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Abstract
Advancements in molecular technology have reduced the constraints that the grain of observation, or the spatial resolution and
volume of the sampling unit, has on the characterization of plant-associated microbiomes. With discrete ecological sampling and
massive parallel sequencing, we can more precisely portray microbiome community assembly and microbial recruitment to host
tissue over space and time. Here, we differentiate rarefied community richness and relative abundance in bacterial microbiomes
of Salvia lyrata dependent on three spatial depths, which are discrete physical distances from the soil surface within the
rhizosphere microhabitat as a proxy for the root system zones. To assess the impact of sampling grain on rarefied community
richness and relative abundance, we evaluated the variation of these metrics between samples pooled prior to DNA extraction and
samples pooled after sequencing. A distance-based redundancy analysis with the quantitative Jaccard distance revealed that
rhizosphere microbiomes vary in richness between rhizosphere soil depths. At all orders of diversity, rarefied microbial richness
was consistently lowest at the deepest samples taken (approximately 4 cm from soil surface) in comparison with other rhizo-
sphere soil depths. We additionally show that finer grain sampling (i.e., three samples of equal volume pooled after sequencing)
recovers greater microbial richness when using 16S rRNA gene sequencing to describe microbial communities found within the
rhizosphere system. In summary, to further elucidate the extent host-specific microbiomes assemble within the rhizosphere, the
grain at which bacterial communities are sampled should reflect and encompass fine-scale heterogeneity of the system.
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Introduction

Plants transform the soil that surrounds their roots (i.e., the
rhizosphere) with primary metabolites like amino acids, sec-
ondary metabolites like alkaloids, and macronutrients through
litter deposition [1]. Rhizosphere modifications by plants in-
fluence critical relationships with microorganisms, such as
fungi and bacteria, which utilize the rhizosphere niche [2].

Plant-microbe interactions exist over multiple plant and mi-
crobial generations, establishing complex plant-soil feedbacks
(PSFs) [3]. Microbiota mediate available carbon and nitrogen
directly in the rhizosphere, in turn affecting plant defense
strategies, productivity, and fitness [1, 4–6]. Measuring mi-
crobial community richness and abundance of rhizosphere
microbes through massive parallel sequencing illuminates in-
tricacies of howmicrobes moderate nutrient cycling and inter-
act with plants [7, 8]. Further, the grain, or the defined indi-
vidual microbiome sampling unit amongst rhizosphere stud-
ies, is often variable and may not consistently capture spatial
variation of bacterial communities found within the rhizo-
sphere. Yet within the rhizosphere, spatial heterogeneity of
microbial communities is poorly understood [9] necessitating
a field-wide standard of resolution for comparison among dis-
parate studies. By incorporating spatial structure into sam-
pling protocols, microbiome richness in the rhizosphere can
be captured as a transitional gradient of species distributions
responding to root maturity and exudates across plant taxa.
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Variation in community richness and abundance of rhizo-
sphere microbiomes can be partially explained by numerous
biotic interactions and abiotic conditions. For example, plant
species receive microbes from bulk soil, forming distinct rhi-
zosphere communities over time [10, 11]. Plant genotypes
may regulate rhizodeposition and decomposition rates of
plant-derived organic matter and can serve as strong drivers
of rhizosphere microbial richness [12–14]. Plant-derived or-
ganic matter affects soil properties such as pH, organic carbon
(C) content, moisture, and nitrogen (N) availability, which
directly shape how microorganisms colonize unique micro-
habitats within soils across large geographic scales [15, 16].
Further, N-cycling is considerablymore specialized within the
rhizosphere than in bulk soils lending to their unique
species composition [17]. This contributes to the deli-
cate balance between persistent and labile mineralized
forms of C and N concentrations within the rhizosphere,
effectively pulling resource-dependent, microbes towards
these sources at the root [18].

A contributing factor in the structure of microbial commu-
nities of the rhizosphere may be the spatial relationship with
root developmental age. The root can be divided into several
spatial components based on developmental maturity, also
known as root zones. Yang and Crowley [19] showed that
eubacterial communities vary in respect to developmental
zones along the root by measuring community structure with
a PCR-denaturing gel electrophoresis. They also discovered
that community richness within each zone is dependent upon
differences among soil types. Therefore, an amalgam of host
effects and abiotic conditions in the rhizosphere environment
are strong determinants of microbial survival and assemblages
[20]. With a firm understanding of how host-associated mi-
crobial communities respond to these selective agents, it
is imperative to further investigate how spatial sampling
within the rhizosphere contributes to heterogeneity in
bacterial richness recovered with high-resolution 16S
rRNA gene sequencing.

Developmental root zones can serve as a means to under-
stand the spatial structure and maintenance of community-
level heterogeneity in the context of plant rhizosphere-
microbiome interactions [21–23]. The development of root
tissue is regulated by plant or bacterial produced auxins and
environmental factors like soil aggregates [24, 25]. Each root
zone harbors unique microbial reservoirs due to favorable
plant compounds, soil nutrients, and limited competition
among other microbes [26, 27]. Most studies using a pooled,
coarse sampling resolution to characterize plant-
associated microbiomes fail to capture this heterogeneity
across root zones, or corresponding rhizosphere micro-
habitats. Thus, combining multiple, fine-grain samples
from different root zones or from multiple depths within
the rhizosphere might explain scale-dependent variation
of the rhizosphere microbiome.

In this study, we sampled from three depths, or distances
from the soil surface, within the rhizosphere microhabitat of
Salvia lyrata to ask: How does rarefied bacterial richness and
relative abundance compare between discrete rhizosphere
depths and a combined rhizosphere sample from the same
plant? Further, we ask how does rarefied bacterial richness,
the raw number of reads, and relative abundance in reads
compare between differences in sampling grain? To achieve
this, we utilized two types of pooling methods to examine the
impact of sampling resolution. These were pooling rhizo-
sphere samples from each depth prior to DNA extraction
(in vitro) and combining community data tables post sequenc-
ing and processing (in silico) (Fig. 1). Our overarching hy-
pothesis is that rhizosphere bacterial richness and relative
abundance correlates with spatially dependent sampling con-
ditions that exist along root depth in the rhizosphere environ-
ment. We predict that microbiomes from each rhizosphere
depth capture more information on rare species (i.e., rare
across all samples) than a single coarse grain representative
sample from the same rhizosphere. Additionally, we predict
that sampling resolution will impact the characterization of
rarefied bacterial community richness via differences in 16S
rRNA gene capture, where coarse resolutions favor predomi-
nant groups of bacteria found in highly diverse samples.
Finally, the following analyses provide a needed spatial char-
acterization of rhizosphere microbiota that associate with the
genus Salvia, which contains many species utilized for medic-
inal purposes.

Materials and methods

Study system

Salvia lyrata L., or lyreleaf Sage, is a flowering, biennial mint
with a shallow fibrous root ball consisting of roughly 8–12
individual primary roots, and pinnately lobed basal rosette
leaves. In general, microbiomes associated with the genus
Salvia have been underexplored. Recent research efforts have
characterized seed and foliar microbiomes associated with the
genus Salvia. However, little to no attention has been given to
rhizosphere microbiomes [28, 29]. Field sampling occurred at
Forks of the River Wildlife Management Area (35°56′30.6″
N, 83°50′43.3″W) in Knox County, Tennessee during July 1–
July 5, 2018. The plant community at this site has been his-
torically disturbed and consists primarily of perennial grasses
and mixed hardwoods along the edge of trails where S. lyrata
is often found. The soil material found here is characterized as
both highly weathered, acidic red clay, and brown silty clay
loam. Three 25-m transects were drawn, and 30 plants were
flagged based on occurrence within 1 m of this line. Plant
individuals (N = 10) were chosen per transect for rhizosphere
microbiome sampling by using a random number generator.
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All microbial rhizosphere samples were collected from juve-
nile plant individuals of S. lyrata to control for phenological
and temporal effects on the colonization of host-specific
microbiomes. Juvenile individuals were identified by the ab-
sence of a racemose scape.

Rhizosphere microbiome sampling

Here, we defined the rhizosphere of S. lyrata as the
narrow region of soil spanning from the root epidermis
to the soil that is influenced by root exudates (~ 3 mm
from epidermal tissue) within the same root system [30,
31]. All plant rhizospheres were sampled in the field at
three different depths as a proxy for the root system
zones. Sample depths in the rhizosphere were from 0
to 1 cm (depth A), from 1 to 2.5 cm (depth B), and
from 2.5 to 4 cm (depth C) aimed to represent the
developmental root zones within the root system, ac-
counting for variation in root length and root density
across individuals (Fig. 1). For each sampling depth,
the entire root system was exposed, and rhizosphere soil
was scrapped from the root epidermis to 3–5 mm away
from the surface of the root into sterile Nasco Whirl
Paks across all visible roots (Nasco, Fort Atkinson,
WI, USA). This occurred first at depth A and then at
each subsequent sampling soil depth using a sterilized
spatula. Sampling tools were sterilized between sample
units to avoid contamination. Rhizosphere soils were
stored on ice immediately after the sterile Nasco Whirl
Paks were sealed throughout the daily sampling period.
Rhizosphere microbiome samples were stored at − 80

°C at the University of Tennessee, Knoxville, until fur-
ther processing. Short-term storage of dry soil
microbiome samples in − 80 °C does not affect the
microbial community structure [32].

Sampling grain: pooling in vitro versus in silico

We used two different pooling methods to compare how sam-
pling grain, or the spatial resolution and volume that defines a
microbiome sampling unit, affects the microbial community
recovered through 16S rRNA gene amplicon sequencing (Fig.
1). The first method combined an equal portion of soil from
each rhizosphere depth samples (A, B, and C) into a single
sample to represent the whole rhizosphere microbiome of each
plant (in vitro). To do so, samples were removed from deep
freeze and set on ice for an hour to thaw. One gram from each
of the three sampling depths was combined into a new sterile
Nasco Whirl Pak. Prior to subsampling 0.25 g for DNA ex-
traction, we mixed the pooled samples together by vigorously
shaking the samples by hand for 30 s and leaving them at
room temperature for an hour. The second pooling method
occurred after sequencing and combined read counts for the
same amplicon sequence variants (ASVs) for each rhizo-
sphere depth per individual plant. These samples represent
the pooled microbiome in silico. Prior to sample rarefaction,
we accounted for differences in sampling effort between
pooling methods by dividing read count tables by three for
samples pooled in silico. Pooling methods were compared and
used to describe the composite microbiome found within the
rhizosphere of S. lyrata.

Fig. 1 A conceptual outline describing the spatial structure of the
S. lyrata rhizosphere microbiome outlined by three depths within the
rhizosphere. Colors and variation in circle size illustrate different
microbes and relative abundances respectively. Depth A represents
microbiomes from the surface of the system from 0 to 1 cm deep.
Depth B characterizes microbiomes from 1 to 2.5 cm. Depth C

represents the microbial community found within the rhizosphere at
2.5–4 cm. This figure also illustrates how sample rhizosphere depths
from the same plant were pooled via the two methods, in vitro (physical
samples prior to DNA extraction and 16S library preparation) and in
silico (community data tables).
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16S rRNA gene library preparation for Illumina MiSeq

DNAwas extracted from 0.25 g per sample using the DNeasy
PowerSoil Kit (MoBio Laboratories, Inc., Carlsbad, CA,
USA) with a modification at Step 16 using 50 μL of
Solution C6 and an elution time of 5 min before the final
centrifuge step. This extraction kit successfully removes all
non-DNA organic and inorganic material, such as humic acids
at Step 10 and Step 11. PCR reagents were sourced through
the KAPA HiFi HotStart Ready Kit (KAPA Biosystems,
Wilmington, MA, USA). Within the amplification PCR, the
bacterial-specific primer pair 341F and 785R (5 μL at 1 μM
each) was used to target the V3–V4 region of the 16S rRNA
gene and to prepare our DNA samples for the second index
PCR. The sequences for 341F and 785R are 5′-CCTA
C G G G N G G C W G C A G - 3 ′ a n d 5 ′ - G A C T
ACHVGGGTATCTAATCC-3′ respectively [33, 34]. DNA
extractions were thawed on ice, and 2.5 μL of each sample
was used for this PCR. For each plate, a PCR negative blank
was used to check for PCR contamination. Plates were ran
under the following PCR program: an initial denaturing step
of 95 °C for 3 min, 25 cycles of 95 °C for 30 s, 55 °C
for 30 s, and 72 °C for 30 s; a final elongation cycle of
72 °C for 5 min; and then held at 4 °C. This PCR
produced 25 μL of the 16S rRNA amplicon for each
sample that was stored at − 20 °C until further use.
Samples were then run on a 2% agarose gel with
ethidium bromide and Tris-acetate-EDTA (TAE) buffer
to confirm amplicon length and purity. All PCR prod-
ucts (25 μL for each sample) were purified with 20 μL
of Agencourt AMPure XP magnetic beads (Beckman
Coulter, Brea, CA, USA) and two 200 μL washes of
freshly prepared 80% ethanol. Purified 16S rRNA gene
amplicons for all samples were then resuspended with
50 μL of Tris–HCl and stored at − 20 °C.

The second index PCR attached forward and reverse index
primers that are designed specifically for the multiplexing
samples and sequencing with the MiSeq instrument
(Illumina Corporation, San Diego, CA, USA). Each sample
in the library was provided with its own unique primer com-
bination for sample identification in downstream quantitative
analyses (Online Resource 1). These primers were from the i5/
i7 Nextera XT Index Kit A and D with 5-μL combinations of
8 bases long forward and reverse segments. Further, 25 μL of
KAPA HiFi HotStart Ready Mix was used per reaction. Five
microliters of purified PCR product from the first reaction was
used to reach sufficient concentration of the bacterial 16S
rRNA V3–V4 gene region at this step. For this index PCR,
10μL of PCR grade water was added per sample, bringing the
total volume to 50 μL. The index PCR performed had an
initial cycle of 95 °C for 3 min followed by an 8-cycle se-
quence of 95 °C for 3 s, 55 °C for 30 s, and 72 °C for 30 s. The
last elongation cycle was held at 72 °C for 5 min.

Following the standard index PCR clean up provided by
Illumina, index PCR products (50 μL for each sample) were
purified using 56 μL of Agencourt AMPure XP magnetic
beads and two 200-μL washes of freshly prepared 80% etha-
nol. The final 16S rRNA gene amplicon products were then
combined with 25 μL of Tris–HCl and stored at − 20 °C until
further use. Post two-step PCR, all 16S amplicon products
were quantified using a NanoDrop spectrophotometer
(NanoDrop Products, Wilmington, DE, USA) and pooled in
equal concentrations. Next, a bioanalyzer was used to deter-
mine molarity and appropriate adapter ligation by examining
product length (Agilent Technologies, Santa Clara, CA,
USA). This step behaves as the final quality control step be-
fore sequencing. Pooled samples were diluted to 4 pM with
Tris and loaded into the MiSeq instrument with 20% PhiX on
a V3 flow cell set to read a 2 × 275, or paired end, cycle at the
University of Tennessee Genomics Core, Knoxville,
Tennessee, USA.

Bioinformatics

Processing of the 16S amplicon data were completed with the
open source pipeline DADA2 version 1.8 (https://github.com/
benjjneb/dada2). With DADA2, we detected sequence
anomalies at a single-nucleotide resolution known as ASVs
[35]. Amplification primers 341F and 785R were removed
from each read by trimming according to their length. Then,
all forward and reverse reads were quality filtered and
trimmed to 248 and 220 nucleotides in length, respectively.
Sequences with sequencing errors were then removed, and
forward and reverse reads were merged if there was sufficient
overlap for each ASV in each sample. Chimeras were detected
within each merged read and removed. Lastly, all merged
sequences were matched to SILVA version 132, a taxonomic
reference database for 16S rRNA genes [36, 37]. This pipeline
was implemented in R version 3.5.2 (https://www.r-project.org/).
All nucleotide sequence data was made publicly available in
GenBank database under the accession number PRJNA575901.

The package phyloseq was then used to combine commu-
nity data, assigned taxonomy, and metadata into a single, flex-
ible R object [38]. Eukaryotes, chloroplasts, and mitochondria
were removed from our dataset. If no assignment was made at
the Kingdom level, these ASVs were similarly removed.
Lastly, rhizosphere samples that failed during sequencing
and contained no ASVs were dropped (N = 2). Mean sample
abundances were obtained by rarefying to the lowest number
of reads (7739 reads) 5000 times with the rrarefy function in
the vegan package when we investigate the difference
between ASV richness and relative abundance amongst
rhizosphere depths [39]. To address the difference in
relative abundance between pooling methods (i.e., sam-
pling grain), pairwise rarefaction to the same number of
reads was used per plant.
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Hypothesis testing and statistical analyses

An indicator species analysis (R package indicspecies) using the
group equalized point biserial correlation index for each group
was then conducted with 50,000 permutations to elucidate ASVs
highly associated with each rhizosphere depth [40]. Two
distance-based redundancy analyses (dbrda) were implemented
for hypothesis testing to quantify community variation explained
by the sampling depth within the rhizosphere. In these models,
we partial out variation explained by individual plants (sample
ID) before hypothesis testing in order to account for the non-
independence of rhizosphere samples associated with a single
plant. Prior to modeling, all sequences were aligned using
MAFFT version 7.0 [41]. Next, a phylogenetic tree was built
using the Randomized Axelerated Maximum Likelihood
(RAxML) program and the general time reversible CAT model
of rate heterogeneity for phylogenetic approximation [42]. This
treewasmade ultrametric using the software treePL,which trans-
formed branch lengths to correspond with relative divergence
time using penalized likelihood [43]. This ultrametric tree was
then used to create a weighted UniFrac distance matrix. The
quantitative Jaccard (Ružička) and the weighted UniFrac dis-
tance were then used as response variables in our dbrdas (N =
87 samples). We then evaluated the statistical significance of
rhizosphere depth as a predictor of community dissimilarity via
10,000 permutations of our data using the anova.cca function in
the R package vegan 2.5-5 [39].

The effective number of bacterial species (qD) associated
with each rhizosphere depth and each pooled sample was
described using a Hill numbers approach with the R package
vegetarian 1.2 [44–46]. Since the numbers equivalent of
ASVs (D) is sensitive to the order of diversity (q), or the
balance between rare and common ASVs, we chose to assess
alpha and beta diversity from q = 0 to 5. There are many
frequently used diversity indices that are analogous to qD.
For example, at q = 0, rare and common ASVs are weighted
equally and therefore represent an incident-based measure of
species richness. When q = 1, ASVs are weighted by their
proportional abundance, which is congruent to the exponential
of Shannon’s entropy index, and at q = 2, rare species are
down weighted and correspond to the inverse of Simpson’s
index. As q increases beyond this, rare ASVs are further down
weighted from the analyses of alpha and beta diversity.

To understand if alpha diversity significantly varies based
on depth within the rhizosphere, fitted linear-mixed effects
models with sample ID, or the individual plant itself, as a
random effect were constructed at each Hill number using
the lme4 package [47]. A Type II Wald Χ2 test of variance
was used for hypothesis testing on main effects. For signifi-
cant results, a Tukey’s honest significant difference (HSD)
multiple comparisons test was implemented for all pairwise
comparisons of rhizosphere depths to investigate where dif-
ferences in alpha diversity lie.

Two different methods were used to assess beta diversity
measures at each Hill number. The first method is similar to a
Levene’s test in multivariate space, which analyzed the homo-
geneity of dispersion in community composition between
groups and can be used as a proxy for beta diversity [48]. A
pairwise distance matrix using the distance from each obser-
vation to the group centroid was then fed into a fitted linear
mixed-effects model with sample ID as a random effect.
Secondly, to address if community variation within rhizo-
sphere depths is similar to one another, a dbrda on the pairwise
distance matrix while conditioning for variation among plants
was implemented. A permutational ANOVAwas then used to
compare this variation between groups (10,000 permutations).

We evaluated the difference in the standardized number of
raw reads between samples pooled in vitro and samples
pooled in silico through a paired t test for each plant (N = 28
plants). Standardization here means that we controlled for
differences in sampling effort between the two pooling
methods by dividing the read abundances by three, the num-
ber of rhizosphere depths sampled, for each sample pooled in
silico. Additionally, all samples sequenced held the same frac-
tion of size throughout library preparation. This paired t test
used raw read counts that were summed across rows, or plants,
in our ASV table. To observe differences in the relative abun-
dance of reads between pooling methods, a paired t test was
also conducted using pairwise rarefied data (N = 28 plants).
Since two rhizosphere depth samples failed during sequencing
and equal comparisons across all plants and pooling methods
cannot be applied, two plants were excluded from these anal-
yses. For each plant replicate, alpha diversity for q = 0–5 was
calculated on the mean rarefied community data from 5000
permutations. Then, a paired t test (N = 28) was preformed to
show differences in ASV richness between pooling methods.
To evaluate if dispersion between pooling methods is similar
for the number of raw reads, relative abundance in reads, and
for alpha diversity, a paired Brown-Forsythe test was
implemented.

Results

The Salvia lyrata rhizosphere microbiome

From the 118 samples sequenced and analyzed, 27,314,720
raw sequence reads were generated from the Illumina MiSeq
run. Dereplicated sequences numbered at 3,758,012 reads at-
tributing to 25,123 ASVs with associated abundances for
Bacteria and Archaea. For samples that were pooled in vitro
and represent a homogenous characterization of S. lyrata’s
rhizosphere, a total of 1,322,876 reads were recovered.
These reads correspond to 20 bacterial phyla. The predomi-
nant (i.e. more frequent detected, abundant) phyla of Bacteria
that associate with this rhizosphere system are Proteobacteria
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(30%), Actinobacteria (24%), Planctomycetes (13%),
Verrucomicrobia (9%), Bacteroidetes (8%), and
Acidobacteria (7%) (Fig. 2). Firmicutes characterized 0.9%
of the bacterial microbiome from samples that were pooled
in vi tro . On a finer taxonomic level , the family
WD2101_soil_group, a Planctomycete, was a highly abun-
dant family, containing 7% of all sequenced reads from
pooled samples in vitro. The next two predominant bacterial
f am i l i e s w i t h i n t h i s r h i zo sphe r e sy s t em we r e
Xanthobacteraceae (6%) and Burkholderiaceae (2%), both
in the phylum Proteobacteria. On the species level, the most
abundant taxon was Candidatus-Xiphinematobacter, a
verrucomicrobial endosymbiont commonly found in rhizo-
sphere environments.

Microbiomes are spatially structured by depth within
the rhizosphere

We used two community distance matrices in our multivariate
models to evaluate the spatial complexity of bacterial
microbiomes as predicted by the rhizosphere sampling depths
described in Fig. 1. These models used rarefied and standard-
ized community data to test the strength of depth within the
rhizosphere as a predictor variable. With the quantitative
Jaccard distance matrix as a response variable, rhizosphere
depth explained 3.65% of total variation in bacterial

community dissimilarity. The conditioned variable, sample
ID, explained 52.7% of total variation in community dissim-
ilarity. After removing the effect of sample ID, the proportion
of remaining variance explained by rhizosphere depth is
7.71% (Fig. 3). Distinctive clustering around the respective
centroid occurred within each group on both axes. Richness
and relative abundance between depths varied based on the
quantitative Jaccard distance matrix provided in our permuta-
tional analysis of variance (p < 0.001).

Our second distance-based redundancy analysis took into
account phylogenetic autocorrelation by using a weighted
UniFrac distance as the response variable. This model showed
rhizosphere depth to explain 5.51% of the total variation in
bacterial microbiome dissimilarity. Sample ID in this model
explained 12.2% of total variation in community dissimilarity.
Like our previous model, we also partial out this effect before
hypothesis testing, and rhizosphere depth then explained
6.29% of the remaining variation in community dissimilarity.
The permutational ANOVA on our model with a weighted
UniFrac distance showed that each rhizosphere depth is sig-
nificantly different from one another in terms of rarefied bac-
terial richness (p < 0.001). Additional information on these
model summaries and subsequent ANOVAs are shown in
Online Resources 2 and 3.

Alpha diversity was examined using a Hill numbers ap-
proach to gather and compare the effective number of “types”

Fig. 2 Bacterial Phyla that
associate with Salvia lyrata for
samples pooled in vitro. On
average, Proteobacteria represent
30% of all bacteria recovered.
Actinobacteria, Planctomycetes,
Verrucomicrobia, and
Bacteroidetes cover 24%, 13%,
9%, and 8% respectively. Phyla
represented less than 1% in this
system have been combined
together.
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or ASVs between each rhizosphere depth. A Type II Wald’s
Χ2 test on fitted linear mixed-effects model at q = 4, 5 showed
that alpha diversity was distinct and varied across rhizosphere
depth (q = 4: Χ2 = 6.04, p = 0.0487, df = 2; q = 5:Χ2 = 6.84, p
= 0.0327, df = 2). Table 1 shows a full summary of each
analysis of variance on all orders of alpha diversity. Tukey’s
HSD revealed that at these orders, depths B and C are driving
the differential pattern over other comparisons between rhizo-
sphere depths. Further, alpha diversity across q = 0–3 on av-
erage is greatest at depth A (Fig. 4). At q = 4–5, depth B has
the greatest alpha diversity out of all rhizosphere depths.
Samples pooled in vitro contain on average the greatest effec-
tive number of ASVs when at q = 0–3, however, while con-
tinually down-weighting rare species from our analysis pooled
samples lie between depths B and C. Figure 4 also shows that
depth C consistently has the least effective number of ASVs
than any other group.

Analysis of multivariate dispersion showed greater hetero-
geneity in rarefied community richness and relative

abundance between depths A, B, C at q = 0 (F2 = 3.29, p <
0.05). As rare species are down weighted across increasing q,
multivariate dispersion, or the average distance from each in-
dividual point to the multivariate centroid (median), was not
different between rhizosphere depths. Thus, at lower orders of
diversity, rare ASVs contributed more to the differences in
community turnover between rhizosphere depths than com-
mon ASVs. Similarly, a dbrda on community variation within
groups while accounting for the effect of individual plants
showed that each rhizosphere depth is significantly different
in terms of turnover at q = 0 (F2,55 = 3.25, p < 0.05). Lastly,
these analyses illuminated that depth A is the richest in ASVs
while depth C is consistently the least rich.

An indicator species analysis was performed across our
dataset to characterize which taxa are more strongly associated
with the communities at each spatial depth within the rhizo-
sphere of a plant root system described by Fig. 1. Depth A
harbors the most diverse and numerous indicator taxa with
311 indicator ASVs. Commonly detected phyla that were rep-
resented as indicators for depth A are Acidobacteria,
A c t i n o b a c t e r i a , B a c t e r o i d e s , C h l o r o f l e x i ,
Gemmatimonadetes, Planctomycetes, Proteobacteria, and
Verrucomicrobia. As seen in Fig. 5, the most represented
known families in this indicator analysis for depth A were
Gemmataceae and WD2101_soil_group, both with an abun-
dance of 17 in this analysis. Depth A has numerous rare fam-
ilies that are distinct indicators, with Phycisphaeraceae and
Xiphinematobacteraceae identified as significant indicators (p
< 0.001). Species identified as indicators for this rhizosphere
depth are Agromyces ramosus (Actinobacteria), Lechevalieria
aerocolonigenes (Actinobacteria), and Arenimonas
daejeonensis (Proteobacteria). At the ASV level, 61 unique
taxa were associated with depth B. Associated with this

Fig. 3 Principal coordinate analysis on the reduced dimensional analysis
based on a quantitative Jaccard distance with rhizosphere depth as a
predictor variable. Constrained axis together explains 3.532% of total
variation in multivariate space

Fig. 4 Alpha diversity profile plot showing intercepts from each fitted
linear model a function of q. As rare ASVs are removed from the analysis
at higher orders, rhizosphere depths become less distinct in terms of the
effective number of species and converge

Table 1 Summary of the Type II Wald’s Χ2 test performed on alpha
diversity across depths within the rhizosphere at q = 0 to 5

Order of Diversity (q) Chisq Pr(> Chisq)

0 1.4384 0.4871

1 2.303 0.3162

2 3.9319 0.14

3 5.1613 0.07573

4 6.0449 0.04868*

5 6.8364 0.03277*
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rhizosphere depth, there are 10 known phyla, with
Bacteroidetes, Planctomycetes, and Proteobacteria as the
most abundant. The most common and known family as an
indicator for depth B was Hyphomicrobiaceae (Fig. 5). Rare
phyla uncovered as indicators for depth B are Cyanobacteria,
Latescibacteria, and Patescilbacteria. The strongest correlat-
ed indicator ASV for depth B came from the family
Desulfarculaceae, a Deltaproteobacteria (r.g. corr = 0.242,
p < 0.01). Depth C had 14 phyla as indicators representing
152 ASVs. Common phyla identified as indictors were
Act inobacter ia and Proteobacter ia . The fami ly
Xanthobacteraceae (Alphaproteobacteria) was the most
abundant family as an indicator representing 4.6% of all indi-
cator ASVs for depth C. Additionally, depth C has many
significant indicators at the Genus level. No indicator ASVs

were identifiable to the species level for depth B or C. Online
Resource 4 further depicts r.g. correlations and relative signif-
icance for all indicator taxa that came from this analysis. This
analysis shows that strong indicators for depth A come from
the phylum Planctomycetes, while depth B and depth C are
best predicted by the presence of Deltaproteobacteria and
Alphaproteobacteria respectively.

Rarefied richness is greater when rhizosphere depths
are pooled in silico

Pooling samples across rhizosphere depths per individual
plant after sequencing captured a larger, more comprehensive
image of bacterial community composition and diversity in
comparison with pooling physical samples prior to DNA

Fig. 5 Indicator species analysis visualized at the family level for each
rhizosphere depth. Each depth is illustrated here as sample A (0–1 cm),
sample B (1–2.5 cm), and sample C (2.5–4 cm). At the class level,
Alphaproteobacteria , Bacteroidia , Gammaproteobacteria ,

Phycisphaerae, Plactomycetacia, and Verrucomicrobia are represented.
For simplicity, this figure combines all families that occur less than 2% in
our indicator species analysis
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extraction. To illuminate if there were differences in the rare-
fied richness and relative abundance of reads between the two
pooling methods, paired t tests were implemented on the stan-
dardized number of raw reads, rarefied and standardized num-
ber of reads, and alpha diversity (Fig. 6). On average, the
standardized raw number of reads for each rhizosphere in vitro
on average were 17,353.8 reads greater than samples pooled
in silico (t = 3.46, df = 27, p < 0.001). A paired Brown-
Forsythe test confirmed that dispersion around the median
between the two pooling methods was significantly different
for the raw number of reads (t = 6.65, df = 27, p < 0.001).
Similarly, the pairwise rarefied abundance in total reads was
greater on average by 9073.23 for samples pooled in vitro (t =
4.59, df = 27, p < 0.001). Pairwise Brown-Forsythe tests il-
lustrated that there was heterogeneity in dispersion of rarefied
abundances in reads between pooling methods (t = 9.27, df =
27, p < 0.001). For q = 0 and q = 4–5, paired t tests showed
significant differences (α = 0.05) in the effective number of
ASVs between pooling methods with samples pooled in silico
having the greatest alpha diversity. The largest difference in
alpha diversity between pooling methods occurred at q = 0,
with a mean difference of 679.85 effective number of ASVs
(Table 2). Figure 6 b shows the relationship between alpha
diversity at q = 0 and each pooling method, where samples
that were pooled in silico have on average a greater alpha
diversity than samples pooled in vitro. Paired Brown-
Forsythe tests on the dispersion of the effective number of
ASVs (alpha diversity) were significantly different for q =
0–2 between the two pooling methods (Table 2). As rare spe-
cies are further down weighted beyond q = 2, we failed to
detect a difference in the dispersion between sampling grains.

Discussion

Summary

In this study, we demonstrate that (1) rarefied bacterial rich-
ness and relative abundance varies with rhizosphere depths.
Alpha diversity among rhizosphere depths differs the most
when rare ASVs are down weighted. Depth C is characterized
as the least diverse amongst rhizosphere depths, while depth A
is shown to be the richest. (2) By evaluating the spatial struc-
ture of bacterial communities within the rhizosphere of Salvia
lyrata, we were able to obtain a more holistic characterization
of the rhizosphere microbiome and show that samples from a
coarser grain (pooled samples in vitro) have higher rarefied
abundance in reads than samples from individual rhizosphere
depths. (3) With increased fine grain sampling (i.e., pooling in
silico), more rare ASVs are captured, and thus, a greater
amount of spatial heterogeneity in microbial richness is ob-
served. Lastly, samples pooled in silico have less dispersion in
rarefied ASV richness and relative abundance in the number
of reads than pooling in vitro.

Bacterial communities are spatial structured across
rhizosphere depths

The rhizosphere is a highly context-dependent microhabitat
with transient, diurnal cycles of rhizosphere soil temperature
and moisture driving microbial community composition [49,
50]. Further, the structure of bacterial communities within the
rhizosphere is partially explained by plant species, genotype,
and developmental age [10, 12, 16]. Previous studies

Fig. 6 a The total relative abundance of reads is greater for samples that
were pooled in vitro compared with those in silico. b Alpha diversity at q
= 1 for pooled samples in silico and in vitro. On average, samples pooled

in silico have greater alpha diversity than samples pooled in vitro. Further,
in vitro have greater variance around the median than in silico.
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characterized spatial differences in microbial community
along the root length based on bacterial growth strategies
and soil niche occupancy in nutrient-limited environments
[51, 52]. We can similarly infer that bacterial community rich-
ness and abundance are spatially distinct at our three tested
rhizosphere depths (Fig. 3). We see each of the three rhizo-
sphere depths grouping apart from one another, illustrating
their unique microbial composition. Further, on Axis 2, depth
B is grouped away from the other two depths, indicating that
some microbiota within depth B might experience more or
less diurnal habitat fluctuations within the rhizosphere envi-
ronment than the other two spatial depths which. For example,
depth A harbors the greatest heterogeneity in community
structure in comparison with other rhizosphere depths possi-
bly due to increased contact with ambient oxygen and then
influence of temperatures near the surface of rhizosphere soil
[14]. Once phylogenetic relatedness was accounted for, the
percent of total variation in bacterial richness and abundance
explained increased 1.86%. Since weighted UniFrac calcu-
lates the proportion of unique branches in our phylogeny
against the total number of branches, we were able to interpret
this as each rhizosphere depth containing phylogenetically
distinct microbial communities (p < 0.001). However, our
multivariate models show a large amount of variation in rhi-
zosphere community structure explained by the plant itself
(52.7% and 82.2% for models using the quantitative Jaccard
and weighted UniFrac distances respectively). Since bacterial
communities were sampled from plants of the same develop-
mental age, it is possible that this variation could be explained
by genotypic variation within S. lyrata and heterogeneity of
abiotic conditions [53].

Complex organic root exudates directly affect microbial
community structure within the rhizosphere and can indirectly
mediate plant growth through elaborate plant-soil feedbacks
[1, 54]. Carbon released through rhizodeposition can be ben-
eficial or antagonistic towards groups of bacteria dependent
on a myriad of abiotic conditions like rhizosphere tempera-
ture, moisture, pH, and oxygen availability [14, 55, 56].

Survival in this heterogenous environment is maintained
through many different mechanisms. For example, chemotax-
is or the preferential motility of bacteria away from harmful
substances and towards beneficial conditions may be largely
responsible for the spatial structure we see in rhizosphere
microbiomes [57, 58]. Microbe-microbe competition facili-
tates the predominance of bacterial groups at specific depths
within the rhizosphere, primarily in locations with increased
carbon-based resources [15, 59]. Thus, interspecific competi-
tion might lead to lower alpha diversity like we see in depth C
in comparison with other rhizosphere depths. However, given
our sampling methods, we can only illustrate the spatial struc-
ture of bacterial communities as it varies with rhizosphere
depth and cannot tease apart the effects of host-associated
processes and environmental conditions that might shape
these communities.

Our indicator species analysis revealed which ASVs are
more strongly associated with each depth within the rhizo-
sphere microhabitat. However, due to high microbial diversity
found in the rhizosphere and the high throughput sequencing
resolution of this study, more meaningful interpretations are
given at higher taxonomic levels that encompass known eco-
logical factors. In terms of possible indicators, depth A con-
tains the most numerous and diverse indicator ASVs, which
might be due to increased heterogeneity in abiotic and biotic
conditions. For example, Xiphinematobacteraceae, a
Verrucomicrobia, is strongly correlated with depth A and
might be predicted as an indicator at this rhizosphere depth
due to the presence of other microbiota like arbuscular mycor-
rhizal fungi (AMF), which have a larger impact on carbon
cycling than bacteria in zones of maturing root hairs [60]
present in our system at depth A, although no AMF data were
observed in this study. AMF presence can have positive or
negative effects for certain bacterial groups. AMF can be
growth promoting for Xiphinematobacteraceae due to in-
creased exuded carbon and phosphorous content [61, 62].
Agromyces ramosus is a common predatory bacteria of
gram-negative bacteria in soil and utilizes the rhizosphere
niche because of the high microbial richness and abundance
of gram-negative prey [63]. This might explain the presence
of A. ramosus as a strong indicator in depth A.
Hyphomicrobiaceae, the most abundant indicator of depth B
(F i g . 5 ) , a r e c h emohe t e r o t r o ph s i n t h e c l a s s
Alphaproteobacteria and therefore heavily rely on carbon pro-
vided by other organisms [64]. Xanthobacteraceae
(Alphaproteobacteria) was consistently associated within
depth C as an indicator species and is known as
chemolithoautotrophs that utilize inorganic compounds from
external sources, such as sulfur from bedrock or soil particu-
late [65]. The identified indicator ASVs in this analysis and
the defined spatial structure of this study illustrates how mi-
crobial communities are environmentally filtered in heteroge-
neous habitats like the rhizosphere [15, 66].

Table 2 Paired results comparing alpha diversity, or the effective
number of species, between samples pooled in vitro and in silico at q =
0 to 5

Paired t-tests Paired Brown-Forsythe test

Order of diversity (q) t stat p value F-stat p value

0 − 3.4266 0.002** 4.8314 0.032*

1 − 1.7288 0.095 10.82 0.001**

2 − 1.2332 0.228 8.0142 0.006**

3 − 1.9203 0.065 2.1882 0.145

4 − 2.3941 0.024* 0.4312 0.514

5 − 2.4718 0.020* 0.1216 0.728
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Sampling grain affects rarefied bacterial richness and
relative abundance

High-resolution molecular techniques and a comparable sampling
grain are both integral components towards understanding the
spatial structure of bacterial microbiomes within rhizosphere sys-
tems. By definition, the grain size during sampling procedures can
impact one’s ability to detect macroecological patterns regarding
species richness [67, 68]. This similarly holds true when investi-
gating plant-microbiome interactions within the rhizosphere. After
standardization, comparisons between sequencing resolutions
demonstrated that pooled samples in vitro contain on averagemore
raw reads. Similarly, after pairwise rarefaction, samples that were
pooled in vitro not only have on average a greater relative abun-
dance in reads, but they also have greater dispersion around the
median in comparison to samples pooled in silico (Fig. 6a). This
illustrates that pooling prior to DNA extraction captures larger
variance in the richness of 16S genes recovered from rhizosphere
microbiomes. Samples pooled in silico captured a larger quantity
of rare, or less common across all samples, ASVs after sequencing
than did coarse grain samples from the same rhizosphere (Fig. 6b).
This pattern is the clearest at q = 1; however, it is still relevant
when rare ASVs are downweighted from our analyses suggesting
that pooling post sequencing can reduce the bias effects of library
preparation and sequencing on richness estimates. At several steps
throughout the gene sequencing procedure, selective and stochas-
tic biases can affect the ratio of 16S genes from a complex, un-
knownmicrobiome. For instance, DNA extractions can be incom-
plete for soil microbiomes, where mechanical lysis and other pu-
rification steps favor particular groups of bacteria. Additionally,
PCR amplification can cause biases during the annealing stage
by selecting for templates that separate into single-strand mole-
cules with minimal effectiveness [69, 70]. Pooling rhizosphere
samples prior to DNA sequencing has been previously proposed
as one method to reduce variation in richness estimates [71].
However, by combining multiple samples after sequencing, it is
possible to illustrate the spatial dependence of rhizosphere-
associated microbiota while also reducing variation
around richness estimates. Thus, the sampling grain
chosen during library preparation and sequencing can
have an effect on our interpretations of rarefied richness
of microbiomes.

In summary, we conclude that sampling method contributes
to differences in the relative abundance of reads and richness of
rhizosphere-associated bacteria, where higher sampling resolu-
tion captures more reliable estimates of relative abundance while
also recovering higher alpha diversity estimates (i.e., more rare
ASVs) on average than a bulk sampling approach. Our study
explicitly shows the spatial organization of bacterial communities
within the rhizosphere environment; however, given our sam-
pling design, we cannot tease apart host effects from environ-
mental effects or the interaction between the two. Yet, this infor-
mation proves useful when developing future rhizosphere

microbiome–related questions with the aim of having reproduc-
ible and comparable experimental designs in field settings. For
example, to address how root-associated microbial communities
change in response to applied drought treatments, takingmultiple
fine grain samples from different points within the rhizosphere,
pooling these in silico, and testing against an indicator analysis
can likely clarify which ASVs distinctly correlate to drought
conditions. Better understanding how bacterial communities are
spatially structured along plant host tissue andwhich grain size is
appropriate for sampling will allow us to more precisely infer
which abiotic and biotic conditions shape and maintain rhizo-
sphere microbiomes.
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