2nll, < oo, then the series o2 | @, converges bilaterally almost uniformly.

W Ifp=2,and> ", ||acn||§ < 00, then the sequence (x,)5%, converges almost uniformly
to zero.

Our final lemma regarding almost uniform convergence is a minor extension Kroneck-
er’s lemma, showing that it holds much as expected, with regard to both convergence in
the LP-norm, and almost uniform convergence.

Lemma 2.11 (Kronecker’s Lemma for LP-Operators [77]). Fiz 1 < p < oo. For any
sequence (2,)22, C LP(M,T), such that Y .~ x, € LP(M,T), and any sequence
(b))%, C C, such that (|bn|)S%, is an increasing sequence, with lim, o b, = 00, we
have that

n

1
lim — Z by = 0,

n—o0 by, —

where the limit is taken in the LP-topology.
If Y20 | @y is converges (bilaterally) almost uniformly, then the sequence

1 & -
k=1 n=1
converges (bilaterally) almost uniformly to zero.

2.4. Integration for diffuse von Neumann algebras

A von Neumann algebra is said to be diffuse, or (purely) non-atomic, if it contains no
minimal projections. While many results in noncommutative integration are stated for
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diffuse von Neumann algebras, they may be extended to arbitrary finite algebras through
a careful choice of embedding.

In particular, we appeal to the following result, which is key to simplifying our proof
of the Komlés theorem. The general theory of symmetric spaces is unnecessary for our
work here, however the interested reader may consult Krein, Petunin, and Seménov
[56, Section II.4] for the classical theory, and Dodds, Dodds, and de Pagter for the
noncommutative theory, and the definition of E(M, ) [27].

Proposition 2.12 (/28, Proposition 2.7]). Let E be a separable symmetric function space,
which satisfies the Fatou property, and acts upon (0, 00). Let M be a diffuse von Neumann
algebra, with a distinguished faithful normal semifinite trace 7.

For any sequence (x,)22, C E(M,T), of self-adjoint operators, such that

SUP,>1 [|Znll g, -y < 00, there exists a subsequence (x7,)72; C (wn)ly, which satis-
fies the following properties.

o0
n=1

i. The sequence (z),) admits a splitting

w%:yn+zn+dn7

for each n > 1, such that (y,)S2 1, (2n)5%;, and (d,)S2; are bounded sequences in
E(M,T).

it. The sequence (y,)22, consists only of equimeasurable operators, which is to say that
Jor every n =1, p(t;yn) = p(t;y1).

iii. The sequence (z,)52, converges to zero in the measure topology.

9]
n=1

iv. The sequence (d,) converges to zero in the norm of E(M,T).
If, additionally, M is a finite von Neumann algebra, and the sequence ()52, is weakly
null, in the Banach space sense, then the sequences (y,)%2, and (2,)52, may also be

chosen as to be weakly null.

It is sufficient for us to find a subsequence which admits a splitting into equimeasurable
operators, and a sequence which converges in measure to zero.

Consider, for an arbitrary von Neumann algebra M, the tensor product N =
M®EL*>([0,1]; 1), where p is the Lebesgue measure. We may embed M into A with
the map z — z ® 1, where 1 is the identity of L>°([0, 1]; ).

Then let 7 be a distinguished faithful normal tracial state on M. If 7 = 7 ® [(-)dp,
then p(t;z) = p(t;z ® 1), for any 7-measurable operator x, where the rearrangement on
the right is relative to 7.

As the decreasing rearrangements are the same, any equimeasurable operators in M®1
will also be equimeasurable in M, and the measure topology on M ® 1 is homeomorphic
to that on M.

The following lemma is then clear from Proposition 2.12.
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Lemma 2.13. Let M be an arbitrary finite von Neumann algebra, with a distinguished
faithful normal tracial state 7. If (1,)5%, C L*(M,7) is an L'-bounded sequence of

n=1
0o
n=1

self-adjoint operators, then there exists a subsequence () C ()54, satisfying the

following properties.

i. For each n > 1, there exists a splitting

!/
mn :yn+zna

such that the sequences (y,)S%,; and (z,)°%, are L*-bounded.

it. The sequence (yn)22, consists only of equimeasurable operators, which is to say that
for every n > 1, p(t;yn) = p(t; y1).

iii. The sequence (2,)52, converges to zero in the measure

Moreover, if (x,)22, is weakly null, then the sequences (yn)$, and (z,)22; may also
be chosen as to be weakly null.

For further details on the embedding of von Neumann algebras into a diffuse algebra,
see [29,19,28].

2.5. Noncommutative vector-valued LP-spaces and mazimal inequalities

One of the substantial difficulties in the study of noncommutative analogues of almost
everywhere convergence is that there is no notion of a maximal operator. Pisier [70]
reconciled this difficulty by studying vector-valued noncommutative LP-spaces associated
to hyperfinite von Neumann algebras. This construction was later extended to arbitrary
von Neumann algebras [47], and serves as a powerful substitute for the lack of maximal
operators. Indeed, in the commutative setting, a sequence of functions lies in the vector-
valued LP-space if and only if the maximal function lies in the corresponding LP-space
[24]. Here we will review the necessary aspects of the theory of noncommutative vector-
valued LP-spaces.

Let M be a semifinite von Neumann algebra, with distinguished faithful normal semifi-
nite trace 7. For 1 < p < oo, the vector-valued noncommutative LP-space LP(M; %) is
the space of all sequences (2,,),en € LP(M), which admit a factorisation of the follow-
ing form. For some a,b € L?’(M), and a sequence (¥, )nen in M, x,, = ay,b, for each
n € N. The norm of a sequence (2, )pen € LP(M;£>) is defined by

IGnenllo ey = inf {500 sl 101}
neN

where the infimum runs over all suitable factorisations of (z,,)nen. The space LP(M; £°°)
is then a Banach space under this norm, for all 1 < p < cc.



12 M. Junge et al. / Journal of Functional Analysis 280 (2021) 108782

We note that if (2,),en 1S a sequence of positive operators, then (2,)pen €
LP(M; ) if and only if there exists a positive operator a € LP(M), and a sequence
of positive contractions (y,)neny € M, such that z,, = a"/?y,a"/?, for each n € N [52,
p. 392]. In particular, given such a factorisation, z, < a for all n € N, and

|@nnenlzagagemy < inf {llal, }

where the infimum is taken over all positive operators a € LP(M), such that z,, < a for
alln € N.

Note that we may also consider finite sequence variants of such vector-valued LP-
spaces. For any fixed integer m > 1, and any 1 < p < oo, let LP(M;£2°) denote the
space of all sequences (x,)" ; C LP(M), which admit a factorisation of the following
form. For some a,b € L?’(M), and a sequence (y,)™ ; in M, x, = ay,b, for each
1 <n < m. The norm of a sequence (z)nen € LP(M;L32) is defined by

Il gy =08 {50 Tl 101, |
1<n<m

where the infimum runs over all suitable factorisations of (x,,)™ ;. The space LP(M; £22)
is similarly a Banach space under this norm.

In order to pass from a maximal bound, such as knowing that (z,),en € LP(M; £)
to bilateral almost everywhere convergence, we will relate the sequence of operators to
those support projections for which every operator in the sequence attains a minimal
height. To do so, we modify the “column tail probability”

Probe (sup lzn | > t) = inf {s >0:e€Proj(M); 7(1—e) <s, sup ||zpel, < t} ,
neN neN
introduced in the thesis of Konwerska [55, Definition 3.15], which was also further studied
in by Zeng [89]. We may then find a Chebyshev type inequality, which relates the norm of

the maximal LP-space and projections on which the sequence of operators are uniformly
bounded.

Definition 2.14. Given a sequence of self-adjoint operators (., )pen € S(M, 7), the maz-
imal rearrangement function

1 (t; (zn),en) = inf {s >0:e€Proj(M), 7(1 —e) <s, sup |lexpel < t} :
neN

We may now extend [55, Lemma 3.16] to a give bilateral tail variant of the Chebyshev
inequality.

Lemma 2.15. For any fized 1 < p < 00, if (Zn)nen € LP(M; L) is a sequence of self-
adjoint operators, then
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o) < oo
for allt > 0.

Proof. By characterisation of the space LP(M;{>), there exists a sequence of pos-
itive contractions (yn)neny € M, and a positive operator a € LP(M), such that
z, = a’*y,a'/? for each n € N [52, p. 392]. As such, let e = X[O,t](al/z). We then
have that

||exne||oo = HX[O,t] (al/Q)Jan[()’t] (a1/2) HOO

‘ o

= HX[O,t](a1/2)a1/2yna1/2X[07t] (a”?)

=t

for each n € N. To see that e lies in the set of projections which the infimum of the
maximal rearrangement runs over, let us find a suitable estimate,

T(l—e)=71 (X(t,oo) <a1/2>)

2p
=T (X(t,oo) (al/Q) )
1/2 2p
a
o ((m )

<t}

This inequality holds for all a for which the factorisation a"/?y,a"?> = x,, and so if we
take the infimum, the result follows from the characterisation of vector-valued noncom-
mutative LP-spaces. 0O

Remark 2.16. If Lemma 2.15 is an analogue of the Chebyschev inequality, then it is natu-
ral to ask about maximal analogues of weak LP-spaces (see, for example, [9]). If one views
the maximal rearrangement function as an extension of the decreasing rearrangement to
sequences, then we see that the space AP'*°(M;¢>°) studied in [43,44,46] may be under-
stood as the noncommutative weak LP-space given when one substitutes the decreasing
rearrangement by maximal rearrangement. Similarly, the “weak column quasi-norm”,
defined in [44, p. 1481], is given by substituting the decreasing rearrangement by Probc.

2.6. Noncommutative martingales

Finally, let us briefly recall the necessary details of noncommutative martingale theory,
and present a suitable restatement of the noncommutative Doob maximal inequality. The
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interested reader should consult any of [22,71,47] for further details on noncommutative
martingales.

Let M be a finite von Neumann algebra, with a distinguished faithful normal tracial
state 7. Let (My)nen be an increasing sequence of von Neumann subalgebras of M,
such that J, cpy My is w*-dense in M. We will call the sequence (My,)nen a filtration
of M.

Given a von Neumann subalgebra N' C M, a conditional ezpectation is a map & :
M — N, which is a positive contractive projection. Say that the conditional expectation
& is mormal if the adjoint map £* satisfies £*(M,) C N.. For any normal conditional
expectation £, there exists a map &, : M, — N, whose adjoint is £, and so we may
assume without loss of generality that £ extends to L'(M).

We will always assume that given a filtration (M,,),en of N, there exists a normal
conditional expectation &, : M — M,,, for each n € N.

A noncommutative martingale, with respect to the filtration (M), en is a sequence
(Tn)nen in LY(N), such that for every n € N, &,(x,11) = @,,. As for a classical mar-
tingale, we may equivalently consider a noncommutative martingale difference sequence
(dxp)22,, defined by dzpy1 = Tpt1 — Tp, for all n > 1, and dzy = 2. It is immediate
that a sequence (dr,,)°; in L'(M) forms a martingale difference sequence if and only
if £,(dzy41) =0, for every n > 1.

A noncommutative martingale is said to be L'-bounded if sup,cy ||znll; < oo, in
which case there exists an operator z € L'(M), such that x, = &,(z), for each n € N.
Similarly, a noncommutative martingale is said to be L?-bounded if sup, ¢y [znll, <
oo. It is expedient for us to appeal to Pisier and Xu’s characterisation of L?-bounded
martingales.

Theorem 2.17 ([71, Theorem 2.1]). A noncommutative martingale sequence (Tn)nen in
L?(M) is L?-bounded if and only if (z,)nen € H2(M).

Here, H?(M) is the noncommutative Hardy space, for p = 2, with the norm given by

@)nenl = masx { | (dn)nen o aazy 1 (d2n)nenlaanesy | -

The spaces L?(M; (%) and L?(M; (%) are column and row vector-valued noncommuta-
tive L2-spaces, with these further norms given by

1/2
||(d$n)neN||L2(M;g2 = |d$n|2 )
C

neN 2
and

1/3
* 2
H(dxn)neNHLZ(M;e%) = ( § |day, | )

neN 9
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Key to our extension of the Révész and Komlés theorems to finite von Neumann
algebras is the noncommutative Doob maximal inequality, which we present here in
terms of vector-valued LP-spaces.

Theorem 2.18 ([47, Theorem 0.2]). Let M be a finite von Neumann algebra, with a
distinguished faithful normal tracial state 7. Assume that (Mp).eN s an increasing
filtration of M, with associated normal conditional expectations &, : M — M,,, for each
n € N.

For any fized 1 < p < 0o, and any operator © € LP(M), there exist operators a,b €
L? (M), and a sequence of contractions (yn)nen € M, such that E,(x) = aynb, for each
n € N, and [lally, [|blly, < Ky [|z]],, for some constant K, > 0.

In particular, the martingale (€,(z))nen is contained in LP(M;€>°), and

IEn @) Lo (atieey < Kp Il -
3. Iterated ultrapowers of von Neumann algebras

The key to our proof of the noncommutative Komlos and Révész theorems lies in find-
ing a substitute for the natural filtration induced by hyperfiniteness. While martingale
structures are a convenient tool to prove almost uniform convergence (see, for example,
[30]) such convergence is intrinsic to the von Neumann algebra. However, without an
internal structure (e.g. the hyperfinite filtration) to reveal this behaviour, we look for a
suitable external structure. This structure is provided by the theory of iterated ultra-
powers, and studying martingales in the algebra given by the limit of these iterations.
In this section we will review the construction of ultrapowers of finite von Neumann
algebras, and the structure of the associated L,-spaces. In doing so, we will also discuss
the embeddings of noncommutative LP-spaces into their ultrapowers, and how one may
return to an algebra from its ultrapower. We will also discuss the theory of iterated
ultrapowers of von Neumann algebras, and the corresponding martingale structure.

3.1. Ultrapowers in noncommutative integration

Let us start with the basic theory of ultrapowers of Banach spaces, as detailed in
the paper of Heinrich [39], the book [26], and then we will discuss ultrapowers for von
Neumann algebras, and noncommutative LP-spaces.

An ultrafilter % over a set X is a collection of subsets of X, such that the following
conditions are satisfied.

i Xe¥,and o ¢ %.

ii. f E,Fe€%,then ENF €Y.

iii. f FEe%,and ECF,then FF € %.

iv. For any set E C X, either E € Z,or X\ E€ % .
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An ultrafilter % is said to be non-principal, or free, if there does not exist a set A C X
such that

% ={ECX:ACE}.

For our purposes, ultrafilters are useful because they allow us to extend the notion of
limits to non-convergent sequences.

Let % denote an ultrafilter over the index set I. A family (z;);e; C X is said to
converge along % to x € X if for any open neighbourhood O of X, the set

{iel:x; €0}
is an element of 7. Denote this point by

r = limx;.

Z7

The limit is unique, if the topology is Hausdorff.

The limit along an ultrafilter may be defined as such with respect to any topology
on X.

If X is a Banach space, a family (z;);c; C X is said to converge along % to x € X,
if for every € > 0, the set

{iel:|la;—z||y <e}
is an element of %/. Again, this is denoted by
r = limz;.
2

For a given Banach space X, and an index set I, let
(2 X) = {(,’L‘i)ie[ :x; € X foralli € I, and su? |zl x < oo} .
1€
Under the norm
[[(@i)ierll = sup [zl x »
el

¢>(I; X) forms the Banach space of all bounded X-valued sequences over I.
Given a non-principal ultrafilter % over N, and a Banach space X, the (Banach space)
ultrapower is defined to be the quotient space

X9 =0°(N; X))/ Ny,
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where
Sy — {@n)neN € (N3 X) « iy [l = 0}-

We may also denote X“ by X§, when we wish to make the choice of ultrafilter explicit.
Note that the quotient norm on X“ may be evaluated simply as the limit over the
ultrafilter [39],

Cza)ierll o =l flallx -

It is tempting to define the ultrapower of a von Neumann algebra in a similar manner,
and indeed one may very successfully do so following the Groh—Raynaud construction
[34,74]. However, there are substantial costs associated to this construction, in that the
ultrapower of a semifinite and o-finite von Neumann algebra need not again be semifinite,
nor o-finite [2]. Instead, we will study the Ocneanu construction [64], which extends the
prior constructions of McDuff [61] and Vesterstrgm [87]. For complete proofs of the
properties of the Ocneanu construction, see [64,2,37].

Let % be a non-principal ultrafilter over some index set I, and let M be a o-finite
von Neumann algebra, with a distinguished faithful normal semifinite trace 7.

Consider the two-sided closed ideal

I = {(xi)iej : hr@rlw(xfxl) = 0} ,
contained in ¢*°(I; M). The quotient space
MY = My = 12(, M) I

is not only a C*-algebra, but also a von Neumann algebra. Moreover, if M is finite, then
so too is M“. Let

mA(EM) = M® (3.1)
denote the quotient map, defined for each sequence (z,,)nen € £°°(1; M) by
m ((zi)iel) = (%i)ser>

where (z;)j.; denotes the equivalence class of (x;);cr in M®.
The algebra M“ admits a faithful normal tracial state,

T (T) = 11% 7(x4),

where T = ()5
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Note that we never consider the Banach space ultraproduct of M, and so the notation
M is unambiguous for our purposes.

Before we may consider the iterated ultraproduct construction, we must find what
Hilbert space M*“ acts upon. Assume that a von Neumann algebra acts upon the Hilbert
space H. Following Raynaud [74, Section 1], let H* denote the ultrapower of H. There
exists a unital isometry

j: B(H)* = B(HY),
defined by the map

G(T)(@) = (Ti(xi))ier

where T = (T3)3e; € B(H)¥, and & = ()5c; € H®. Note that H* is indeed a Hilbert
space, as it may easily be verified that it satisfies the parallelogram identity. This in-
clusion will be necessary for us to define the iterated ultrapower of a von Neumann
algebra.

Let us now return to noncommutative LP-spaces. Given that LP(M¥) £ LP(M)¥,
how should we understand the relationship between the McDuff ultrapower, and the
ultrapowers of noncommutative LP-spaces? To start, we do have the following inclusion,

LP(M® 19,) < LP(M,T)%,

and more precisely, the noncommutative LP-space associated to the McDuff ultrapower
is a corner of the ultrapower of the LP-space associated to original algebra. We are then
able to find an explicit condition for when an element of LP(M, )% lies in LP(M% 14 ),
following the technique of [37].

For 1 < p < o0, let Y? denote the closure of ¢°(I; M) in ¢>°(I; L?(M)). By [37,
Lemma 2.13], the quotient map 7, defined by (3.1), admits a unique bounded extension,
7:YP — LP(M¥,19), such that for any (z;);c; € Y?,

7 ((@i)ie) | o (pme 70y = lim 120l Lo (a7 -
Let p : £°(LP(M, 7)) — LP(M,7)* denote the quotient map given by the ultrapower

construction. As noted following [37, Lemma 2.13], there exists a unique isometric em-
bedding ¢ : LP(MY) — LP(M)“, such that the following diagram commutes,

/£

yr 2 LP(M

As this embedding holds for all 1 < p < oo, we may unambiguously represent any element
of LP(M¥) as an equivalence class of sequences, by considering its representation ¢(x) €
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LP(M)¥. We will not distinguish between an element of LP(M%) and its equivalence
class representation in LP(M)“.

We may determine if some element of LP(M)“ is an element of LP(M?), using the
following lemma.

Lemma 3.1 ([51, Lemma 18]). Let 1 < p < oo, and let T = (x;)5c; € LP(M, 7). If
((|lzs|")icr)® € LY(M,7)% is uniformly integrable, in the sense that for all e > 0, there
exists K > 0 such that

7 (Jzi]” X(x,00) (|2i])) <,
foralli eI, then
T € LP(MY, 19).

Remark 3.2. Note that if a sequence (z)ren is equimeasurable, then (|xg|”)ren is uni-
formly integrable. This is immediate from the definition of the decreasing rearrangement.

We wish to consider an increasing sequence of the form
M ng C (Mw)w C ((Mw)w)w C---,

contained in some enveloping algebra, such that we have a filtration of a finite von
Neumann algebra. This sequence of embeddings provides the foundation of the exter-
nal structure that we require in order to prove our results. We will first consider the
inclusions, and then we will consider the enveloping structure.

It is easy to verify that the constant mapping k¢ : M — M¥, defined by x — = =
(x)3c defines an isometric and injective *-homomorphism. In the reverse direction, we
expect that as M is finite, there should be a normal conditional expectation Eg : M* —

M.
Proposition 3.3. The mapping Eg : M¥ — M, defined by
Eo(7) = lim z;
o(T) lim z;,

where T = (2;)c; € M¥, and with the limit taken with respect to the weak operator
topology on M, forms a normal conditional expectation, and extends to L*(M®), by

Eo(Z) = w- 113/1 zi,

for T = ()%, € LY(M®), where the limit is taken L'-weak topology, that is the
o (LY (M), M)-topology.
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For 1 < p < oo, it follows by interpolation that the conditional expectation extends to
LP(M*), and is defined by

Eo(Z) = w*-LP-lim x;,

27

Jor © = (x;)}c; € LP(M®), where the limit is taken in the weak*-topology on LP(M®).

Proof. These results are known, but are detailed here for the reader’s convenience. We
repeat here the details of the construction given in [49, Section 2.2], see also [3, Propo-
sition 2.4]. Consider the constant mapping ro : L'(M) — L'(M¥), which is trace
preserving, and as such must be isometric. Let

EO = (/ﬂ?o)* MY - M
be the adjoint map, explicitly given by

Eo(Z) = wo- 111021;1 x4,
for each T = (x;);c;r € M%, where the limit is taken with respect to the weak operator
topology. Note that such a limit exists on any representative element (x;);c5 € €°°(I; M),
as the sequence is bounded, and is well-defined, as the equivalence class (z;).; is defined
to be the set of all sequences with null differences in the L?-topology.
To verify that this is indeed the conditional expectation, let us consider trace invari-
ance. For any operator y € M, and any T = (z)nen € MY, we have that

T(Eo(7-y)) = 7(Eo(@)y = 7 (wn)nen - Eg(y)) = lim 7(any),
where the multiplication Z - y is given by the natural M-bimodule structure of M,
such that Z -y = (z,y)} - It is then clear that this is the correct construction for the
conditional expectation.

It is immediate that E is a normal conditional expectation on M%, as it is necessarily
contractive, trace preserving, and invariant on the embedding xo(M), in the sense that
Eg o kg is the identity map on M.

We then wish to extend Eg, using the density of M* in L!(M¥), and continuity given
by normality. We will denote the natural extension by

Eo: LY (M*) — LY (M),
which is defined by

Eo(7) = w-L'- hg} T,
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for all T = (z;)}c; € L'(M%), where the limit is taken over the ultrafilter, and with
respect to the weak-L! topology. Note that as L'(M¥) embeds into L*(M)“, we may
see that this limit is again well defined, in much the same way as for the conditional
expectation from MY to M.

As LP(M¥) is constructed with respect to a tracial state, we have the inclusion
LP(M¥) C LI(M¥), for any 1 < p < ¢ < oo. Again, let us note that for any ele-
ment T = (v,)8 .y € LP(MY¥), and any 1 < p < oo, every representative sequence
(Zn)nen is bounded in the LP-norm. Then, we may apply [88, Theorem V.1.3], which
states that for a norm-bounded sequence, it is sufficient for weak convergence to only
consider functionals from a strongly dense subset of the dual. In particular, the conver-
gence holds for all functionals in L>(M®), the weak limit in L'(M¥) is sufficient to
determine weak-LP convergence. That is to say that the conditional expectation [Eq then
may be restricted from L'(M%), and explicitly calculated by

Eo(Z) = w*-LP-lim 2,
W%
for T = (x;)}c; € LP(M¥), where we may now consider the weak*-topology, as this
coincides with the weak topology. O

Let us now consider a sequence (Uy),en of non-principal ultrafilters, each over the
natural numbers N. Let M%! = %, and let us inductively define M+ for each
n >1by M@t = (M“™)e . For each von Neumann algebra M, let 7,, denote the
trace given inductively by the ultrapower construction, starting with the trace 7 on M.

It is clear that the constant inclusion mapping M“"™ < M%7+l may be used to
define the sequence of inclusions

Mng,lgMW,QQ'”Mw,nng,nJrlC”"

however it is not apparent how we may easily express the elements of M“"™ which are
equivalence classes of equivalence classes of equivalence classes. To make these spaces
easier to work with, let us consider the (tensor) products of ultrafilters.

Definition 3.4. Given ultrafilters % and ¥ over the natural numbers, the product ultra-
filter is defined to be the set

URYV={SCNxN:{seN:{teN:(s,t)eSteU}eV}.

Although not immediate, we will see that this is a natural definition for the product of
ultrafilters. It is also important to note that if %7 and ¥ are non-principal, then % ® ¥
is also non-principal [80, Proposition 13.1]. The reader is also warned that the ordering
of the product  ® ¥ is sometimes reversed in the literature.

We would like to prove the finite iteration theorem for ultrapowers of von Neumann
algebras, which states that the ultrapower of an ultrapower is again an ultrapower. To



22 M. Junge et al. / Journal of Functional Analysis 280 (2021) 108782

do so, let us first consider the iteration of limits over ultrafilters. The following lemma is
an immediate modification of [16, Theorem 1.3], which is stated for convergence of real
numbers, although the proof remains identical for convergence in a Banach space.

Lemma 3.5. For any two ultrafilters % and ¥, we have that for any sequence (1) keN
in a given Banach space X, the iterated limits over % and ¥ may be amalgamated into
a limit over % @ ¥, in the sense that

limlimzx; = lim x5
i ky " ikaey T

where each limit exists if and only if the other does.

It is also clear that the amalgamation of limits also applies to convergence over ultra-
filters in a topological space. While we may replace the two limits with one limit over
a product ultrafilter, it is not true in general that we may commute the two limits. For
further details, see [48], which discusses a Fubini theorem for tensors in noncommutative
LP-spaces, and [60], which shows the failure of the interchange for sums.

Proposition 3.6 (/80, Theorem 13.2]). Let % and ¥ be non-principal ultrafilters over N.
For any Banach space X, there exists an isometric isomorphism

(X%)5 = XJeu-
3.2. Martingales and infinitely iterated ultrapowers

Having established the basic machinery of ultrapowers of von Neumann algebras and
noncommutative LP-spaces, let us detail the constructions which we will work with, in
order to find our necessary external structure for the proof of our key results.

We may consider the first n iterated ultrapowers of M, M“! ... M%¥" as von
Neumann subalgebras of B(H,,.), where H,, ,, is the n-th iterated ultrapower of H, the
Hilbert space that M acts upon. Namely, given a sequence of non-principal ultrafilters,
() neN, we let the iterated ultrapower of H be the inductively defined Hilbert space
Heont+1 = (Hwn)®, where the n + 1-th ultrapower is taken with respect to the ultrafilter
Uy +1. Similarly, we may inductively define the iterated von Neumann algebras, such
that M« "+ = (M“™)% again with the n + 1-th ultrapower taken with respect to the
ultrafilter %,,+1. This gives a family of inclusions, following from repeated application of
Raynaud’s isometric embedding of ultrapowers of Hilbert spaces [74], such that

B(Hwi) = BHwz2) = - BHon) = B(Hont1) = -,
which in turn gives the sequence of unital inclusions

M ML M2 s [ MET e ML
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This sequence of inclusions suggests how we may find a sensible enveloping algebra for
the family (M“™),¢cN.

Let us recall the basic aspects of the theory of inductive limits of Banach spaces. For
further details on these constructions, see [69, Section 10], and [85, Chapter XIV].

Let (E,)nen be a sequence of Banach spaces, paired with a sequence (j, : F, —
E,11)nen of isometric embeddings. Let X denote the space of all sequences (x,)neN
in the set product [], .y En, such that for all sufficiently large n, &, 41 = jn(zn). As
[0
seminorm [|(z,)nen|l x = limyen [|Znl/ g, is well-defined. Let Xo = {z € X : [[z||x = 0}

g, = lTnt1llg,,, for all sufficiently large n, for any sequence (zn)nen € X, the

denote the kernel of the seminorm. The quotient X /X is then a normed space, and we
may define E, to be the completion of X/X,. We will call the space Eo, the (inductive)
limit of the sequence { Ep, jn}, cn- One may verify that the inductive limit of a sequence
of Hilbert spaces satisfies the parallelogram identity, and so is again a Hilbert space.
Let hy : Hoyn — Hwnt1 denote the constant embedding map for the ultrapower
Hilbert spaces. The system {H, n, h"}neN
is again a Hilbert space. Let hoon @ Hun — Huo,oo denote the induced isometric

defines the inductive limit #,, oo, which

embeddings of each H, ,. These embeddings extend naturally to unital embeddings
B(Hun) < B(Huw,oo). As such, there exists an embedding of every space M into
B(H.,00)- Moreover, this embedding is compatible with the embeddings of M“™ into
M@+ in the sense that the following diagram commutes, for all n,k € N,

MO B(Hyn)

I I

Mw,n—i—k ? B(Hw,n+k) :

[

B(Hew,o0)

)

This follows immediately from the construction of each of these embeddings.
Under the embedding into B(H., ), we may consider the union

My =) mem,

neN
and define M“*° to be the w*-closure of M. We will call M“*° the iterated ultra-

power of a von Neumann algebra, although one could in principle continue to iterate the
ultrapower construction so far as set theory allows.

Proposition 3.7. The space M“*>° is a finite von Neumann algebra, with some faithful
normal tracial state To, defined on the positive cone MZ™ by

Too(T) = sUp T (1) (),
AEA
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where (xx)xen is an increasing net of positive operators in | J, oy M<™, which converge
to = in the strong operator topology, and n(A) is the least integer such that x,yy € M“™.

Proof. It is immediate that M“>*° is a von Neumann algebra, and it will follow that it is
finite if we may show that 7, is a well-defined faithful normal tracial state, as claimed.

As MY is dense in M®“*°, there must exist, for any * € M%> a bounded and
increasing net in MY which converges in the strong operator topology to x. As the trace
is necessarily normal on bounded increasing nets, the definition is natural, and well-
defined, as the conditional expectation between any two subalgebras M“™ and M“" is
trace preserving.

The construction of 7., makes clear that it is tracial, normal, and faithful. Finally, it
follows from the sequence of unital embeddings which defines M¢) that the identity of
M lies in every M“ " and as each 7, is a state, so too is 7. O

As such, we now have a “noncommutative probability space” (M“*° 7, ), and a filtra-
tion (M“™),en. The restriction 7o, | pqw.n Tecovers 7,, by construction, and so for each
n € N, there exists a conditional expectation &, : M“"*° — M®" [84, Theorem IX.4.2].
Moreover, if z,1r € M* "™ for any n,k € N, then by uniqueness of the conditional
expectation,

5n(xn+k) = (]En e} ]En+1 o---0 ]En-‘rk—Q o En-{—k—l)(xn-‘rk)- (32)

As we do not consider the space L'(M%“>), we do not need to show that &, is normal.

This construction forms the foundation of our proof, wherein we will show that suit-
able maximal inequalities hold, as a result of the noncommutative Doob martingale
convergence theorem, at the level of M,

While it will be more or less straightforward to show that the necessary bilateral
almost uniform convergence holds in the iterated ultrapower, it is not at all clear how
to show that this implies bilateral almost uniform convergence in the original algebra.
This is a subtle problem, and requires a careful construction. The following result will be
key to allowing us to drag almost everywhere convergence back to the original algebra.
Before we prove Proposition 3.9, we will need a small technical lemma. This will allow
us to decompose an element of M® into a bounded sequence in M, and a fixed element
of LI(M) of arbitrarily small norm.

Lemma 3.8. Let y = (y(j))jen € M®. For any € > 0, and any fived 1 < q < oo, there
exists a sequence (2(j))jen © M, and an operator o € LI(M), such that

y(j) = 2(j) + o,

forall j € N,

sup [|2(5)l| pg < (1 +2) 1yl v

jeN
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and |jo|, < e.

Proof. In order to find a suitable decomposition, we will use the Kaplansky density the-
orem. It is immediate that the quotient map 7, given by (3.1), is a surjective contraction
map,

m (M) - M”.
By duality, and the isomorphism L!'(M¥)* =2 M¥, we have that
LY M®) — LY M@)*™ =2 (M®)* — £°(M@)*.
Applying duality again, now to the induced map
5: LY M®) < £2°(M®)*,
we find that there exists a contractive normal surjection
s (M) - MY,

There then exists, for any z € M, with ||z|| < 1, some z** € £>°(M)**, such that
||| <1, and s*(z**) = x.

By the Kaplansky density theorem (see, for example, [53, Theorem 5.3.5]), there exists
a net (zx)rea € £°(M), such that (xx)rea converges in the strong operator topology
to x**. In turn, (s*(x)))aca converges to x in the strong operator topology. Applying
[4, Lemma 2.5], given that M is a finite von Neumann algebra, that convergence in the
strong operator topology implies that the net (s*(zy) - 1)aca, where 1 is the identity
operator, converges in the L!-topology. Moreover, by [50, Lemma 2.3], the net converges
in the L1(M%)-topology. As this is a metrisable topology, it is sufficient to consider a
sequence.

In particular, if we apply the quotient mapping m, we see that every element
¥y € M¥ is approximated in the strong L%-topology by some sequence (¥ )nen S MY,
and so there exists some y,, € MY, such that ||§—§m||q < e. We may then set
0 = w*-L8- e (§(n) — g (1)), Where § = (y(n)egs A Gin = (U (7)) g, for
each m € N.

By construction of the sequence (¥, )men, using the Kaplansky density theorem, we
have that ||| v < |9l pge- As the norm on M*® is given by a quotient norm on
£>°(M), there must exist a representative sequence (z,),en of the equivalence class gy,
such that sup, e [|2nll pg < (14€) [|Um ]| pge0» and in particular such that sup,cn [[2nll py <

(1 + ) [[9ll pe-
This gives the necessary decomposition. 0O
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Proposition 3.9. For any finite von Neumann algebra M, and any sequence (%pn)neN of
non-principal ultrafilters over N, let (M“ ™), cN denote the sequence of iterated ultra-
powers of M.

For any integer m > 1, and any choice of indices 1 < p < p < o0, consider the
sequence (Jx)7, € LP(M“1022), where gy, = (yk(j))j‘.eN, for each k. We then have that

1'1912 ||yk(j)HLi)(M;e$no) < ||27k||Lp(MW,1;Z%?) . (3.3)

)

Moreover, for any n > 1, if there exists a sequence (Yx)y, € LP(MY™;422), such that
foreach 1 <k <m, yr = (y(11,...,7n)); . i, eNs then we have that

J}ng}n jn,_lli%n_l v ]111%}1 vk (j1, J2, - -- 7jn—1ajn)||L5(M;[$;;) < ”ngLP(Mw«";éfg) - (34)

Proof. Given ()7, € LP(MY;£%), let o = H@k)}ﬂ”:lHLp(Mw_é?o). By definition of the
space LP(M®;£2°), see Subsection 2.5, there exists a decomposition for any ¢ > 0 and
each 1 < k < m, yp = azib, such that

[all 2r ey = VA + ), bllzzraey = V(L + ),

and

12kl pge < 1.

Let us fix any p, with 1 < p < p, and then let ¢ be such that /5 =1/p + /q.

Let us apply Lemma 3.8 to each Zj. Let (zx(n)),eN be a representative sequence for
Zj, for each k. Then there exists a sequence (z;,(n))nen, and an operator oy, € LY(M),
for each k, such that z(n) = 23, (n) + oy, and |ok|, < 27%e. We also have that

(2% () neNllge (g < (1 + ) 120l g -
Combining our decompositions,
yr(n) = a(n)zy,(n)b(n) + a(n)orb(n), (3.5)

for each 1 <k <m, and n € N.
Setting zx(n) = a(n)z,(n)b(n), for each 1 < k < m, and n € N, we have that

Tim (20 (m) [l oaes) < (4o = (14 6) @R o (e ez - (3.6)

) U1

Let us then find a suitable estimate on the sequence ((a(n)orb(n))neN)iey,

i [(a(m)orb(m)k=ill L aiese) < Jim S la(n)llg llowlly 16(n) |5
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3

Z 2 okl 10(2)]2,,

Jim fla(n)llzp llowllg [10(2)llz,

I
F43§§

=
Il
—

E'qs

[l ol 5],

k=1
m

<Y 27Fc(1+¢)a
k=1

<e(l+e)a.

Taking the limit over all decompositions as in (3.5), and taking the limit ¢ — 0 in the
choice of such decompositions, we have that

lim H(a(n)akb(n));cnzlHLir(M;g%:) =0.

n,%l

By the triangle inequality, and equation (3.6)

li el s o
nlg}l ”(yk(”))kfluLp(M;em)

)

< tim T (|| (a(n) 2 () | o) + @b o a )

e—0 n,@/l

—1 7.\
= lim (1 + &) | )Rl o g ) + 0
= H@k)kmzlnm(/v(w;m) )

which gives (3.3).
It is clear that the result may be iterated to give (3.4). O

4. An iterated ultrapower martingale convergence theorem

The following result is a substantial application of the Doob maximal inequality at
the level of the iterated ultrapower. It allows us to take a weakly null sequence, such that
some natural martingale in L?(M%“°) is L2-bounded, and find a subsequence such that
the series over all further subsequences converge bilaterally almost uniformly. This is not
difficult in classical proofs of the Komlés and Révész theorems, however the process of
passing back down from the iterated ultrapower is substantial, and requires a careful
diagonalisation argument. While the following result is hard, once it is shown, the proofs
of the Komlés and Révész theorems are more or less straightforward.

With the goal of applying the Doob maximal inequality, let us consider a sequence
of embeddings of a given element w € L'(M%1) into L'(M%*), such that we have a
martingale difference sequence.
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For each k£ > 1, define the mapping
T 2 £ (N; M) — £°(NF; M)

by mr(z)(ai,...,ar) = x(ag), for any indices aj,...,ar € N, and each sequence
(x(k))ren € €°(M). It is easy to see that 7, induces a well-defined mapping on MY,
which we will again denote by 7, : M“1 — M@F,

Moreover, m;, naturally extends to a mapping my : L*(M)y, — L*(M)
defined by

w,k
U@+ QU

m(2) = (T (x)(ars -5 ar))g, aen = (2(0k))g, ens

for every equivalence class T = (z(n))s . If T € L*(M)4, is such that (Jzk)* ) ken is
uniformly integrable, then (|74 (Z)(a,... 7ak)|2)a1,...,akeN is also uniformly integrable,
by the definition of the trace on M“az’/’fé___@% and so 7 also induces a bounded linear
map from L2(M®1) to L2(M“F).

Given that equimeasurable sequences of operators are uniformly integrable, as per
Remark 3.2, it follows that (|7 (Z)(aq,. .. ,ak)|2)al,,_,’ak€N is uniformly integrable, which
allows us consider 7 () as an element of L?(M%*¥), by Lemma 3.1.

Remark 4.1. If (wy)ren is a representative sequence of w € L?(M)s, , which has a null
limit in the weak-L? topology, with respect to the limit over the ultrafilter %4, then it is
immediate from the definition of the conditional expectation, (3.2), that &_1 (7 (w)) =
0, for every k > 1, and so (7 (W))ren forms a martingale difference sequence.

The following theorem is central to the resolution of Randrianantoanina’s question.
It shows that given a sequence of operators in a finite von Neumann algebra, which is
weakly null, we have that the martingale convergence structure, given by an embedding
into the iterated ultrapower, yields a diagonalisation, such that there exists a subsequence
of operators, for which all further subsequences generate series which converge bilaterally
almost uniformly. Moreover, this may be done for any countable family of weakly null
sequences, and so the following result is indeed a specialised diagonalisation argument,
which is facilitated through the machinery of the iterated ultrapower.

Theorem 4.2. Let M be a finite von Neumann algebra, with a distinguished faithful
normal tracial state 7. Then let (M“™),en denote the increasing filtration of M“*°,
following the construction discussed in Subsection 3.2.

Let (zn)neN be a weakly null sequence of equimeasurable operators in L*(M), which
is uniformly bounded in the L'-norm. Let T = (xn)%eny € L'(MY). Given a sequence
(ck)reN € €2, such that

(Z CLTk (5))
k=1 —

n=1
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is a L?(M*>°)-bounded martingale, there exists a sequence (yr)ren C (Tk)ren, such

that for every further subsequence (zx)reN C (Yr)reN, the series

[eS)
E CrRk
k=1

converges bilaterally almost uniformly.

Moreover, let ((Tk,n))kneN be a countable family of sequences, such that for every
k € N, (@kn)neN is a weakly null sequence of equimeasurable operators in L'(M). Let
T = (@pn)oen for each k € N. Given a sequence (c)ren € €2, such that

(Z CkM@k))
k=1 =1

is a L?>(M“>)-bounded martingale, there exists an increasing sequence of indices,
(Sn)neN, such that for every subsequence (tp)nen C (Sn)neN, the series

oo
E CLTk ty,
k=1

converges bilaterally almost uniformly.

Proof. The proof consists of three parts. Firstly, we must pass from convergence at
the level of L?(M%“>°) to convergence in LP(M), for some 1 < p < 2, and we will
do so in a way that gives us a sequence of maximal inequalities, each given by a limit
over the product ultrafilters. Secondly, because these maximal inequalities only hold in
the limit, we must find a sequence which approximates these inequalities, and we must
find such a sequence such that all further subsequences approximate these inequalities.
This diagonalisation argument forms the heart of the proof. Finally, we make use of the
maximal inequalities in order to find projections which show that the bilateral almost
uniform convergence holds. This will follow from Lemma 2.15.

It is clear that the claimed first result for a fixed element 7 € L'(M®) follows from
the general result for a sequence (Ty)reN, and so we only consider the later case.

Let, for each n € N,

M, = Z ek (Zk)
=1

denote the n-th term in the martingale sequence. As the sequence (M,,)2%; is L?(M*>)-
strongly convergent, there exists some constant C' > 0, and some increasing family of
indices (Ir)gen, with Iy = 0, where My = 0, such that

HM1k+1 - MIkH2 <327"C,
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for every k € N. Let Jy = Iy41 — I, for each k € N.

If we consider only the tail of the series, we see that (M, — My, )p>1, still forms an
L?-bounded martingale, and an easy application of the noncommutative Doob maximal
inequality to finite martingales (Theorem 2.18) shows that there exists a constant Co > 0,
such that

Ty
n

Z ks (5) = HM1k+1 _MlkHH(M“”IkH) (4.1)

J=Ir+1
n=Irp+1|l72 W lg41.po0
L2(M 05)

<327k,

for each k € N, where we may consider the norm for L2(M®-T++1) in place of L?(M“>)
because of the isometric embedding of these Hilbert spaces [74, Section 1]. Applying
Proposition 3.9 to (4.1), we find that

Tt

n
. —k
lim ; E CjTja, < 327709, (4.2)
(a1,...,a5, )EN"* ool
UL, +1Q QU1 4

n=hA L (M)
for some fixed 1 < p < 2, and each k € N.

This leads us to the second part of the proof, where we will use a diagonalisation
argument to find sequences which approximate the limit (4.2). In particular, for any
fixed index k € N, and any fixed finite sequence (ar,41,...,ar,,,) € N”* let us say that
the sequence satisfies condition (Cy,) if the inequality

Tx41

Z ijj,aj S 202 . 32_k (Ck)

J=Ir+1
n=I+1||75( M-
LO(MiS)

holds true. Let us say that an infinite sequence (a;);jen satisfies condition (Cy) if the
finite subsequence (ar, 41,...,ar,,,) satisfies condition (Cy).

We wish to find an infinite sequence which satisfies condition (Cj) for every k € N,
and such that every further subsequence satisfies condition (Cj) for every k € N. To do
so, we will iterate an induction argument to find a suitable sequence for each condition
(Ck). This iterated induction will give us a suitable diagonalised sequence.

Let us start by considering condition (Cy). It is immediate from (4.2) that there must
exist some set A € 2 ®- - - @ %,, such that every sequence in A satisfies condition (Cy),
as otherwise the limit in equation (4.2) cannot be achieved.

We now wish to find a sequence (a;);en, such that every finite subsequence of length
Jp satisfies condition (Cy). For a fixed finite sequence b = (by, ..., by,), of length m < Jy,
and a fixed set A € %4 ®@ --- ® ,, let Ap denote the set of all finite sequences ¢ =
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(¢m1s---s¢q,), such that (by,...,bm, Cmt1,-..,¢y5) € A. By construction of the product
ultrafilter, Ap € Zm+1® - - ®@Ur,. Moreover, as the ultrafilter product is associative, the
stripe AZ‘, defined by

A? =A{emy1 s Iemgr, - en) € Ab},

must be an element of %, 1. This follows as 2 @ -+ - Q@ Uy, = U Q@ (U @ - - (U1y—1 ®
1,)), by associativity, and so A;’ is the set of admissible first elements of sequences in
Un41 ® - - - U1, which must be an element of %,,+1, by the definition of tensor products
of ultrafilters. In order to find a sequence such that all further subsequences satisfy (Cy),
we must consider the intersection of these stripes.

Let us assume that ¥ is a fixed non-principal ultrafilter, and that 24 = % = -+ =
U, = V. Now let us fix a; as any element of A, the stripe of all possible first elements
of sequences in A. Then consider the stripe A} . By closure under finite intersection, the
set AL NAF N(ay,00) is infinite, and contained in ¥, and so we may choose any element
in this set to be as.

A+
(a1,a2)’
that ag > ag, and such that (a1, as,a3), (a1, as), and (asz,as) are all admissible heads for

To find a3, we must consider the intersection of AT, AT

o AL, and (ag, 00), such

sequences which satisfy condition (Cy).

Given a sequence (ai,...,an), for m < Iy, we may choose a,,+1 by taking the in-
tersection of (a,,,c0) and each of the stripes AT, where ¢ is any finite subsequence of
(Cll,. .. ,am).

If we have a sequence (a1, ..., ay,,), with m > I, for which every subsequence of length

Jp satisfies condition (Cj), then we may extend the sequence another term by choosing
any element a,,+1 of the intersection

(@m,00) N ﬂ Ar |,
CQ(alwwvam)
‘C|<J1

where |c| denotes the length of the subsequence ¢. The set of all possible subsequences
¢ is finite, and so this is still a finite intersection of elements of ¥, and is therefore also
an element of the ultrafilter 7.

By induction, we have constructed a sequence (a;),cn, which satisfies condition (Cy).
Note that at this point, ¥ is still an arbitrary non-principal ultrafilter. By the ultrafilter
lemma [20, Theorem 7.1], there exists a non-principal ultrafilter on N, containing the
set {a; : j > ar,}. Then let #; be any such ultrafilter, and set %7,11 = %42 = -+ =
U, = V5. Fix (t1,ta,...,t1,) = (a1,a2,...,a75,).

Repeating the construction of the sequence (a;);en, now for condition (Cz), we may
construct a sequence (a§2)) jeN, such that every subsequence of length J; satisfies condi-
tion (Cz). Moreover, if we take the intersection with {a; : j € N} € ¥4 at each stage, we
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may assume that (a§2))j€N C (aj)jen. Then set (tr,41,...,t5,) = (af), e ,ai)), and

let #5 be any non-principal ultrafilter containing the set {a§-2) 2 g > Jo}

Let (ag-k)) jeN be a given sequence, such that every subsequence satisfies condition (C;)

for all j < k, where k is fixed. We may reiterate this prior diagonalisation construction
(k)

over some new non-principal ultrafilter #;.1 containing {aj 1y > Jk}, giving us a

aékﬂ)) jeN, such that every subsequence satisfies condition (C;), for all
. k1 k+1
J<k+1 Thenset (tr,,,41,.--:t1,,,) = (ag ... ,af]k+1)).

This iterated induction gives us a strictly increasing sequence (t;);en such that every

new sequence (

subsequence satisfies condition (Cy), for every k € N.
We are now able to complete the proof, and show that for every subsequence (si)ren C
(tx)ken, the series

E Ck-xk,sk

keN

converges bilaterally almost uniformly. To complete this part of the proof, we will use
the maximal inequality given by condition (Cj) to induce a bound on the maximal re-
arrangement, which when combined with a noncommutative Chebyshev type inequality
will allow us to construct projections which verify the bilateral almost uniform conver-
gence.

For the remainder of the proof, let us fix some subsequence (sg)ren € (tk)ren. To
see that Y ;7 | ckwy,s, converges bilaterally almost uniformly, let us consider the blocks
Z?:ILH cjtjs;, for each k € N. As (s;);en satisfies condition (Cj), we may apply
Lemma 2.15, to find that

1 67147]@; Z CjTj s, < (4k5)25~ (26’2 ~32*k)5,

n=Ir+1

for any fixed € > 0, where p is the fixed index in the open interval (1,2), chosen when
we applied Proposition 3.9.

By definition of the maximal rearrangement, Definition 2.14, there must then exist a
projection e, € M, for each k € N, such that

240, 3275\
T(l — ek) < (84_2—2k> = (62402 . Q_k)p,

and

n
sup Z eRCjTj s, Ek <e 47k (4.3)

I <n<Iky1 J=Tet1 .
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where the estimate on the trace is up to a factor of 2, as an approximation of the infimum
which defines the maximal rearrangement.
Let eco = e €x- On the one hand, we have that

T(1 —ex) < Z T(1—ep)

neN

=Y (a0 27

neN

< (e2-4C)P.

We may then choose €, such that 7(1 — es,) is arbitrarily small.
On the other hand, we may write

00 Ty (n) Ijtq
E CkTk,s), = E CkTk,s, + g g CETl,s; s
k=n k=n j=k(n)l=I;+1

for each n € N, where k(n) is the least integer k such that n < Ii, which gives us that

[e%S)
€0 § CkTk,s;, | €0
k=n

T (n) ) It

§ CkTk,s;, | € + § €oo E CkTl,s; | €oo
k=n

o J=k(n) I=I;4+1

oo

oo

2 —14 (k(n)—1) Z 4~ j
j=k(n)

where the second inequality follows by application of equation (4.3).
It follows that

)
€ E CkTk s, | €co
k=n 00

lim
n—oo

< lim 2e~ 14~ (k)= Z 477 =,

n—oo
Jj=k(n)

and so the series

oo
E ckxk,sk
k=1

converges bilaterally almost uniformly for every subsequence (sg)ren Of (tg)ren. The
necessary bilateral almost uniform convergence then holds. O
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5. The noncommutative Révész theorem

Theorem 5.1. Let M be a finite von Neumann algebra, with distinguished faithful normal
tracial state T. For any sequence (fn)nen C L2*(M,T), such that sup,cy || fall, < oo,
and any fized sequence (cn)neN, there exists a subsequence (gn)neN C (fn)nen, and an
operator f € L?(M, 1), such that for every further subsequence (hy)nen C (gn)nen, the
series

Z ce(hi — f)

neN

converges bilaterally almost uniformly.

Proof. To start, let us consider the real and imaginary decomposition of each operator
fn, such that f,, = a,, +ib,, with every a,, and b,, self-adjoint. By Lemma 2.8, if (ay,),en
and (b, )nen converge bilaterally almost uniformly, to a and b, respectively, then the
sequence (a, + b, )nen converges bilaterally almost uniformly to a + ib. We may then
assume that (f,,),eN is a sequence of self-adjoint operators, without loss of generality. As
an L2-bounded sequence of self-adjoint operators, there exists a subsequence of (f,,)nen
which is weakly convergent to some self-adjoint f € L?(M).

By relabelling the sequence (f,)nen, We may assume that the sequence is weakly
convergent to f. As we only wish to determine a suitable subsequence of (f,)nen, We
may do so without loss of generality, and we will repeat this technique in the sequel.

In order to pass from weak to strong convergence, we will pass to the finite dimensional
setting. Let L2 =span {f, — f : n € N} denote the L2-closure of the space generated by
(fu — f)nen. L2 is then a separable Hilbert space, and admits some orthonormal basis
(Tp)nen. For each n € N, let L2 = span{zy : 1 <k <n}, and let P, : L*(M) — L2
denote the orthogonal projection onto L2.

We claim that there exist two increasing sequences (ng)52, and (vx)32, of positive
integers, such that for every k > 2,

[P (Fr = Dl <475, (5.1)

and

(e =) = P (far = Fll <475 (5.2)

We show that such sequences exist by an inductive diagonalisation argument. For
every operator « € L2, lim,,_, ||z — P,()||, = 0. There then exists some v; > 1, such
that |(fi — f) = Po, (i — 1)l < 4L

Let ny = 1. As (f,)2%,; converges weakly to f in L?(M, ), we have that the sequence
(Pe(fn— )22, is weakly null, for every k > 1. As L? is finite dimensional, the weak and
strong topologies on L? coincide. As the strong topology on L7 is the subspace topology
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from L?(M, 1), it follows that for any fixed k > 1, the sequence (Px(f,,—f))32; converges
to zero in L?(M, 7). There then exists some ny > ny = 1, such that | Py, (fn, — f)lly <
472. We may then choose some vy > vy, such that ||(fn, — f) = Pos(frs — F)lly < 472,
following much the same argument that let us choose v.

By induction, it follows that sequences (nx);2; and (vy)2, which satisfy (5.1) and
(5.2) for all k& > 2 exist.

Now, for each k > 2, define

D/C(x) = Pu, (l‘) - ka—l(l‘)'

For any & > j > 2, and any = € L?(M,7), it follows by construction that Dy(x)
and Dj(x) are orthogonal with respect to the L?(M,7)-inner product. Moreover, by
orthogonality of the basis (z,,)22; of L2, we have that for any operators x,y € L*(M, 1),
and any k > j > 2, the operators Dy(x) and D;(y) are also orthogonal.

The essential difficulty of the proof is to show that for a fixed sequence (cx)ren €
£%(C), the series

> D (fuy, — ) (5.3)
k=2

converges bilaterally almost uniformly, for all subsequences (ji)ren of some increasing
sequence (ix)ren. We will address this difficulty before we consider how to recover the

series » oy ck(frx — f)-

Before we address bilateral almost uniform convergence, let us check that the series

> "D (fu,, = F)

k=2

converges in the L?-strong topology, for any increasing sequence (jix)ren C N. It is
sufficient to note that the operators D, ( fnj, — f) are pairwise orthogonal, and that

“Djk(fnjk - f)H2 is bounded, uniformly in k, by 4sup,cn ||fnly- The convergence of

(5.3), in the L2-strong topology, then follows by use of the triangle inequality, and from
the fact that (|cx|)ren € £2.

We may now focus on the heart of the proof, at which point we must make a substantial
departure from classical techniques. We will show that there is a natural embedding of
the partial sums of (5.3), for all sequences (ji)ren € N, into the L2-space associated
to the iterated ultrapower M“*° and then using the noncommutative maximal LP-
spaces, we will be able to show that there exist suitable projections, such that the series
converges bilaterally almost uniformly.

Following the constructions in Section 3 let (%,)nen denote a sequence of non-
principal ultrafilters on N. For each n > 1, let M“"™ denote the n-th iterated ultrapower
of M, that is (((M%,)%,) )%, , such that
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Mw,n _ (Mw,n—l)g/n'

Then let M*“>>° denote the w*-completion of U, ey M ", with the union taken over the
natural embeddings.

The algebra M“ > is again a finite von Neumann algebra (see Subsection 3.2), and
the sequence (M“™), N, under the natural embeddings into M*“>>°, forms a filtration.
For each n € N, let &, : M*>® — M“" denote the normal conditional expectation.
As there exists a normal conditional expectation Eq : M“'! — M, then by composition
there also exists a normal conditional expectation & : M“>° — M.

In order to consider an equivalence class in L?(M), we must find a sequence which
is not only L2-bounded, but is equimeasurable, and which we will also require to be
weakly null, for later calculation. For each k € N, let x;, = Dy (fn, — f)- Let us pass to
a subsequence of (zx)gen which is weakly convergent, with limit x, and relabel (ng)ren
and (vg)ken, such that (zx)ren is weakly convergent to x.

Let wy, = x —z, for each k € N. By Lemma 2.13, there exists a subsequence (w},)ren
of (wg)reN, such that for each k, wy = yx + 2k, where (2 )ren vanishes bilaterally almost
uniformly, and (yi)ren is equimeasurable. Without loss of generality, let us relabel the
sequence (ng)reN, (Vk)keN, such that wy, is the sequence given by Lemma 2.13. We may
also choose this sequence to be such that (cxzx).en vanishes sufficiently quickly, in the
sense that

E CkZk

keN

converges bilaterally almost uniformly. We then simply assume that (wg)gen is equimea-
surable, and can again do so without loss of generality.

As (wp)ren is an L*-bounded sequence, w = (w)fcy defines an equivalence class
in L2(M)*, and as (wp)ren is equimeasurable, we have that (Jwg|*)ren is uniformly
integrable (see Remark 3.2), and so w € L?2(M%1).

We may now consider convergence of the sums

M, =" cpmp() € L* (M) C LA (M=),
k=1

defined for each n € N. Note that, as per the discussion in Section 4, (M, ),en forms a
martingale, as w is weakly null. We claim that (M,),cn is an L2-bounded martingale
in L? (M%), under the natural inclusion of each M,, into L?(M®*>°), with limit

0
]\40o = Z Ckﬂ'k(’w).
k=1

To see this, let us apply Pisier and Xu’s characterisation of LP-bounded martingales,
Theorem 2.17. Note that
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178 (@) L2 pgesroey = 178 (D) | L2 gy

IN

sup [lwn|[,
neN

IN

sup [z, — x|,
neN

< 2sup ||Dj(fnj - f)Hz
jEN

< 8sup | fjll, < oo
JEN

It is then immediate, as (cx)ren € £2(C), that

1/2
1k (@) ken [l L2 (e ese2) = (ZI%F Im(@)l2> <00

keN 9

with the row estimate given by much the same calculation, and so (M, ),en is an L2-
bounded martingale, which must then converge strongly to M. We may then apply
Theorem 4.2, to see that there exists an increasing sequence (si)ren € N, such that for
every subsequence (tx)reN C (Sk)ren, the series

)
E ck)wtk
k=1

converges bilaterally almost uniformly.

We chose to denote xy = Di(fn, — f), such that (zx)ren is weakly convergent to .
We then set wy = 2y, — x, for every k, and proved that there exists a sequence (ix)renN,
such that for every further subsequence (ji)ren, the series

o0
Z CLWj, (5.4)
k=1

converges bilaterally almost uniformly. That is then to say, by adding the term Y ;- | cxx,
that the series

chDjk (fan - f)
k=1

converges bilaterally almost uniformly.
For each k € N, let

Sk - ka71<fnk - f>7

and
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Ry = (far = f) = Poy(foi = ),
such that by the norm estimates (5.1) and (5.2),
I1kll, < 47,
and
1 Rxll, < 47"

Given the growth conditions from (5.1) and (5.2), we can find a relabelling, by passing
to a subsequence, of (ig)reN, such that

oo
> lewSilly < oo,
k=1

and

o0
> llerRill; < oo,
k=1

for every subsequence (ji)reN C (ik)reN-
It follows that the series

> S, (5.5)
k=1

and

> kR, (5.6)
k=1

must converge bilaterally almost uniformly, by Lemma 2.10.
Finally, as we have that f,;, — f = wj, + 5 + Rj,, we may add together the three
series, (5.4), (5.5), and (5.6), to see that

ch(fnjk - f)
k=1

converges bilaterally almost uniformly, for all subsequences (jx) € N of (ig)gen. La-
belling gi = fn,, , for each k € N, we have that the result holds. O
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6. The noncommutative Komlés theorem

Finally, we may answer Randrianantoanina’s question, and show that the Komlés
theorem extends to arbitrary finite von Neumann algebras. For the most part, the proof
is again classical. However, as for the proof of Theorem 5.1, a substantial appeal to the
techniques of iterated ultrapowers is once again necessary, so as to compensate for the
lack of an intrinsic martingale structure in a non-hyperfinite algebra.

Theorem 6.1. Let M be a finite von Neumann algebra, with a distinguished faithful nor-
mal tracial state 7. If (f,)2%; € LY(M,T) is an L'-bounded sequence, then there exists
a subsequence (g,)%; C (f1)2%,, and an operator f € LY(M,T), such that for every
further subsequence (hp)$2 1 C (gn)S2,, the sequence

o0

(% > hk> (6.1)
k=1

n=1

converges bilaterally almost uniformly to f.

Proof. Without loss of generality, we may assume that the sequence (f,,)52; consists of
only self-adjoint operators, by use of Lemma 2.8.

In order to show that the result holds, we will consider three approximations of the
sequence (f,)% ;. We will show that the sequence is equimeasurable, up to a sequence
which converges bilaterally almost uniformly to zero, approximate the operators by trun-
cations of their height, and use a finite dimensional approximation.

These three approximations will allow us to decompose the sequence of Cesaro aver-
ages into three components, each of which we may show is bilaterally almost uniformly
convergent, such that the assertion holds.

To start, we appeal to Lemma 2.13. There exists some subsequence (a,,)5; C ()52,

such that for each n > 1, a, = b, + ¢y, where (b,)2%; and (c,)32; are L'-bounded

o0
n=1

sequences, (b,)52, is a sequence of equimeasurable operators, and (c;) converges to
zero in the measure topology.

Applying [31, Proposition 1], there exists a subsequence (c,, )72, which converges
bilaterally almost uniformly to zero. Let (g,,)22; = (by, )52 ;. By Lemma 2.9, the Cesaro
averages of (cp, )72, converge bilaterally almost uniformly to zero, and so if the Cesaro
averages of (g,,)22 ; converge bilaterally almost uniformly, then by Lemma 2.8, the Cesaro
averages of (an, )72, must also converge bilaterally almost uniformly, and to the same
limit as for (¢,,)52 4.

We may then work with the sequence (g,,)5%; in place of (an, )72, C (fn)neq-

For each j,k > 1, let Tx(g;) = g;Xjo.k)(lgj]), the k-the truncation of g;. For any
fixed & > 1, the sequence (Tk(g;))52; is equimeasurable, and thereby necessarily L2-
bounded. Note that the key distinction between the proofs of the Komlés and Révész

theorems is that (T (g;))k jen is now unbounded over k, in the L2-norm. As L*(M, 1) isa
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Hilbert space, it is weakly sequentially compact. Using a standard diagonal subsequence
argument, there exists some subsequence (g/,)52; C (9,)22, such that for any fixed
k > 1, the sequence (Tx(g}))52; is weakly convergent. We may then relabel the sequence
(gn)nz1 as (gn)nty-

For each k > 1, let ¢, denote the weak limit of (7% (g;))52,

Before we may show that the Cesaro averages are well behaved, we must find a further
subsequence of (g,)%2, satisfying two key estimates.

We claim that for every subsequence (7)1 C (g5)5% 4,

2

|| T (o,
> Tulhn) 00, (6.2)
n=1 n 2

and

Z Xinsoo) (1)) < (6.3)

As the sequence (g,)%2; is equimeasurable, we have that for any k > 1, the sequence
(T(Xk—1,%)(g7)))32; is constant. Then let o, = T(X[r—1,x)(91)) and B = T(X[x—1,6)(—91),
for each k£ > 1.

Key to showing the estimates (6.2) and (6.3) are the bounds

Z kay, < oo, (6.4)
k=1

and
> kB < oo (6.5)
k=1

We will show that (6.4) holds, and the proof of the bound (6.5) follows by an almost
identical calculation.
To see that (6.4) holds, consider the bound

n

D (k= 1oy =

k=1

(k=17 (X[k—1,%)(91))

M- IM-

< 7 (91X [k—1,k) (91))

B
Il

1

=7 (91x0,m)(91)) -

Taking the limit over n, we have that
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o

> (k= 1Dak < 7 (91X[0,00) (91)) = llgnll; < 0.
k=1

Then, for each k > 2, (k — 1)ay > oy, and so we also have that 220:1 ap < 0o0. Adding
the two series, we see that Y.~ ; kay < oo, and (6.4) holds.

We may now show that (6.2) and (6.3) hold. Let (h,,)32; be an arbitrary subsequence
of (gn)52,. By the construction of (g,)52, we have that

J
1T (h)1l5 <Z’€2 Xik—1.0) (1h]) = Zkz (ak + Br)
k=1

for any j > 1.
It follows that

e}

with the estimate on Y >, n~2 given by

[~]e
3w|,_.
IN
—
8| =
Q.
8
|

x>~
1B
[y
IN
IR

Then (6.2) holds.
To show that (6.3) holds, we take a decomposition over the spectrum and apply
Chebyshev’s inequality,

n2

T (Xtnoo) () = | Do 7 (ki1 (Bn)) | +7 (Xin2 00 (i)

k=n+1

n2

9
(3 e fls

k=n+1

o0

Z ap + H912||1
n

k=n-+1

IN



42 M. Junge et al. / Journal of Functional Analysis 280 (2021) 108782

Summing over n,

b= 5 5 s )

n=1 k=n+1
= ||glul
=> > a +Z
k=2n=1
o0

Zoo 9114
= k—1)ay + — <
( ) * n=1 "2

=
[\

The right hand series is finite, and the series Y ;- ,(k — 1)ay, is finite as per the proof of
(6.4). The estimate (6.3) then holds.

Recall that for each k > 1, ¢y, is the L?-weak limit of the sequence (T%(g;))jen. We
claim that there exists some subsequence (g/,)52 1 of (gn)52,, such that for every further
subsequence (hy,)%; C (g,,)22,, the sequences of Cesaro averages,

(% D (Trpa(h) - @k+1)> (6.6)

k=1

and

(% Zn: (hi — Tk+1(hk))> ; (6.7)

k=1

converge bilaterally almost uniformly to zero, and the series

Z Pn+1 — (6.8)

converges bilaterally almost uniformly to some operator f’ € L'(M, 7). Having shown
these three convergences, the Komlés theorem will follow easily.
To start, let us show that (6.6) holds. In doing so, we will determine the subsequence

(gn)n 1 = (g’ﬂ)n 1
For each j, k > 1, let

frg = Tit1(g5) — Pr+1- (6.9)

Then let L2 = span{fy;: j, k > 1}, where the closure is taken in the L?-norm. Then
L?_ is a closed separable subspace of L?(M,7), and admits some orthonormal basis
(r,)%%;. For each n > 1, let L2 = span{x,...,7,}, and let P, : L*(M,7) — L2
denote the orthogonal projection onto L2. We will use these subspaces to form finite
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dimensional approximations of the operators f ;, which will allow us to pass from weak
to strong convergence in L?(M, 7).
We wish to find two increasing sequences of indices, (ny)72; and (vg)72,, such that

”ka—l(fsmk)Hz < 47}6 (6'10)

and

Hfs,nk - ka (fs,nk)HQ < 47k7 (611)

for every k > 2, and any 1 < s < k. To do so, we appeal to an inductive construction.
To start, note that for each f € L2, lim, o |f — Pu(f)|l, = 0. Then, if we set
ny = 1, there must exist some v; > 1, such that

[ fi1 = Po (fra)ll, <47

Moreover, weak and strong convergence coincide over L2, for each n > 1, as these spaces
are finite dimensional. As L2 inherits the topology of L?(M, 7), and so weak convergence
in L2 implies strong convergence in L?(M, 7).

For any fixed k > 1, the sequence (fj J)]‘X’ 1 converges weakly to zero, by construction,
and so the finite approximation (P,, (fx,j))52, also converges weakly to zero with respect
to L2, and in turn must converge strongly to zero with respect to L?(M, 7). There must
exist some index ng > ng, such that for each s € {1, 2},

Pvl (fs,"2) < 471'

Repeating this procedure, we generate the desired sequences (ny)32, and (vg)72,, such
that the estimates (6.10) and (6.11) are satisfied.

Let (mg)72; C (nx)72, be an arbitrary subsequence, such that mj = n;) for each
k > 1. The equations (6.10) and (6.11) then become

HPUj(k>—1(fs7mk)H2 < 479" (6.12)

and
[ = Po ), <477 (619)
for any £ > 1 and 1 < s < k. As the sequence (j(k))32, is necessarily increasing,

k>1
jlk—1) <j(k) —1, for any k > 2, and so we find from (6.12) that

HPUa‘w—l)(fSaWk)Hg <479, (6.14)

forany k> 1and 1 <s<k.
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Now, for each k > 2, let

Sk = ij(k—l) (fk,mk)a
Wk = (ijwc) - PUj(k—l)) (frme )

and

Tr = fk,mk - ij(k) (fk,mk)

Then

Tkomy, = Sk + Wk + 7 (6.15)

for each k > 2. The equations (6.12) and (6.13) respectively show that ||, < 477(*)
and ||spll, < 4778 and so S50, |rklls < oo and 337, |lskll3 < oo. Applying
Lemma 2.10 (ii), we conclude that the sequences (ry)52, and (sg)72, converge bilat-
erally almost uniformly to zero.

This leaves the sequence (wy)j2,, which is a pairwise orthogonal sequence in
L*(M, 7). As each P, is a contraction on L?(M, 1), for each n > 1, [|willy < 2| fi,my lly <
4| Tey1 (R for every k > 2. Then

mk+1)||2’

S

L < o0, (6.16)

2

Tyy1(hm
< 162 H L

with finiteness given by (6.2).
Now let us again apply the iterated ultrapower technique to find a sequence (s)ren C
(mg)reN, such that for every further subsequence (t)ren, the series

WK

(PUj(k) U](k 1)) (fk tk)

=~
||

2

converges bilaterally almost uniformly. For each pair k,l € N, let

Wkt = (ijoc) - ij(k—l)) (fk»”m))'

As, for any fixed index k, the sequence (fin,,)ien is L?-weakly null, it is easy to see
that (wg,i)ien is also weakly null. Then, as for the proof of Theorem 5.1, let us apply
Lemma 2.13, such that we may pass to a subsequence, which we will also label (wg;)eN,
without loss of generality, which we may again assume is equimeasurable.

Then let us consider the equivalence classes Wy, = (wg,;)ien € L'(M¥), defined for
each k € N. As each sequence (wy,);en is weakly null, the partial sums of
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2. (W)
Zkkk

k=1

forms a martingale in L'(M%“>°), see the discussion in Remark 4.1. However we must
verify that it is an L2-bounded martingale before we may apply Theorem 4.2.
To see this, let us again apply Theorem 2.17, which we may do so, as

1/2
B ()2
(e (W) ke || L2 (pgeoe 02,y = <Z (T =
keN 2

with finiteness following from (6.16), which shows that
>
=k

is absolutely convergent with respect to the L?-norm. The necessary estimate for the
row norm again follows from an almost identical calculation.

We may then apply Theorem 4.2, to see that there must exist some increasing sequence
(sk)ren C N, such that for all further subsequences (tx)ren, the series

= wk,tk
1
3o (6.17

k=2

converges bilaterally almost uniformly.

Let us again relabel the sequence such that wy = w4, , for each k£ € N, for some fixed
sequence (tg)geN-

As Kronecker’s Lemma preserves bilateral almost uniform convergence, see
Lemma 2.11, the sequence of Cesaro averages (n™' > " zwk>n:1 must converge bi-
laterally almost uniformly to zero By Lemma 2.9, with p = 1, the sequences
(n= S0 )2y and (' SPES sx)52, also converge bilaterally almost uniformly to
zero. By (6.15), we may add these sequences, such that the Cesaro averages

n+1 n+1 n+1

%Z(Sk+wk+rk Efkmk ZEZ(TkJrl(gmk)_@kJrl)

k=2 k=2

converge bilaterally almost uniformly to zero, by Lemma 2.8. If we relabel (g, )5, as
(9n)22,, then we have a sequence (g,)5 4, for which every subsequence thereof satisfies
(6.6). This completes the most difficult part of the proof, however it remains to show
that (6.7) and (6.8) hold.

To show that (6.7) holds, it is sufficient to use (6.3) and the noncommutative Borel-
Cantelli lemma, Lemma 2.3.
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For clarity of notation, let u,, = h, — Tp41(hy), for each n > 1, where (h,)22, is
an arbitrary subsequence of (g,)nZ, and let v, = X[n+1,00)(hn), such that u, = hyv,.
From (6.3), >7=, 7(v,) < oo, and so we may apply Lemma 2.3. This gives us that
limy, 00 7(Vye,, vk) = 0. To show that (6.7) converges bilaterally almost uniformly to
zero, fix € > 0. There then exists some index IV, and a projection p. = 1 — \/,;“;N Vg,
such that 7(1 — p.) < e. However, for any n > N, p. is orthogonal to v,, and so
lpeunpell . = 0. Obviously lim lpetunpell o, =0, and so u,, converges bilaterally almost

uniformly to zero. Applymg Lemma 2.9, the Cesaro averages of the sequence (up)32
must also converge bilaterally almost uniformly to zero, which is to say that (6.7) holds
under the appropriate conditions.

We may now show that (6.8) converges bilaterally almost uniformly to some limit in
LY(M, 7). This follows in much the same way as in [73]. Namely, it is sufficient to show
that [|or41 — @lly < (k + 1) (k41 + Br+1), for any k > 1, where o = 7(Xr-1,)(91)),
and @y, is the L*-weak limit of (Ty(g;))52,, for each k > 1. As L*(M, 7) has the Banach—
Saks property (see, for example [28, Theorem 2.14]), which is to say that every weakly
null sequence admits a “Banach—Saks” subsequence, for each & > 1, there exists an

increasing sequence (n;)52,, such that

Jj=b

n— oo

R
Rl Z: Tit1(9n,) = Ti(gn,) = (P41 — 1)) || =0
- 2

Then the sequence

oo

1 n
- > (Tet1(9n,) = Tilgn,) — (rs1 — 01))
Jj=1

n=1

converges to (pg+1— k) in measure Lemma 2.1, and so we may use the noncommutative
Fatou lemma, Lemma 2.2, to find an estimate for ||or+1 — @rll;-

In order to find an estimate on ||p+1 — @kl|;, let us decompose each ¢y, into a positive
and negative component, such that oy = qﬁz — ¢, for each k > 1. We then see that

A RS
o, = o, < liminf | =37 (Tt (gn,) = Tilg0,))

J=1 1

G
= lim inf -~ Zgnjx[k:,k+1)(gnj)

n—00 —
J= 1

<hnrglorc1>fEZHgn [k, k+1) (9, Hl

1
= lim inf — T (gn]X[k k+1)(gn; ))

n—oo
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n
Z T \X[k,k+1) gnJ))

Jj=1

< lim inf
n— o0

= (k + 1)ak+1,

where ax = T(X[k—1,k)(91)), for each k& > 1. By (6.4), we have that

Z [Cre ¢$H1 < Z(k + Dagr1 < 0.

k=1 k=1
An almost identical calculation for the negative component, ¢, , shows that

oo

ZH‘ZSIZH*@;H ZkJrl Br+1 < o0,
k=1

k=1

where 3, = T (X[k—l,k)(*gl))a with finiteness following from (6.5).

Applying Lemma 2.10 (i), we have that the series (¢, — ©1)52, converges bilaterally
almost uniformly to some operator f’ € LY(M, 7). If we let f = f' + ¢1, then (p,)32
converges bilaterally almost uniformly to f. In turn, the Cesaro averages of (¢,)52 ; must
converge bilaterally almost uniformly to f. Adding these averages to (6.6) and (6.7), we
have that the Cesaro averages

1 n
w2

o0

converge bilaterally almost uniformly to f, for any choice of subsequence (hy)5e, C

(9n)22;. This completes the proof of Theorem 6.1. O

Although this resolves Randranintoanina’s problem, it remains to be seen what can be
said for the setting of arbitrary o-finite von Neumann algebras, and in particular type 17
factors. The underlying difficulty here is not the ultrapower construction, which has been
extensively studied in the setting of arbitrary o-finite algebras, but the nature of suitable
analogues of almost everywhere convergence. While there have been several attempts at
defining such an extension, see for example any of the papers [24,32,33,40-42,58,63,66—
68], it is not clear that any of these are the correct notion, and all face substantial
limitations and difficulties.

Problem 6.2. Can the Komlds and Révész theorems be extended to arbitrary o-finite von
Neumann algebras? What is the correct extension of almost everywhere convergence in
this general setting?
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