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E C O L O G Y

Predicting patch occupancy reveals the complexity 
of host range expansion
M. L. Forister1,2*, C. S. Philbin2,3, Z. H. Marion4, C. A. Buerkle5, C. D. Dodson2,3, J. A. Fordyce6, 
G. W. Forister7, S. L. Lebeis8, L. K. Lucas9, C. C. Nice10, Z. Gompert9

Specialized plant-insect interactions are a defining feature of life on earth, yet we are only beginning to under-
stand the factors that set limits on host ranges in herbivorous insects. To better understand the recent adoption 
of alfalfa as a host plant by the Melissa blue butterfly, we quantified arthropod assemblages and plant metabolites 
across a wide geographic region while controlling for climate and dispersal inferred from population genomic 
variation. The presence of the butterfly is successfully predicted by direct and indirect effects of plant traits and 
interactions with other species. Results are consistent with the predictions of a theoretical model of parasite host 
range in which specialization is an epiphenomenon of the many barriers to be overcome rather than a consequence 
of trade-offs in developmental physiology.

INTRODUCTION
Emerging infectious diseases and crop pests are examples of host 
range expansion in which an organism with a parasitic life style col-
onizes and successfully uses a novel host (1). Many aspects of host 
range are poorly understood, including why most herbivorous in-
sects and other parasites are specialized and the conditions under 
which new host-parasite interactions develop and persist. Mechanistic 
approaches in focal systems have revealed key aspects of host recog-
nition (2) and other relevant biological processes (3) but, by design, 
do not encompass context dependence including interacting species 
and abiotic variation. Ecological studies of host range, in contrast, 
might quantify context dependence but have not included both 
modern genomic and metabolomic approaches (4). Here, we use the 
colonization of alfalfa, Medicago sativa, by the Melissa blue butter-
fly, Lycaeides melissa (Fig. 1), to present what is, to our knowledge, 
the most thorough picture of a recent (within the last 200 years) host 
range expansion in terms of number of populations studied and 
breadth of interacting species and host traits characterized.

Theoretical work in this area can be divided into two partially 
overlapping groups: those that emphasize developmental performance 
(including trade-offs in the ability to use different hosts) and those 
that stress opportunity and constraint imposed by exogenous factors, 
primarily natural enemies (5) and geography (6). Although devel-
opmental trade-offs in host use are rare (7), it is clear that plant de-
fenses are a barrier to insect colonization, as performance is often 
reduced for herbivores in experiments with novel versus ancestral 
hosts (8). What we do not know is whether the magnitude of perform
ance effects studied in the laboratory will be informative under 
field conditions. Predation pressure could, for example, remove all 

opportunity for successful development on a novel host that would 
otherwise be suitable. Equally unknown is whether variation within 
and among host populations might have compensatory effects, such 
that a direct negative effect of a particular toxin on an herbivore is 
balanced by similar effects on a competitor.

The Melissa blue is widespread in western North America, where 
it can be found in association with native legume (Fabaceae) host 
plants, and typically persists in isolated subpopulations connected 
by limited gene flow (9). The association with alfalfa is heterogenous, 
most often occurring in areas where the plant has escaped cultivation, 
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Fig. 1. Map of study locations, dispersal surface, and images of butterflies, 
ants and caterpillar. (A) Solid symbols (circles and triangles) are focal alfalfa loca-
tions from which arthropods and plants were collected: Blue sites are locations 
where the Melissa blue butterfly (L. melissa) has colonized the novel host; green 
sites are alfalfa locations not colonized by the butterfly. Open symbols (circles and 
squares) are locations used in the quantification of gene flow; in some cases (where 
an open circle appears within a blue circle), sites were represented in both data-
sets. (B) Effective migration surface used to generate covariates representing rates 
of effective dispersal (blue is faster than average; red is slower). (C) L. melissa caterpil-
lar being tended by mutualist ants on alfalfa (photo credit: Chris Nice, Texas State 
University). (D) Female and (E) male Melissa blue butterflies (photo credit: Matthew 
Forister, University of Nevada).
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and is the result of at least two independent colonization events by 
the Melissa blue (10). Alfalfa was introduced to western North America 
in the mid-1800s (9) and is a poor food plant for Melissa blue cater-
pillars, which develop into adults that are, on average, half the size 
of individuals experimentally reared on a native host (11), with di-
rect and indirect fitness consequences (12, 13). The use of alfalfa 
does not appear to be constrained by genetic, developmental trade-
offs in the Melissa blue or a lack of genetic variation in ability to use 
that host (10, 14). Nevertheless, unoccupied patches of alfalfa have 
remained unoccupied by the butterfly for years or even decades, even 
in close proximity to occupied patches (15). We took advantage of 
that landscape heterogeneity, as pictured in Fig. 1A, to quantify and 
model the factors controlling patch occupancy of the novel host by 
the Melissa blue butterfly.

RESULTS
To understand host plant and arthropod community variation as-
sociated with Melissa blue patch occupancy, samples and data were 
taken from more than 1600 individual plants from 56 alfalfa loca-
tions with and without the Melissa blue (Fig. 1A). Arthropod collec-
tions included 20,890 individuals that were sorted into 298 species 
(these were morphospecies in the vast majority of cases, identified 
to taxonomic family and assigned a unique morphospecies number 
based on phenotype) from 123 taxonomic families and 16 orders 
(spiders were not identified beyond order). Specimens were further 
parsed into functional groups, with proportional representation as 
follows: 56% of individuals were ant-tended herbivores (aphids, 
treehoppers, and relatives), 21% were predators, 8% were other her-
bivores (not ant-tended), 7% were ants, 2% were parasitoids (with 
the potential for attacking caterpillars), and the rest (6%) were par-
asitoids of other groups, flower visitors, or incidentals without direct 
ecological relevance for our focal species. Assignment to these func-
tional categories was based largely on our knowledge of the natural 
history of the system. All aphids and treehoppers are not, of course, 
tended by ants but the majority of individual aphids and treehoppers 
that we see at our study sites do appear to engage in this facultative 
mutualism.

Because movement across the landscape is an essential compo-
nent of novel host colonization and use, we assembled a population 
genomic dataset to estimate effective migration surfaces for the fo-
cal butterfly from 541 individuals for rare and common genetic 
variants, assuming 200 and 400 demes (surfaces are shown for both 
classes of variants in the 400 deme model in fig. S1). The migration 
surface models were more successful than simple isolation by dis-
tance at predicting genetic dissimilarity among spatial units, as can 
be seen in the comparison of fig. S1C versus fig. S1D for isolation by 
distance versus fitted values based on rare variants in the 400 deme 
model. Rates of effective migration from all four models (rare and 
common, 200 and 400 demes) were moved forward into a Bayesian 
ridge regression predicting Melissa blue presence and absence: the 
model of rare variants at the finer scale of 400 demes was the most 
influential in the ridge regression (more details below), which is why 
it is highlighted in fig. S1.

As a characterization of phytochemical variation among individ-
ual alfalfa plants, our analyses produced 849 metabolomic features, 
which were simplified through factor analysis. Similarly, factor anal-
ysis was used as a data reduction step for site-specific climate data. 
We retained two factors from the climate data and six from the me-

tabolomic data (fig. S2) as optimal in the sense that we maximized 
the amount of variation captured with the constraint of having few 
enough factors to be both interpretable and tractable in downstream 
analyses. In the climate model, the two factors explained 72% of the 
variation among sites, with factor 1 describing a gradient of increas-
ing temperatures and drier conditions, particularly maximum daily 
temperatures, while factor 2 is a gradient of increasing minimum 
temperatures (fig. S3). Analysis of the metabolomic data explained 
33% of the variation with six factors, and we used relative mass de-
fect for annotation of major compound classes (fig. S4). Given the 
large number of compounds involved, we focused on annotation of 
the higher-loading compounds (see Materials and Methods).

In preparation for structural equation modeling (SEM), we used 
Bayesian ridge regression to identify the most influential predictors 
for five response variables: presence and absence of the focal butterfly 
(our chief variable of interest), as well as abundance of ants, preda-
tors, ant-tended herbivores, and other (nontended) herbivores. Slightly 
different sets of biologically relevant predictors were examined for 
each response variable. All ridge regression models readily converged, 
and effective sample sizes tended to be in the thousands. Using 75% 
as the cutoff for confidence in our regression coefficients, we found 
between 4 and 10 variables that rose to the top as candidates for 
inclusion in structural equation models (table S2). Almost without 
exception, effects estimated with ridge regressions agreed with a priori 
expectations and previous results in this system. For example, ants 
had the strongest effect on butterfly presence and absence (16) and 
one of the strongest effects on the abundance of tended herbivores. 
Specific leaf area was highly ranked for the Melissa blue (table S2) 
with a negative effect as previously observed in an experimental 
context (17), and specific leaf area had a negative effect on other 
(largely chewing) herbivores (table S2) but not on other ant-tended 
(sucking) herbivores, which likely interact differently with physical 
leaf traits.

Spatial autocorrelation was investigated using Moran’s I and com-
parisons against null simulations. Overall, we found that spatial au-
tocorrelation was low: Only a few variables were significantly more 
clustered on the landscape than would be expected by chance, with 
(expectedly) dispersal having the strongest spatial autocorrelation 
(table S3). In addition to the tests with Moran’s I, we generated MEMs 
(Moran’s eigenvector maps) as covariates for spatial structure and 
included them in a Bayesian ridge regression for our variable of pri-
mary interest, the presence and absence of the Melissa blue. Two 
MEMs fell within the top variables following ridge regression (see 
last section of table S2), using the criterion of 75% confidence. How-
ever, the vast majority of other variables did not change in their 
importance while accounting for spatial autocorrelation. Thus, we 
concluded that spatial autocorrelation is present in the system but 
do not address it further because it does not alter our goal of under-
standing direct and indirect effects on the presence and absence of 
the butterfly.

Using the important variables from ridge regressions (table S2), 
we initially constructed a structural equation model that fits the data 
but had three unresolved paths (see the base model in table S4). For 
example, ants are a top variable (in ridge regressions) affecting tend-
ed herbivores, and tended herbivores are a top variable for ants, hence 
the unresolved (or “double-headed arrow”) path in the base model. 
Subsequent model comparisons (detailed in table S4) resolved two 
of those paths, with other herbivores affecting ants and ants point-
ing to tended herbivores. The latter agrees with our observations: As 
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ecological generalists, ants can be present without tended herbivores, 
but tended herbivores are less likely to be successful without ants. 
The final model is shown in Fig. 2 (with both R2 and leave-one-out 
correlations for individual endogenous variables), along with effects 
summarized by functional categories so that, for example, the direct 
and indirect importance of plant structure can be compared to the 
direct and indirect importance of phytochemistry (Fig. 2B). Full re-
sults from the structural equation model including path coefficients 
and associated P values are given in table S5. In our null model sim-
ulations, the variation explained by the real model was roughly 
threefold greater than the average variation explained in simulated 
datasets (fig. S5). Effects of a few of the most important variables are 
shown in Fig. 3, both individually (e.g., the influence of ants on Melissa 
blue presence and absence in Fig. 3A) and in conjunction with other 
factors (e.g., ants and phytochemical factor 4 in Fig. 3E). The im-
portance of phytochemical variation is also visualized for individual 
metabolomic features and their direct (Fig. 3F) and indirect (Fig. 3G) 
associations with butterfly occupancy.

DISCUSSION
Like most butterflies in the family Lycaenidae, Melissa blue caterpillars 
engage in a facultative mutualism with ants (Fig. 1C), where cater-
pillars produce specialized secretions in exchange for protection 
from natural enemies (18). Previous experimental work in this sys-

tem found that excluding ants from individual plants reduced cater-
pillar survival (16). We find here that ant abundance is the most 
influential variable or control on Melissa blue presence across the 
56 sites (Figs. 2 and 3A). This is true even when considering the fact 
that ants facilitate many hemipterans (aphids, treehoppers, and other 
myrmecophiles), which, in turn, have a negative competitive effect 
on the Melissa blue (Fig. 3B). The balance of ant and hemipteran 
effects is such that the negative effect of the latter is most influential 
at intermediate ant densities (Fig. 3D). Similar complexity arises 
through direct and indirect effects of metabolomic variation. Phyto-
chemical factor 4 has a direct negative association with Melissa blue 
presence (Fig. 3C) but an indirect positive effect mediated through 
other herbivores and their effect on ants (Fig. 2). That axis of plant 
variation is positively associated with a number of alkaloids, among 
other compounds, with potential herbivore toxicity (see fig. S4). In 
general, we find that roughly three-quarters of the variation in but-
terfly presence and absence at the landscape scale can be explained 
with the suite of variables that includes ants and plant metabolomic 
variation, as well as host patch area, natural enemies, and dispersal 
(relative rates of effective migration; Fig. 1B). The success of the 
model is apparent in cross-validation (Fig. 2) and null simulations 
of site-level properties (fig. S5).

Considering the summed totals of direct and indirect effects es-
timated through path analysis (Fig. 2B), we find that metabolomic 
variation is associated with the most pronounced, direct negative 

Fig. 2. Structural equation model and summary of direct and indirect effects. (A) Path diagram illustrates coefficients estimated in structural equation model predict-
ing Melissa blue presence and absence across the landscape, as well as abundance of ants, tended herbivores, other herbivores and predators (model fit: Fisher’s C = 67.66, 
P = 0.995). Negative effects are indicated by red lines, and positive effects are indicated by gray lines; width of lines is scaled to the magnitude of the coefficients. For the 
endogenous variables, two numbers are shown within ovals: R2 values (on top) and observed-versus-predicted correlations (below) from leave-one-out cross-validation. 
Color coding of exogenous variables indicates plant metabolomics data (green), plant structural traits (violet), geographic variables (brown), and climate (yellow); color 
coding also corresponds to bar chart (B), which summarizes relative magnitude of direct and indirect effects (solid and hashed bars, respectively), both positive and 
negative. For example, climate has a modest positive direct effect, a smaller positive indirect effect (mediated through tended herbivores), and a larger negative indirect 
effect (through predators). Additional details from the structural equation model are in table S5.
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effects, followed closely (among negative effects) by direct and indi-
rect interactions with other arthropods and then indirect effects of 
plant structure. A negative effect of phytochemical variation on patch 
occupancy is consistent with the idea that plant defenses are, at least, 
a partial barrier to colonization but does not imply that trade-offs in 
host use (in the sense of host range being constrained by antagonistic 
pleiotropy among host-associated alleles) are present in this system. 
Previous experimental work and surveys of genetic variation in the 
field have suggested that antagonistic pleiotropy is not an important 
constraint on expansion of diet breadth for the Melissa blue (10, 14). 
The effect of specific leaf area is also consistent with a previous ex-
perimental study (17) but is small compared to both positive and 

negative indirect effects associated with plant size and the density of 
flowers mediated through enemies and competitors (Fig. 2B). In terms 
of positive effects on the Melissa blue, the importance of ants is 
followed by geographic factors including patch area and dispersal 
(effective migration rates). These results demonstrate the value of 
studying plant variation in the context of geography and interacting 
species. While individual components of the results reported here 
are consistent with experimental work, other aspects are less acces-
sible to manipulation. Individual metabolites, for example, have a 
mix of positive and negative direct effects on the Melissa blue (Fig. 3F), 
as observed in a previous rearing experiment (17), while the indirect 
effects of individual compounds are characterized more by positive 
effects mediated through numerous other species in the wild (Fig. 3G).

CONCLUSION
The theory of ecological fitting suggests that novel hosts are colo-
nized if they are “close enough” to native hosts in key traits (19–22), 
but we have few cases in which that close enough distance has been 
quantified as we have done in this system. We find diverse factors or 
controls on colonization that are encountered in multifarious com-
binations (23). When all factors align, butterfly populations persist 
on the novel host, but the diversity of challenges (plants, enemies, 
and abiotic conditions) undoubtedly makes adaptation to the novel 
host difficult, especially when some or all of those factors likely shift 
in character from year to year. This possibility is consistent with only 
minimal local adaptation that has been observed in alfalfa-associated 
populations (14). It would, of course, be informative to have a sim-
ilarly detailed picture of the factors associated with patch occupancy 
of native hosts with which the focal butterfly has a long evolution-
ary history, but this will have to await future studies. Given the re-
sults presented here, we can see the theory of host range evolution 
approaching maturity: genetic trade-offs are possible but rare (24, 25); 
instead, it is likely that a balance of factors (both positive and nega-
tive) associated with novel host use exist in any system but are only 
infrequently encountered in combinations that allow host range ex-
pansion (26, 27). Further complexity is added by the fact that changing 
abiotic conditions can affect the suitability of novel hosts (28). Thus, 
generalist herbivores or parasites (with many accumulated hosts) 
are predictably rare across geographic and phylogenetic scales (29, 30). 
The complexity of barriers to novel host use and the ecological con-
tingency of colonization challenge our ability to forecast new crop 
pests or emerging infectious diseases (1), but the multidisciplinary 
approach illustrated here does raise the promise, at least for herbiv-
orous insects, that expansions of host range can be understood given 
current technologies and sufficient sampling effort.

MATERIALS AND METHODS
Site identification, plant collections, and associated data
Our goal was to sample a roughly equal number of alfalfa (M. sativa) 
locations that had and had not been colonized by the Melissa blue 
butterfly (L. melissa). Throughout the arid western United States, 
the plant is favored by the butterfly in places where it has escaped 
cultivation and exists in mostly discrete patches along roadsides 
and in invaded or partly degraded natural communities. Before the 
field sampling associated with this project in 2017 and 2018, we had 
accumulated a database of observations of alfalfa locations that sup-
port Melissa blue populations, as described in previous publications 

Fig. 3. Illustration of effects for a subset of variables predicting L. melissa pres-
ence and absence across the landscape. (A to C) Partial effects of ants, tended 
herbivores, and phytochemical factor 4 on Melissa blue occupancy; in other words, 
these are the effects of those individual factors while controlling for other factors 
predicting occupancy (see paths in Fig. 2). (D and E) Predicted probability of patch 
occupancy across a range of values for ant and tended herbivore abundance (D) 
and for ant abundance and phytochemical factor 4 (E) where it can be seen, for 
example, that at high values of phytochemical factor 4, a higher abundance of ants 
is needed before the probability of occupancy rises. (F and G) Direct and indirect 
effects of 849 metabolomic features, both positive (blue) and negative (orange); 
see text for more details on calculation of individual effects. Formica ant and 
Campylenchia treehopper (one of the more abundant ant-tended herbivores at 
our study sites) illustrations are by M.L.F.; the alkaloid shown above (C) is medicanine 
(see fig. S4 for additional examples).
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(9, 31, 32), as well as (to a lesser extent) a database of alfalfa loca-
tions not associated with Melissa presence (15). Both presence and 
absence of the butterfly are relatively stable over time: We have ob-
served presence to be unchanged at locations that we have visited 
annually for more than 20 years, and focal absences have been tracked 
for up to 12 years (15).

Throughout the summers of 2017 and 2018, we visited a total of 
56 sites (Fig. 1A and table S1), mixing presence and absence sites 
haphazardly in space so as not to confound latitude or longitude 
with order (date) of sampling or with site status (presence and ab-
sence of the butterfly). In other words, sites were visited so that pres-
ence and absence sites were interdigitated both in space and time 
(note that we also include year as a categorical variable in analyses, 
as described below). In many cases, sites had been previously iden-
tified (as mentioned above), while in other cases, new sites were dis-
covered during the summers of 2017 and 2018.

Because adults have high site fidelity (33) and are easily observed, 
the status of a location (butterfly presence or absence) can, in most 
cases, be determined in a single visit. However, the Melissa blue has 
multiple generations in a season, which makes it possible that a vis-
it could coincide with low density between generations and thus 
produce a false-negative observation (which is more likely early in 
the summer, as the first and second generations are more discrete, 
while the second and third tend to overlap). Thus, all absence locations 
were revisited at least once or twice, approximately 2 to 6 weeks after 
the initial sampling date to confirm that a site does not support a 
Melissa blue population (the only exception to that was our most 
northern absence site, in Montana, which was not revisited for lo-
gistical reasons). Note that we did not attempt to quantify butterfly 
abundance, which (unlike presence or absence) would have required 
multiple visits to reliably estimate.

Following our earlier studies with arthropod communities on 
alfalfa (34, 35), we used flowering as a guide to phenology and con-
sidered a site appropriate for sampling if at least half of the individual 
plants were flowering. Some of our previous work with alfalfa arthro-
pods and plant traits has involved repeated sampling at individual 
locations (35), although arthropod communities in alfalfa were found 
to be relatively stable throughout the summer (34); thus, the present 
project used single visits to individual locations as a way to maxi-
mize effort spent sampling additional sites (Fig. 1A). Most sampling 
days were in July and August, with fewer in June and September, and 
an index of flowering was included as a covariate in models (see below).

Sampling at a site began with a marker placed in the center of the 
patch of alfalfa, and 30 individual alfalfa plants were then flagged at 
random compass directions and distances (up to 25 m) from the cen-
ter of the patch (at two sites where a patch had fewer than 30 plants, 
they were all sampled). In some cases, when patches were essentially 
linear (for example, along a roadside), compass directions were con-
verted to binary orientations forward or backward from the center. 
The total areal extent (length and width) of the patch was measured 
and percent cover of alfalfa was visually estimated. Each of the ran-
domly selected focal plants was measured for size (as a box measure-
ment of length, width, and height), and the number of flowering 
stems was counted. Three mature (but not senescent) leaves were 
selected haphazardly for leaf toughness measurements using a pen-
etrometer (Chatillon 516 series) through the center of the middle 
leaflet (17).

For metabolomic work (and the measurement of leaf area and mass), 
three small clusters of leaves (three to five leaves in each cluster) were 

collected from the top, middle, and lower portions of the plant, thus 
encompassing as much whole plant phytochemical variation as possi-
ble. The three clusters were pooled into a single large coin envelope. 
Thus, the current study does not quantify intraindividual variation 
or attempt to separate induced from constitutive defenses (alfalfa is 
attacked by a wide range of vertebrate and invertebrate herbivores 
and the vast majority if not all of our sampled plants had been dam-
aged to some extent before sampling). All of the envelopes from a 
single site were stored in an open paper bag for air drying before 
being delivered to a laboratory at the University of Nevada, Reno, 
where drying was completed in a vacuum. After vacuum drying, 
sample envelopes were kept in plastic bins with desiccating crystals 
until they were needed for either metabolomic work or area and mass 
measurements. For the latter (area and mass), five leaves were se-
lected haphazardly from each envelope and weighed to the nearest 
tenth of a milligram on a microbalance and taped to a sheet of plain 
white paper that was then scanned. Leaf area (in cm2) was taken using 
ImageJ software (version 1.52A) on the scanned images of individ-
ual leaves and used to calculate specific leaf area as area divided by 
mass (17). Because all of the analyses presented here focus on vari-
ation at the patch scale, plant measurements were averaged across 
plants within a location. Values for leaf toughness and plant vol-
ume, as well as patch area and cover, were log-transformed before 
analyses.

Climatic data for each of the 56 sites were generated as monthly 
averages for 2008 to 2018 using the get_prism:monthlys function 
from the prism package (36) for average daily minimum tempera-
tures, average daily maximum temperatures, and precipitation totals 
(data from the PRISM Climate Group, Oregon State University). 
These analyses and all others described below (except where noted) 
were done using the R statistical computing language (37).

Arthropod collections and identification
Arthropods were collected using a sweep net from each of the ran-
domly selected individual plants at each of the 56 field sites, as we 
have done previously (16, 34, 35). Unlike alfalfa in cultivation, alfalfa 
that has escaped along roadsides and into seminatural communities 
tends to grow as larger individuals with open spaces between plants, 
which facilitates sweep netting of individual plants. Each plant was 
swept four times in rapid succession, with the collector gradually 
moving around the plant during sweeping. The collected arthropods 
were then transferred from the net into a plastic vial with ethanol 
for storage (an aspirator was used to get most arthropods out of the 
net, with larger specimens transferred directly into alcohol). We at-
tempted to collect all arthropods large enough to be seen with the 
naked eye, with the exception of thrips (Thysanoptera), which we have 
found to be both too small and too numerous on alfalfa for efficient 
collection. Vials were each labeled by location and plant.

Individual arthropods within samples (vials associated with in-
dividual plants) were counted and identified using a dissecting mi-
croscope (with ×90 maximum magnification) to the lowest possible 
taxonomic level, which was almost always family and, in some cas-
es, genus and species, using standard taxonomic keys appropriate 
to different groups. If a specimen could only be identified to fam-
ily, it was given a morphospecies number that identified unique 
morphospecies across all of our field sites. This work builds on a 
previous study of alfalfa insects in the Great Basin (35), and many of 
the morphospecies numbers used in the current study were estab-
lished in that previous work. The only exception to that pipeline 
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involved spiders, which were only counted and not identified to any 
lower taxonomic level, such that total spider abundance was used in 
analyses (as part of the pool of predators at each site).

Following taxonomic identification, each species (or morphospecies) 
was given one of the following ecological assignments: ant-tended 
herbivores, other herbivores, parasitoids, predators, and ants. These 
assignments were partly based on our own observations of alfalfa-
insect communities and on literature searches for specific taxa (for 
example, as a way to determine whether a particular chewing herbivore 
could have been feeding on alfalfa or might have more likely been 
there only as a flower visitor). Ants were treated as their own ecolog-
ical group for the simple reason that they are considered separately in 
analyses as mutualists of our focal caterpillars and of other ant-tended 
herbivores. Parasitoids include wasps and flies with some history (based 
on literature searches) of potentially attacking caterpillars (we also 
identified a large number of hemipteran parasitoids, but those were 
not included in these analyses). For analyses reported here, arthropods 
were totaled within functional (ecological) groups at the plant patch 
level, and abundances were natural log–transformed before analyses.

Plant metabolomics
Individual plants across all sites in each collection year were ran-
domized before extraction and analysis. After leaves were vacuum 
dried and finely ground (using a TissueLyser II, QIAGEN, Hilden, 
Germany), approximately 10 mg of dried tissue was extracted in 2.00 ml 
of aqueous ethanol (70%), vortexed briefly, and sonicated for 15 min. 
The resulting suspension was centrifuged at 500 rpm for 10 min. 
Aliquots of 1 ml from the supernatant were then passed through a 
96-well filter (1 ml, 1-m glass fiber; AcroPrep) into glass vials, covered 
with silicone mats and stored at −10°C. Chromatographic analyses 
were conducted on an Agilent 1200 analytical HPLC (high performance 
liquid chromatography) coupled to an Agilent 6230 time-of-flight 
mass spectrometer via an electrospray ionization source (gas tem-
perature, 325°C; flow, 10 liter/m; nebulizer pressure, 35 psig; VCap, 
3500 V; fragmentor, 165 V; skimmer, 65 V; and octopole, 750 V). A 
solution of digitoxin (0.50 l at 0.200 mM methanol; Sigma-Aldrich), 
a commercially available cardenolide that has been used as an inter-
nal standard in other analyses of saponins (38), was coinjected with 
extracts (1.00 l) and eluted at 0.500 ml/min through a Kinetex 
EVO C18 column (2.1 mm by 100 mm, 2.6 , 100 Å; Phenomenex) 
at 40°C. Buffers A (water containing 0.1% formic acid) and B (ace-
tonitrile containing 0.1% formic) composed the linear binary gradi-
ent, changing over 30 min as follows: 0 to 1 min 5% B, ramp to 50% 
B at 4 min, ramp to 100% B at 21 min, 21 to 25 min 100% B ramping 
to 1.00 ml/min, before reequilibrating the column from 25 to 30 min 
at 5% B, 0.5 ml/min.

Raw data files were converted to mzML format using ProteoWizard 
msConvert 3.0 (39) before processing using the Bioconductor R 
package XCMS (40). Chromatographic features (retention time and 
m/z bins) were extracted from raw data files before retention time 
correction using the digitoxin internal standard, peak density group-
ing, and gap-filling. The Bioconductor R package CAMERA (41) 
was then used to identify groups of features (pseudospectra) with 
similar retention time that were highly correlated across chromato-
grams (r > 0.8), with similar (r > 0.8) peak shape and by character-
istic isotopic patterns. The feature that was most highly represented 
across all individual chromatograms was then used as the representa-
tive feature from each pseudospectrum. Features were then normalized 
to plant mass and natural log–transformed.

To accommodate differences in ionization efficiency between in-
dividual phytochemicals, z transformation was applied to standard-
ize means and variance of all features. Given the large number of 
plant specimens processed and the considerable amount of HPLC 
time involved, we applied this correction batchwise to correct for 
technical effects arising from changes in instrument response and 
unavoidable mechanical artifacts such as the changing of the col-
umn (the internal standard did not adequately correct for technical 
error across all compound classes and was not used for normaliza-
tion). We applied z transformation across four different batches of 
samples that were identified through manual inspection of individual 
compound response across analysis time and corresponded to anal-
ysis batches. In addition, we implemented a “floor” correction across 
batches so that the highest minimum z score (comparing across 
batches) became the lowest value for all batches. The latter correc-
tion was suggested by the fact that the overall sensitivity of detection 
varied among batches, with some batches recovering a greater range 
of small values. Our primary variable of interest (the presence and 
absence of the butterfly across the landscape) was not confounded 
with batches (i.e., each batch included samples associated with pres-
ence and absence locations). Moreover, we repeated core analyses 
with different approaches to batch effect correction (e.g., fewer batch-
es or without floor correction) and obtained results that were qual-
itatively similar to those reported in Fig. 2. In other words, the main 
result that phytochemical variation has both direct and indirect neg-
ative and positive effects that are comparable in magnitude to other 
factors (e.g., biotic interactions) is robust to the technicalities of mass 
spectra processing.

Putative annotations were attempted for all features having fac-
tor loadings (see Analyses: Factor analysis, below) with an absolute 
value greater than 0.3 based on previously described approaches 
(17). Briefly, initial classification of phenolics [200 to 400 parts per 
million (ppm)], saponins (400 to 650 ppm), lipids, and sterols 
(greater than 400 to 650 ppm) was done using the relative mass defect 
as a characteristic of each compound class. Annotations were further 
refined on the basis of expected retention time, amine-characteristic 
masses, and molecular ion mass. Features of interest were extracted 
from raw data and examined for characteristic fragments, adducts, 
and isotopes before cross-referencing against the METLIN mass 
spectrometric database (42) as a way to further categorize annota-
tions. Because of the implications for bioactivity associated with small 
molecule alkaloids, nitrogenous compounds with ambiguous data-
base hits were characterized as peptides so as to not overstate the 
presence of defensive alkaloids. One reason we could not annotate 
potential alkaloids is the lack of literature regarding the presence or 
characterization of alkaloids in Medicago, despite numerous studies 
of alkaloids in other legumes. Thus, more targeted investigation of 
Medicago alkaloids is warranted. Compounds that did not yield a 
chemically rational database match as a molecular ion or fragment 
were classified as unknown.

Dispersal (estimation of effective migration surface)
We analyzed genotyping-by-sequencing (GBS) data from 541 Melissa 
blue butterflies collected from 27 populations in western North America 
(see table S1). These DNA sequences were previously described by 
Chaturvedi et al. (10). For the current study, we used the bwa mem 
algorithm (version 0.7.17) (43) to align these data to a new version 
of the L. melissa reference genome (44). We ran bwa mem with a 
minimum seed length of 15, considered internal seeds of longer than 
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20 base pairs, and only output alignments with a quality score of >30. 
We then used samtools (version 1.5) to compress, sort, and index 
the alignments (45). We used samtools (version 1.5) and bcftools 
(version 1.6) for variant calling with the original consensus calling 
algorithm. We used the recommended mapping quality adjustment 
for Illumina data (-C 50), skipped alignments with mapping quality 
less than 20, skipped bases with base quality less than 30, and ignored 
insertion-deletion polymorphisms. We set the prior on single-nucleotide 
polymorphisms (SNPs) to 0.001 (-P) and called SNPs when the pos-
terior probability that the nucleotide was invariant was ≤0.01 (-p). 
We filtered the initial set of variants to retain only SNPs with se-
quence data for at least 80% of the individuals, a mean sequence 
depth of 2× per individual, at least 10 reads of the alternative allele, 
a minimum quality score of 30, and no more than 1% of the reads in 
the reverse orientation (this is an expectation for our GBS method). 
We then split the SNP data into rare versus common SNPs, as these 
sets of SNPs can reveal different aspects of demographic history with 
rare variants being especially informative about recent gene flow 
and fine-scale population structure (9). We specifically delineated 
rare variants as those with an overall minor allele frequency of 1 to 
5% (47,470 SNPs) and common variants as those with minor allele 
frequencies >5% (20,449) (variants with less than 1% frequency were 
discarded from downstream analyses).

We used entropy (version 1.2) to estimate genotypes. This program 
jointly infers genotypes and allele frequencies while accounting for 
uncertainty in each, as well as uncertainty in population assignment 
and ancestry (9). The latter is accomplished via an admixture mod-
el that assumes that the allele copies at each SNP locus are drawn 
from unknown, hypothetical source populations with each individual 
having a genome composed of some mixture of the source popula-
tions (9). Uncertainty in genotypes comes from limited coverage 
and sequencing error, as encoded in the genotype likelihoods esti-
mated by samtools and bcftools. We estimated genotypes assuming 
two or three source populations. Estimates were obtained via Markov 
chain Monte Carlo (MCMC) with five chains, each with 5000 itera-
tions as a burn-in followed by 8000 sampling iterations with a thin-
ning interval of 5. Point estimates of genotypes were obtained as the 
posterior mean estimate of the number of nonreference alleles averaged 
across chains and numbers of source populations. Genetic distances 
were then calculated between all pairs of individuals on the basis of 
average identity by state.

Last, we estimated relative effective migration rates among pop-
ulations on the basis of the genetic distances and sampling location; 
this was done separately for rare versus common variants. Relative 
effective migration rates were inferred using the program eems 
(version 0.0.0.9000) (46). This method does not infer absolute 
migration rates but rather identifies regions in space with low or 
high gene flow relative to a simple two-dimensional stepping-stone 
isolation-by-distance model (46). Thus, this method can identify 
regions in space receiving limited dispersal or gene flow, even if 
these regions do not harbor resident butterfly populations (for ex-
ample, one of our sampled alfalfa locations that has not been colo-
nized by the butterfly). In addition to estimating migration rates 
separately for rare and common variants, we fit the model (using 
MCMC with three chains, 4 million sampling iterations, 2 million 
burn-in iterations, and a thinning interval of 10,000) separately 
assuming 400 demes and 200 demes (to allow for more fine-scale 
and more coarsely estimated variation), evenly spaced on a triangu-
lar grid.

Analyses: Overview
Our goal was to use SEM to understand potentially complex direct 
and indirect effects on the presence and absence of our focal butterfly 
across the landscape. We implemented two levels of data reduction 
before SEM analysis. First, we used exploratory factor analysis on 
the climate and metabolomic data. Then, we used Bayesian ridge 
regression as a way to reduce the possible number of predictor (ex-
ogenous) variables that would need to be included for each response 
(endogenous) variable in our SEM. Last, we used the most success-
ful SEM model to discuss the relative importance of different direct 
and indirect paths affecting the presence and absence of the focal 
butterfly. The success of the SEM model was judged by leave-one-out 
cross-validation and null simulations that permuted the site-level 
properties (predictor variables) for Melissa blue presence and absence.

Analyses: Factor analysis
Factor analysis is similar to other ordination techniques (such as 
principal components analysis) in dealing with suites of correlated 
variables, but the emphasis in factor analysis is on the identification 
of underlying structure (associated with factors that are not neces-
sarily orthogonal) giving rise to the observed data (47). We used the 
same approach for both datasets (climate and metabolomic), specif-
ically the factanal function with promax rotation and Thompson’s 
regression scores. The number of factors calculated for each dataset 
was determined partly on the basis of inspection of scree plots but 
mainly through experimentation by fitting different numbers of 
factors and repeating downstream analyses (to learn, for example, if 
additional factors produced additional insight or meaningful effects 
in SEM models). For the climate dataset, the values going into the 
factor analysis were already summarized at the site level; thus, factor 
scores could be moved directly into the next analyses. For the 
metabolomic dataset, data from all 1651 individual plants were used 
in the factor analysis, and then, average scores at the site level for 
each factor were retained for ridge regressions and SEM models.

Analyses: Bayesian ridge regression
Before constructing SEMs, we used Bayesian ridge regression as a way 
to focus on a subset of important predictor variables for each of our 
endogenous variables (presence and absence of the butterfly and the 
abundance of interacting species). Ridge regression is a constrained 
regression in which coefficients are penalized in a way that reduces 
coefficients toward zero but does not exclude them (known as an l2 
penalty), thus allowing for the simultaneous estimation of effects of 
a large number of predictors (48). In a Bayesian context, ridge re-
gression can be implemented by placing a hyperprior on the precision 
(equal to 1/variance) of regression coefficients, which lets the model 
learn how much the variance on coefficients should be constrained. 
Ridge regressions were either logistic (for presence and absence of 
the butterfly) or Gaussian (for logged abundance of ants and func-
tional groups) and were run using JAGS (version 3.2.0) in R with the 
rjags package (49). Minimally influential priors on regression coef-
ficients were modeled as normal distributions with a mean of zero 
and precision drawn from a (hyperprior) gamma distribution (rate, 0.1; 
shape, 0.1). After sampling with two Markov chains for 100,000 steps 
each (burn-in was not required), performance was evaluated by plot-
ting chain histories, examining effective sample sizes, and calculating 
the Gelman and Rubin convergence diagnostic (50).

All variables were z-transformed before analyses, and different 
subsets of variables were examined for different response variables. 
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For example, for nonherbivorous groups (ants and predators), we 
allowed for the possibility that plant architecture might be important 
(as we have seen previously (35)), but not phytochemistry, specific 
leaf area, or leaf toughness. Year was included as a binary variable in 
all ridge regression models to allow for the possibility that variation 
among the two sampling years should be controlled for while esti-
mating other variables of interest. After ridge regressions had been 
run (and diagnostics were checked) for each response variable, we 
calculated the fraction of the posterior distribution above or below 
zero for coefficients whose point estimate (median) was above or 
below zero, respectively. This value represented our confidence in 
the sign of the coefficients (positive or negative), and we selected 
variables (separately for each response variable) with confidence equal 
to or greater than 75% as variables of potential importance to move 
forward into SEMs. The cutoff of 75% was determined through ex-
perimentation: A higher cutoff missed some variables that were 
interesting in the downstream SEM, and a lower cutoff included 
variables that were unimportant (e.g., had very small effect sizes) in 
the subsequent SEM models.

Analyses: Spatial autocorrelation
Our previous work on alfalfa and the Melissa blue butterfly in the 
Great Basin has suggested to us that spatial autocorrelation might 
not be a major factor in this system, as spatially proximate patches 
of alfalfa are, in some cases, similar and, in other cases, very differ-
ent with respect to female oviposition and larval performance (15). 
Nevertheless, the present project encompasses more space than our 
previous ecological work, which raises the importance of quantify-
ing spatial autocorrelation, for which we have taken two approaches. 
First, we calculated Moran’s I statistic of spatial autocorrelation for 
each of our variables and asked whether observations have greater or 
lesser autocorrelation than would be expected based on 1000 random 
permutations, using the moran.randtest function of the adespatial 
package (51). Moran’s I is not, however, appropriate for binary pres-
ence and absence data, which is, of course, the variable of central 
interest (presence and absence of our focal butterfly). Thus, a com-
plementary approach involved the generation of MEMs, which can 
be used in a multiple regression context to account for spatial auto-
correlation at a range of scales (51). MEMs were generated using the 
dbmem function in adespatial, and significant MEMs (at  = 0.05) 
were included in a Bayesian logistic ridge regression along with other 
predictors of Melissa blue presence and absence.

Analyses: Structural equation models
Following Bayesian ridge regressions, we had a suite of predictor 
variables for each of our five endogenous variables (butterfly pres-
ence and absence, ants, tended herbivores, other herbivores, and pred-
ators; note that caterpillar parasitoids could have been another 
endogenous variable in SEM models but were not included as such 
because they did not emerge as a top variable for the butterfly). Our 
initial SEM included three unresolved relationships: For example, 
ants are important for tended herbivores, and (expectedly) tended 
herbivores are important for ants. Unresolved causality can be re-
tained in SEMs as correlations, but inferences are stronger if rela-
tionships (directions of influence or association) can be resolved 
(52). To that end, we compared the fit [using the Akaike information 
criterion (AIC)] of models with associations pointing in different 
directions; if the fit in one direction was a marked improvement, 
then the resolved relationship was retained in the final model. We 

used the piecewise package (53) to fit our SEM model, which allows 
for the inclusion of different error structures (binomial and Gaussian). 
To estimate standardized beta coefficients across the variables on 
different scales, we chose the “Menard.OE” option and judged 
overall model fit using Fisher’s C and the associated significance test 
(52). In addition to the traditional R2 reported by the piecewise pack-
age, we manually generated a cross-validation measure of model fit 
by repeating the SEM 56 times, leaving out one location with each 
iteration and calculating the correlation between observed and pre-
dicted values for each of our endogenous variables. Last, we com-
pared the R2 from the full model to the distribution of R2 values from 
1000 null simulations in which site-level attributes were shuffled 
among locations with each simulation.

For interpretation and visualization, we produced partial plots 
for certain relationships of interest by reproducing components of 
the full SEM as stand-alone generalized linear models from which 
residuals were saved and plotted as either bivariate plots or three-
dimensional plots (exploring, for example, the probability of Melissa 
blue presence or absence as a function of combinations of ant abun-
dance and tended herbivore abundance). In addition, we calculated 
indirect effects following standard procedures in path analysis in-
volving, for example, the multiplication of coefficients leading from 
one exogenous variable through an intermediary endogenous variable 
to a final endogenous variable, as well as the addition of indirect 
effects to estimate, for example, the total indirect effect associated 
with a suite of predictor (exogenous) variables of a particular type 
(such as the indirect effect associated with all plant structural exog-
enous variables) (52). We also used direct and indirect path coeffi-
cients associated with phytochemical factors as a way to visualize 
the potential importance of individual compounds. For each com-
pound, we multiplied its loading on a particular factor by the path 
coefficient associated with that factor and then summed across factors 
within indirect effects and direct effects separately.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/48/eabc6852/DC1
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