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Coordinated activity across networks of neuronsis a hallmark of both resting and
active behavioural states in many species' ™. These global patterns alter energy
metabolism over seconds to hours, which underpins the widespread use of oxygen
consumption and glucose uptake as proxies of neural activity®’. However, whether
changesinneural activity are causally related to metabolic flux in intact circuits on the
timescales associated with behaviour is unclear. Here we combine two-photon
microscopy of the fly brain with sensors that enable the simultaneous measurement
of neural activity and metabolic flux, across both resting and active behavioural
states. We demonstrate that neural activity drives changes in metabolic flux, creating
atight coupling between these signals that can be measured across brain networks.
Using local optogenetic perturbation, we demonstrate that even transient increases
in neural activity resultin rapid and persistent increases in cytosolic ATP, which
suggests that neuronal metabolism predictively allocates resources to anticipate the
energy demands of future activity. Finally, our studies reveal that the initiation of even
minimal behavioural movements causes large-scale changes in the pattern of neural
activity and energy metabolism, which reveals a widespread engagement of the brain.
Astherelationship between neural activity and energy metabolism is probably
evolutionarily ancient and highly conserved, our studies provide a critical foundation
for using metabolic proxies to capture changes in neural activity.

Three technologies have widely been used to measure changesin neural
activity across whole-brain volumes. Functional magnetic resonance
imaging uses blood-oxygen-level-dependent (BOLD) signals to capture
changesin oxygenated blood flow as a proxy for neural activity,and has
atemporal resolution of seconds and a spatial resolution of millimetres®.
Fluorodeoxyglucose positron emissiontomography (FDG PET) captures
changes in glucose uptake, and has a temporal resolution of tens of
minutesand a typical spatial resolution of centimetres’ °. Simultaneous
imaging methods have demonstrated that FDG-PET-intrinsic (that is,
task-free) brain networks spatially overlap with BOLD networks, which
indicates a relationship between glucose uptake and blood oxygena-
tion'. BOLD signals also correspond with low-frequency fluctuations
inthelocalfield potential, which indicates that these measures of blood
flow and glucose metabolism can be proxies for neural activity™. In
parallel, imaging approaches that use fluorescent sensors to measure
changes inintracellular calcium concentrations can capture neural
activity withsingle-cell resolutionacross large areas of the brain**>%,
However, none of these approaches has allowed direct, simultaneous,
brain-wide intracellular measurements of changesinboth neural activity
and metabolic flux at high spatial and temporal resolution.

Neural and metabolic signals correlate

Correspondences betweenneural activity and metabolism can be meas-
ured using genetically encoded sensors, combined with brain-wide

imaging, inimmobilized animals®" (Fig. 1a). Whole-brain imaging
often measures functional connectivity networks that are defined by
correlated changes in neural activity between regions over time, in
whichthe strength of each connectionis represented by the magnitude
and sign of the correlation between the activity patterns in pairs of
regions®. These correlations capture large-scale, infra-slow (<0.1Hz)
interactions that reflect brain regions coordinating their activity*® .
We hypothesized thatif normal variationsin neural activity inthe brain
were closely coupled to variations in intracellular energy flux, then a
functional connectivity network could be detected using sensors that
measure changes in energy metabolism. To test this hypothesis, we
took advantage of Pyronic (a sensor of changes in intracellular pyru-
vate concentration'?) (Fig. 1a) and iATPSnFR (a sensor of changes
in ATP concentration®?) (Extended Data Fig. 1), and compared these
signals to intracellular calcium levels measured using GCaMP6s*. As
changesinboth the citric acid cycle and glycolysis alter pyruvate and
ATP flux, we reasoned that changes in Pyronic and iATPSnFR signals
should report whether changes in metabolic flux are correlated within
and between brainregions.

We expressed both of these metabolic sensors pan-neuronally, along
with a structural marker (tdTomato), and imaged the entire central
brains of immobilized flies® (Methods). Next, we aligned each brain
withatemplate brain® and used a standard atlas to extract each of these
signals from 54 anatomically defined regions®. We observed strong
correlations between some pairs of regions, but not others (Extended
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Fig.1|Metabolic and neural networks are highly correlated across the
brain. a, Top left, schematic of the preparation that allows two-photonimaging
acrossthe fly brain. Top right, cartoon of theimaged region of the fly brain.
Bottom, schematic of aneuronal process, denoting the metabolic pathways
thatlead to ATP production, and the sensors that were used to measure
changesinintracellular calcium concentration (GCaMP6s and jRGECOLla),

Data Fig. 2). We then compared the average correlations between all
pairs of regions across all flies, which provided us with a functional
connectivity map of metabolic flux (Fig. 1b-d, Extended Data Fig. 3). All
three connectivity maps were highly structured, which demonstrates
that both metabolic flux and neural activity are coordinated between
brainregionsinastereotyped manner.

To examine similarities between each of the metabolic flux networks
and the calcium activity network, we computed the pairwise correla-
tions between each correlation matrix (Fig. 1e-g). These compari-
sons revealed that all of these correlation matrices were very similar
(R=0.69 for pyruvate versus calcium; R=0.80 for ATP versus calcium;
and R=0.82for ATP versus pyruvate), even though the metabolic flux
and neural activity measures were made in different flies, using differ-
entsensors and targeting different aspects of energy metabolism. We
obtained similar results when we co-expressed both Pyronic and the
red-shifted calciumindicator jJRGECO1apan-neuronally (or bothiATP-
SnFRandjRGECO1a) and simultaneously measured both metabolic flux
and neural activity in the same fly?® (n=24 flies for Pyronic, n=18 flies for
iATPSNfR) (Extended DataFig.4a-g). These data demonstrate that the
functional connectivity structure of neural signals throughout the brain
is mirrored in the corresponding structure of metabolic flux, which
suggests an intimate link between neural activity and metabolism.

Activity is necessary for metabolic networks

We next determined the relationship between metabolic flux and neural
activity at the level ofindividual regions (Fig. 2, Extended Data Fig. 4).
Our comparisons of the simultaneously recorded signals revealed
substantial correlations (Fig. 2a, b, Extended Data Fig. 4h, i). These
correlations were stronger when the metabolic flux and neural activ-
ity signals were filtered to select for low frequencies rather than high
frequencies (Fig. 2c—f, Extended Data Fig. 4j-m), and were eliminated
by shuffle controls that swapped regional identities (Fig. 2g, h). iATP-
SnFR displayed a greater correlation with JRGECO1a than did Pyronic
acrossall frequencies, but had a similar drop-offin correlation at higher
frequencies (Fig. 2g, h). Thus, low-frequency changes in intracellular
calcium levels (corresponding to the timescales of tens of seconds)
are correlated with changes in metabolic flux.

pyruvate concentration (Pyronic) and ATP concentration (iIATPSnFR). CAC,
citricacid cycle.b-d, Matrices of pairwise correlations between brain regions.
b, GCaMPé6s. ¢, Pyronic.d,iATPSnFR. e-g, Scatter plots of the pairwise
correlationsbetween matrices. e, Pyronic versus GCaMPé6s. f,iATPSnFR versus
GCaMPé6s. g, iATPSnFR versus Pyronic.n=12flies for GCaMPé6s, n=10 for
Pyronic,n=10 foriATPSNFr.

To test whether physiological fluctuations in neural activity were
necessary to drive correlated changes in metabolic flux, we imaged flies
that simultaneously expressed either Pyronic and jRGECO1a or iATP-
SnFR andjRGECOlabefore and after abath application of tetrodotoxin
(TTX). TTXblocks voltage-gated sodium channels, which prevents the
generation of action potentials”” and thereby inhibits neural activity. If
changesinneural activity drive changes in metabolic flux, then blocking
neural activity should disrupt both the neural and metabolic functional
connectivity maps by eliminating regional correlations between these
signals. A bath application of TTX markedly reduced fluctuations in
the Pyronic, iATPSnFR and jRGECO1a signals across a wide range of
frequencies (Fig. 3a, b, Extended Data Fig. 5a), and largely eliminated
the stereotyped correlations between these signals across the brain
(Fig.3c, Extended DataFig. 5b). Thus, the observed metabolic network
is substantially the product of neural activity.

Activity drives metabolic flux

Todetermine whether localincreasesin neural activity were sufficient
to alter metabolic flux and to measure the timescale of this coupling,
we used the light-activated cation channel CsChrimson to depolarize
neurons with subcellular resolution and millisecond precision®, We
expressed CsChrimsoninantennal-lobe projection neurons, simulta-
neously with either the calcium indicator GCaMPé6s or the ATP sensor
iATPSnFR?. We thenimaged each sensor signal while locally stimulating
CsChrimsoninapproximately 20-um?subregions of projection-neuron
dendrites (Fig. 3d, Methods). Using a 10-ms activation pulse to drive
CsChrimson, we were able to reliably evoke a minimal GCaMPé6s
response that rapidly decayed (Fig. 3e). Increasing the pulse length
to 50 msincreased the size of the GCaMP6s response and somewhat
slowed its decay (Fig. 3f), while remaining within physiological ranges.

Increases in neural activity might be expected to result in increased
consumptionof ATPand areductionintheiATPSnFRsignal. However, the
observed changes wereinstead dominated by arapid and robustincrease
inthe iATPSnFR signal that peaked within 500 ms of stimulation, and
decayed much more slowly than observed changes in intracellular cal-
ciumconcentration (Fig. 3g, h). Specifically, with10-msactivation pulses,
GCaMPés signals decayed exponentially with a time constantof 7=3s,
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Fig.2|Simultaneous measurements of neural activity and metabolic flux
reveal correlations thatare dominated by low frequencies. a-f, Comparison
of jRGECO1aand iATPSnFR signals withinasingle brainregion (right superior
medial protocerebrum (SMP-R)). a, Traces of iATPSnFR and jRGECOla signals
includingall frequency components. b, Pairwise comparison of iATPSnFR and
jRGECO1lasignals, including all frequency components and the correlation
betweenthesesignals.c,d, Asina, b, butfiltered toinclude only low-frequency

whereasiATPSnFR signals decayed with atime constant of =43 s (Fig.3e,
g). We observed similar results using 50-ms activation pulses (Fig. 3f, h).
Importantly, in control flies that lack CsChrimson laser stimulation did
notalter eitherintracellular calcium or ATP concentration (Extended Data

(<0.1Hz) components. e, f,Asina, b, butfiltered toinclude only high-frequency
(>0.1Hz) components. g, Pairwise correlations betweeniATPSnFR and
JjRGECO1lasignals measuredin eachbrainregion, asafunction of frequency
(greentrace) and shuffle control in which pairwise comparisons were done
betweenbrainregions withidentities that have beenshuffled (black trace).
n=24flies, mean ts.e.m.(shading).ROIl, region of interest.h, Asing, but with
Pyronic (orange). n =24 flies, mean +s.e.m. (shading).

Fig. 5c, d). Finally, because laser stimulation of CsChrimson precludes
the acquisition of fluorescent signals within 300 ms of the pulse, these
observations do not exclude the possibility that neural activity might
evokeimmediate and brief decrementsinintracellular ATP concentration.
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Fig.3|Neural activity drives metabolic flux in the brain.a, Comparison of
thevariance of the signals of each ROl before and after TTX application,
JRGECO1a (blue) (n=20flies), Pyronic (orange) (n=8flies) and iATPSnFR
(green) (n=20flies), mean +s.e.m.for eachregion.b, Therelativereductionin
signal power caused by TTX application, as afunction of frequency across all
brainregions and flies (n =54 regions, mean + 95% confidence interval
(shading)). ¢, Correlation of the correlation maps between flies before and
after TTX application, across all brain regions, for JRGECO1a (calcium) (blue
dots), Pyronic (pyruvate) (orange dots) and for iATPSnFR (ATP) (green dots)
(mean +95% confidence interval) ***P<0.0004, **P<0.005.d, Schematic of
optogenetic stimulation-imaging protocol. Top, cartoon of theimaged fly
brain showing the whole-mounted brainand adetailed view of antennal lobe
(AL) and imaged projection neurons (PN), with multiple stimulation ROls
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indicated by black circles. Bottom, example of stimulation-imaging protocol,
with CsChrimsonactivation (black) and imaging responses of either GCaMPé6s
(blue) oriATPSnFR (green). e, Left, GCaMP6s response to 10-ms CsChrimson
activation (stimulation window denoted by black tick, not to scale). Frames
collected during the stimulation window are not shown, as optical stimulation
producesalarge artefact (n=141ROIs, mean +s.e.m.). Right, 10 s ofimaging
datafromleft (box) with exponential fit (black). f, Asin e, but witha 50-ms
activation pulse (n=77ROls).g, Asine, but withiATPSnFR (n=124 ROls,
mean+s.e.m).h,Asing, but witha50-ms activation pulse (=123 ROlIs).

i, Normalized spectrum of calcium signals from data collected for Fig. 4 (blue),
withlinearfit (red). AU, arbitrary units.j, Autocorrelation of calcium signal
fromdatacollected for Fig. 4.
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Fig.4|Neural activity and metabolic flux are correlated withbehaviourin
specificregions. a, Receiver-operator curve (ROC) showing agood prediction
of behaviouracrossall flies, using models based onjRGECO1la (blueline) (area
under curve (AUC) =0.82,P<0.0001, one-tailed t-test against 0.5), and poorer
butsignificant prediction of behaviour using Pyronic (orange line) (AUC=0.54,
P<0.05, one-tailed t-test against 0.5), and iATPSnFR (greenline) (AUC = 0.59,
P<0.001) mean+s.e.m.b, Comparisons of correlations between predictions of

These results demonstrate that neural activation is sufficient to
increase intracellular ATP concentration for prolonged periods. This
long-lasting increase probably accounts for the fact that low frequen-
ciesdominate the correlations between neural activity and metabolic
flux (Fig. 2). For example, in ongoing physiological conditions, correla-
tions between calcium and both pyruvate and ATP signals decay over
afrequency range from102?Hzto 10" Hz, or froma timescale of 100 s
to 10 s (Fig. 2g, h). These timescales are broadly consistent with the
timescales of exponential decay of the iATPSnFR signal in response to
atransient elevation of calcium (Fig. 3g, h). Moreover, the result that
increased neural activity increases ATP concentration also accounts
for the positive correlations we observe between calciumand ATP con-
centrations under physiological conditions (Fig. 2). If neural activity
had caused reductions in ATP concentration, these correlations would
have been negative.

Our results reveal a disparity in timescales between the duration
of the calcium and ATP responses to transient depolarization: ATP
concentration rises within 500 ms, but then long outlasts the calcium
concentration. We considered the functional importance of this rapid
rise and very long decay. We examined the temporal statistics of physi-
ologically relevant calcium signals during ongoing neural activity and
found that these calcium fluctuations exhibital/f* power spectrum, in
whicha=1.15+0.04 (+s.e.m.) (Fig. 3i). Such power spectra with expo-
nents close to 1indicate temporal fluctuations with a wide spectrum
of time constants, including very slow ones**>, Consistent with this
observation, the temporal autocorrelation function of calcium is not
well-fit by a single exponential and possesses a long tail, dropping to
half its peak value only after about 90 s (Fig. 3j). Thus, the timescale
of the decay of excess ATP levels in our impulse experiments roughly
matchesthe autocorrelation function of calcium under physiological
conditions, which suggests a predictive energy allocation hypothesis
(as developed in more detail in ‘Discussion’ below).

Behaviour directs activity and metabolism

We wondered how these signals are altered by the initiation of behav-
iour. We simultaneously imaged either Pyronic and jRGECO1a or
iATPSnFR and jJRGECO1a while recording leg movements (Methods).
Wethentrained ageneralized linear model using either neural activity
ormetabolic flux to predict bouts of movement (Fig. 4, Extended Data
Fig.6). Changesinneural activity in specific stereotyped regions of the
brain predicted the timing of movementbouts, even when these bouts
were brief (about 1slong) (Extended DataFig. 6b, d). The accuracy of

behaviour based onjRGECOIla (blue line), Pyronic (orange line) and iATPSnFR
(greenline) across arange of frequencies. ¢, Average weights of each ROI
generated from the logistic regression model when computed at the peak
frequency of correlation for metabolic fluxand behaviour (0.04 Hz)
mean+s.e.m.Images are sagittal (left), coronal (middle) and axial (right) views of
the central brain, and coloured by weight. A, anterior; D, dorsal; P, posterior;
V,ventral.n=12flies forjRGECO1la, n=8 flies for Pyronic, n=13flies foriATPSnFR.

behavioural predictions spanned all but the lowest frequencies we
observed, and closely tracked the power spectrum of behaviour itself
(Fig. 4b, Extended Data Fig. 7). Conversely, models that attempt to
predict bouts of activity from metabolic flux performed relatively
poorly, but still above chance (Fig. 4a, b, Extended DataFig. 6). These
correlations were highest at intermediate frequencies, which is con-
sistent with the relationship between the power spectrum of behav-
iour and with the low-frequency coupling between neural activity and
metabolic flux (Fig. 4b, Extended Data Fig. 7). Conversely, given this
low-frequency coupling, these data demonstrate thatindividual bouts
of rapidly changing behaviour cannot be captured with metabolic
proxies, regardless of sensor speed.

To probe the generality of the spatial structure of these generalized
linear models across flies, we computed the average weights used in
each model for eachbrainregion at the optimal predictive frequency
(Fig.4b). Weights generated from calciumsignals revealed astructured
map of regions that are predictive of behaviour (Fig.4c). Weights gener-
ated from metabolic flux signals were also structured; they captured
asubset of the most strongly weighted regions in the neural activity
maps and correlated with the overall structure observed with calcium
(R=0.36 for Pyronic; R= 0.5 for iATPSnFR) (Fig. 4c, Extended Data
Fig. 6f, g). Thus, there is a region-specific pattern of common neural
and metabolic load associated with behaviour.

Tobetter define the regions that are correlated with behaviour initia-
tion, we imaged GCaMP6s while recording leg movements at greater
spatiotemporal resolution and trained generalized linear models on
these datasets. The regions of the brain that predict behavioural activity
were those thatare highly enriched for dendritic processes of descend-
ing neurons, which are effectors of movement that provide all of the
connections between the central brain and the ventral nerve cord®
(Extended Data Fig. 8a-d). The spatial weightings of these generalized
linear models were very similar to those constructed with jJRGECOla
(R=0.82) (Extended Data Fig. 8e). Finally, correlations across brain
regions slightly increased during behaviour but did not change in struc-
ture, which suggests thatintrinsic functional connectivity is stable over
short timescales (Extended Data Fig. 9).

Discussion

Changesinintracellular calcium levels in neurons are tightly coupled
to spatially local changes in ATP and pyruvate concentrations in vivo.
Changes in metabolic flux emerge less than 500 ms after an increase
in neural activity but persist for many tens of seconds, effectively
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low-pass-filtering neural activity and setting a fundamental limit on
the ability of metabolic sensors to capture high-frequency components
of neural signals. However, by providing fiducial benchmarks across
bothspaceandtime, our datasupport the power of metabolic proxies
suchas BOLD and FDG PET to capture slow changes in neural activity.

Ourworkreveals arelationship between neural activity and metabo-
lism:increases in neural activity are dominated by increasesrather than
decreases in ATP concentration. This result suggests a hypothesis of
predictive energy allocation. We propose that metabolism predicts and
meets the energy demands of future neural activity throughincreased
ATP production, whichisthen (onaverage) balanced throughincreased
ATP consumption by subsequent activity-dependent processes. Under
physiological conditions, the expected time course of future neural
activity can be approximated by the temporal autocorrelation func-
tion of calcium, which predicts elevated levels of neural activity over
many tens of seconds. In our optogenetic experiments, the excess
ATP generated by anisolated transient calcium pulse thus lasts about
as long as neural activity would have been elevated on average under
physiological conditions. Thus, evolution appears to have tuned the
couplingbetween neural activity and metabolism to meet bothimmedi-
ate energy demands as well as future activity-dependent needs.

Even minimal behavioural movements could be well-predicted by
models that positively weighted large regions of the brain that are
enriched for the dendritic processes of descending neurons, while
negatively weighting other regions. This result was surprising because
increasing or decreasing the activities only of pairs of descending neu-
rons is sufficient to initiate or suppress bouts of walking behaviour,
respectively, which argues for a relatively simple motor command
structure®, By contrast, our finding that the movements we measured
areassociated with large-scale changesin neural and metabolic activ-
ity argue for amuch more complex control framework. Thus, even
in the relatively compact fly brain, distributed neural and metabolic
networks similar to those described in vertebrates have essential roles
inguiding behaviour®,
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Methods

No statistical methods were used to predetermine sample size. The
experiments were not randomized, and investigators were not blinded
to allocation during experiments and outcome assessment.

Fly preparation

GCaMPé6sflies were females of the genotype w+/w—;UAS-myr::tdTomato/
UAS-GCaMPé6s;nSyb-Gal4/+. iATPSnFR flies were females of the
genotype w+/w-;UAS-IATPSnFR/UAS-myr::tdTomato;nSyb-Gal4/+.
Dual iATPSnFR and jRGECO flies were of the genotype w+/w-;
UAS-iATPSnFR/+;UAS-JREGECO1a/nSyb-Gal4. Pyronic flies were
females of the genotype w+/w-;UAS-myr::tdTomato/+;nSyb-Gal4/
UAS-Pyronic. Dual Pyronic and jJRGECO1a flies were females of the
genotype w+/w-;+/+;nSyb-Gal4/UAS-Pyronic,UAS-jRGECO1a. CsChrim-
son activation flies were of the genotype w+/w-;iATPSnFR/GH146-Ga
14;UAS-CsChrimson::tdTomato/+, and w+/w—-;GCaMP6s/GH146-Gal
4;UAS-CsChrimson::tdTomato/+.Flies were raised on molasses medium
at25°Cwithal2/12-hlight/dark cycle. Flies were housed in mixed male/
female vials and 5-day-old female flies were selected for whole-brain
imaging, and 5-10-day-old female flies were selected for CsChrimson
activation experiments, and were transferred to medium containing
1mM all trans-retinal 2 days before experiments.

Flies were prepared as previously described?. In brief, flies were
cold-immobilized onice and placed into amount separating the head
from the body. The frontal parts of the head were removed to allow
optical accesstothe central brain. Insessions in which behaviour was
not monitored, legs were immobilized. In sessions monitoring leg
movements, legs were kept free.

Image alignment and registration

High-resolution images were aligned to a template brain and atlas as
previously described, except thatin dual Pyronic and jRGECO1la-imaged
flies, a high-resolution anatomical scan was made of the jJRGECO1la
signal instead of myr::tdTomato®. Motion correction was performed
using 3dvolreg of AFNI, as previously described®.

Two-photonimaging

Flies wereimaged at room temperature on a Bruker Ultima system with
resonant scanning capability, a piezo objective mount and GaAsP-type
photomultiplier tubes using aLeica20x HCX APO 1.0 NA water immer-
sion objective lens. GCaMP6s and iATPSnFR signals were excited with
aChameleon Vision Il femtosecond laser (Coherent) at 920 nm, and
collected through a 525/50-nm filter. myr::tdTomato signals were
excited at 920 nm and collected through a 595/50-nm filter. Pyronic
signals were excited at 860 nm and collected through a 525/50-nm
filter.jRGECO1lasignals were excited at 1,070 nmusing a Fidelity Il fem-
tosecond laser (Coherent) and collected through a 595/50-nm filter.
GCaMPé6s, Pyronic and iATPSnFR functional datain Fig.1and Extended
DataFig. 6, as well as all dualimaging experiments with iATPSnFR and
JRGECO1a, were collected in resonant scanning mode (8-kHz line scan
ratand bidirectional scanning) and were volumetrically imaged ata
resolution of 128 x 128 (3 x 3 um) with 68 z-sections (3-um steps, and
effective frame rate of about 100 Hz). Dual imaging experiments,
representing all other datasets using Pyronic and jRGECO1la, were
collected ingalvo scanning mode alternating between1,070-nmand
860-nm lasers line by line at aresolution of 32 x 32 (12 x 12 pm) with
15 z-sections (12-pum steps and effective frame rate of about 15 Hz).
In CsChrimson activation experiments, the 1,070-nm femtosecond
laser was directed using a separate set of galvanometers than the
imaging set, and was set to activate specific regions during planer
imaging using the 920-nm laser imaging at 7 Hz. The 1,070-nm laser
ran an activation pattern comprising up to 10 ROIs in a sample in
succession, with each ROI being scanned with a spiral pattern that
was 5 umin diameter.

Quantification of iATPSnFR responses in whole brains

Standard flies expressing iATPSnFR pan-neuronally were prepared
similarly to those for imaging experiments, except that the head cap-
sule was fully removed and glued to the bottom of animaging chamber
before dissection. Flies were dissected in modified fly saline that con-
tained 30 uM saponin to permeabilize the membranes to ATP. Whole
volumes were collected as in standard resonant imaging sessions at
128 x128 (3 x 3 um) with 68 z-sections (3-um steps and effective frame
rate of about 100 Hz). Standard fly saline containing 30 pM saponin
was perfused across the sample for several minutes to establish base-
line fluorescence. Then, 10 ml of fly saline containing 30 uM saponin
and 0.1,0.5,1, 2, 3 or 4 mM ATP was perfused over the brain. Change
influorescence was measured as the per cent change from baseline to
the peak during ATP perfusion and was normalized to the highest value
observed for each individual brain.

Quantification of calcium, Pyronic and ATP coupling between
ROIs

To measure the coupling between ROl activities in each fly, we first
averaged the calcium, Pyronic or ATPsignals from all voxelsineach ROI
to produce asingle time series for each ROl and each sensor. We then
computed the Pearson correlation of the time series of each ROI pair
to generate a 60 x 60 correlation matrix for each fly that represents
the couplings between ROls. We averaged these correlation matrices
across all flies to obtain representative correlation matrices (n=12
flies for GCaMPé6s, n =10 for Pyronic, n =10 for iATPSnFR, n =24 for
dual-imaged jJRGECO1a and Pyronic flies). To compare the correla-
tion matrices obtained for these signals, we computed the Pearson
correlation between the corresponding average correlation matrices.

Temporal frequency analysis of neural activity and metabolic
flux correlations

Correspondence between neural activity and metabolic flux was meas-
ured at a range of frequencies between 0.01 Hz and 0.5 Hz. Using the
SciPy open-source mathematical library in Python®**°, we applied a
Tukey window to the brainsignals and then performed a Ricker wavelet
transform to decompose the signalsinto 30 frequency bands. Ateach
frequency band, we measured the Pearson correlation between the
filtered calcium and Pyronic or iATPSnFR signals for each ROlindepen-
dently, and then averaged this correlation over allROIs and all flies. We
tested against spatially shuffled signals. To obtain the spatial shuffle,
werandomly permuted theidentity of the ROIsindependently for the
Pyronic oriATPSnFR and calciumsignalsineach fly. Error barsrepresent
s.e.m. over n =24 flies. Additionally, we low-passed and high-passed
filtered one example calcium trace and its corresponding Pyronic or
iATPSnFR trace by setting to zero the Fourier coefficients of these sig-
nals above and below 0.1 Hz, respectively, and computing the inverse
Fourier transform of the resulting coefficients.

TTXapplication and effect quantification

ThejRGECO1laand Pyronicsignals wereimaged for1,000 sbefore TTX
application. TTX was then added to the bath through the perfusion
ataconcentration of 1 uM. After a waiting period 0of1,200 s, the brain
was imaged again for another 1,000 s. Analyses were performed on
n=_8flies. The effect of TTX on the Fourier spectrum of the calcium
and Pyronic signals was measured in two ways. First, for each ROl we
estimated variance by integrating the spectrum between 0.01 Hz and
0.5Hz (therange of frequencies for which we could correctly estimate
the spectrum on a recording of 1,000 s) before and after addition of
TTX (n=8flies, error barsares.e.m.). Second, to visualize the influence
of TTX atdifferent frequencies, we represented the relative power (dif-
ference between the power after addition of TTX and before addition of
TTX) asafunction of frequency, averaged over all fliesand ROIs (n =54
ROIs, error bars are 95% confidence intervals). We also measured the
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influence of TTX on the coupling between ROls. For each fly, we com-
puted the correlation matrix between ROl activity over three periods of
5005, withtwo of the periods taken before the addition of TTX and one
period taken after addition of TTX. We evaluated the self-consistency
of each coupling before addition of TTX by measuring the Pearson
correlationbetween the first two matrices, and we evaluated the effect
of TTX on coupling by measuring the Pearson correlation between the
second and third correlation matrices. We also measured the effect
of TTX on the coupling between calcium and Pyronic signals in two
ways. First, we computed the correlation of their correlation matrices
before and after addition of TTX. Second, for each individual ROI, we
measured the correlation of calcium and Pyronic signals before and
after addition of TTX.

Chrimson activation

Before experiments, adult flies were put on fly food containingImMall
trans-retinal for 2 days. Flies were prepared for CsChrimson activation
by first removing the head capsule and gluing it to the base of a dish
similar to that used for whole-fly mounts. The head removal substan-
tially reduces background activity that would interfere with meas-
urements, and provides a baseline of low activity with which to work.
Heads are prepared ina manner otherwise identical to that described
in ‘Fly preparation’ and perfused with the same saline solution as in
other experiments. GCaMP6s and iATPSnFR were imaged using the
standard galvos onaBruker Ultimaat 7 Hz using 920-nm light. Crimson
was activated using the uncaging galvo light path on the microscope
using 1,070-nm light. Five-um ROIs were drawn on the relevant por-
tions of the antennal lobes and pulses ranging from 10 to 100 ms were
delivered duringimaging. These pulses consisted of 5 spirals covering
the 5-um ROIs. In most cases, up to 10 ROIs were pulsed in sequencein
any given experiment. The power of the laser was set such that a10-ms
pulse would deliver a minimal GCaMPé6s response (1-10% change) of
about17 mW at the stage.

Computation of autocorrelation and spectra

To compute the temporal autocorrelation function of calcium, for
each fly we z-scored the activity trace of each ROlindependently (that
is, subtracted the temporal mean and divided by the s.d.), computed
the autorrelation function for each ROlonawindow of200s, and aver-
aged theresulting autorrelograms over ROIs and flies. To compute the
power spectrum of calcium, for each fly and each ROl we subtracted
the temporal mean activity, computed the spectrum, divided it by
total variance of the ROl so as to preserve the shape of the spectrum
but not its overall amplitude (total area under the spectrum curve is
1), and then averaged the resulting spectra across ROIs and flies. We
fit alinear function to the log-log spectra of each fly to estimate the
decayslopeands.e.m.

Examination of behaviour-related fluctuations in neural and
metabolic activity

To measure behaviour, we imaged the body of the fly with a c-mount
camera (640 x 512 pixels at 20 frames per s, Flir Blackfly S BFS-U3-
04S2M-CS) with a 50-mm f./2.0 lens (Edmund Optics). Bouts of activ-
ity were manually scored using behavioural observation research
interactive software (BORIS)*. Flies were scored as behaving if the
proximal segments of any of the legs moved. The analyses below were
performed onn=12flies for JRGECOlasignals, and n=_8flies for Pyronic
signals, all for 2,000 s. We predicted behaviour by fitting a logistic
regression (a special case of generalized linear model) on the brain
signals of all ROIs. To avoid overfitting, we used an L2 penalty of 1x 10°
on the weights of the logistic regression. We fitted the model weights

on half of the recording and tested the model prediction on the other
half for cross-validation (all predictions presented are from the testing
phase). Before this analysis, to remove slow signal fluctuations that
were not predictive of behaviour, we fitted for each ROl a10-degree
polynomial and subtracted this polynomial curve from the signal. To
assess the predictability of behaviour from jJRGECO, Pyronic and iAT-
PSnFR signals, we computed a ROC curve and measured the AUC. To
assess the predictive power of brain signals at different frequencies,
we applied a Ricker wavelet decomposition to both brain signals and
behaviour and fit alogistic regression model independently for each
frequency band. To compare the spatial weight maps of the logistic
regression withthe smooth processes of descending neurons, we used
n=6fliesimaged at1.2 Hzfor GCaMPé6s only. To test whether behaviour
affected coupling between ROIs for JRGECO1a, Pyronicand iATPSnFR
signals, we measured the average difference in coupling across all ROI
pairs, between rest and behaviour, for each fly independently, and
performed atwo-tailed t-test to decide whether this average difference
was different from O.

Statistics

Comparisons of correlation matrices (Fig. 3c) were performed using
atwo-tailed paired ¢-test. AUC analysis (Fig. 4a) was performed using
aone-tailed t-test against 0.5 (no predictive value). Comparisons
of correlations during behaviour and at rest (Extended Data Fig. 9)
were calculated using a one-tailed t-test between the respective
correlation values for each ROI. All data were collected from dis-
tinct samples (flies for whole-brain imaging or ROIs for CsChrimson
experiments).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Raw imaging data are available upon request to the corresponding
authors.

Code availability

Analysis scripts are available upon request from the corresponding
authors.
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