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Coupling of activity, metabolism and 
behaviour across the Drosophila brain

Kevin Mann1,3, Stephane Deny2,3, Surya Ganguli1,2 ✉ & Thomas R. Clandinin1 ✉

Coordinated activity across networks of neurons is a hallmark of both resting and 
active behavioural states in many species1–5. These global patterns alter energy 
metabolism over seconds to hours, which underpins the widespread use of oxygen 
consumption and glucose uptake as proxies of neural activity6,7. However, whether 
changes in neural activity are causally related to metabolic flux in intact circuits on the 
timescales associated with behaviour is unclear. Here we combine two-photon 
microscopy of the fly brain with sensors that enable the simultaneous measurement 
of neural activity and metabolic flux, across both resting and active behavioural 
states. We demonstrate that neural activity drives changes in metabolic flux, creating 
a tight coupling between these signals that can be measured across brain networks. 
Using local optogenetic perturbation, we demonstrate that even transient increases 
in neural activity result in rapid and persistent increases in cytosolic ATP, which 
suggests that neuronal metabolism predictively allocates resources to anticipate the 
energy demands of future activity. Finally, our studies reveal that the initiation of even 
minimal behavioural movements causes large-scale changes in the pattern of neural 
activity and energy metabolism, which reveals a widespread engagement of the brain. 
As the relationship between neural activity and energy metabolism is probably 
evolutionarily ancient and highly conserved, our studies provide a critical foundation 
for using metabolic proxies to capture changes in neural activity.

Three technologies have widely been used to measure changes in neural 
activity across whole-brain volumes. Functional magnetic resonance 
imaging uses blood-oxygen-level-dependent (BOLD) signals to capture 
changes in oxygenated blood flow as a proxy for neural activity, and has 
a temporal resolution of seconds and a spatial resolution of millimetres6. 
Fluorodeoxyglucose positron emission tomography (FDG PET) captures 
changes in glucose uptake, and has a temporal resolution of tens of 
minutes and a typical spatial resolution of centimetres7–9. Simultaneous 
imaging methods have demonstrated that FDG-PET-intrinsic (that is, 
task-free) brain networks spatially overlap with BOLD networks, which 
indicates a relationship between glucose uptake and blood oxygena-
tion10. BOLD signals also correspond with low-frequency fluctuations 
in the local field potential, which indicates that these measures of blood 
flow and glucose metabolism can be proxies for neural activity11. In 
parallel, imaging approaches that use fluorescent sensors to measure 
changes in intracellular calcium concentrations can capture neural 
activity with single-cell resolution across large areas of the brain2–4,12–15. 
However, none of these approaches has allowed direct, simultaneous, 
brain-wide intracellular measurements of changes in both neural activity 
and metabolic flux at high spatial and temporal resolution.

Neural and metabolic signals correlate
Correspondences between neural activity and metabolism can be meas-
ured using genetically encoded sensors, combined with brain-wide 

imaging, in immobilized animals3,15 (Fig. 1a). Whole-brain imaging 
often measures functional connectivity networks that are defined by 
correlated changes in neural activity between regions over time, in 
which the strength of each connection is represented by the magnitude 
and sign of the correlation between the activity patterns in pairs of 
regions5. These correlations capture large-scale, infra-slow (<0.1 Hz) 
interactions that reflect brain regions coordinating their activity16–18. 
We hypothesized that if normal variations in neural activity in the brain 
were closely coupled to variations in intracellular energy flux, then a 
functional connectivity network could be detected using sensors that 
measure changes in energy metabolism. To test this hypothesis, we 
took advantage of Pyronic (a sensor of changes in intracellular pyru-
vate concentration19–21) (Fig. 1a) and iATPSnFR (a sensor of changes 
in ATP concentration22) (Extended Data Fig. 1), and compared these 
signals to intracellular calcium levels measured using GCaMP6s23. As 
changes in both the citric acid cycle and glycolysis alter pyruvate and 
ATP flux, we reasoned that changes in Pyronic and iATPSnFR signals 
should report whether changes in metabolic flux are correlated within 
and between brain regions.

We expressed both of these metabolic sensors pan-neuronally, along 
with a structural marker (tdTomato), and imaged the entire central 
brains of immobilized flies3 (Methods). Next, we aligned each brain 
with a template brain24 and used a standard atlas to extract each of these 
signals from 54 anatomically defined regions25. We observed strong 
correlations between some pairs of regions, but not others (Extended 
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Data Fig. 2). We then compared the average correlations between all 
pairs of regions across all flies, which provided us with a functional 
connectivity map of metabolic flux (Fig. 1b–d, Extended Data Fig. 3). All 
three connectivity maps were highly structured, which demonstrates 
that both metabolic flux and neural activity are coordinated between 
brain regions in a stereotyped manner.

To examine similarities between each of the metabolic flux networks 
and the calcium activity network, we computed the pairwise correla-
tions between each correlation matrix (Fig. 1e–g). These compari-
sons revealed that all of these correlation matrices were very similar 
(R = 0.69 for pyruvate versus calcium; R = 0.80 for ATP versus calcium; 
and R = 0.82 for ATP versus pyruvate), even though the metabolic flux 
and neural activity measures were made in different flies, using differ-
ent sensors and targeting different aspects of energy metabolism. We 
obtained similar results when we co-expressed both Pyronic and the 
red-shifted calcium indicator jRGECO1a pan-neuronally (or both iATP-
SnFR and jRGECO1a) and simultaneously measured both metabolic flux 
and neural activity in the same fly26 (n = 24 flies for Pyronic, n = 18 flies for 
iATPSNfR) (Extended Data Fig. 4a–g). These data demonstrate that the 
functional connectivity structure of neural signals throughout the brain 
is mirrored in the corresponding structure of metabolic flux, which 
suggests an intimate link between neural activity and metabolism.

Activity is necessary for metabolic networks
We next determined the relationship between metabolic flux and neural 
activity at the level of individual regions (Fig. 2, Extended Data Fig. 4). 
Our comparisons of the simultaneously recorded signals revealed 
substantial correlations (Fig. 2a, b, Extended Data Fig. 4h, i). These 
correlations were stronger when the metabolic flux and neural activ-
ity signals were filtered to select for low frequencies rather than high 
frequencies (Fig. 2c–f, Extended Data Fig. 4j–m), and were eliminated 
by shuffle controls that swapped regional identities (Fig. 2g, h). iATP-
SnFR displayed a greater correlation with jRGECO1a than did Pyronic 
across all frequencies, but had a similar drop-off in correlation at higher 
frequencies (Fig. 2g, h). Thus, low-frequency changes in intracellular 
calcium levels (corresponding to the timescales of tens of seconds) 
are correlated with changes in metabolic flux.

To test whether physiological fluctuations in neural activity were 
necessary to drive correlated changes in metabolic flux, we imaged flies 
that simultaneously expressed either Pyronic and jRGECO1a or iATP-
SnFR and jRGECO1a before and after a bath application of tetrodotoxin 
(TTX). TTX blocks voltage-gated sodium channels, which prevents the 
generation of action potentials27 and thereby inhibits neural activity. If 
changes in neural activity drive changes in metabolic flux, then blocking 
neural activity should disrupt both the neural and metabolic functional 
connectivity maps by eliminating regional correlations between these 
signals. A bath application of TTX markedly reduced fluctuations in 
the Pyronic, iATPSnFR and jRGECO1a signals across a wide range of 
frequencies (Fig. 3a, b, Extended Data Fig. 5a), and largely eliminated 
the stereotyped correlations between these signals across the brain 
(Fig. 3c, Extended Data Fig. 5b). Thus, the observed metabolic network 
is substantially the product of neural activity.

Activity drives metabolic flux
To determine whether local increases in neural activity were sufficient 
to alter metabolic flux and to measure the timescale of this coupling, 
we used the light-activated cation channel CsChrimson to depolarize 
neurons with subcellular resolution and millisecond precision28. We 
expressed CsChrimson in antennal-lobe projection neurons, simulta-
neously with either the calcium indicator GCaMP6s or the ATP sensor 
iATPSnFR29. We then imaged each sensor signal while locally stimulating 
CsChrimson in approximately 20-μm2 subregions of projection-neuron 
dendrites (Fig. 3d, Methods). Using a 10-ms activation pulse to drive 
CsChrimson, we were able to reliably evoke a minimal GCaMP6s 
response that rapidly decayed (Fig. 3e). Increasing the pulse length 
to 50 ms increased the size of the GCaMP6s response and somewhat 
slowed its decay (Fig. 3f), while remaining within physiological ranges.

Increases in neural activity might be expected to result in increased 
consumption of ATP and a reduction in the iATPSnFR signal. However, the 
observed changes were instead dominated by a rapid and robust increase 
in the iATPSnFR signal that peaked within 500 ms of stimulation, and 
decayed much more slowly than observed changes in intracellular cal-
cium concentration (Fig. 3g, h). Specifically, with 10-ms activation pulses, 
GCaMP6s signals decayed exponentially with a time constant of τ = 3 s, 
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Fig. 1 | Metabolic and neural networks are highly correlated across the 
brain. a, Top left, schematic of the preparation that allows two-photon imaging 
across the fly brain. Top right, cartoon of the imaged region of the fly brain. 
Bottom, schematic of a neuronal process, denoting the metabolic pathways 
that lead to ATP production, and the sensors that were used to measure 
changes in intracellular calcium concentration (GCaMP6s and jRGECO1a), 

pyruvate concentration (Pyronic) and ATP concentration (iATPSnFR). CAC, 
citric acid cycle. b–d, Matrices of pairwise correlations between brain regions. 
b, GCaMP6s. c, Pyronic. d, iATPSnFR. e–g, Scatter plots of the pairwise 
correlations between matrices. e, Pyronic versus GCaMP6s. f, iATPSnFR versus 
GCaMP6s. g, iATPSnFR versus Pyronic. n = 12 flies for GCaMP6s, n = 10 for 
Pyronic, n = 10 for iATPSNFr.
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whereas iATPSnFR signals decayed with a time constant of τ = 43 s (Fig. 3e, 
g). We observed similar results using 50-ms activation pulses (Fig. 3f, h). 
Importantly, in control flies that lack CsChrimson laser stimulation did 
not alter either intracellular calcium or ATP concentration (Extended Data 

Fig. 5c, d). Finally, because laser stimulation of CsChrimson precludes 
the acquisition of fluorescent signals within 300 ms of the pulse, these 
observations do not exclude the possibility that neural activity might 
evoke immediate and brief decrements in intracellular ATP concentration.
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n = 24 flies, mean ± s.e.m. (shading). ROI, region of interest. h, As in g, but with 
Pyronic (orange). n = 24 flies, mean ± s.e.m. (shading).

a c

Pyronic

jRGECO1a

0

–2

–4

–6

–8

R
el

at
iv

e 
p

ow
er

 (d
B

)

Frequency (Hz)
10–2 10–1

C
or

re
la

tio
n 

of
 m

at
ric

es
 (R

)

0.8

0

0.2

0.4

0.6

1.0

Before TTX Before TTX Before TTX

*** *** **
b

jREGECO1a–
jREGECO1a

Pyronic–
Pyronic

iATPSnFR–
iATPSnFR

20

40

60

80

806040
Variance before TTX (dB)

Va
ria

nc
e 

af
te

r 
TT

X
 (d

B
)

iATPSnFR

1,070 nm Chrimson

920 nm iATPSnFR

AL

PN

920 nm GCaMP6s

d
i10

0

5040302010

= 3

0

e

ΔF
/F

 (%
) 10 ms GCaMP6s

ΔF
/F

 (%
)

0

20

50403020100

= 19
f

50 ms GCaMP6s

Time (s)

= 9460

0
0 100 200 300 400

h

ΔF
/F

 (%
) 50 ms iATPSnFR

0

10 = 43
g

ΔF
/F

 (%
)

50403020100

10 ms iATPSnFR

jREGECO1a10–1

10–2 10–110–3

Frequency (Hz)

S
p

ec
tr

um
 (A

U
) 

10–2

10–3

10–4

A
ut

oc
or

re
la

tio
n 

(R
)

0.2

0.4

0.6

0.8

1.0

0 25 50 75 100 125 150 175 200
0

Time (s)

j

Fig. 3 | Neural activity drives metabolic flux in the brain. a, Comparison of 
the variance of the signals of each ROI before and after TTX application, 
jRGECO1a (blue) (n = 20 flies), Pyronic (orange) (n = 8 flies) and iATPSnFR 
(green) (n = 20 flies), mean ± s.e.m. for each region. b, The relative reduction in 
signal power caused by TTX application, as a function of frequency across all 
brain regions and flies (n = 54 regions, mean ± 95% confidence interval 
(shading)). c, Correlation of the correlation maps between flies before and 
after TTX application, across all brain regions, for jRGECO1a (calcium) (blue 
dots), Pyronic (pyruvate) (orange dots) and for iATPSnFR (ATP) (green dots) 
(mean ± 95% confidence interval) ***P < 0.0004, **P < 0.005. d, Schematic of 
optogenetic stimulation-imaging protocol. Top, cartoon of the imaged fly 
brain showing the whole-mounted brain and a detailed view of antennal lobe 
(AL) and imaged projection neurons (PN), with multiple stimulation ROIs 

indicated by black circles. Bottom, example of stimulation-imaging protocol, 
with CsChrimson activation (black) and imaging responses of either GCaMP6s 
(blue) or iATPSnFR (green). e, Left, GCaMP6s response to 10-ms CsChrimson 
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These results demonstrate that neural activation is sufficient to 
increase intracellular ATP concentration for prolonged periods. This 
long-lasting increase probably accounts for the fact that low frequen-
cies dominate the correlations between neural activity and metabolic 
flux (Fig. 2). For example, in ongoing physiological conditions, correla-
tions between calcium and both pyruvate and ATP signals decay over 
a frequency range from 10−2 Hz to 10−1 Hz, or from a timescale of 100 s 
to 10 s (Fig. 2g, h). These timescales are broadly consistent with the 
timescales of exponential decay of the iATPSnFR signal in response to 
a transient elevation of calcium (Fig. 3g, h). Moreover, the result that 
increased neural activity increases ATP concentration also accounts 
for the positive correlations we observe between calcium and ATP con-
centrations under physiological conditions (Fig. 2). If neural activity 
had caused reductions in ATP concentration, these correlations would 
have been negative.

Our results reveal a disparity in timescales between the duration 
of the calcium and ATP responses to transient depolarization: ATP 
concentration rises within 500 ms, but then long outlasts the calcium 
concentration. We considered the functional importance of this rapid 
rise and very long decay. We examined the temporal statistics of physi-
ologically relevant calcium signals during ongoing neural activity and 
found that these calcium fluctuations exhibit a 1/fα power spectrum, in 
which α = 1.15 ± 0.04 (±s.e.m.) (Fig. 3i). Such power spectra with expo-
nents close to 1 indicate temporal fluctuations with a wide spectrum 
of time constants, including very slow ones30,31. Consistent with this 
observation, the temporal autocorrelation function of calcium is not 
well-fit by a single exponential and possesses a long tail, dropping to 
half its peak value only after about 90 s (Fig. 3j). Thus, the timescale 
of the decay of excess ATP levels in our impulse experiments roughly 
matches the autocorrelation function of calcium under physiological 
conditions, which suggests a predictive energy allocation hypothesis 
(as developed in more detail in ‘Discussion’ below).

Behaviour directs activity and metabolism
We wondered how these signals are altered by the initiation of behav-
iour. We simultaneously imaged either Pyronic and jRGECO1a or  
iATPSnFR and jRGECO1a while recording leg movements (Methods). 
We then trained a generalized linear model using either neural activity 
or metabolic flux to predict bouts of movement (Fig. 4, Extended Data 
Fig. 6). Changes in neural activity in specific stereotyped regions of the 
brain predicted the timing of movement bouts, even when these bouts 
were brief (about 1 s long) (Extended Data Fig. 6b, d). The accuracy of 

behavioural predictions spanned all but the lowest frequencies we 
observed, and closely tracked the power spectrum of behaviour itself 
(Fig. 4b, Extended Data Fig. 7). Conversely, models that attempt to 
predict bouts of activity from metabolic flux performed relatively 
poorly, but still above chance (Fig. 4a, b, Extended Data Fig. 6). These 
correlations were highest at intermediate frequencies, which is con-
sistent with the relationship between the power spectrum of behav-
iour and with the low-frequency coupling between neural activity and 
metabolic flux (Fig. 4b, Extended Data Fig. 7). Conversely, given this 
low-frequency coupling, these data demonstrate that individual bouts 
of rapidly changing behaviour cannot be captured with metabolic 
proxies, regardless of sensor speed.

To probe the generality of the spatial structure of these generalized 
linear models across flies, we computed the average weights used in 
each model for each brain region at the optimal predictive frequency 
(Fig. 4b). Weights generated from calcium signals revealed a structured 
map of regions that are predictive of behaviour (Fig. 4c). Weights gener-
ated from metabolic flux signals were also structured; they captured 
a subset of the most strongly weighted regions in the neural activity 
maps and correlated with the overall structure observed with calcium 
(R = 0.36 for Pyronic; R = 0.5 for iATPSnFR) (Fig. 4c, Extended Data 
Fig. 6f, g). Thus, there is a region-specific pattern of common neural 
and metabolic load associated with behaviour.

To better define the regions that are correlated with behaviour initia-
tion, we imaged GCaMP6s while recording leg movements at greater 
spatiotemporal resolution and trained generalized linear models on 
these datasets. The regions of the brain that predict behavioural activity 
were those that are highly enriched for dendritic processes of descend-
ing neurons, which are effectors of movement that provide all of the 
connections between the central brain and the ventral nerve cord32 
(Extended Data Fig. 8a–d). The spatial weightings of these generalized 
linear models were very similar to those constructed with jRGECO1a 
(R = 0.82) (Extended Data Fig. 8e). Finally, correlations across brain 
regions slightly increased during behaviour but did not change in struc-
ture, which suggests that intrinsic functional connectivity is stable over 
short timescales (Extended Data Fig. 9).

Discussion
Changes in intracellular calcium levels in neurons are tightly coupled 
to spatially local changes in ATP and pyruvate concentrations in vivo. 
Changes in metabolic flux emerge less than 500 ms after an increase 
in neural activity but persist for many tens of seconds, effectively 
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low-pass-filtering neural activity and setting a fundamental limit on 
the ability of metabolic sensors to capture high-frequency components 
of neural signals. However, by providing fiducial benchmarks across 
both space and time, our data support the power of metabolic proxies 
such as BOLD and FDG PET to capture slow changes in neural activity.

Our work reveals a relationship between neural activity and metabo-
lism: increases in neural activity are dominated by increases rather than 
decreases in ATP concentration. This result suggests a hypothesis of 
predictive energy allocation. We propose that metabolism predicts and 
meets the energy demands of future neural activity through increased 
ATP production, which is then (on average) balanced through increased 
ATP consumption by subsequent activity-dependent processes. Under 
physiological conditions, the expected time course of future neural 
activity can be approximated by the temporal autocorrelation func-
tion of calcium, which predicts elevated levels of neural activity over 
many tens of seconds. In our optogenetic experiments, the excess 
ATP generated by an isolated transient calcium pulse thus lasts about 
as long as neural activity would have been elevated on average under 
physiological conditions. Thus, evolution appears to have tuned the 
coupling between neural activity and metabolism to meet both immedi-
ate energy demands as well as future activity-dependent needs.

Even minimal behavioural movements could be well-predicted by 
models that positively weighted large regions of the brain that are 
enriched for the dendritic processes of descending neurons, while 
negatively weighting other regions. This result was surprising because 
increasing or decreasing the activities only of pairs of descending neu-
rons is sufficient to initiate or suppress bouts of walking behaviour, 
respectively, which argues for a relatively simple motor command 
structure33. By contrast, our finding that the movements we measured 
are associated with large-scale changes in neural and metabolic activ-
ity argue for a much more complex control framework. Thus, even 
in the relatively compact fly brain, distributed neural and metabolic 
networks similar to those described in vertebrates have essential roles 
in guiding behaviour34–38.
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Methods

No statistical methods were used to predetermine sample size. The 
experiments were not randomized, and investigators were not blinded 
to allocation during experiments and outcome assessment.

Fly preparation
GCaMP6s flies were females of the genotype w+/w−;UAS-myr::tdTomato/
UAS-GCaMP6s;nSyb-Gal4/+. iATPSnFR flies were females of the 
genotype w+/w−;UAS-iATPSnFR/UAS-myr::tdTomato;nSyb-Gal4/+. 
Dual iATPSnFR and jRGECO flies were of the genotype w+/w−; 
UAS-iATPSnFR/+;UAS-jREGECO1a/nSyb-Gal4. Pyronic flies were  
females of the genotype w+/w−;UAS-myr::tdTomato/+;nSyb-Gal4/
UAS-Pyronic. Dual Pyronic and jRGECO1a flies were females of the 
genotype w+/w−;+/+;nSyb-Gal4/UAS-Pyronic,UAS-jRGECO1a. CsChrim-
son activation flies were of the genotype w+/w−;iATPSnFR/GH146-Ga
l4;UAS-CsChrimson::tdTomato/+, and w+/w−;GCaMP6s/GH146-Gal
4;UAS-CsChrimson::tdTomato/+. Flies were raised on molasses medium 
at 25 °C with a 12/12-h light/dark cycle. Flies were housed in mixed male/
female vials and 5-day-old female flies were selected for whole-brain 
imaging, and 5–10-day-old female flies were selected for CsChrimson 
activation experiments, and were transferred to medium containing 
1 mM all trans-retinal 2 days before experiments.

Flies were prepared as previously described3. In brief, flies were 
cold-immobilized on ice and placed into a mount separating the head 
from the body. The frontal parts of the head were removed to allow 
optical access to the central brain. In sessions in which behaviour was 
not monitored, legs were immobilized. In sessions monitoring leg 
movements, legs were kept free.

Image alignment and registration
High-resolution images were aligned to a template brain and atlas as 
previously described, except that in dual Pyronic and jRGECO1a-imaged 
flies, a high-resolution anatomical scan was made of the jRGECO1a 
signal instead of myr::tdTomato3. Motion correction was performed 
using 3dvolreg of AFNI, as previously described3.

Two-photon imaging
Flies were imaged at room temperature on a Bruker Ultima system with 
resonant scanning capability, a piezo objective mount and GaAsP-type 
photomultiplier tubes using a Leica 20× HCX APO 1.0 NA water immer-
sion objective lens. GCaMP6s and iATPSnFR signals were excited with 
a Chameleon Vision II femtosecond laser (Coherent) at 920 nm, and 
collected through a 525/50-nm filter. myr::tdTomato signals were 
excited at 920 nm and collected through a 595/50-nm filter. Pyronic 
signals were excited at 860 nm and collected through a 525/50-nm 
filter. jRGECO1a signals were excited at 1,070 nm using a Fidelity II fem-
tosecond laser (Coherent) and collected through a 595/50-nm filter. 
GCaMP6s, Pyronic and iATPSnFR functional data in Fig. 1 and Extended 
Data Fig. 6, as well as all dual imaging experiments with iATPSnFR and 
jRGECO1a, were collected in resonant scanning mode (8-kHz line scan 
rat and bidirectional scanning) and were volumetrically imaged at a 
resolution of 128 × 128 (3 × 3 μm) with 68 z-sections (3-μm steps, and 
effective frame rate of about 100 Hz). Dual imaging experiments, 
representing all other datasets using Pyronic and jRGECO1a, were 
collected in galvo scanning mode alternating between 1,070-nm and 
860-nm lasers line by line at a resolution of 32 × 32 (12 × 12 μm) with 
15 z-sections (12-μm steps and effective frame rate of about 15 Hz). 
In CsChrimson activation experiments, the 1,070-nm femtosecond 
laser was directed using a separate set of galvanometers than the 
imaging set, and was set to activate specific regions during planer 
imaging using the 920-nm laser imaging at 7 Hz. The 1,070-nm laser 
ran an activation pattern comprising up to 10 ROIs in a sample in 
succession, with each ROI being scanned with a spiral pattern that 
was 5 μm in diameter.

Quantification of iATPSnFR responses in whole brains
Standard flies expressing iATPSnFR pan-neuronally were prepared 
similarly to those for imaging experiments, except that the head cap-
sule was fully removed and glued to the bottom of an imaging chamber 
before dissection. Flies were dissected in modified fly saline that con-
tained 30 μM saponin to permeabilize the membranes to ATP. Whole 
volumes were collected as in standard resonant imaging sessions at 
128 × 128 (3 × 3 μm) with 68 z-sections (3-μm steps and effective frame 
rate of about 100 Hz). Standard fly saline containing 30 μM saponin 
was perfused across the sample for several minutes to establish base-
line fluorescence. Then, 10 ml of fly saline containing 30 μM saponin 
and 0.1, 0.5, 1, 2, 3 or 4 mM ATP was perfused over the brain. Change 
in fluorescence was measured as the per cent change from baseline to 
the peak during ATP perfusion and was normalized to the highest value 
observed for each individual brain.

Quantification of calcium, Pyronic and ATP coupling between 
ROIs
To measure the coupling between ROI activities in each fly, we first 
averaged the calcium, Pyronic or ATP signals from all voxels in each ROI 
to produce a single time series for each ROI and each sensor. We then 
computed the Pearson correlation of the time series of each ROI pair 
to generate a 60 × 60 correlation matrix for each fly that represents 
the couplings between ROIs. We averaged these correlation matrices 
across all flies to obtain representative correlation matrices (n = 12 
flies for GCaMP6s, n = 10 for Pyronic, n = 10 for iATPSnFR, n = 24 for 
dual-imaged jRGECO1a and Pyronic flies). To compare the correla-
tion matrices obtained for these signals, we computed the Pearson 
correlation between the corresponding average correlation matrices.

Temporal frequency analysis of neural activity and metabolic 
flux correlations
Correspondence between neural activity and metabolic flux was meas-
ured at a range of frequencies between 0.01 Hz and 0.5 Hz. Using the 
SciPy open-source mathematical library in Python39,40, we applied a 
Tukey window to the brain signals and then performed a Ricker wavelet 
transform to decompose the signals into 30 frequency bands. At each 
frequency band, we measured the Pearson correlation between the 
filtered calcium and Pyronic or iATPSnFR signals for each ROI indepen-
dently, and then averaged this correlation over all ROIs and all flies. We 
tested against spatially shuffled signals. To obtain the spatial shuffle, 
we randomly permuted the identity of the ROIs independently for the 
Pyronic or iATPSnFR and calcium signals in each fly. Error bars represent 
s.e.m. over n = 24 flies. Additionally, we low-passed and high-passed 
filtered one example calcium trace and its corresponding Pyronic or 
iATPSnFR trace by setting to zero the Fourier coefficients of these sig-
nals above and below 0.1 Hz, respectively, and computing the inverse 
Fourier transform of the resulting coefficients.

TTX application and effect quantification
The jRGECO1a and Pyronic signals were imaged for 1,000 s before TTX 
application. TTX was then added to the bath through the perfusion 
at a concentration of 1 μM. After a waiting period of 1,200 s, the brain 
was imaged again for another 1,000 s. Analyses were performed on 
n = 8 flies. The effect of TTX on the Fourier spectrum of the calcium 
and Pyronic signals was measured in two ways. First, for each ROI we 
estimated variance by integrating the spectrum between 0.01 Hz and 
0.5 Hz (the range of frequencies for which we could correctly estimate 
the spectrum on a recording of 1,000 s) before and after addition of 
TTX (n = 8 flies, error bars are s.e.m.). Second, to visualize the influence 
of TTX at different frequencies, we represented the relative power (dif-
ference between the power after addition of TTX and before addition of 
TTX) as a function of frequency, averaged over all flies and ROIs (n = 54 
ROIs, error bars are 95% confidence intervals). We also measured the 
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influence of TTX on the coupling between ROIs. For each fly, we com-
puted the correlation matrix between ROI activity over three periods of 
500 s, with two of the periods taken before the addition of TTX and one 
period taken after addition of TTX. We evaluated the self-consistency 
of each coupling before addition of TTX by measuring the Pearson 
correlation between the first two matrices, and we evaluated the effect 
of TTX on coupling by measuring the Pearson correlation between the 
second and third correlation matrices. We also measured the effect 
of TTX on the coupling between calcium and Pyronic signals in two 
ways. First, we computed the correlation of their correlation matrices 
before and after addition of TTX. Second, for each individual ROI, we 
measured the correlation of calcium and Pyronic signals before and 
after addition of TTX.

Chrimson activation
Before experiments, adult flies were put on fly food containing 1 mM all 
trans-retinal for 2 days. Flies were prepared for CsChrimson activation 
by first removing the head capsule and gluing it to the base of a dish 
similar to that used for whole-fly mounts. The head removal substan-
tially reduces background activity that would interfere with meas-
urements, and provides a baseline of low activity with which to work. 
Heads are prepared in a manner otherwise identical to that described 
in ‘Fly preparation’ and perfused with the same saline solution as in 
other experiments. GCaMP6s and iATPSnFR were imaged using the 
standard galvos on a Bruker Ultima at 7 Hz using 920-nm light. Crimson 
was activated using the uncaging galvo light path on the microscope 
using 1,070-nm light. Five-μm ROIs were drawn on the relevant por-
tions of the antennal lobes and pulses ranging from 10 to 100 ms were 
delivered during imaging. These pulses consisted of 5 spirals covering 
the 5-μm ROIs. In most cases, up to 10 ROIs were pulsed in sequence in 
any given experiment. The power of the laser was set such that a 10-ms 
pulse would deliver a minimal GCaMP6s response (1–10% change) of 
about 17 mW at the stage.

Computation of autocorrelation and spectra
To compute the temporal autocorrelation function of calcium, for 
each fly we z-scored the activity trace of each ROI independently (that 
is, subtracted the temporal mean and divided by the s.d.), computed 
the autorrelation function for each ROI on a window of 200 s, and aver-
aged the resulting autorrelograms over ROIs and flies. To compute the 
power spectrum of calcium, for each fly and each ROI we subtracted 
the temporal mean activity, computed the spectrum, divided it by 
total variance of the ROI so as to preserve the shape of the spectrum 
but not its overall amplitude (total area under the spectrum curve is 
1), and then averaged the resulting spectra across ROIs and flies. We 
fit a linear function to the log–log spectra of each fly to estimate the 
decay slope and s.e.m.

Examination of behaviour-related fluctuations in neural and 
metabolic activity
To measure behaviour, we imaged the body of the fly with a c-mount 
camera (640 × 512 pixels at 20 frames per s, Flir Blackfly S BFS-U3-
04S2M-CS) with a 50-mm f./2.0 lens (Edmund Optics). Bouts of activ-
ity were manually scored using behavioural observation research 
interactive software (BORIS)41. Flies were scored as behaving if the 
proximal segments of any of the legs moved. The analyses below were 
performed on n = 12 flies for jRGECO1a signals, and n = 8 flies for Pyronic 
signals, all for 2,000 s. We predicted behaviour by fitting a logistic 
regression (a special case of generalized linear model) on the brain 
signals of all ROIs. To avoid overfitting, we used an L2 penalty of 1 × 105 
on the weights of the logistic regression. We fitted the model weights 

on half of the recording and tested the model prediction on the other 
half for cross-validation (all predictions presented are from the testing 
phase). Before this analysis, to remove slow signal fluctuations that 
were not predictive of behaviour, we fitted for each ROI a 10-degree 
polynomial and subtracted this polynomial curve from the signal. To 
assess the predictability of behaviour from jRGECO, Pyronic and iAT-
PSnFR signals, we computed a ROC curve and measured the AUC. To 
assess the predictive power of brain signals at different frequencies, 
we applied a Ricker wavelet decomposition to both brain signals and 
behaviour and fit a logistic regression model independently for each 
frequency band. To compare the spatial weight maps of the logistic 
regression with the smooth processes of descending neurons, we used 
n = 6 flies imaged at 1.2 Hz for GCaMP6s only. To test whether behaviour 
affected coupling between ROIs for jRGECO1a, Pyronic and iATPSnFR 
signals, we measured the average difference in coupling across all ROI 
pairs, between rest and behaviour, for each fly independently, and 
performed a two-tailed t-test to decide whether this average difference 
was different from 0.

Statistics
Comparisons of correlation matrices (Fig. 3c) were performed using 
a two-tailed paired t-test. AUC analysis (Fig. 4a) was performed using 
a one-tailed t-test against 0.5 (no predictive value). Comparisons 
of correlations during behaviour and at rest (Extended Data Fig. 9) 
were calculated using a one-tailed t-test between the respective 
correlation values for each ROI. All data were collected from dis-
tinct samples (flies for whole-brain imaging or ROIs for CsChrimson 
experiments).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Raw imaging data are available upon request to the corresponding 
authors.

Code availability
Analysis scripts are available upon request from the corresponding 
authors.
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Extended Data Fig. 1 | Normalized iATPSnFR responses in whole brains to 
ATP. Normalized ∆F/F values for different concentrations of ATP measured in 
whole brains expressing iATPSnFR pan-neuronally. n = 10 flies, mean ± s.e.m.
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Extended Data Fig. 2 | Example traces and correlations of Pyronic, 
jRGECO1a and iATPSnFR. a, Pyronic traces over an imaging session in 
different regions. b, A pair of traces that exhibit high correlation over time.  
c, Scatter plot of these two regions demonstrating correlation. d, A pair of 

traces that exhibit lower correlation over time. e, Scatter plot of these two 
regions demonstrating correlation. f–j, As in a–e, but with jRGECO1a.  
k–o, As in a–e, but with iATPSnFR.
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Extended Data Fig. 3 | Correlation matrices of GCaMP6s, Pyronic and 
iATPSnFR. a–c, Correlation matrices for GCaMP6s, Pyronic and iATPSnFR, 
reproduced and enlarged from Fig. 1, and labelling each individual region.
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Extended Data Fig. 4 | Correspondence of functional networks derived 
from simultaneous jRGECO1a, Pyronic and iATPSnFR measurements.  
a, Left, traces displaying iATPSnFR (green) and corresponding jRGECO1a signal 
(blue). Right, Pyronic signals (orange) and corresponding jRGECO1a signals 
(blue) across six different brain regions b, Correlation matrix derived from 
jRGECO1a in the simultaneous imaging experiments from a and Fig. 2.  
c, Correlation matrix derived from Pyronic in the simultaneous imaging 
experiments from a and Fig. 2. d, Scatter plot of the pairwise correlations 
between jRGECO1a and Pyronic. e–g, As in b–d, but with jRGECO1a and 

iATPSnFR. n = 23 flies for Pyronic and n = 9 flies for iATPSnFR.  
h–m, Comparison of jRGECO1a and Pyronic signals within a single brain region 
(saddle (SAD)). h, Traces of Pyronic and jRGECO1a signals including all 
frequency components. i, Pairwise comparison of Pyronic and jRGECO1a 
signals including all frequency components and the correlation between these 
signals. j, k, As in h, i, but filtered to include only low-frequency (<0.1 Hz) 
components. l, m, As in h, i, but filtered to include only high-frequency 
(>0.1 Hz) components.
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before TTX application (top row) and after TTX application (bottom row). 
Mean ± s.e.m. c, GCaMP6s response to 100-ms activation pulse in flies that lack 
CsChrimson. n = 45 ROIs, mean ± s.e.m. d, As in c, but with iATPSnFR. n = 45 
ROIs, mean ± s.e.m.
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Extended Data Fig. 6 | Example model predictions of behaviour and 
CsChrimson controls. a, Schematic of the data processing and analysis 
pipeline used: (i) traces of Pyronic, iATPSnFR, jRGECO1a and behaviour 
(movement of the legs); (ii) half of the dataset was used to train a logistic 
regression model relating neural activity and metabolic flux to behaviour;  
(iii) predicted behavioural outputs were generated using the withheld data  
and were compared to the actual behaviour during those time periods; and  
(iv) model prediction was evaluated by correlating predicted behaviour to 

observed behaviour. b, Left, four example flies showing the prediction based 
on the model for jRGECO1a (blue) with the corresponding behaviour trace 
(black). Correlation between signals shown above each trace. Right, weights 
for each ROI generated by the model shown on right (oriented as in Fig. 4c).  
c, As in b, but with Pyronic (orange). d, e, As in b, c, but with a different set of 
four flies, with jRGECO1a (blue), iATPSnFR (green) and behaviour trace (black). 
f, Correlation between model weights derived from iATPSnFR and jRGECO1a.  
g, Correlation between model weights derived from Pyronic and jRGECO1a.
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Extended Data Fig. 7 | Frequency spectra of jRGECO1a, Pyronic, iATPSnFR and behaviour. Normalized spectra from data presented in Fig. 4.
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Extended Data Fig. 8 | Correlation of model weights for GCaMP6s and 
descending-neuron innervation. a, Model weights for each brain region 
generated using GCaMP6s. b, The number of descending-neuron processes in 
each brain region (abbreviations defined as in ref. 32). c, Graphical 

representation of model weights, similar to Fig. 4c. d, Correlation between 
model weights and descending-neuron innervation by each region.  
e, Correlation between model weights derived from GCaMP6s and jRGECO1a.



Extended Data Fig. 9 | Changes in correlations across regions during 
behaviour for both jRGECO1a and Pyronic. a, Functional connectivity map of 
jRGECO1a during bouts of rest. b, Functional connectivity map of jRGECO1a 
during bouts of activity. c, Correlation of functional connectivity maps during 

resting and behaving bouts. Correlations increase across the vast majority of 
regions (P = 0.004, n = 12 flies, one-tailed t-test). d–f, As in a–c, but for Pyronic 
(P = 0.13, n = 7 flies, one-tailed t-test). g–i, As in a–c, but for iATPSnFR (P = 0.38, 
n = 13 flies, one-tailed t-test).
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Sample size Sample sizes were not predetermined. Typically, as much data as was temporally possible was collected for analysis, and minimal numbers of 
animals required in previous studies were applied here.

Data exclusions Data exclusion was performed only in catastrophic event (i.e. motion, dropped frames, errors in collection) according to previously published 
parameters (in methods).

Replication Data was collected for this study over the course of several years, replicating data throughout. Comparisons between multiple different 
collection times were performed to insure reliability over time 

Randomization there was no randomization in this study

Blinding Experimenters were not blind to the genotype of the animals used. Blinding was not necessary in this study as it is primarily descriptive, and 
comparisons between types (i.e. genotype) were not performed. 
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Methods
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Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Drosophila melanogaster, female, aged 5-8 days. 

Wild animals no wild animal samples were involved in this study

Field-collected samples no field-collected samples were involved in this study

Ethics oversight no ethical guidelines were required for this study as it involves fruit flies. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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