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Abstract—With rapid increase in the number of Phasor Mea-
surement Units (PMUs) in the electric grid, massive volumes
of monitoring data are expected to overwhelm the data pre-
processors at centralized computing facilities. This, along with
the requirements of lower latency and increased resilience to
data anomalies advocates for distributed architectures for data
conditioning and processing. To that end, in this paper, we present
a fog-computing-based hierarchical approach for distributed de-
tection and correction of anomalies in PMU data. In our proposed
approach, each fog node, responsible for real-time data pre-
processing, is dynamically assigned a smaller group of PMU
signals with similar modal observabilities using software-defined-
networking (SDN). The SDN controller residing at a central node
feeds on the modeshapes estimated from the signals recovered at
each fog node, for running the PMU-grouping algorithm. Grouping
ensures adequate denseness of each signal set and guarantees
data recovery under corruption. Also, the grouping is soft-real-
time, infrequent, and triggered only upon a change in operating
condition and therefore, heavily relieves the computational burden
off the central node. The effectiveness of the proposed approach
is demonstrated using simulated data from the IEEE 5−area
16−machine test system.

I. INTRODUCTION

Ever since the blackout in the northeastern United States
in 2003, the number of PMU deployments in the grid has
progressively increased with significant investments from the
federal government and private utilities. Under the U.S. De-
partment of Energy’s Smart Grid Demonstration Initiative, this
number increased over ten-folds between 2009 and 2015 [1]
and continues to grow further. This, on one hand, has opened
up opportunities for a range of critical applications like −
wide-area oscillation monitoring, real-time event detection and
classification, parameter estimation and model validation among
others, but at the same time has left independent system oper-
ators (ISOs) and utility companies struggling to comprehend
on how to harvest, process, and effectively utilize these huge
volumes of real-time data coming from multiple large power
system interconnections [2]. As of April 2020, there are over 400
PMUs in PJM alone spitting data at 30 samples-per-second [3].
This along with another 400 PMUs from neighbouring regional
transmission organizations (RTOs) generate approximately 42
GB of data daily [3] which needs to be stored, processed, and
analyzed at its central control location. With the continuing data
explosion, this will soon become untenable under the current
centralized monitoring architecture.

Thus motivated, theoretical advances have been made towards
transitioning to a wholly or partially decentralized monitor-
ing paradigm. To that end, distributed algorithms for modal
estimation and damping control, state estimation, and voltage

control have been developed [2], [4], [5] concurrently with
developments in protocols and communication modalities for
network optimization and algorithm implementation [6]. This
has been further fueled by the emergence of fog-computing
[7]–[9] as a promising technology that brings cloud-computing
applications closer to the physical devices at the network edge.
In a more formal definition, a fog node [9] is a virtual platform
that provides computational, archival, and networking facilities
and is typically, but not exclusively located at the edge of
a network. In the parlance of wide-area monitoring, a local
software or hardware phasor data concentrator (PDC) along with
all its computing and data routing capabilities would loosely
qualify for this.

Apart from distributing the computational burden, fog com-
puting is also expected to address the issues of latency, band-
width, data privacy, and reliability from single-point failures
[2]. While these merit decentralization, one major challenge
before a fully distributed wide-area monitoring system (WAMS)
would be to ensure resilience from data anomalies. In any
measurement system, sustained missing data values, spurious
outliers, and data inconsistencies are commonplace [10]. Further,
as outlined in [11], a dedicated intranet-based communication
network in NASPInet architecture is not immune to cyber attack.
Anomalies, if not detected and corrected, can adversely affect
the outputs of the estimation and control algorithms leading
to potential errors in decision making [12]. Traditionally, in
a system with partial observability, bad data detection and
correction is done in a centralized data pre-processor exploiting
the spatio-temporal correlation of a large number of signal
variables. In a distributed architecture, with fewer measurements
pooled at each fog node, this can be challenging.

In a pursuit to address this, in this paper, we present an
intelligent and adaptive PMU grouping strategy that combines
signals with similar modal signatures at each fog-computing
node (loosely speaking, at a local PDC). This, augmented by
a Robust Principal Component Analysis (PCA)-based [13], [14]
algorithm at each fog node, ensures accurate data recovery under
corruption. Further, in our proposed approach, local PDCs work
on the recovered data samples to generate individual modal esti-
mates, which are then communicated with the neighboring PDCs
to reach a global consensus on modes and modeshapes. Finally,
these modeshapes from each local PDC is communicated to a
super PDC wherein a clustering algorithm groups the signals
with similar modal signatures. A central SDN controller then
uses this clustering information to re-configure the PMU − local
PDC communication graph downstream to physically implement



the grouping. Note, in our proposed approach, although the
data recovery in each local PDC is performed in near-real-time,
the grouping/clustering at super PDC happens only at intervals.
This reduces the data processing burden at the central node by
effectively distributing the computation among the fog nodes.

The rest of the paper is organized as follows. In Section II
the problem is described in detail along with the theoretical
reasoning behind signal grouping. In Section III the proposed
approach is presented followed by a case study in Section IV.
Lastly, in Section V we discuss the conclusions and scopes of
future research.

II. PROBLEM DESCRIPTION AND BACKGROUND

Consider a total of n PMUs distributed across a transmission
network. Let zi(t) be any signal measured by a PMU, this
could either be the bus voltage or line current magnitude, angle,
frequency, or rate-of-change-of-frequency (ROCOF) phasor at
location where it resides. Owing to the chances of corruption
from missing data, spurious outliers, and malicious injections,
zi(t) may not be the true measurement, and thus, can be
expressed as

zi(t) = yi(t) + ei(t) (1)

where, yi(t) is the true measurement and ei(t) is the additive
signal corruption. Interestingly, if data from multiple PMUs are
pooled together for a span of time, then due to spatio-temporal
correlation in the measurements, the data-window thus formed
can be said to span a subspace that is low-rank [15]. Also, at
any instant, e(t) − the vector of ei(t)-s for i = 1 to n can be
assumed to be sparse with non-zero entries at locations of data
corruption.

Therefore, the problem translates to decomposing the mea-
surement vector z(t) into a vector derived from a fixed low-
dimensional subspace spanned by the time evolution of y(t)
and a vector with most entries as zero. In our previous works
[16] and [17], this has been achieved for centralized monitoring,
using a Robust PCA-based data recovery algorithm (discussed
later in Section III-B). However, as discussed previously, for a
distributed implementation this presents some unique challenges.
First, the signal subspace derived from a smaller group of
PMU signals aggregated at a fog node needs to be low-rank.
And second, the signal subspace needs to be sufficiently dense,
implying there cannot be sparse vectors in the span. Otherwise,
the sparse corruptions in the direction of the ones in the span
cannot be differentiated from the signal, and therefore, the
decomposition would fail. Ensuring these two conditions are
key to the question of guaranteeing the success of distributed
data recovery.

Since we now appreciate that any arbitrary collection of PMU
signals may not meet these conditions, let us delve towards
exploring intelligent strategies for signal grouping. To do so, we
need to understand what imparts denseness and low-rankness to
a signal subspace. In [14], authors define denseness of a basis
matrix Û as,

κs(Û) = κs(range(Û)) = max
|T |≤s

∥∥∥(IT )H basis(Û)
∥∥∥

2
(2)

where, IT is the submatrix of the identity matrix I containing
the columns with indices in set T . Lower the value of κs, higher

is the denseness of the range space. Building on this measure,
in [18] an analytical relationship was developed to express the
denseness of a signal set in terms of the modal observabilities
of the constituent signals. Further it was shown that, denseness
can be increased (and consequently, κs decreased) by decreasing
the variance in relative modal observabilities for each poorly
damped mode. In other words, signals with observabilities in
phase and magnitudes tightly bounded would result in a signal
set sufficiently dense. Also, as a consequence of such signal
grouping, numerical rank of any data window derived from the
signal subspace should theoretically be 1.

Based on these results, our approach would therefore require
grouping signals with similar modal observabilities for dis-
tributed data recovery. However, in regards to implementation,
this raises a few questions − first, if the objective behind data re-
covery is to use it for resilient oscillation monitoring, how do we
derive the modeshape information apriori for signal grouping;
second, how do we estimate modes and modal observabilities in
a decentralized way; third, in a distributed architecture, where do
we run the grouping algorithm and how frequently do we need
to re-group; and finally, how do we implement the grouping
in terms of flexibly configuring the PMU-PDC communication.
These will be answered as we discuss our proposed approach
in the next section.

III. PROPOSED APPROACH

Building on the background and the discussions from the pre-
ceding section, we present a hierarchical approach for distributed
anomaly detection and correction in wide-area monitoring sys-
tems. A schematic of the proposed method, shown in Fig. 1, is
described next.

A. Communication between PMUs and Fog Nodes
To begin with, consider we have a set signals clustered

in accordance to their modal signatures − details about the
grouping will be discussed later in Section III-D. This clustering
information at the central node is translated into switching rules
for SDN. In our case, we consider an IP-based communication
between PMUs and local PDCs (here, fog nodes) with network
switches having the capability of routing traffic based on the
logical rules enabled by SDN.

Unlike a traditional network, where the switches that forward
packets also determine the network path to send those packets
through, in an SDN, the decision-making functions are removed
from the switches and handled by a centralized software, con-
ventionally called the SDN controller. The switches downstream,
receive instructions from this controller in an OpenFlow protocol
[19]. For every data packet entering the network, the routing
policy specifies the path that the packet should take to reach its
destination. In addition to this, an endpoint policy is incorporated
which defines whether two end nodes (here, PMUs and fog
nodes/PDCs) should be able to communicate regardless of the
path the communication flows. In summary, routing policy
guides the data packet between network switches to reach a
destination node, and the endpoint policy ensures that a desired
data packet is dumped at a correct PDC [20]. Together, they
implement the re-configurable communication network in Fig.
1 for grouping of PMU signals at respective fog nodes.
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Fig. 1: Proposed hierarchical approach for distributed anomaly detection and data recovery.
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Fig. 2: Robust PCA-based anomaly detection and data recovery at a fog node.

At each fog node, local PDCs are responsible for time-
aligning and sequencing the frames received from the PMUs
and feeding it to a Robust-PCA-based data-preprocessor.

B. Anomaly Detection and Robust PCA-based Data Recovery
at Fog Nodes

Let P� denote the set of PMU signals grouped at fog node �.
Further define, z(t) =

[
z�1(t) . . . z�j (t) . . . z�m(t)

]T
such that, signals with index �j ∈ P� ∀ 1 ≤ j ≤ m. The
objective here, is to detect corruptions in z(t) and recover ŷ(t)
as an estimate of y(t). The algorithm is summarized below.

Step 1: Perform a reduced singular value decomposition on a
window of previously recovered samples:

Y =
[
ŷ(t−Nτ) . . . ŷ(t− τ)

]
≈ ÛΣ̂V̂H (3)

Step 2: Project z(t) on to a space orthogonal to span(Û)

γ(t) = Φz(t) = Φ(y(t) + e(t)) = Φe(t) + ν(t) (4)

where, Φ = I− ÛÛH and Φy(t) = ν(t) is a small numerical
value mostly from noise and errors due to truncation in SVD.

Step 3: Estimation of sparse e(t) − posed as a LASSO-type
convex optimization problem as follows

e∗(t) = argmin
e(t)

∥∥e(t)∥∥
1

s.t.
∥∥Φz(t)−Φe(t)

∥∥
2
≤ η(t) (5)

where, the thresholding term η(t) =
∥∥Φŷ(t− τ)

∥∥
2

is updated
every time-step.

For initialization, we either assume that the first few samples
are uncorrupted, or use block processing techniques like [21] to
recover the entire window of early samples. In either case, η(0)
initialized by

∥∥Φy(0)
∥∥
2
.

Step 3: A high value of
∥∥e∗(t)∥∥

2
is an indicator of data

anomaly, and in such a case, the clean sample is recovered as:

ŷ(t) = z(t)− e∗(t) (6)

where, ŷ(t) =
[
ŷ�1(t) . . . ŷ�j (t) . . . ŷ�m(t)

]T
.

A schematic of the process is shown in Fig. 2. Next, using
the recovered data points, system modes are estimated, and the
signals are decomposed into the respective modal constituents.



C. Estimation of Modal Constituents at Fog Nodes

In this section, we discuss how modal constituents are
extracted from the signals recovered at each fog node. As
discussed, the modal constituents form the basis for signal
grouping. Considering the small-signal dynamics of the system,
any jth signal recovered using the formulation described in
Section III-B can be expressed as

ŷj(t) ≈
M∑
i=1

{
eλi(t)ψji + eλ

∗
i (t)ψ∗ji

}
= 2

M∑
i=1

Re
{
eλi(t)ψji

}
(7)

= 2
M∑
i=1

eσit
{

Re(ψji) cos (ωdit)− Im(ψji) sin (ωdit)
}

∆
= Θ(t) ϕj

where, M is the total number of poorly-damped modes in the
systemwith λi (= σi + jωdi) being one such mode, and vectors

ϕj =
[

Re(ψj1) Im(ψj1) . . . Re(ψjM ) Im(ψjM )
]T

and Θ(t) = 2
[

eσ1t cos (ωd1t) −eσ1t sin (ωd1t) . . .

eσM t cos (ωdM t) −eσM t sin (ωdM t)
]
.

At this stage of the problem, we are interested in the estimation
of the modal observability ψji – quantifying the extent to which
any ith mode in seen the jth signal, effectively its relative
modeshape. To do so, we formulate a regression problem and
adopt a recursive least squares approach for the estimation of
the parameter vector ϕj . This is described next.

We define, ϕ̂j(t) as an estimate of ϕj and εj(t) as the
corresponding error in prediction of ŷj(t). To begin with,
ϕ̂j(t) is initialized with zeros, and for every data sample ŷj(t)
recovered by the Robust-PCA algorithm thereafter, ϕ̂j(t) is
updated recursively using the estimate from previous time-step
and the prediction error in the present time-step. Following steps
are followed in the estimation process:

Step 1: Calculation of the prediction error

εj(t) = ŷj(t)−Θ(t)ϕ̂j(t− 1) (8)

Step 2: Computation of the gain

G(t) =
P(t− 1)ΘT (t)

Θ(t)P(t− 1)ΘT (t) +R1

(9)

where, P is the covariance matrix of the prediction error and
R1 is the forgetting factor. For exponential convergence, R1 is
set to a value less than 1. In our problem, we use R1 = 0.9 and
the covariance matrix is initialized as P (0) = 104I.

Step 3: Updation of the error covariance matrix

P(t) =

{
I− G(t)Θ(t)

}
P(t− 1)

R1
(10)

Step 4: Updation of the parameter vector

ϕ̂j(t) = ϕ̂j(t− 1) + G(t)εj(t) (11)

Note that, the regressor vector Θ(t) is a function of σi-s and
ωdi -s, and therefore, requires an accurate knowledge of these
modal parameters. In our approach, we perform a distributed-
Prony-based estimation of modal frequencies and damping ratios

using a variant of the distributed alternate direction method of
multipliers (D-ADMM)-based algorithm discussed in [2]. This,
in every iterative step, requires each fog node to share the locally
estimated Prony coefficients with neighboring nodes to attain a
consensus. Once the consensus is reached on the modes, the
RLS-based estimation of ϕj is initiated, and Θ(t) is calculated
for every time-step.

As t progresses, and new data points are available, ϕ̂j(t)→
ϕj and εj(t)→ 0. On convergence, the estimated values of ϕ̂j-s
are communicated to central node for signal grouping.

D. Signal Grouping at the Central Node

Next, we discuss the mechanism of signal grouping using
modeshapes as features. For any jth signal, a 2 M -dimensional
real feature vector Fj is formed from the estimated value of ϕ̂j
as shown

Fj = ϕ̂j =

[
Re(ψ̂j1) Im(ψ̂j1) . . . Re(ψ̂jM ) Im(ψ̂jM )

]T
.

Following which, a naive-k-means clustering [22] is applied on
the feature vectors to distribute the signal set into k groups. We
define, P` as the set of the signal-indices corresponding to any
`th group. The iterative process for signal assignment to a group
is described in eqns (12) − (13) below

P(r)
` =

{
j :

∥∥∥Fj − µ(r)
`

∥∥∥2

2
≤
∥∥∥Fj − µ(r)

p

∥∥∥2

2
∀ 1 ≤ p ≤ k

}
(12)

µ
(r+1)
` =

1

|P(r)
` |

∑
j∈P(r)

`

Fj (13)

where, r is the iteration count and µp is the centriod of any
pth cluster. The algorithm is said to have converged when
signal assignments to each group do not change and the cluster
centroids converge to steady values.

Remarks: (1) Deciding on the number and size of the clusters
is heuristic with an objective of maximizing the number of
clusters with denseness coefficient κs (see Section II) below
the threshold [18] desired for guaranteeing recovery.

Remarks: (2) Although data recovery and modeshape estima-
tion runs at every time-step, the clustering need not. Strictly
speaking, between successive time-steps modeshapes are not
expected to change much unless the system is perturbed by
a large disturbance leading to a change in operating point.
Therefore, at quasi-steady-state, the clustering algorithm can run
at infrequent intervals. However, it must run following every
event like − clearing of faults, change of network topology, and
detection of an outage.

As already discussed, the clustering information is finally en-
coded into routing rules at the SDN controller for re-configuring
the PMU−PDC communication network.

Notice, this is a cyclic process − accurate estimation of mode-
shapes is contingent on correct data recovery, and successful
data recovery further depends on a good signal grouping, which
in-turn depends on the accuracy of modal estimation in the
preceding step. At first, this might appear confusing, but can be
easily tackled considering one uses the modeshapes calculated
from reduced-order linearized models of the system (usually
available from planning study) for the initial loop.
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Fig. 3: IEEE 16−machine, 5−area New England - New York test system

IV. CASE STUDY

Consider the positive-sequence fundamental-frequency phasor
model of the IEEE 16−machine, 5−area New England - New
York test system as shown in Fig. 3. The machine and network
data are obtained from [23]. An unit pulse is applied to the input
of the TCSC and the variation in the bus voltage magnitudes
thus obtained, are used in our analysis. The data is detrended
by subtracting the pre-disturbance equilibrium from each signal.

Eigen-analysis of the system under nominal loading indicates
presence of 4 poorly-damped modes with frequencies− 0.51 Hz,
0.39 Hz, 0.62 Hz and 0.79 Hz, and settling times− 28.8 s, 25.7
s, 18.1 s and 16.1 s, respectively. The signal grouping therefore,
has to consider the modeshapes corresponding to these 4 modes.

The feature vectors derived from the modeshapes correspond-
ing to these modes for each of the 69 voltage magnitude signals
were grouped into 10 clusters using the framework discussed in
Section III-D. Signals belonging to two such clusters, namely
groups I and II are shown in Table I and their relative mode-
shapes in Fig. 4.

TABLE I: SIGNAL GROUPS I AND II

Group I |V19|, |V20|, |V21|, |V22|, |V24|
Group II |V35|, |V39|, |V43|, |V44|, |V46|

Next, to demonstrate the efficacy of the signal grouping, we
corrupt |V22| and |V39| − arbitrarily one each from groups I
and II (1−sparse corruption). We study three types of data
corruption: (a) sustained missing data − modeled by replac-
ing successive data samples with zeros, (b) noise injection −
modeled by replacing blocks of actual data with random values
in the signal range, and (c) malicious injection − artificially
injecting a signal with completely different modal signature with
an intention to mislead the monitoring process.

For each of the three corruption cases, data recovery as
discussed in Section III-B, is performed for each signal group
independently at their respective fog nodes. The recovered signal
ŷ(t), along its actual and corrupted counterparts: y(t) and z(t)

1

Fig. 4: Compass plot showing the clustering (or signal grouping) results on
modeshapes for each of the 4 poorly-damped modes. Only groups I and II are
shown − group I in red and II in blue.

Fig. 5: Recovery of |V22| using signals in group I under different types of
1−sparse data corruption: (a) sustained missing data, (b) noise injection, and
(c) malicious signal injection.



Fig. 6: Recovery of |V39| using signals in group II under different types of
1−sparse data corruption: (a) sustained missing data, (b) noise injection, and
(c) malicious signal injection.

are shown in Figs. 5 and 6. The success of data recovery is
evident from the plots. Further, the statistical dispersions −
mean square error (MSE) and standard deviation of errors for
the signal recoveries (compared to the uncorrupted ground-truth)
are shown in Table II.

TABLE II: DISPERSION OF ERRORS IN SIGNAL RECOVERY

Corruption Type Average Average Maximum
MSE Std. Dev. MSE

Missing data 2.64e− 6 1.84e− 7 1.55e− 5
Noise injection 1.55e− 6 2.28e− 7 1.12e− 4

Malicious injection 3.19e− 6 4.54e− 7 2.38e− 5

V. CONCLUSION

In this paper, a fog computing-based hierarchical approach
for distributed detection and correction of anomalies in PMU
data streams was presented. In the proposed approach, PMU
signals with similar modeshapes were grouped at a fog node
wherein data recovery was performed using a Robust PCA-based
algorithm. Signal grouping was performed at the central node
(super PDC) using naive-k-means clustering on the signal mode-
shapes communicated from the fog nodes. Based on the results
of clustering, the PMU-PDC communication was reconfigured
using SDN to route the data packets from the targeted PMUs to
their respective fog nodes.
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