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Analogue switches are used in communication and con-
nectivity systems to switch between different frequency 
bands, route signals between transmit and receive anten-

nas, reconfigure wireless communication systems and form direc-
tional beams in phased-array networks1–12. Conventional analogue 
and radio-frequency (RF) switches are based on solid-state diode 
or transistor devices2,3,6, which are volatile and consume energy 
both during the relatively long static (standby) and short dynamic 
(switching) periods. Thus, there is interest in developing switches 
that approach the ideal operation of zero d.c. power consump-
tion, with finite energy only during a switching event. This is of  
particular importance in mobile, wearable and battery-operated 
wireless systems.

To develop such an ideal switch, non-volatile memory devices, 
which include memristors, resistive random-access memory and 
phase-change memory, have been investigated intensely1,8–11,13–19. 
The primary requirements of a memory device for high-frequency 
switching are a low on-state resistance (Ron « 50 Ω) to afford a low 
insertion loss, and a low off-state capacitance (Coff) to enable high 
isolation. Both parameters combine to yield a single cutoff fre-
quency (FCO = 1/2πRonCoff) figure of merit in the terahertz range that 
is used to benchmark candidate switches1,9,17. Additional metrics of 
practical importance include switching voltage, operation band-
width, signal-power handling and switching time.

In this article, we show that atomically thin sheets of hexago-
nal boron nitride (hBN) configured in a metal–insulator–metal 
(MIM)20–22 sandwich on a diamond substrate can be used as ana-
logue switches with a state-of-the-art performance with respect to 
the FCO (129 THz), bandwidth above 200 GHz, switching time and 
area scalability. In addition, we define a d.c. energy consumption 
per switching event figure of merit, EFOM = VsetIonτ, where Vset is the 

set voltage (~0.9 V), Ion is the on current or maximum compliance 
current (~50 mA) and τ is the switching time (<15 ns). This met-
ric is a useful estimate for benchmarking the energy efficiency of 
candidate switches for modern mobile systems, which are generally 
energy constrained. By this metric, our hBN switch (EFOM < 0.68 nJ) 
is more energy efficient than conventional emerging switching 
devices by a factor of about 50 or more8,15,19.

The high-speed data-transmission quality of our hBN switches is 
validated using eye-diagram and bit error rate (BER) measurements 
for an 8.5 Gbit s–1 data stream at a carrier frequency (fc) of 100 GHz. 
This data rate, although limited by the experimental set-up, is more 
than sufficient to meet the specified user experience data rate for 5G 
of 100 Mbit s–1 (ref. 23). The intrinsic data rate, which is dependent 
on the hBN operational bandwidth (>200 GHz), is similarly suffi-
cient to satisfy the required peak data rate of 20 Gbit s–1. Compared 
with monolayer MoS2 switches, which have a similar MIM configu-
ration24, hBN switches offer ten times more power handling due to 
their superior thermomechanical properties. To further increase 
the thermal reliability and potentially higher power handling, opti-
mized thermal management is required to overcome Joule heat-
ing—a leading cause of device failure. To this end, we also used 
multiphysics simulation to model the electrothermal performance 
and develop a route to optimize material and device co-design.

Structure, characterization and d.c. resistive switching. Figure 1 
shows the device structure and optical characterization of a mono-
layer hBN RF switch fabricated on a 300-μm-thick polycrystalline 
diamond substrate that has a root-mean-square surface roughness 
less than 0.8 nm (Supplementary Fig. 1). In comparison with silicon 
or SiO2/silicon substrates, the diamond was specifically chosen for its 
high thermal conductivity, which provides sufficient heat sinking to 
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keep the hBN switch (and metal feedlines) relatively cool during d.c. 
and RF operation (Supplementary Fig. 2), an important criterion for 
reliable operation. The switch stack consists of ~150 nm gold (Au) 
top and bottom electrodes (TEs and BEs, respectively) both with 
2 nm chromium adhesion layers. First, BEs with a ground–signal–
ground (GSG) configuration for RF measurements were formed by 
lift-off after electron-beam lithography and electron-beam metal 
evaporation. Afterwards, chemical vapour deposited (CVD) hBN 
atomic sheets were transferred onto the BE using poly(methyl 
methacrylate)-assisted wet transfer methods20,25. The TE was pre-
pared using the same fabrication process as for the BE. Figure 1a 
shows a top-view optical image of a GSG device configuration of 
an hBN RF switch with Au electrodes. Figure 1b is a magnified 
atomic force microscopy image of the device area of a vertical MIM 
structure. The overlap between the BE and TE defines the switch 
area, which in this case is 0.5 × 0.5 μm2. A side-view schematic of 
the device MIM structure is shown in Fig. 1c. Transmission electron 
microscopy confirms the crystalline honeycomb atomic structure of 
the synthesized monolayer hBN with a lattice constant of ~0.25 nm 
(Fig. 1d). Furthermore, Raman spectroscopy of the CVD-grown 
hBN film corroborates the crystalline quality (Fig. 1e). After fab-
rication, the device is initially in a high-resistance state (HRS). 
Electrical voltage stimulus reveals a sudden increase (set process) 
in the current (Fig. 1f), which corresponds to a low-resistance state. 
It remains in that state, absent of power, until an opposite voltage 
polarity is employed to reset the device back to its initial state. As 
such, this type of MIM device is known as a bipolar non-volatile 
resistance switch or memory device13.

High-frequency performance studies. High-frequency scattering 
(S)-parameter measurements were conducted in both the on and off 
states of the hBN switch using a vector network analyser (VNA). At 
the outset, as is standard practice, SOLT (short-open-load-through) 
or LRRM (line-reflect-reflect-match) on-wafer calibrations were 

performed to obtain precise results and to remove the extrin-
sic effects of the test cables and probe station26. Subsequently, 
de-embedding processes using test patterns fabricated on the same 
substrate were conducted to obtain the intrinsic S parameters of hBN 
RF switches by eliminating the probe-pad and interconnect resis-
tances26. The intrinsic experimental high-frequency characteristics 
of the monolayer hBN switch show ~0.27 dB insertion loss in the on 
state (Fig. 2a) and isolation below 35 dB in the off state (Fig. 2b) at 
frequencies up to 67 GHz. The three performance parameters, Ron, 
Coff and FCO (refs. 1,27), were determined using an equivalent lumped 
element circuit model (Supplementary Fig. 3 and Supplementary 
Note 1). After the de-embedding process, Ron and Coff were extracted 
from the intrinsic S parameters in the on and off states, respec-
tively, to obtain their quasi-static values. The FCO was calculated 
to be ~129 THz. These hBN switch results, although at a nascent 
state, outperform the phase-change memory, memristive and 
microelectromechanical system RF switches with the added ben-
efit of a heater-less ambient integration (Supplementary Table 1)24.  
Another point of comparison is the switching ratio, S21,off − S21,on, 
with hBN clearly showing a higher ratio compared with those of 
other emerging RF switch devices (Supplementary Fig. 4).

A noteworthy observation is the decreasing insertion loss of the 
hBN switch with frequency, a beneficial feature in contrast to con-
ventional RF switches, in which the insertion loss increases with 
frequency due to parasitic inductive effects1,8,15,17,19. The decreasing 
frequency dependency can be attributed to a parallel-plate on-state 
capacitance (Con) in this nanoscale MIM structure, which is in par-
allel to the quasi-static Ron. In switches made from bulk materials, 
this capacitance is negligible (compared to the inductance) due to 
the large device size. Quite fortuitously, in this nanoscale realiza-
tion, Con provides the desirable benefit of reducing the insertion 
loss. The insertion loss of the hBN switch can be further reduced by 
increasing the d.c. compliance current (Fig. 2c and Supplementary 
Fig. 5a,b) that can be explained in terms of an increased number 
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Fig. 1 | Device structure and material characterization. a, Optical microscopy image of a fabricated monolayer hBN RF switch with GSG Au electrodes. 
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in the conductive filaments or widening of the filaments in the  
MIM structure13,20. The corresponding Ron dependence on the 
compliance current is shown in Fig. 2d and follows a Ron = roe–x/b  
relation with the fitting parameters ro = 72 Ω and b = 19.7 mA. 
Such variable (programmable) resistance states can be used in 
high-frequency device applications, such as non-volatile tunable 
resistors or attenuators.

Using a sophisticated probe station set-up, high-frequency mea-
surements were extended to the terahertz range up to 220 GHz. The 
terahertz range refers to electromagnetic waves with frequencies 
between 100 GHz and 10 THz. The hBN device shows an insertion 
loss of less than 0.5 dB and isolation higher than 10 dB (Fig. 2e).  
This result represents a realization of a non-volatile electronic 
switch working in the terahertz range. The ripples observed in the 
extended frequency range from 140 to 220 GHz are largely due to 
standing waves that arise from impedance mismatch, which does 
not impact the main findings and can be improved by optimized 
transmission line matching to the experimental set-up. The afore-
mentioned measurements took several months and hence provided 
an opportunity to evaluate the retention of the hBN switches, which 
is shown in Fig. 2f for a typical device and demonstrates good sta-
bility over 3 months at room temperature in air. It is expected that 
the retention is much longer28, and this matter is a topic of further 
research that warrants temperature-dependent accelerated testing.

Data communication studies based on eye diagrams and BERs. 
To highlight the potential offered by hBN switches, several data 
communication tests were conducted for fc = 100 GHz, with numer-
ous applications of backhauling for 5G and beyond. One of the key 
aspects of future high-bandwidth networks is the latency time, and 
hence systems have to be validated using real-time BER testing, 

that is, without employing any power-hungry signal processing. 
In this context, amplitude modulation was chosen to demonstrate 
the capability of hBN switches to effectively route signals in the 
100 GHz band. Figure 3a and Supplementary Fig. 6 present the 
experimental set-up used in this work, based on the photo-mixing 
of optical waves to efficiently generate high-speed modulated mil-
limetre or terahertz wave signals29. In our experiments, we used data 
rates up to 8.5 Gbit s–1, according to the available bandwidth limit 
of the set-up (Fig. 3b). This 8.5 Gbit s–1 data-rate limit is not due to 
the hBN overall bandwidth, which is far higher, according to the  
measured S-parameter frequency response.

To demonstrate the operation of the hBN device in an appli-
cation scenario, the BER was recorded as a function of the input 
power (Pin) (Fig. 3e). First, a reference measurement was conducted 
using a direct connection (through) between the probes and the 
BER performance was determined by the 100 GHz emission and 
reception circuits. Then, three sets of measurements were acquired 
on the same hBN switch (Fig. 3e): (1) first, the device was in the on 
state (blue curve), (2) then settled to the off state (red curve) and (3) 
lastly in the on state again (green curve). As can be seen, in the on 
state, the eye pattern is clear and the evolution of the BER values is 
the same as that using the reference (through), the power penalty 
being the small insertion loss of the hBN device over the frequency 
range of the modulated signal (100 ± 8.5 GHz). For the off state, 
the isolation was 14 dB, and the eye pattern almost closed, with a 
very low BER performance. Note that, due to the set-up limitation 
(available power at 100 GHz and envelope detector sensitivity), 
15 dB was the highest measurable isolation to ensure enough power 
level to drive the BER tester. Higher isolations were achieved with 
other hBN devices, for which the BER was not measurable. After 
the validation at 8.5 Gbit s–1, lower data rates were tested (2 Gbit s–1) 
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and an almost perfect eye pattern was obtained, with BER values  
below 10−12 (Fig. 3c,d).

Beyond high-frequency characterization, the validation of any 
device for practical use requires demonstration in a realistic sce-
nario. Therefore, a high-definition television data stream without 
any compression (1.5 Gbit s–1) was successfully encoded in the 
100 GHz carrier, transmitted through the hBN device in the on state, 
decoded and displayed in real-time on a television (Supplementary 
Video 1 and Supplementary Note 2). When the device was electri-
cally switched in the off state, the data transmission was interrupted 
and the television stream vanished.

RF power handling and self-switching. Power handling refers to 
the maximum power a switch can transmit in the on state while 
it retains high isolation in the off state. Figure 4 shows a typical 
on- and off-state power-handling measurement at 40 GHz in a 
monolayer hBN RF switch with a lateral area of 0.5 × 0.5 μm2 for 
RF Pin values from −20 to 30 dBm. In the on state, the output power 
increases linearly with Pin with negligible compression up to 30 dBm 

(Fig. 4a). The insertion losses derived from power measurements 
are in strong agreement (within 0.1 dB) with the insertion losses 
derived from S-parameter measurements. In the off state, the out-
put power presents high losses >20 dB, and a linear profile up to 
19 dBm, and then the isolation is abruptly lost (Fig. 4b). This is due 
to ‘self-switching’ of the device from the off to the on state, which is 
attributed to self-bias from the high-power RF signal2. Accounting 
for feedline losses, this corresponds to a root-mean-square average 
voltage less than 2 V, which is reasonable compared with the d.c. 
switching voltage. Power-handling measurements at 18 GHz also 
confirmed the 40 GHz power data.

Notably, the hBN RF switch offers 10 dB more power handling 
compared with that of a MoS2 RF switch (Supplementary Table 1),  
and a factor-of-two higher power compared to memristive or VO2 
phase-change switches. Also, the switch does not return to the 
high-resistance state when the power is turned off, which means 
that the device is non-volatile and indicates that, besides d.c. switch-
ing, the hBN device can also be switched remotely by wireless sig-
nals of sufficient amplitude. We validated this by remeasurement 
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(Supplementary Fig. 7). As the hBN device was not damaged, 
it was switched from the on to the off state with a d.c. bias and 
then showed a similar self-switching when the RF power was 
applied again. Higher power handling requires a commensurately  
higher switching voltage, probably achievable by using few-layer 
hBN or using higher energy barrier metal electrodes, a matter for 
future research.

Electrothermal studies. We have shown that hBN switches with 
submicrometre dimensions can sustain a high power, about 20 and 
30 dBm in the off and on states, respectively. At these power levels 
and given the small footprint of the switch, efficient heat dissipa-
tion becomes essential for reliable operation and to prevent device 
failure. In this regard, comprehensive electrothermal studies were 
conducted by combining infrared microscopy measurements and 
finite element simulations. Infrared microscopy is a non-invasive 
technique that can be used to map the absolute surface temperature 
of a sample.

As a fast and reliable calibration of an infrared camera requires 
the imaging of the sample at a well-known temperature, the sub-
strate was kept at 45 °C during the whole experiment. The thermal 
mapping with spatial resolution ~2 × 2 μm2 was achieved in  situ 
during an actual high-power high-frequency switch operation. 
Figure 5a–d and Supplementary Fig. 8 show the thermal mapping 
of an hBN switch in the on state for Pin, which ranges from 19.7 to 
29.3 dBm.

At approximatively 20 dBm, the temperature of the area that sur-
rounds the junction started to rise above the substrate temperature 
of 45 °C. At this power, the high thermal conductivity of the dia-
mond proved effective in limiting the temperature increase to only 
a few degrees. However, when the power was increased further, a 
hot spot centred at the junction area became clearly visible. For the 
maximum Pin of 29.3 dBm, the temperature of the hot spot was sub-

stantially higher than that of the substrate, reaching 100 °C (Fig. 5d). 
As the junction area was only 0.25 μm2, well below the pixel size of 
our camera, the measured value corresponds to the average temper-
ature centred around the hot spot. The actual junction temperature 
was undoubtedly higher.

To shed further insight, electrothermal simulation of the same 
mesa device structure was conducted using the multiphysics soft-
ware package COMSOL and showed comparable (for 2 × 2 μm2) 
averaged temperatures to those of the thermal measurements  
(Fig. 5e,f). In addition, the simulation afforded a direct insight of 
the local hot-spot temperature at the junction, which was predicted 
to be approaching 250 °C at 30 dBm (Supplementary Fig. 9). A reli-
able switch operation, especially at a high signal power, is essential, 
especially for transmitter applications. As such, the validated simu-
lation platform can be used to explore or optimize device structures 
for thermal management to minimize the temperature rise during 
operating conditions. The design space for a device design optimi-
zation includes mesa versus trench versus fully embedded device 
structures, choice and dimensions of metal electrodes, dielectric 
coating, number of monolayers and so on. Besides hBN, this simu-
lation platform can be generalized to be applicable for the optimized 
design of emerging high-frequency switches made from transition 
metal dichalcogenides and metal oxides.

Conclusions
We report here nanoscale non-volatile low-power analogue switches 
that are based on monolayer hBN and are suitable for applications 
in RF, 5G and terahertz communication and connectivity systems. 
The hBN high-frequency switches achieve a low insertion loss, high 
isolation (up to 220 GHz), and FCO values of about 129 THz due to 
its nanoscale vertical and lateral dimensions, which offer low resis-
tance in the on state and low capacitance in the off state. For data 
communication systems, eye-diagram and BER measurements were 
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conducted to evaluate the distortion, and revealed a good operation 
at a bit rate of 8.5 Gbit s–1 and real-time video transmission. Signal 
power handling is of primary importance in wireless transmitter 
systems. Compared with MoS2 switches, hBN switches offer good 
linearity and power handling up to ~30 dBm in the on state, whereas 
off state power is limited by self-switching to ~20 dBm. The relatively 
high-power handling is due to the larger bandgap and thermome-
chanical stability of hBN. Our work could lead to the development 
of a nanoscale energy-efficient high-frequency solid-state switch 
technology for the rapidly growing communication systems in the 
5G band and beyond.

Methods
Device fabrication and characterization. The hBN RF switches were fabricated 
on 0.3-mm-thick polycrystalline CVD diamond substrate (from Element Six, 
thermal conductivity >1,000 W m–1 K–1). The GSG device configuration was 
patterned by electron beam lithography. An electron-beam metal evaporation tool 
was used to create the ground pads and the BE, which consisted of 2-nm-thick 
chromium for the adhesion layer and 100-nm-thick Au. hBN atomic sheets were 
grown on copper foil using a standard CVD method30 and then transferred to the 
fabricated BE using a poly(methyl methacrylate)-assisted wet-transfer method. 
Then, electron beam lithography and a plasma etching process were used to define 
the active region of the hBN film. Lastly, the TE was patterned and deposited by 
using the same fabrication process as used for the BE. The d.c. measurements were 
conducted on a Formfactor probe station with a Keysight 4156 semiconductor 
parameter analyser under ambient conditions. We prepared an array of devices, 
and 18 devices worked out of 36 devices. Therefore, the yield was 50%. We expect 
the yield to increase further with engineering optimization of the material transfer 
process, device microfabrication and electrostatic discharge handling of the 
fabricated samples. The Renishaw in-Via system with a 532-nm-wavelength source 
was used for monolayer hBN Raman spectroscopy. Atomic force microscopy 
images were collected using a Vecco Nanoscope with tapping mode.

RF measurements. RF measurements were conducted using a Keysight E5270 
source meter unit and various VNAs with Formfactor Infinity GSG probes. R&S 
ZVA24 with a frequency converter, a ZVA110 and an Agilent E8361A VNA were 
used to cover 0.1–110 GHz and 140–220 GHz bands. The sample was placed on 
top of an absorber (from Formfactor) to avoid coupling to the sample holder. 
The source RF power was set to −16 dBm, which is in the small signal range for 
S-parameter measurements to avoid non-linear effects. For on-wafer calibration, 
SOLT calibration was used for the 67 GHz set-up and LRRM calibration was 
used for the 220 GHz set-up, and calibrations were carried out using a Cascade 
calibration kit and WinCal software (Formfactor Inc.) to obtain precise results 
and to remove the parasitic effects of impedances that arise from the cables and 
probe station31. The S parameters were measured in the on and off states. As the 
hBN switch device has a non-volatile resistive switching phenomenon, we applied 
a forward and reverse d.c. bias to turn on and off the switching device, respectively. 
Therefore, we use the forward d.c. bias (set voltage) to switch the device from 
the off state to the on state at first. Then we measured the S parameter of the on 
state using a VNA without a d.c. bias. Afterwards, we applied the reverse d.c. bias 
(reset voltage) to turn off the device. Similarly, we measured the S parameter of the 
device at the off state using a VNA without d.c. bias. An open-short de-embedding 
process was used to remove the pad and interconnect resistances. RF power 
handling was measured using a Keysight PNA-X VNA with Formfactor Z probes. 
A continuous-wave signal with power levels from −20 to +30 dBm at 40 GHz was 
applied to evaluate the power-handling capability in both the on and off states by 
measuring a/b parameters and power inputs and outputs at the device.

Data communication testing. Two 1,550 nm lasers, separated by 0.8 nm (this 
separation corresponds to 100 GHz), were amplitude modulated using a MZM 
and a pseudo-random bit sequence with a 29 − 1 length. The modulated optical 
signals were used to feed a 100 GHz photodiode, which generated a modulated 
100 GHz electrical signal, thanks to the photo-mixing downconversion inside the 
photodiode. This 100 GHz signal was then amplified, and a variable attenuator 
used to accurately control the power level at the input port of the device under 
test. After the propagation across the device, the 100 GHz signal was detected 
by a Schottky barrier diode, used as an envelope detector, and subsequently 
amplified by a 15-dB-gain stage. The latter was connected to a buffer amplifier 
(Hittite HMC866) used to reach the required signal level to drive the bit error 
rate tester. All the adjustments (MZM driving voltage, threshold and clock 
recovery) were done using the wafer-level reference transmission line. In these 
conditions, the obtained absolute BER values are directly related to the intrinsic 
performances of the 100 GHz set-up (photodiode, amplifier and Schottky diode) 
only. Then, the BER were measured with the hBN devices, in several on and off 
states. With this approach, the BER performance can thus be compared with 
the reference transmission line to highlight the capacity of the device to handle 

the 100-GHz-modulated signals. In these conditions, the variation of the power 
required to reach a constant BER value corresponds to the power penalty, shown by 
on losses in Fig. 3e.

Thermal mapping. In the thermal mapping experiment, an infrared camera 
(MWIR-512 from Quantum Focus) was used with a ×12 objective. The spatial 
resolution was 2 × 2 μm2 (which corresponds to one pixel in the thermal map). The 
sample was kept at 45 °C by controlling the sample-holder temperature. As the 
CVD diamond substrate and hBN film were infrared transparent, only the coplanar 
waveguide metal electrodes were reflected in the infrared image. The infrared 
camera was calibrated using the emission recorded from the sample without any 
applied RF bias. The calibration and the thermal mapping measurements were 
performed with software from Quantum Focus.

As the infrared microscope is mounted on a microwave probe station, the 
temperature of a device under high-frequency operation can be mapped in situ. 
The continuous-wave signal from a Keysight PNA-X VNA at 18 GHz was amplified 
and sent through the device via Formfactor Z coplanar probes; two power meters 
(HP438A) and two directional couplers were used to precisely determine the input 
and output power at the device plane while recording the temperature distribution.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the plots within this paper and other finding of this study are 
available from the corresponding author upon reasonable request.
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