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ECOLOGY

Predicting patch occupancy reveals the complexity

of host range expansion

M. L. Forister"z*, C. S. Philbin*3, Z. H. Marion*, C. A. Buerkle®, C. D. Dodson2'3, J.A. Fordyce6,
G. W. Forister’, S. L. Lebeis?, L. K. Lucas®, C. C. Nice'’, Z. Gompert®

Specialized plant-insect interactions are a defining feature of life on earth, yet we are only beginning to under-
stand the factors that set limits on host ranges in herbivorous insects. To better understand the recent adoption
of alfalfa as a host plant by the Melissa blue butterfly, we quantified arthropod assemblages and plant metabolites
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across a wide geographic region while controlling for climate and dispersal inferred from population genomic
variation. The presence of the butterfly is successfully predicted by direct and indirect effects of plant traits and
interactions with other species. Results are consistent with the predictions of a theoretical model of parasite host
range in which specialization is an epiphenomenon of the many barriers to be overcome rather than a consequence

of trade-offs in developmental physiology.

INTRODUCTION
Emerging infectious diseases and crop pests are examples of host
range expansion in which an organism with a parasitic life style col-
onizes and successfully uses a novel host (1). Many aspects of host
range are poorly understood, including why most herbivorous in-
sects and other parasites are specialized and the conditions under
which new host-parasite interactions develop and persist. Mechanistic
approaches in focal systems have revealed key aspects of host recog-
nition (2) and other relevant biological processes (3) but, by design,
do not encompass context dependence including interacting species
and abiotic variation. Ecological studies of host range, in contrast,
might quantify context dependence but have not included both
modern genomic and metabolomic approaches (4). Here, we use the
colonization of alfalfa, Medicago sativa, by the Melissa blue butter-
fly, Lycaeides melissa (Fig. 1), to present what is, to our knowledge,
the most thorough picture of a recent (within the last 200 years) host
range expansion in terms of number of populations studied and
breadth of interacting species and host traits characterized.
Theoretical work in this area can be divided into two partially
overlapping groups: those that emphasize developmental performance
(including trade-offs in the ability to use different hosts) and those
that stress opportunity and constraint imposed by exogenous factors,
primarily natural enemies (5) and geography (6). Although devel-
opmental trade-offs in host use are rare (7), it is clear that plant de-
fenses are a barrier to insect colonization, as performance is often
reduced for herbivores in experiments with novel versus ancestral
hosts (8). What we do not know is whether the magnitude of perform-
ance effects studied in the laboratory will be informative under
field conditions. Predation pressure could, for example, remove all
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opportunity for successful development on a novel host that would
otherwise be suitable. Equally unknown is whether variation within
and among host populations might have compensatory effects, such
that a direct negative effect of a particular toxin on an herbivore is
balanced by similar effects on a competitor.

The Melissa blue is widespread in western North America, where
it can be found in association with native legume (Fabaceae) host
plants, and typically persists in isolated subpopulations connected
by limited gene flow (9). The association with alfalfa is heterogenous,
most often occurring in areas where the plant has escaped cultivation,
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Fig. 1. Map of study locations, dispersal surface, and images of butterflies,
ants and caterpillar. (A) Solid symbols (circles and triangles) are focal alfalfa loca-
tions from which arthropods and plants were collected: Blue sites are locations
where the Melissa blue butterfly (L. melissa) has colonized the novel host; green
sites are alfalfa locations not colonized by the butterfly. Open symbols (circles and
squares) are locations used in the quantification of gene flow; in some cases (where
an open circle appears within a blue circle), sites were represented in both data-
sets. (B) Effective migration surface used to generate covariates representing rates
of effective dispersal (blue is faster than average; red is slower). (C) L. melissa caterpil-
lar being tended by mutualist ants on alfalfa (photo credit: Chris Nice, Texas State
University). (D) Female and (E) male Melissa blue butterflies (photo credit: Matthew
Forister, University of Nevada).

10f10

1202 ‘0€ 1snBny uo /Bio"Bewsousios saoueApe//:diy Woll papeojumod


http://advances.sciencemag.org/

SCIENCE ADVANCES | RESEARCH ARTICLE

and is the result of at least two independent colonization events by
the Melissa blue (10). Alfalfa was introduced to western North America
in the mid-1800s (9) and is a poor food plant for Melissa blue cater-
pillars, which develop into adults that are, on average, half the size
of individuals experimentally reared on a native host (11), with di-
rect and indirect fitness consequences (12, 13). The use of alfalfa
does not appear to be constrained by genetic, developmental trade-
offs in the Melissa blue or a lack of genetic variation in ability to use
that host (10, 14). Nevertheless, unoccupied patches of alfalfa have
remained unoccupied by the butterfly for years or even decades, even
in close proximity to occupied patches (15). We took advantage of
that landscape heterogeneity, as pictured in Fig. 1A, to quantify and
model the factors controlling patch occupancy of the novel host by
the Melissa blue butterfly.

RESULTS

To understand host plant and arthropod community variation as-
sociated with Melissa blue patch occupancy, samples and data were
taken from more than 1600 individual plants from 56 alfalfa loca-
tions with and without the Melissa blue (Fig. 1A). Arthropod collec-
tions included 20,890 individuals that were sorted into 298 species
(these were morphospecies in the vast majority of cases, identified
to taxonomic family and assigned a unique morphospecies number
based on phenotype) from 123 taxonomic families and 16 orders
(spiders were not identified beyond order). Specimens were further
parsed into functional groups, with proportional representation as
follows: 56% of individuals were ant-tended herbivores (aphids,
treehoppers, and relatives), 21% were predators, 8% were other her-
bivores (not ant-tended), 7% were ants, 2% were parasitoids (with
the potential for attacking caterpillars), and the rest (6%) were par-
asitoids of other groups, flower visitors, or incidentals without direct
ecological relevance for our focal species. Assignment to these func-
tional categories was based largely on our knowledge of the natural
history of the system. All aphids and treehoppers are not, of course,
tended by ants but the majority of individual aphids and treehoppers
that we see at our study sites do appear to engage in this facultative
mutualism.

Because movement across the landscape is an essential compo-
nent of novel host colonization and use, we assembled a population
genomic dataset to estimate effective migration surfaces for the fo-
cal butterfly from 541 individuals for rare and common genetic
variants, assuming 200 and 400 demes (surfaces are shown for both
classes of variants in the 400 deme model in fig. S1). The migration
surface models were more successful than simple isolation by dis-
tance at predicting genetic dissimilarity among spatial units, as can
be seen in the comparison of fig. S1C versus fig. S1D for isolation by
distance versus fitted values based on rare variants in the 400 deme
model. Rates of effective migration from all four models (rare and
common, 200 and 400 demes) were moved forward into a Bayesian
ridge regression predicting Melissa blue presence and absence: the
model of rare variants at the finer scale of 400 demes was the most
influential in the ridge regression (more details below), which is why
it is highlighted in fig. S1.

As a characterization of phytochemical variation among individ-
ual alfalfa plants, our analyses produced 849 metabolomic features,
which were simplified through factor analysis. Similarly, factor anal-
ysis was used as a data reduction step for site-specific climate data.
We retained two factors from the climate data and six from the me-
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tabolomic data (fig. S2) as optimal in the sense that we maximized
the amount of variation captured with the constraint of having few
enough factors to be both interpretable and tractable in downstream
analyses. In the climate model, the two factors explained 72% of the
variation among sites, with factor 1 describing a gradient of increas-
ing temperatures and drier conditions, particularly maximum daily
temperatures, while factor 2 is a gradient of increasing minimum
temperatures (fig. S3). Analysis of the metabolomic data explained
33% of the variation with six factors, and we used relative mass de-
fect for annotation of major compound classes (fig. S4). Given the
large number of compounds involved, we focused on annotation of
the higher-loading compounds (see Materials and Methods).

In preparation for structural equation modeling (SEM), we used
Bayesian ridge regression to identify the most influential predictors
for five response variables: presence and absence of the focal butterfly
(our chief variable of interest), as well as abundance of ants, preda-
tors, ant-tended herbivores, and other (nontended) herbivores. Slightly
different sets of biologically relevant predictors were examined for
each response variable. All ridge regression models readily converged,
and effective sample sizes tended to be in the thousands. Using 75%
as the cutoff for confidence in our regression coefficients, we found
between 4 and 10 variables that rose to the top as candidates for
inclusion in structural equation models (table S2). Almost without
exception, effects estimated with ridge regressions agreed with a priori
expectations and previous results in this system. For example, ants
had the strongest effect on butterfly presence and absence (16) and
one of the strongest effects on the abundance of tended herbivores.
Specific leaf area was highly ranked for the Melissa blue (table S2)
with a negative effect as previously observed in an experimental
context (17), and specific leaf area had a negative effect on other
(largely chewing) herbivores (table S2) but not on other ant-tended
(sucking) herbivores, which likely interact differently with physical
leaf traits.

Spatial autocorrelation was investigated using Moran’s I and com-
parisons against null simulations. Overall, we found that spatial au-
tocorrelation was low: Only a few variables were significantly more
clustered on the landscape than would be expected by chance, with
(expectedly) dispersal having the strongest spatial autocorrelation
(table S3). In addition to the tests with Moran’s I, we generated MEMs
(Moran’s eigenvector maps) as covariates for spatial structure and
included them in a Bayesian ridge regression for our variable of pri-
mary interest, the presence and absence of the Melissa blue. Two
MEMs fell within the top variables following ridge regression (see
last section of table S2), using the criterion of 75% confidence. How-
ever, the vast majority of other variables did not change in their
importance while accounting for spatial autocorrelation. Thus, we
concluded that spatial autocorrelation is present in the system but
do not address it further because it does not alter our goal of under-
standing direct and indirect effects on the presence and absence of
the butterfly.

Using the important variables from ridge regressions (table S2),
we initially constructed a structural equation model that fits the data
but had three unresolved paths (see the base model in table S4). For
example, ants are a top variable (in ridge regressions) affecting tend-
ed herbivores, and tended herbivores are a top variable for ants, hence
the unresolved (or “double-headed arrow”) path in the base model.
Subsequent model comparisons (detailed in table S4) resolved two
of those paths, with other herbivores affecting ants and ants point-
ing to tended herbivores. The latter agrees with our observations: As

20f10

1202 ‘0€ 1snBny uo /Bio"Bewsousios saoueApe//:diy Woll papeojumod


http://advances.sciencemag.org/

SCIENCE ADVANCES | RESEARCH ARTICLE

ecological generalists, ants can be present without tended herbivores,
but tended herbivores are less likely to be successful without ants.
The final model is shown in Fig. 2 (with both R* and leave-one-out
correlations for individual endogenous variables), along with effects
summarized by functional categories so that, for example, the direct
and indirect importance of plant structure can be compared to the
direct and indirect importance of phytochemistry (Fig. 2B). Full re-
sults from the structural equation model including path coefficients
and associated P values are given in table S5. In our null model sim-
ulations, the variation explained by the real model was roughly
threefold greater than the average variation explained in simulated
datasets (fig. S5). Effects of a few of the most important variables are
shown in Fig. 3, both individually (e.g., the influence of ants on Melissa
blue presence and absence in Fig. 3A) and in conjunction with other
factors (e.g., ants and phytochemical factor 4 in Fig. 3E). The im-
portance of phytochemical variation is also visualized for individual
metabolomic features and their direct (Fig. 3F) and indirect (Fig. 3G)
associations with butterfly occupancy.

DISCUSSION

Like most butterflies in the family Lycaenidae, Melissa blue caterpillars
engage in a facultative mutualism with ants (Fig. 1C), where cater-
pillars produce specialized secretions in exchange for protection
from natural enemies (18). Previous experimental work in this sys-

Phytochem.

tem found that excluding ants from individual plants reduced cater-
pillar survival (16). We find here that ant abundance is the most
influential variable or control on Melissa blue presence across the
56 sites (Figs. 2 and 3A). This is true even when considering the fact
that ants facilitate many hemipterans (aphids, treehoppers, and other
myrmecophiles), which, in turn, have a negative competitive effect
on the Melissa blue (Fig. 3B). The balance of ant and hemipteran
effects is such that the negative effect of the latter is most influential
at intermediate ant densities (Fig. 3D). Similar complexity arises
through direct and indirect effects of metabolomic variation. Phyto-
chemical factor 4 has a direct negative association with Melissa blue
presence (Fig. 3C) but an indirect positive effect mediated through
other herbivores and their effect on ants (Fig. 2). That axis of plant
variation is positively associated with a number of alkaloids, among
other compounds, with potential herbivore toxicity (see fig. S4). In
general, we find that roughly three-quarters of the variation in but-
terfly presence and absence at the landscape scale can be explained
with the suite of variables that includes ants and plant metabolomic
variation, as well as host patch area, natural enemies, and dispersal
(relative rates of effective migration; Fig. 1B). The success of the
model is apparent in cross-validation (Fig. 2) and null simulations
of site-level properties (fig. S5).

Considering the summed totals of direct and indirect effects es-
timated through path analysis (Fig. 2B), we find that metabolomic
variation is associated with the most pronounced, direct negative
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Fig. 2. Structural equation model and summary of direct and indirect effects. (A) Path diagram illustrates coefficients estimated in structural equation model predict-
ing Melissa blue presence and absence across the landscape, as well as abundance of ants, tended herbivores, other herbivores and predators (model fit: Fisher's C= 67.66,
P=0.995). Negative effects are indicated by red lines, and positive effects are indicated by gray lines; width of lines is scaled to the magnitude of the coefficients. For the
endogenous variables, two numbers are shown within ovals: R? values (on top) and observed-versus-predicted correlations (below) from leave-one-out cross-validation.
Color coding of exogenous variables indicates plant metabolomics data (green), plant structural traits (violet), geographic variables (brown), and climate (yellow); color
coding also corresponds to bar chart (B), which summarizes relative magnitude of direct and indirect effects (solid and hashed bars, respectively), both positive and
negative. For example, climate has a modest positive direct effect, a smaller positive indirect effect (mediated through tended herbivores), and a larger negative indirect
effect (through predators). Additional details from the structural equation model are in table S5.
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Fig. 3. lllustration of effects for a subset of variables predicting L. melissa pres-
ence and absence across the landscape. (A to C) Partial effects of ants, tended
herbivores, and phytochemical factor 4 on Melissa blue occupancy; in other words,
these are the effects of those individual factors while controlling for other factors
predicting occupancy (see paths in Fig. 2). (D and E) Predicted probability of patch
occupancy across a range of values for ant and tended herbivore abundance (D)
and for ant abundance and phytochemical factor 4 (E) where it can be seen, for
example, that at high values of phytochemical factor 4, a higher abundance of ants
is needed before the probability of occupancy rises. (F and G) Direct and indirect
effects of 849 metabolomic features, both positive (blue) and negative (orange);
see text for more details on calculation of individual effects. Formica ant and
Campylenchia treehopper (one of the more abundant ant-tended herbivores at
our study sites) illustrations are by M.L.F,; the alkaloid shown above (C) is medicanine
(see fig. S4 for additional examples).
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effects, followed closely (among negative effects) by direct and indi-
rect interactions with other arthropods and then indirect effects of
plant structure. A negative effect of phytochemical variation on patch
occupancy is consistent with the idea that plant defenses are, at least,
a partial barrier to colonization but does not imply that trade-offs in
host use (in the sense of host range being constrained by antagonistic
pleiotropy among host-associated alleles) are present in this system.
Previous experimental work and surveys of genetic variation in the
field have suggested that antagonistic pleiotropy is not an important
constraint on expansion of diet breadth for the Melissa blue (10, 14).
The effect of specific leaf area is also consistent with a previous ex-
perimental study (17) but is small compared to both positive and
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negative indirect effects associated with plant size and the density of
flowers mediated through enemies and competitors (Fig. 2B). In terms
of positive effects on the Melissa blue, the importance of ants is
followed by geographic factors including patch area and dispersal
(effective migration rates). These results demonstrate the value of
studying plant variation in the context of geography and interacting
species. While individual components of the results reported here
are consistent with experimental work, other aspects are less acces-
sible to manipulation. Individual metabolites, for example, have a
mix of positive and negative direct effects on the Melissa blue (Fig. 3F),
as observed in a previous rearing experiment (17), while the indirect
effects of individual compounds are characterized more by positive
effects mediated through numerous other species in the wild (Fig. 3G).

CONCLUSION

The theory of ecological fitting suggests that novel hosts are colo-
nized if they are “close enough” to native hosts in key traits (19-22),
but we have few cases in which that close enough distance has been
quantified as we have done in this system. We find diverse factors or
controls on colonization that are encountered in multifarious com-
binations (23). When all factors align, butterfly populations persist
on the novel host, but the diversity of challenges (plants, enemies,
and abiotic conditions) undoubtedly makes adaptation to the novel
host difficult, especially when some or all of those factors likely shift
in character from year to year. This possibility is consistent with only
minimal local adaptation that has been observed in alfalfa-associated
populations (14). It would, of course, be informative to have a sim-
ilarly detailed picture of the factors associated with patch occupancy
of native hosts with which the focal butterfly has a long evolution-
ary history, but this will have to await future studies. Given the re-
sults presented here, we can see the theory of host range evolution
approaching maturity: genetic trade-offs are possible but rare (24, 25);
instead, it is likely that a balance of factors (both positive and nega-
tive) associated with novel host use exist in any system but are only
infrequently encountered in combinations that allow host range ex-
pansion (26, 27). Further complexity is added by the fact that changing
abiotic conditions can affect the suitability of novel hosts (28). Thus,
generalist herbivores or parasites (with many accumulated hosts)
are predictably rare across geographic and phylogenetic scales (29, 30).
The complexity of barriers to novel host use and the ecological con-
tingency of colonization challenge our ability to forecast new crop
pests or emerging infectious diseases (1), but the multidisciplinary
approach illustrated here does raise the promise, at least for herbiv-
orous insects, that expansions of host range can be understood given
current technologies and sufficient sampling effort.

MATERIALS AND METHODS

Site identification, plant collections, and associated data
Our goal was to sample a roughly equal number of alfalfa (M. sativa)
locations that had and had not been colonized by the Melissa blue
butterfly (L. melissa). Throughout the arid western United States,
the plant is favored by the butterfly in places where it has escaped
cultivation and exists in mostly discrete patches along roadsides
and in invaded or partly degraded natural communities. Before the
field sampling associated with this project in 2017 and 2018, we had
accumulated a database of observations of alfalfa locations that sup-
port Melissa blue populations, as described in previous publications
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(9, 31, 32), as well as (to a lesser extent) a database of alfalfa loca-
tions not associated with Melissa presence (15). Both presence and
absence of the butterfly are relatively stable over time: We have ob-
served presence to be unchanged at locations that we have visited
annually for more than 20 years, and focal absences have been tracked
for up to 12 years (15).

Throughout the summers of 2017 and 2018, we visited a total of
56 sites (Fig. 1A and table S1), mixing presence and absence sites
haphazardly in space so as not to confound latitude or longitude
with order (date) of sampling or with site status (presence and ab-
sence of the butterfly). In other words, sites were visited so that pres-
ence and absence sites were interdigitated both in space and time
(note that we also include year as a categorical variable in analyses,
as described below). In many cases, sites had been previously iden-
tified (as mentioned above), while in other cases, new sites were dis-
covered during the summers of 2017 and 2018.

Because adults have high site fidelity (33) and are easily observed,
the status of a location (butterfly presence or absence) can, in most
cases, be determined in a single visit. However, the Melissa blue has
multiple generations in a season, which makes it possible that a vis-
it could coincide with low density between generations and thus
produce a false-negative observation (which is more likely early in
the summer, as the first and second generations are more discrete,
while the second and third tend to overlap). Thus, all absence locations
were revisited at least once or twice, approximately 2 to 6 weeks after
the initial sampling date to confirm that a site does not support a
Melissa blue population (the only exception to that was our most
northern absence site, in Montana, which was not revisited for lo-
gistical reasons). Note that we did not attempt to quantify butterfly
abundance, which (unlike presence or absence) would have required
multiple visits to reliably estimate.

Following our earlier studies with arthropod communities on
alfalfa (34, 35), we used flowering as a guide to phenology and con-
sidered a site appropriate for sampling if at least half of the individual
plants were flowering. Some of our previous work with alfalfa arthro-
pods and plant traits has involved repeated sampling at individual
locations (35), although arthropod communities in alfalfa were found
to be relatively stable throughout the summer (34); thus, the present
project used single visits to individual locations as a way to maxi-
mize effort spent sampling additional sites (Fig. 1A). Most sampling
days were in July and August, with fewer in June and September, and
an index of flowering was included as a covariate in models (see below).

Sampling at a site began with a marker placed in the center of the
patch of alfalfa, and 30 individual alfalfa plants were then flagged at
random compass directions and distances (up to 25 m) from the cen-
ter of the patch (at two sites where a patch had fewer than 30 plants,
they were all sampled). In some cases, when patches were essentially
linear (for example, along a roadside), compass directions were con-
verted to binary orientations forward or backward from the center.
The total areal extent (length and width) of the patch was measured
and percent cover of alfalfa was visually estimated. Each of the ran-
domly selected focal plants was measured for size (as a box measure-
ment of length, width, and height), and the number of flowering
stems was counted. Three mature (but not senescent) leaves were
selected haphazardly for leaf toughness measurements using a pen-
etrometer (Chatillon 516 series) through the center of the middle
leaflet (17).

For metabolomic work (and the measurement of leaf area and mass),
three small clusters of leaves (three to five leaves in each cluster) were

Forister et al., Sci. Adv. 2020; 6 : eabc6852 27 November 2020

collected from the top, middle, and lower portions of the plant, thus
encompassing as much whole plant phytochemical variation as possi-
ble. The three clusters were pooled into a single large coin envelope.
Thus, the current study does not quantify intraindividual variation
or attempt to separate induced from constitutive defenses (alfalfa is
attacked by a wide range of vertebrate and invertebrate herbivores
and the vast majority if not all of our sampled plants had been dam-
aged to some extent before sampling). All of the envelopes from a
single site were stored in an open paper bag for air drying before
being delivered to a laboratory at the University of Nevada, Reno,
where drying was completed in a vacuum. After vacuum drying,
sample envelopes were kept in plastic bins with desiccating crystals
until they were needed for either metabolomic work or area and mass
measurements. For the latter (area and mass), five leaves were se-
lected haphazardly from each envelope and weighed to the nearest
tenth of a milligram on a microbalance and taped to a sheet of plain
white paper that was then scanned. Leaf area (in cm?) was taken using
Image] software (version 1.52A) on the scanned images of individ-
ual leaves and used to calculate specific leaf area as area divided by
mass (17). Because all of the analyses presented here focus on vari-
ation at the patch scale, plant measurements were averaged across
plants within a location. Values for leaf toughness and plant vol-
ume, as well as patch area and cover, were log-transformed before
analyses.

Climatic data for each of the 56 sites were generated as monthly
averages for 2008 to 2018 using the get_prism:monthlys function
from the prism package (36) for average daily minimum tempera-
tures, average daily maximum temperatures, and precipitation totals
(data from the PRISM Climate Group, Oregon State University).
These analyses and all others described below (except where noted)
were done using the R statistical computing language (37).

Arthropod collections and identification
Arthropods were collected using a sweep net from each of the ran-
domly selected individual plants at each of the 56 field sites, as we
have done previously (16, 34, 35). Unlike alfalfa in cultivation, alfalfa
that has escaped along roadsides and into seminatural communities
tends to grow as larger individuals with open spaces between plants,
which facilitates sweep netting of individual plants. Each plant was
swept four times in rapid succession, with the collector gradually
moving around the plant during sweeping. The collected arthropods
were then transferred from the net into a plastic vial with ethanol
for storage (an aspirator was used to get most arthropods out of the
net, with larger specimens transferred directly into alcohol). We at-
tempted to collect all arthropods large enough to be seen with the
naked eye, with the exception of thrips (Thysanoptera), which we have
found to be both too small and too numerous on alfalfa for efficient
collection. Vials were each labeled by location and plant.
Individual arthropods within samples (vials associated with in-
dividual plants) were counted and identified using a dissecting mi-
croscope (with x90 maximum magnification) to the lowest possible
taxonomic level, which was almost always family and, in some cas-
es, genus and species, using standard taxonomic keys appropriate
to different groups. If a specimen could only be identified to fam-
ily, it was given a morphospecies number that identified unique
morphospecies across all of our field sites. This work builds on a
previous study of alfalfa insects in the Great Basin (35), and many of
the morphospecies numbers used in the current study were estab-
lished in that previous work. The only exception to that pipeline
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involved spiders, which were only counted and not identified to any
lower taxonomic level, such that total spider abundance was used in
analyses (as part of the pool of predators at each site).

Following taxonomic identification, each species (or morphospecies)
was given one of the following ecological assignments: ant-tended
herbivores, other herbivores, parasitoids, predators, and ants. These
assignments were partly based on our own observations of alfalfa-
insect communities and on literature searches for specific taxa (for
example, as a way to determine whether a particular chewing herbivore
could have been feeding on alfalfa or might have more likely been
there only as a flower visitor). Ants were treated as their own ecolog-
ical group for the simple reason that they are considered separately in
analyses as mutualists of our focal caterpillars and of other ant-tended
herbivores. Parasitoids include wasps and flies with some history (based
on literature searches) of potentially attacking caterpillars (we also
identified a large number of hemipteran parasitoids, but those were
not included in these analyses). For analyses reported here, arthropods
were totaled within functional (ecological) groups at the plant patch
level, and abundances were natural log-transformed before analyses.

Plant metabolomics

Individual plants across all sites in each collection year were ran-
domized before extraction and analysis. After leaves were vacuum
dried and finely ground (using a TissueLyser II, QIAGEN, Hilden,
Germany), approximately 10 mg of dried tissue was extracted in 2.00 ml
of aqueous ethanol (70%), vortexed briefly, and sonicated for 15 min.
The resulting suspension was centrifuged at 500 rpm for 10 min.
Aliquots of 1 ml from the supernatant were then passed through a
96-well filter (1 ml, 1-um glass fiber; AcroPrep) into glass vials, covered
with silicone mats and stored at —10°C. Chromatographic analyses
were conducted on an Agilent 1200 analytical HPLC (high performance
liquid chromatography) coupled to an Agilent 6230 time-of-flight
mass spectrometer via an electrospray ionization source (gas tem-
perature, 325°C; flow, 10 liter/m; nebulizer pressure, 35 psig; VCap,
3500 V; fragmentor, 165 V; skimmer, 65 V; and octopole, 750 V). A
solution of digitoxin (0.50 pl at 0.200 mM methanol; Sigma-Aldrich),
a commercially available cardenolide that has been used as an inter-
nal standard in other analyses of saponins (38), was coinjected with
extracts (1.00 pl) and eluted at 0.500 ml/min through a Kinetex
EVO C18 column (2.1 mm by 100 mm, 2.6 p, 100 A; Phenomenex)
at 40°C. Buffers A (water containing 0.1% formic acid) and B (ace-
tonitrile containing 0.1% formic) composed the linear binary gradi-
ent, changing over 30 min as follows: 0 to 1 min 5% B, ramp to 50%
B at 4 min, ramp to 100% B at 21 min, 21 to 25 min 100% B ramping
to 1.00 ml/min, before reequilibrating the column from 25 to 30 min
at 5% B, 0.5 ml/min.

Raw data files were converted to mzML format using ProteoWizard
msConvert 3.0 (39) before processing using the Bioconductor R
package XCMS (40). Chromatographic features (retention time and
m/z bins) were extracted from raw data files before retention time
correction using the digitoxin internal standard, peak density group-
ing, and gap-filling. The Bioconductor R package CAMERA (41)
was then used to identify groups of features (pseudospectra) with
similar retention time that were highly correlated across chromato-
grams (r > 0.8), with similar (r > 0.8) peak shape and by character-
istic isotopic patterns. The feature that was most highly represented
across all individual chromatograms was then used as the representa-
tive feature from each pseudospectrum. Features were then normalized
to plant mass and natural log-transformed.
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To accommodate differences in ionization efficiency between in-
dividual phytochemicals, z transformation was applied to standard-
ize means and variance of all features. Given the large number of
plant specimens processed and the considerable amount of HPLC
time involved, we applied this correction batchwise to correct for
technical effects arising from changes in instrument response and
unavoidable mechanical artifacts such as the changing of the col-
umn (the internal standard did not adequately correct for technical
error across all compound classes and was not used for normaliza-
tion). We applied z transformation across four different batches of
samples that were identified through manual inspection of individual
compound response across analysis time and corresponded to anal-
ysis batches. In addition, we implemented a “floor” correction across
batches so that the highest minimum z score (comparing across
batches) became the lowest value for all batches. The latter correc-
tion was suggested by the fact that the overall sensitivity of detection
varied among batches, with some batches recovering a greater range
of small values. Our primary variable of interest (the presence and
absence of the butterfly across the landscape) was not confounded
with batches (i.e., each batch included samples associated with pres-
ence and absence locations). Moreover, we repeated core analyses
with different approaches to batch effect correction (e.g., fewer batch-
es or without floor correction) and obtained results that were qual-
itatively similar to those reported in Fig. 2. In other words, the main
result that phytochemical variation has both direct and indirect neg-
ative and positive effects that are comparable in magnitude to other
factors (e.g., biotic interactions) is robust to the technicalities of mass
spectra processing.

Putative annotations were attempted for all features having fac-
tor loadings (see Analyses: Factor analysis, below) with an absolute
value greater than 0.3 based on previously described approaches
(17). Briefly, initial classification of phenolics [200 to 400 parts per
million (ppm)], saponins (400 to 650 ppm), lipids, and sterols
(greater than 400 to 650 ppm) was done using the relative mass defect
as a characteristic of each compound class. Annotations were further
refined on the basis of expected retention time, amine-characteristic
masses, and molecular ion mass. Features of interest were extracted
from raw data and examined for characteristic fragments, adducts,
and isotopes before cross-referencing against the METLIN mass
spectrometric database (42) as a way to further categorize annota-
tions. Because of the implications for bioactivity associated with small
molecule alkaloids, nitrogenous compounds with ambiguous data-
base hits were characterized as peptides so as to not overstate the
presence of defensive alkaloids. One reason we could not annotate
potential alkaloids is the lack of literature regarding the presence or
characterization of alkaloids in Medicago, despite numerous studies
of alkaloids in other legumes. Thus, more targeted investigation of
Medicago alkaloids is warranted. Compounds that did not yield a
chemically rational database match as a molecular ion or fragment
were classified as unknown.

Dispersal (estimation of effective migration surface)

We analyzed genotyping-by-sequencing (GBS) data from 541 Melissa
blue butterflies collected from 27 populations in western North America
(see table S1). These DNA sequences were previously described by
Chaturvedi et al. (10). For the current study, we used the bwa mem
algorithm (version 0.7.17) (43) to align these data to a new version
of the L. melissa reference genome (44). We ran bwa mem with a
minimum seed length of 15, considered internal seeds of longer than
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20 base pairs, and only output alignments with a quality score of >30.
We then used samtools (version 1.5) to compress, sort, and index
the alignments (45). We used samtools (version 1.5) and bcftools
(version 1.6) for variant calling with the original consensus calling
algorithm. We used the recommended mapping quality adjustment
for Illumina data (-C 50), skipped alignments with mapping quality
less than 20, skipped bases with base quality less than 30, and ignored
insertion-deletion polymorphisms. We set the prior on single-nucleotide
polymorphisms (SNPs) to 0.001 (-P) and called SNPs when the pos-
terior probability that the nucleotide was invariant was <0.01 (-p).
We filtered the initial set of variants to retain only SNPs with se-
quence data for at least 80% of the individuals, a mean sequence
depth of 2x per individual, at least 10 reads of the alternative allele,
a minimum quality score of 30, and no more than 1% of the reads in
the reverse orientation (this is an expectation for our GBS method).
We then split the SNP data into rare versus common SNPs, as these
sets of SNPs can reveal different aspects of demographic history with
rare variants being especially informative about recent gene flow
and fine-scale population structure (9). We specifically delineated
rare variants as those with an overall minor allele frequency of 1 to
5% (47,470 SNPs) and common variants as those with minor allele
frequencies >5% (20,449) (variants with less than 1% frequency were
discarded from downstream analyses).

We used entropy (version 1.2) to estimate genotypes. This program
jointly infers genotypes and allele frequencies while accounting for
uncertainty in each, as well as uncertainty in population assignment
and ancestry (9). The latter is accomplished via an admixture mod-
el that assumes that the allele copies at each SNP locus are drawn
from unknown, hypothetical source populations with each individual
having a genome composed of some mixture of the source popula-
tions (9). Uncertainty in genotypes comes from limited coverage
and sequencing error, as encoded in the genotype likelihoods esti-
mated by samtools and bcftools. We estimated genotypes assuming
two or three source populations. Estimates were obtained via Markov
chain Monte Carlo (MCMC) with five chains, each with 5000 itera-
tions as a burn-in followed by 8000 sampling iterations with a thin-
ning interval of 5. Point estimates of genotypes were obtained as the
posterior mean estimate of the number of nonreference alleles averaged
across chains and numbers of source populations. Genetic distances
were then calculated between all pairs of individuals on the basis of
average identity by state.

Last, we estimated relative effective migration rates among pop-
ulations on the basis of the genetic distances and sampling location;
this was done separately for rare versus common variants. Relative
effective migration rates were inferred using the program eems
(version 0.0.0.9000) (46). This method does not infer absolute
migration rates but rather identifies regions in space with low or
high gene flow relative to a simple two-dimensional stepping-stone
isolation-by-distance model (46). Thus, this method can identify
regions in space receiving limited dispersal or gene flow, even if
these regions do not harbor resident butterfly populations (for ex-
ample, one of our sampled alfalfa locations that has not been colo-
nized by the butterfly). In addition to estimating migration rates
separately for rare and common variants, we fit the model (using
MCMC with three chains, 4 million sampling iterations, 2 million
burn-in iterations, and a thinning interval of 10,000) separately
assuming 400 demes and 200 demes (to allow for more fine-scale
and more coarsely estimated variation), evenly spaced on a triangu-
lar grid.
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Analyses: Overview

Our goal was to use SEM to understand potentially complex direct
and indirect effects on the presence and absence of our focal butterfly
across the landscape. We implemented two levels of data reduction
before SEM analysis. First, we used exploratory factor analysis on
the climate and metabolomic data. Then, we used Bayesian ridge
regression as a way to reduce the possible number of predictor (ex-
ogenous) variables that would need to be included for each response
(endogenous) variable in our SEM. Last, we used the most success-
ful SEM model to discuss the relative importance of different direct
and indirect paths affecting the presence and absence of the focal
butterfly. The success of the SEM model was judged by leave-one-out
cross-validation and null simulations that permuted the site-level
properties (predictor variables) for Melissa blue presence and absence.

Analyses: Factor analysis

Factor analysis is similar to other ordination techniques (such as
principal components analysis) in dealing with suites of correlated
variables, but the emphasis in factor analysis is on the identification
of underlying structure (associated with factors that are not neces-
sarily orthogonal) giving rise to the observed data (47). We used the
same approach for both datasets (climate and metabolomic), specif-
ically the factanal function with promax rotation and Thompson’s
regression scores. The number of factors calculated for each dataset
was determined partly on the basis of inspection of scree plots but
mainly through experimentation by fitting different numbers of
factors and repeating downstream analyses (to learn, for example, if
additional factors produced additional insight or meaningful effects
in SEM models). For the climate dataset, the values going into the
factor analysis were already summarized at the site level; thus, factor
scores could be moved directly into the next analyses. For the
metabolomic dataset, data from all 1651 individual plants were used
in the factor analysis, and then, average scores at the site level for
each factor were retained for ridge regressions and SEM models.

Analyses: Bayesian ridge regression
Before constructing SEMs, we used Bayesian ridge regression as a way
to focus on a subset of important predictor variables for each of our
endogenous variables (presence and absence of the butterfly and the
abundance of interacting species). Ridge regression is a constrained
regression in which coefficients are penalized in a way that reduces
coefficients toward zero but does not exclude them (known as an [,
penalty), thus allowing for the simultaneous estimation of effects of
a large number of predictors (48). In a Bayesian context, ridge re-
gression can be implemented by placing a hyperprior on the precision
(equal to 1/variance) of regression coefficients, which lets the model
learn how much the variance on coefficients should be constrained.
Ridge regressions were either logistic (for presence and absence of
the butterfly) or Gaussian (for logged abundance of ants and func-
tional groups) and were run using JAGS (version 3.2.0) in R with the
rjags package (49). Minimally influential priors on regression coef-
ficients were modeled as normal distributions with a mean of zero
and precision drawn from a (hyperprior) gamma distribution (rate, 0.1;
shape, 0.1). After sampling with two Markov chains for 100,000 steps
each (burn-in was not required), performance was evaluated by plot-
ting chain histories, examining effective sample sizes, and calculating
the Gelman and Rubin convergence diagnostic (50).

All variables were z-transformed before analyses, and different
subsets of variables were examined for different response variables.
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For example, for nonherbivorous groups (ants and predators), we
allowed for the possibility that plant architecture might be important
(as we have seen previously (35)), but not phytochemistry, specific
leaf area, or leaf toughness. Year was included as a binary variable in
all ridge regression models to allow for the possibility that variation
among the two sampling years should be controlled for while esti-
mating other variables of interest. After ridge regressions had been
run (and diagnostics were checked) for each response variable, we
calculated the fraction of the posterior distribution above or below
zero for coefficients whose point estimate (median) was above or
below zero, respectively. This value represented our confidence in
the sign of the coefficients (positive or negative), and we selected
variables (separately for each response variable) with confidence equal
to or greater than 75% as variables of potential importance to move
forward into SEMs. The cutoff of 75% was determined through ex-
perimentation: A higher cutoff missed some variables that were
interesting in the downstream SEM, and a lower cutoff included
variables that were unimportant (e.g., had very small effect sizes) in
the subsequent SEM models.

Analyses: Spatial autocorrelation

Our previous work on alfalfa and the Melissa blue butterfly in the
Great Basin has suggested to us that spatial autocorrelation might
not be a major factor in this system, as spatially proximate patches
of alfalfa are, in some cases, similar and, in other cases, very differ-
ent with respect to female oviposition and larval performance (15).
Nevertheless, the present project encompasses more space than our
previous ecological work, which raises the importance of quantify-
ing spatial autocorrelation, for which we have taken two approaches.
First, we calculated Moran’s I statistic of spatial autocorrelation for
each of our variables and asked whether observations have greater or
lesser autocorrelation than would be expected based on 1000 random
permutations, using the moran.randtest function of the adespatial
package (51). Moran’s I is not, however, appropriate for binary pres-
ence and absence data, which is, of course, the variable of central
interest (presence and absence of our focal butterfly). Thus, a com-
plementary approach involved the generation of MEMs, which can
be used in a multiple regression context to account for spatial auto-
correlation at a range of scales (51). MEMs were generated using the
dbmem function in adespatial, and significant MEMs (at o = 0.05)
were included in a Bayesian logistic ridge regression along with other
predictors of Melissa blue presence and absence.

Analyses: Structural equation models

Following Bayesian ridge regressions, we had a suite of predictor
variables for each of our five endogenous variables (butterfly pres-
ence and absence, ants, tended herbivores, other herbivores, and pred-
ators; note that caterpillar parasitoids could have been another
endogenous variable in SEM models but were not included as such
because they did not emerge as a top variable for the butterfly). Our
initial SEM included three unresolved relationships: For example,
ants are important for tended herbivores, and (expectedly) tended
herbivores are important for ants. Unresolved causality can be re-
tained in SEMs as correlations, but inferences are stronger if rela-
tionships (directions of influence or association) can be resolved
(52). To that end, we compared the fit [using the Akaike information
criterion (AIC)] of models with associations pointing in different
directions; if the fit in one direction was a marked improvement,
then the resolved relationship was retained in the final model. We
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used the piecewise package (53) to fit our SEM model, which allows
for the inclusion of different error structures (binomial and Gaussian).
To estimate standardized beta coefficients across the variables on
different scales, we chose the “Menard.OE” option and judged
overall model fit using Fisher’s C and the associated significance test
(52). In addition to the traditional R” reported by the piecewise pack-
age, we manually generated a cross-validation measure of model fit
by repeating the SEM 56 times, leaving out one location with each
iteration and calculating the correlation between observed and pre-
dicted values for each of our endogenous variables. Last, we com-
pared the R* from the full model to the distribution of R* values from
1000 null simulations in which site-level attributes were shuffled
among locations with each simulation.

For interpretation and visualization, we produced partial plots
for certain relationships of interest by reproducing components of
the full SEM as stand-alone generalized linear models from which
residuals were saved and plotted as either bivariate plots or three-
dimensional plots (exploring, for example, the probability of Melissa
blue presence or absence as a function of combinations of ant abun-
dance and tended herbivore abundance). In addition, we calculated
indirect effects following standard procedures in path analysis in-
volving, for example, the multiplication of coefficients leading from
one exogenous variable through an intermediary endogenous variable
to a final endogenous variable, as well as the addition of indirect
effects to estimate, for example, the total indirect effect associated
with a suite of predictor (exogenous) variables of a particular type
(such as the indirect effect associated with all plant structural exog-
enous variables) (52). We also used direct and indirect path coeffi-
cients associated with phytochemical factors as a way to visualize
the potential importance of individual compounds. For each com-
pound, we multiplied its loading on a particular factor by the path
coefficient associated with that factor and then summed across factors
within indirect effects and direct effects separately.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/48/eabc6852/DC1
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