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ABSTRACT: The subpolar North Atlantic (SPNA) experienced extreme cold during 2015, an event often called the ‘‘cold

blob.’’ The evolution of this event in the Community Earth System Model version 1 Decadal Prediction Large Ensemble

(CESM1-DPLE) hindcast initialized in November 2014 is compared to observations. This CESM1-DPLE hindcast failed to

predict cold conditions during 2015 despite already cold SPNA initial conditions and despite having high sea surface

temperature skill in the SPNA in all other years. The goal of this paper is to understand what led to this prediction failure in

order to provide insight for future decadal prediction efforts. Our analysis shows that strongly positive North Atlantic

Oscillation (NAO) conditions during winter and spring 2015 likely sustained the cold blob but were not simulated in any

CESM1-DPLEmembers.We examine the rarity of the 2015 event using the CESM1-DPLE’s uninitialized counterpart, the

CESM1 Large Ensemble (CESM1-LE). Results from the CESM1-LE indicate that the exceptional state of the observed

NAO in the winter of 2015 is at least part of the explanation for why this event was not encompassed in the CESM1-DPLE

spread. To test another possibility—namely, that deficiencies in the initial conditions degraded the prediction—we per-

formed additional hindcasts using the CESM1-DPLE protocol but different initial conditions. Altering the initial conditions

did not improve the simulation of the 2015 cold blob, and in some cases, degraded it. Given the difficulty of predicting this

event, this case could be a useful test bed for future prediction system development.

KEYWORDS: North Atlantic Ocean; Climate prediction; Hindcasts; Climate models

1. Introduction

The skill of interannual-to-decadal climate predictions has

increased considerably over the last decade, which, given the

relevance of these time scales to decision-making, is of great

interest to stakeholders (e.g., Meehl et al. 2009; Kirtman et al.

2013; Smith et al. 2019). Multiyear skill has been demonstrated

for impacts ranging fromAtlantic hurricanes and sea ice loss to

ocean acidification and terrestrial carbon fluxes (Smith et al.

2007, 2010; Yeager et al. 2012, 2015; Lovenduski et al. 2019;

Brady et al. 2020). While warming associated with greenhouse

gas emissions is responsible for much of the prediction skill

on lead times longer than a few years, initialization near

the observed climate state contributes significant additional

skill, especially in the subpolar North Atlantic (SPNA) (van

Oldenborgh et al. 2012; Meehl et al. 2014; Yeager et al. 2018).

By setting a model’s initial state near to that observed, the

predicted trajectory is more likely to follow the observed tra-

jectory beyond the effects of persistence alone.

Much effort to improve initial value predictability on

interannual-to-decadal time scales has focused on the SPNA,

where ocean heat convergence influences climate remotely

through communication by the coupled atmosphere–ocean

system (Griffies and Bryan 1997; Collins et al. 2006; Keenlyside

et al. 2008; Msadek et al. 2010; Robson et al. 2012; Danabasoglu

et al. 2016). This expectation for low-frequency predictability

stemming from subpolar processes is built on a thoroughly

examined narrative that connects high-frequency atmospheric

forcing [often associated with the North Atlantic Oscillation

(NAO)] to Atlantic multidecadal variability (AMV) in sea sur-

face temperature (SST) (e.g., Delworth et al. 2017; Kim et al.

2020, and references therein). In winter, the fast SST response

(i.e., weather-to-seasonal time scales) to anomalously strong

SPNA wind forcing has a tripole pattern (Marshall et al. 2001;

Visbeck et al. 2003). In response to positive NAO winds, the

tripole pattern has cooling in the Labrador Sea and western

subpolar gyre region due to both turbulent heat fluxes and

Ekman advection (Deser et al. 2010).Multiple years of positive

NAO forcing lead to deep convection and a later strengthening

of the Atlantic meridional overturning circulation (AMOC) and

subpolar gyre (Curry et al. 1998; Delworth and Dixon 2000;

Eden and Willebrand 2001; Latif et al. 2006; Danabasoglu

2008; Danabasoglu et al. 2012; Yeager and Danabasoglu 2014;

Delworth and Zeng 2016). As a result of strengthened ocean

circulation, subpolar ocean heat convergence increases, lead-

ing to increased subpolar ocean heat content (OHC) and SST

(Delworth et al. 1993; Latif et al. 2004; Knight 2005; Zhang and

Zhang 2015; Wills et al. 2019). A low sea level pressure (SLP)

anomaly in the SPNA forms in response to the increased SST;

by weakening trade winds, the atmospheric response transmits

the high SST anomaly from the SPNA to the subtropics and

tropics via air–sea coupling and low cloud feedbacks, leading

to a basin-scale positive SST anomaly with a multidecadal time

scale (Visbeck et al. 2003; Li et al. 2013; Brown et al. 2016; Kim

et al. 2020). Societally relevant climate impacts follow from

positive AMV anomalies, including increased Sahel precipi-

tation, Atlantic hurricane activity, and European temperature

and precipitation, among many other impacts (Folland et al.
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1986; Enfield et al. 2001; Goldenberg et al. 2001; Lu et al. 2006;

Knight et al. 2006; Zhang andDelworth 2006; Sutton andDong

2012; Zhang et al. 2019). On shorter, decadal time scales,

subpolar and basin-scale North Atlantic SST anomalies have

also been attributed to wind forcing via Gulf Stream excursions

and expansion or contraction of the subpolar gyre (e.g.,

Piecuch et al. 2017; Nigam et al. 2018). In summary, a narrative

in the literature suggests that initializing a climate model with

an Atlantic Ocean state that has the imprint of prior wind

forcing should lead to prediction skill for up to 10 ormore years

in the SPNA and beyond.

Multiyear predictions from many models do indeed show

high skill in the SPNA region and associated climate impacts

(García-Serrano and Doblas-Reyes 2012; Kim et al. 2012;

Robson et al. 2012; Yeager et al. 2012; van Oldenborgh et al.

2012; Chikamoto et al. 2013; Doblas-Reyes et al. 2013; Msadek

et al. 2014; Scaife et al. 2014; Bellucci et al. 2015; Yeager et al.

2015; Smith et al. 2019). Skillful prediction of high-frequency

SPNA SST evolution, however, has not been demonstrated.

The Community Earth System Model version 1 Decadal

Prediction Large Ensemble (CESM1-DPLE)—the initialized

hindcasts used in the present study—fits this characterization

(Yeager et al. 2018; Yeager 2020). It has high SPNA SST and

OHC skill on low frequencies that can be attributed to initiali-

zation, but fails to capture large year-to-year SST fluctuations

(Figs. 1 and 2 ). The CESM1-DPLE’s SPNA SST skill exceeds

that expected from external forcing alone, which is quantified by

using the CESM1 Large Ensemble (LE) as uninitialized pre-

dictions (Kay et al. 2015). The observed SPNA (here defined as

458–208W, 458–608N) SST is indicated by the black line in

Figs. 1a–c. The CESM1-LE has low and insignificant anomaly

correlation coefficient (ACC) for SPNA SST in all lead years

(blue, Fig. 1d). In contrast, the CESM1-DPLE (orange), does

have significant ACC that exceeds the persistence prediction

(green line) for all 10 lead years. There is, however, a notable

exception to the CESM1-DPLE’s subpolar skill: observed 2015

SPNA SST falls below the CESM1-DPLE spread for all en-

semble hindcasts that include a prediction for 2015, even for the

hindcast initialized only a few months prior in November 2014

(i.e., Fig. 1a at 2015). Not only is the CESM1-DPLE spread in-

sufficient to encompass this 2015 ‘‘cold blob,’’ but the ensemble

mean anomaly is also positive during this near-record cold event.

The failure is also present in upperOHC (see Fig. ES3 in Yeager

2020), indicating that the issue extends to the upper ocean.

Determining why the CESM1-DPLE failed to predict the

2015 cold blob has importance beyond understanding a single

case: we expect that forecast errors early in a simulation lead to

forecast errors at later times. In the SPNA of the CESM1-

DPLE, this premise appears valid. Lead year 1 forecast errors

in SPNA SST are associated with later forecast errors (Fig. 2a)

FIG. 1. Annual mean SPNA SST predictions for lead years (a) 1, (b) 3, and (c) 5, and (d) the SPNA SST anomaly

correlation coefficient (ACC). Ensemble mean (dark lines) and range (light shading) are shown for both the

CESM1-DPLE (orange) and CESM1-LE (blue). The observed SPNA SST from ERSSTv5 (Huang et al. 2017) is

shown in black. The ACC of ensemble mean anomalies with observed anomalies is shown for the CESM1-DPLE

(orange), CESM1-LE (blue), and persistence forecast (green); ACC significant at the 95% level is indicated by

circles. SPNA is defined here as 458–208W, 458–608N; see the box in Fig. 4a.
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with correlations of R5 0.44 and R5 0.36 for errors averaged

over lead years 3–7 and 5–9, respectively. Both correlations are

significant above 95% confidence using a two-tailed Wald test

with the t distribution, which is the significance level and test

used in all following correlations. This relationship is not an

artifact of the 5-yr averaging; lead year 1 error is also signifi-

cantly correlated with the later error from all lead years except

years 8 and 9 where the cutoff for 95% significance is only

barely missed (black line, Fig. 2c). Persistence alone does not

explain the relationship (Fig. 2b): for the persistence forecast,

the correlation between lead year 1 error and later error is

weak for 5-yr averages (R 5 0.15 and R 5 0.05 for lead years

3–7 and 5–9 respectively) and for individual lead years after

year 3 (gray line, Fig. 2c). The correlation of later errors with

lead year 1 errors is always greater in the CESM1-DPLE

than the persistence forecast. These results together indicate

that SPNA SST error that develops in the first year of simu-

lation actively influences the forecast beyond the effects of

error persistence. The case investigated here—the 2015 cold

blob—is associated with the largest lead year 1 error in SPNA

SST in the entire CESM1-DPLE (dashed gray line, Fig. 2a),

suggesting that SPNA evolution in the November 2014 hind-

cast will also have particularly high error through 2024. The

CESM1-DPLE has difficulty predicting fast changes in SPNA

FIG. 2. Scatterplot of SPNA SST lead year 1 errors with later errors from the (a) CESM1-DPLE and

(b) persistence hindcasts. Lead year 1 errors are on the x axis, while later errors are on the y axis, and each circle

indicates the ensemblemean from an individual hindcast. Errors plotted are the difference betweenCESM1-DPLE

ensemble mean or persistence forecast and the observed SPNA SST from ERSSTv5. Later errors for the lead year

3–7 mean (blue) and 5–9 mean (orange) are shown. (c) Correlation of lead year 1 error with the error from later

individual lead years for the CESM1-DPLE (black) and persistence (gray), with circular markers indicating 95%

significant correlations. (d) Lead year 1 error plotted against observed 1-yr fluctuations. The observed year 1 error

for the November 2014 hindcast is indicated by the dashed line in (a) and (d).
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SST, as occurred from 2014 to 2015. Lead year 1 SPNA SST

error is correlated (R 5 20.49) with the observed 1-yr SPNA

SST fluctuation (Fig. 2d). The observed 2015 fluctuation in

SPNA SST is the fifth largest during the period covered

by the CESM1-DPLE (1955–2018). Because the CESM1-

DPLE is generally unable to predict sharp 1-yr fluctuations,

successful prediction of the 2015 cold blob may have been

difficult for this reason alone. Although prediction studies

in the SPNA have focused on low-frequency modes (often

related to the AMOC), the issues described above suggest

that more attention on the initial high-frequency evolution

and its influence on longer time scale predictions is needed

(see, e.g., Tietsche et al. 2020). Understanding what went

wrong in this specific cold blob case may shed light on how

to improve future iterations of seasonal-to-multiyear CESM

predictions.

Before we investigate why the CESM1-DPLE did not pre-

dict the cold blob, a brief summary of the observed event is first

required. External forcing, low-frequency (multidecadal) var-

iability, and high-frequency atmospheric forcing (weather) all

likely contributed to the evolution of the 2015 SPNA cold blob

(Duchez et al. 2016; Yeager et al. 2016; Josey et al. 2018). On

multidecadal and longer time scales, SPNA cooling is likely

caused by some combination of radiative forcing and low-

frequency ocean variability (Drijfhout et al. 2012; Terray 2012;

Rahmstorf et al. 2015; Robson et al. 2016). In global warming

projections, SPNA cooling has a ‘‘warming hole’’ pattern

in response to radiative forcing, while multidecadal AMOC

internal variability tends to be associated with a broader

subpolar-wide cooling or warming (e.g., Wills et al. 2019).

Although both decadal and multidecadal processes likely

contributed to a cold background environment more condu-

cive for a SPNA cold extreme (e.g., Piecuch et al. 2017;Årthun

et al. 2021), the majority of the SPNA cooling for the 2015 cold

blob occurred rapidly, starting in 2013 due to high-frequency

atmospheric forcing (Grist et al. 2016; Duchez et al. 2016;

Yeager et al. 2016; Josey et al. 2018). From 2013 to 2015, the

annual mean SPNA SST dropped more than 18C (Fig. 1a) and

was associated with strong surface heat loss to the atmosphere.

In 2014 heat loss was associated with the strongest winter mean

east Atlantic pattern (EAP) since 1950, enhanced subpolar

modewater formation, and a cold anomaly that extended down

to 1000m (Grist et al. 2016; Josey et al. 2018). This cold

anomaly at depth preconditioned the SPNA for further tem-

perature reduction in early 2015 when strong winter NAO

conditions persisted (Duchez et al. 2016; de Jong and de Steur

2016; Josey et al. 2018). After strong cooling, the anomaly

reached maximum amplitude during summer of 2015 (Fig. 3a)

before weakening. By summer, its presence likely contributed

to the summer 2015 European heat waves, a societally relevant

impact that further emphasizes the need to thoroughly un-

derstand the 2015 cold blob (Duchez et al. 2016; Mecking et al.

2019). Interestingly, the SPNA cold blob formed along with

rapidly freshening conditions, and is partly collocated with a

fresh blob. Holliday et al. (2020) show that this freshening

occurred from 2010 onward and amplified from 2012–16 due to

forcing by positive NAO and positive EAP conditions re-

organizing ocean freshwater transport.

The goal of our study is to understand why the CESM1-

DPLE did not predict the 2015 cold blob. After introducing the

CESM1-DPLE and other associated simulations and methods

in section 2, the observed and predicted evolution of the 2015

cold blob in the CESM1-DPLE predictions is described in

section 3. From there, we test a number of hypotheses that

might explain why the cold blob was not predicted. In section 4

we present some implications of our findings, and finally we

summarize our results in section 5.

2. Methods and datasets

The predictions examinedhere are from theCESM1-DPLE, a

large ensemble of initialized hindcasts and forecasts (Yeager

et al. 2018). The CESM1-DPLE consists of 122-month-long, 40-

member ensembles initialized on 1 November each year from

1954 through 2017. Because our study is on the 2015 cold blob,

the hindcast initialized on 1 November 2014 is the focus. The

external forcing (e.g., greenhouse gases, solar forcing, aerosols,

etc.) and the CESM version used are identical to that in the

CESM1-LE (Kay et al. 2015). The CESM1-LE can thus be

used as an uninitialized counterpart to the CESM1-DPLE;

comparing against the CESM1-LE quantifies how much of the

prediction skill is from external forcing versus initial conditions

(ICs). Ocean and sea ice ICs are the full fields from a CESM1

Forced Ocean and Sea Ice (FOSI) simulation driven by CORE

(Coordinated Ocean-Ice Reference Experiments; Large and

FIG. 3. Evolution of (a) SPNA SST and (b) upper 300-m OHC

anomalies with respect to the CESM1-DPLE lead-time varying

climatology. The observed SST and OHC (here indicated by

volume-mean temperature) from ERSSTv5 and EN4 respectively

are indicated by the black solid lines. CESM1-FOSI output is

shown by the dashed black line and the CESM1-DPLE ensemble

mean prediction and minimum-to-maximum range are shown by

the gray line and shading.
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Yeager 2009) forcing.1 Fields from the CESM1-FOSI simula-

tion are also compared to the CESM1-DPLE predictions for

mechanistic comparison. CESM1-DPLE atmosphere and land

ICs are from the CESM1-LE ensemble member 34 restart files

of the same date as the initialization date; this ensemble

member is the only one available with the necessary November

restart files available for each year. In the CESM1-DPLE and

all additional hindcasts presented here, spread in the ensemble

members is created by adding random round-off level pertur-

bations of order 10214 K to the full field of atmospheric tem-

perature ICs, as in Kay et al. (2015).

Because the CESM1-DPLE uses a full-field initialization

approach, hindcasts drift toward model climatology. A lead-

time dependent drift removal method is used to extract climate

anomalies, as described in Kim et al. (2012), Doblas-Reyes

et al. (2013), Yeager et al. (2018), and others. For raw output

Yjtm from ensemble memberm initialized in year j at lead time

t, the anomaly Y 0
jtm is calculated by subtracting Yt

� �
. Brackets

and overbars indicate means over ensemble members and

initialization years, respectively. To calculate Yt

� �
, which

represents a drifting climatology, only output that falls on or

between January 1964 and December 2014 is used, as in

Yeager et al. (2018).

To investigate why the cold blob was not predicted, we

conduct additional hindcast experiments with each set deviat-

ing in one way from the CESM1-DPLE protocol (see Table 1).

Because we are focusing on the first 14 months of evolution, all

hindcasts are initialized on 1 November 2014 and extend

through 31 December 2015.

a. CESM1-DPLE extension

The first additional hindcast is a 20-member extension of the

November 2014 CESM1-DPLE hindcast—increasing the en-

semble size to 60—to test the effects of ensemble size on the

range of forecasts.

b. Nov-Ice

This experiment is designed to test the influence of having

too little sea ice in the Barents–Kara (B-K) Seas compared to

observations during November 2014. These 10 ensemble

members use atmospheric ICs that favor the production of sea

ice during November 2014. As will be shown below, the sea ice

deficiency in the original CESM1-DPLE hindcast is due to

the original atmospheric ICs from CESM1-LE #34 restart

on 1 November 2014. New atmospheric ICs are from the

1 November 2004 restart file from CESM1-LE #34, which was

chosen for its atmospheric circulation that should promote

more rapid November ice formation in the B-K Seas.

c. EN4-Anom-Init and Climo-Init

The next set of hindcasts are used to test the potential impact

of errors in the CESM1-FOSI ocean state of November

2014, by using ICs from an observation-based gridded analysis

in an anomaly-initialization approach. Raw observation-based

ocean fields are likely far from the CESM1’s attractor and their

use as ICs may cause a nonphysical shock during the beginning

of the simulation. Avoiding shock is one reason for the full-

field initialization approach from the CESM1-FOSI, which

despite the surface boundary forcing likely has a climatology

close to that of the fully coupled CESM1. Anomaly initializa-

tion, another strategy to avoid such shocks, uses ICs con-

structed from the fully coupled CESM1 climatology and

observation-based ocean anomalies. We first create a hind-

cast of 10 ensemble members where the 1 November 2014

ocean and sea ice ICs are replaced with the CESM1-LE

1 November climatology (Climo-Init). The climatology is con-

structed from the CESM1-LE member 34’s 1 November restart

files from 1954 to 2005. All other ICs are the same as those used

in the CESM1-DPLE protocol. We found that 10 ensemble

members were sufficient to produce a stable ensemble mean of

SPNA SST and NAO (i.e., there is little difference in the en-

semble means using any randomly drawn 9 ensemble members

from the ensemble mean using all 10 ensemble members; not

shown). Next, we create an anomaly-hindcast with 20 ensemble

members where the same CESM1-LE derived climatological

ocean and sea ice ICs are used, except for full-depth salinity and

temperature (EN4-Anom-Init). For these two fields, ICs are

TABLE 1. Description of hindcasts.

Hindcast Members Description

CESM1-DPLE 40 members The set of CESM1 initialized prediction hindcasts described in Yeager et al. (2018)

CESM1-LE 40 members The large ensemble of Kay et al. (2015), used here as an uninitialized counterpart to

the CESM1-DPLE. The CESM1-DPLE and LE share model codebase and

boundary forcings.

CESM1-DPLE extension 20 Additional ensemble members added to the November 2014 CESM1-DPLE

hindcast

Nov-Ice 10 Atmospheric ICs from CESM1-LE #34 1 November 2014 to induce more rapid B-K

sea ice formation

Climo-Init 10 Ocean and sea ice ICs derived from CESM1-LE #34 1 Nov climatology (1954–2005)

EN4-Anom-Init 20 Ocean temperature and salinity IC anomalies from EN4 are added to CESM1-LE

climatology. Sea ice ICs use CESM1-LE 1 Nov climatology (1954–2005).

ERAI-IC 10 All atmospheric IC fields from ERA-Interim reanalysis

1 Standard CORE forcing is used everywhere except in the

tropics where CORE winds are blended with those from NOAA’s

Twentieth CenturyReanalysis (Compo et al. 2011) before 2010 and

JRA55-do (Tsujino et al. 2018) after 2010 to ameliorate tropical

Pacific initialization shock. See Yeager et al. (2018).
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constructed by adding EN4 (Good et al. 2013) anomalies to

the CESM1-LE #34 1 November climatology. EN4 temperature

and salinity anomalies are calculated from the October and

November 2014 monthly means, subtracting the EN4 1954–

2005 October and November mean climatology. The difference

of these two hindcasts shows the influence of observation-based

temperature and salinity ICs on the prediction.

d. ERAI-IC

The final hindcast set tests the effect of using atmospheric

ICs derived from observations, rather than from CESM1-LE

#34 restart conditions. Atmospheric ICs are derived from the

ECMWF interim reanalysis [ERA-Interim (ERAI); Dee et al.

2011] and mapped to the atmospheric grid, and are the same

conditions used for the NCAR-CESM contribution to the

SubX project that is described in Kim et al. (2019) and Richter

et al. (2020). This hindcast has 10 ensemble members and

otherwise follows the CESM1-DPLE protocol.

A number of observational and reanalysis products are used

for comparison to CESM1 output, including monthly mean

SST from ERSSTv5 (Huang et al. 2017), monthly mean sea

level pressure from HadSLP2r (Allan and Ansell 2006), and

net surface heat fluxes from ERA-Interim (Dee et al. 2011).

CESM1 ocean heat content and salinity are compared to those

from the Met Office EN4 product (Good et al. 2013). Sea ice

concentration from HadISST is used (Rayner et al. 2003). To

calculate anomalies from these datasets, the same climatolog-

ical period as in the drift correction (1964–2014) is employed.

To compare processes in the CESM1-FOSI to those in the

CESM1-DPLE, an ocean heat budget for the upper 295m is

examined. Temperature u tendencies for all processes are

calculated online and then averaged over depth H:

1

H

ðh
D

›u

›t
dz5

Q
net

Hr
0
C
p

1
1

H

ðh
D

[2= � uu2= � (u*u1K)]dz, (1)

where h is the sea surface height, D is the fixed-level depth

(295m), and H 5 D 1 h; Qnet is the net air–sea heat flux, r0 is

the model ocean reference density, and Cp is the ocean heat

capacity; u is the three-dimensional ocean velocity, u* is the

subgrid-scale velocity from the mesoscale and submesoscale

parameterizations (Gent and McWilliams 1990; Fox-Kemper

et al. 2011), and K is the three-dimensional diffusive temper-

ature flux. In the analysis below, terms are grouped into four

quantities as organized in the above equation: the total tendency,

net surface heat fluxes, resolved advection, and subgrid-scale

processes (due to both subgrid-scale velocity and diffusive

fluxes) as in Yeager (2020).

The NAO index is calculated consistently across observa-

tions and CESM1 simulations. We use a pattern-based method

to calculate the NAO index, rather than a station-based

method, to more fully capture the behavior of the North

Atlantic SLP field. Our method is similar to that used in the

CESM Climate Variability and Change diagnostics package

(Phillips et al. 2014) and is used for both monthly mean and

DJFM-meanNAO.HadSLP2r is used for theNAOcalculation

rather than ERA-Interim SLP because HadSLP2r has a longer

record, allowing its NAO statistics to be compared more

cleanly with those from the CESM1-LE; the NAO index cal-

culated using ERA-Interim is highly correlated with that cal-

culated using HadSLP2r (R 5 0.97). The seasonal cycle is

removed from monthly mean HadSLP2r SLP in the North

Atlantic region (908W–408E, 208–808N) from 1920 to 2018;

the seasonal cycle climatology is calculated for 1964–2014 to

match the drift removal method used on the CESM1-DPLE.

Anomalies are normalized and weighted by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos(f)

p
, where

f is latitude; CESM1-LE and CESM1-DPLE SLP output is

similarly prepared then interpolated to the HadSLP2r grid.

A principal component (PC) analysis is performed on the

observed anomalies. The resulting empirical orthogonal

functions (EOF) and PCs are then normalized by the PC

standard deviations to convert the EOF pattern weights into

physically meaningful units; the normalized EOF pattern

magnitudes correspond to one standard deviation of the

PC time series. The first normalized PC is the observed NAO

index. CESM1 SLP anomalies are then projected on the

observed EOF patterns; the resulting CESM1 ‘‘PCs’’ are

normalized by the observed PC standard deviations for con-

sistency. The first normalized CESM1 PC is the strength of

the observed NAO pattern, not the model’s NAO pattern.

Using the same pattern for the NAO for both observations

and models allows for a cleaner comparison than does cal-

culating EOFs individually from model output and observa-

tions. Calculating SLP EOFs separately from CESM1 output

alone (rather than projecting CESM1 SLP onto observed

EOFs) produces a first EOF that is very similar in pattern to its

observed counterpart, but about 20% stronger in magnitude

(not shown). As a result, comparison of NAO evolution using

EOFs derived separately from models and observations high-

lights the difference in pattern magnitude, rather than any other

characteristics.

3. Results

a. Comparison of the CESM1-DPLE November 2014
hindcast to observations

In this section, we examine the CESM1-DPLE hindcast

initialized on 1 November 2014 and compare its evolution to

observations. As discussed above, the cold blob had already

developed in early 2014; as a result, the November 2014

hindcast is initialized from already cold SPNA conditions (al-

though only half as cold as observed) and yet still fails to en-

compass the observed cold anomaly by more than 0.58C during

its summer 2015 peak (Figs. 3 and 4). The inability to sustain a

cold anomaly for nine months in the November 2014 hindcast

must be understood first, and thus earlier hindcasts that were

initialized from warmer conditions are not examined. The

CESM1-FOSI is used as a substitute for observations in a heat

budget analysis, allowing for comparison to the same decom-

position in the CESM1-DPLE. Such an analysis is not possible

with observations. While the CESM1-FOSI is not a perfect

reconstruction of the observed ocean, its evolution of SPNA

SST during this event is similar to observations (Fig. 3a),

lending some credibility to itsmechanistic rendering of the cold

blob. The CESM1-FOSI’s upper ocean heat content, however,

5408 JOURNAL OF CL IMATE VOLUME 34

Brought to you by University of Colorado Libraries | Unauthenticated | Downloaded 08/29/21 09:07 PM UTC



is about half that observed, indicating that boundary forcing is

able to produce a surface cold blob, but is insufficient to fully

render the observed subsurface evolution (Fig. 3b). The

CESM1-FOSI has negative SPNA SST anomalies throughout

2015 that are close in magnitude to observations, although the

cold blob’s pattern is broader than that observed (Fig. 4).

We first compare predicted and observed SPNA SST

evolution from November 2014 to October 2015 (Fig. 3a).

CESM1-DPLE SPNA SST begins increasing immediately,

while the observed (ERSSTv5) and CESM1-FOSI cold

anomaly is sustained and later amplified. ERSSTv5 SPNA SST

anomalies are more negative than those from the CESM1-

FOSI, but both have similar monthly evolution. ERSSTv5 and

FOSI SPNA SST are near the lower edge of the CESM1-

DPLE’s range through May 2015; after May 2015 both are

below the CESM1-DPLE’s spread. Next, SPNA volume-mean

temperature in the upper 300m is examined as a measure of

OHC in both the CESM1-DPLE and FOSI because the ob-

served cold blob also occurred subsurface (e.g., Fig. 4 in Josey

et al. 2018). As with SST, the CESM1-DPLE OHC starts in-

creasing by January 2015, which matches EN4 in January and

February, but misses the strong cooling in March (Fig. 3b).

Even though the CESM1-DPLE is initialized from the CESM1-

FOSI, the CESM1-DPLE OHC anomaly is slightly more nega-

tive than that in the FOSI during the first month of integration.

By March 2015, the EN4 OHC anomaly is well below the

CESM1-DPLE’s range, while the CESM1-FOSI OHC anomaly

remains at the minimum edge of the DPLE range.

Next, the SPNA heat budget in the upper 300m is compared

in the CESM1-FOSI and CESM1-DPLE, as shown in Fig. 5a.

The CESM1-FOSI has large monthly mean cooling tendencies

in January and March 2015 (dashed black line) that are near

the low edge of the CESM1-DPLE’s large wintertime spread

(gray shading).With 3-month runningmeans applied (red lines

and shading, Fig. 5a), the CESM1-FOSI cooling tendency falls

below the CESM1-DPLE range during December 2014 and

February 2015, indicating that no single ensemble member in

the CESM1-DPLE had a late winter with as much total cooling

as occurred in the CESM1-FOSI. Total cooling is next

decomposed into the contributions from surface heat fluxes,

resolved ocean advection, and subgrid-scale processes

(Figs. 5b–d). In the CESM1-FOSI, cooling in January and

March 2015 is due mostly to surface heat fluxes, but also has a

contribution from resolved advection. A warming tendency

from the subgrid-scale processes compensates the cooling from

heat fluxes and advection. As with the total cooling tendency,

the CESM1-DPLE range of cooling due to surface heat flux

does not encompass the CESM1-FOSI’s estimate of these

quantities in January and March 2015. The CESM1-FOSI’s

cooling due to resolved advection also falls outside the

CESM1-DPLE’s range inMarch 2015. The January andMarch

dips in the CESM1-FOSI’s resolved advection term are at-

tributable to reductions in Ekman heat transport on top of a

background of negative geostrophic heat convergence (not

shown). That the CESM1-FOSI’s cooling occurs in two dis-

continuous months and is due to both surface heat fluxes and

Ekman transport suggest that a relatively fast atmospheric

process may be missing in the CESM1-DPLE hindcast. To

examine this possibility, we next consider monthly mean sur-

face heat fluxes and atmospheric circulation.

ERA-I surface heat flux (left column, shading) and HadSLP2r

SLP (contours) anomalies from fall 2014 through spring 2015

are compared to those in the CESM1-DPLE ensemble mean

(center column) in Fig. 6. The ERA-Interim surface heat

flux anomalies correspond to what would be expected from

atmospheric-driven turbulent heat fluxes: surface cooling is

FIG. 4. The summer (JJA) 2015 cold blob in (a) ERSSTv5, (b) the

CESM1-DPLE ensemble mean, and (c) CESM1-FOSI. (d) The

distribution of summer SPNA SST anomalies in the original

CESM1-DPLE 40 members (orange) and the additional 20-mem-

ber extension (blue) is compared to the observed value (solid line)

and the CESM1-FOSI value (dashed line). The box in (a) indicates

the region used here to define the SPNA (458–208W, 458–608N).
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collocated with anomalously strong westerlies (as indicated

by SLP gradients). The patterns of both anomalies are some-

what similar in the observation-based datasets and the en-

semble mean in November 2014, although the center of low

pressure and surface cooling are farther north in the CESM1-

DPLE. By December though, there is no correspondence

between the ensemble mean prediction and the observation-

based datasets. SPNA surface cooling and an associated

anomalously strong SLP gradient (i.e., anomalously strong

westerlies) are present in observations especially during

December 2014, January 2015, and March 2015. The CESM1-

DPLE ensemble mean surface heat fluxes show the opposite:

SPNA warming occurs from December onward, accompanied

by near-zero SLP anomalies in the ensemble mean. In the

presence of climatological atmospheric conditions, an anom-

alously cold surface would result in decreased upward heat flux

to the atmosphere, allowing an initially cold ocean to warm

toward climatological conditions. This negative feedback of

surface heat fluxes on SST appears to be the dominant mech-

anism at work in the CESM1-DPLE ensemble mean during

winter and spring 2015. In the ensemblemean, no strong SPNA

SLP gradient anomalies (strong westerlies) exist to force

SPNA cooling after November 2014. The lack of strong west-

erlies would also weaken cooling due to decreased wind-driven

ocean heat transport, especially in March. In summary, in the

CESM1-DPLE ensemble mean, the atmospheric-forced cool-

ing required to sustain the cold blob, either by turbulent heat

fluxes or wind-driven transport, is absent.

The observed anomalously strong SLP gradient across the

SPNA is associated with strong NAO positive conditions. As

noted by Yeager et al. (2016) and Josey et al. (2018), winter

2015 was notable for its consistently strong positive NAO. The

SLP anomalies fromDecember 2014 throughMay 2015 project

strongly on the NAO pattern (Fig. 7a): the NAO index is

greater than11 for those six consecutive months (orange line,

Fig. 7b) and the DJFM NAO index during winter 2015 is the

most positive of any winter in the HadSLP2r record from 1920

to 2018 (orange line, Fig. 7c). The orange columns in Fig. 7c

indicate the observedNAO fraction of occurrence for each bin;

the purple columns and black bars indicate the CESM1-LE

NAO ensemble mean and range in each category of NAO

indices, which will be discussed in the following section. In the

November 2014 CESM1-DPLE hindcast, not a single ensem-

ble member reproduces the observed stretch of positive NAO

conditions or has any two months with an NAO stronger

than 12, as occurred during January and March 2015, the key

months for ocean cooling (Figs. 7b,c). The three ensemble

members with the most positive DJFM NAO (purple lines,

Fig. 7b) do, however, produce a weak cold blob in the observed

location by summer 2015 (cf. Figs. 7d and 4a). Like observa-

tions, these three ensemble members also have some surface

cooling to the south and east of Greenland during January

through March (right column, Fig. 6).

We hypothesize that the failure of the CESM1-DPLE to

sustain or deepen the SPNA cold blob in the ensemble mean

and in individual ensemble members is connected to its in-

ability to simulate the very positive NAO conditions of early

2015. In observations, positive NAO conditions that persist

through winter and spring lead to ocean cooling through

anomalous turbulent heat fluxes that was necessary to deepen

the cold blob through spring 2015. The CESM1-DPLE has no

ensemble members with DJFM NAO conditions as positive as

observed. Instead, the CESM1-DPLE initial cold anomaly

damps toward climatology through warming by surface fluxes.

In the following section, we explore a number of hypotheses to

explain why the CESM1-DPLE fails to predict both the cold

blob and the positive NAO conditions.

b. Potential reasons the cold blob is not present in the

CESM1-DPLE hindcast

We now explore whether CESM1 is able to reproduce the

2015 cold blob. First, can uninitialized CESM1 simulations

FIG. 5. SPNA heat budget analysis in the CESM1-FOSI and

CESM1-DPLE. The (a) total heating tendency (positive indicates

ocean warming) is decomposed into contributions from (b) surface

heat fluxes, (c) resolved advection, and (d) subgrid-scale processes.

Gray solid lines and gray shading indicate monthly mean CESM1-

DPLE ensemble mean and range, respectively. The black dashed

line indicates monthly mean CESM1-FOSI output. CESM1-DPLE

and CESM1-FOSI 3-monthly running means and range are shown

in red for the total tendency.
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FIG. 6. Observed and predicted evolution of SLP (contours) and surface heat flux (SHF; shading) anomalies from November 2014 to

May 2015. (left) Evolution of SLP and SHF anomalies from HadSLP2r and ERA-Interim, respectively, is compared against that from

(center) the CESM1-DPLE ensemble mean and (right) the mean of the three CESM1-DPLE members with most positive DJFM NAO

strength. Positive indicates surface heat fluxes that warm the ocean. Solid (dashed) contours indicate positive (negative) SLP anomalies

and are plotted every 5 hPa with the zero contour omitted.
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even reproduce the observed SPNA cold anomalies and posi-

tive NAO conditions? The rareness of this event has already

been examined in observations in Fig. 7c. The addition of 20

members tests whether this rarity can explain the lack of a

single cold blob in the November 2014 CESM1-DPLE hind-

cast. Next, we conduct two targeted experiments aimed at

correcting biases found in the CESM1-DPLE’s November

2014 hindcast—too little B-K sea ice and a too salty and warm

SPNA ocean—that could have impacted the cold blob or the

NAO’s evolution. The lack of B-K sea ice in the CESM1-

DPLE was hypothesized to impact the NAO and cold blob

based on studies suggesting that fall B-K sea ice influences

springtime NAO (e.g., Li and Wang 2013; Kim et al. 2014;

Screen 2017). A too salty and warm SPNA could affect the cold

blob prediction simply by starting with a too warm SPNA or

through incorrect stratification altering air–sea coupling.

Finally, we investigate the influence of observation-based at-

mospheric ICs in one final hindcast set; although atmospheric

ICs are not expected to strongly influence long-term ocean

evolution, that expectationmay not hold in this case because of

the NAO’s involvement.

1) SPNA EXTREME COLD AND POSITIVE NAO
CONDITIONS IN CESM1

One possibility for the failure of the CESM1-DPLE to

predict the 2015 cold blob is that CESM1 is unable to simulate

SPNA cooling events at the observed magnitude. To test this

hypothesis, the CESM1-LE is compared to observations from

1920 to 2018 of SPNA SST and NAO occurrence. We first

examine annual mean SPNA SST and, given the rapid SST

decline in 2014, the annual SST rate of change. Annual means

are calculated from January to December of each calendar

year, and are then used to calculate the annual rate of change.

Anomalous SPNA SST is aggregated in 0.28C increments and

then the fraction of occurrence for each bin is calculated for

both observations (ERSSTv5) and for each member of the

CESM1-LE. The orange columns in Fig. 8 indicate the ob-

served occurrence for each SPNA SST bin; annual-mean

conditions as cold as in 2015 (gray line) have occurred 4% of

the time in observations (4 years). The purple columns indicate

the ensemble mean occurrence calculated from the histograms

of all 40 CESM1-LE ensemble members. The black bars in-

dicate the simulated range of natural variability (i.e., the lower

end indicates the ensemble minimum occurrence). If the ob-

served fraction of occurrence (orange) falls within the simu-

lated spread of variability (black bars), the CESM1-LE and

observations are consistent with each other and no pro-

nouncements onmodel bias can bemade. If the orange bars fall

outside the range, the inconsistency between the ensemble and

observations can be explained either by a model bias or by the

unlikely situation where the observed occurrence of conditions

was rarer than could be captured with only 40 ensemble

members. For the 2015 SPNA SST annual mean anomaly,

which falls in the bin ranging from 20.98 to 20.78C, the ob-

served fraction of occurrence is consistent with the spread of

natural variability in the CESM1-LE. The ensemble also con-

tains SPNA conditions colder than that observed in 2015; on

average, SPNA SST anomalies at least as negative as observed

in 2015 occur during 1.9% of all possible years in the CESM1-

LE from 1920 to 2018. Results using only summer (JJA)

anomalies show a similar consistency between observations

and the CESM1-LE (Fig. 8b). Summer conditions as cold as

FIG. 7. (a) NAO in observations and CESM1 simulations. The

monthlymean pattern for the observedNAO is derived from 1920–

2018 HadSLP2r. (b) The monthly mean NAO index in HadSLP2r

(orange) and all 60 CESM1-DPLE (gray; original 40 members and

20-member extension) is shown for November 2014–October 2015,

where the three ensemble members with the most positive DJFM

NAO index are highlighted in purple and the 11 and 12 NAO

levels are indicated (dashed black lines) for context. (c) The frac-

tion of occurrence of the DJFM NAO index in HadSLP2r from

1920–2018 (orange bars) is compared against the fraction of oc-

currence in the CESM1-LE ensemble mean (transparent purple

bars) and its minimum and maximum range (black bars). A brown

bar color is seen where the orange and purple bars overlap. For

comparison, the 2015 NAODJFM index is shown for all ensemble

members of the November 2014 CESM1-DPLE hindcast (gray

lines) and for HadSLP2r (orange line). (d) The mean of the three

CESM1-DPLE ensemble members with most positive 2015 DJFM

NAO index has a weak cold blob in the location of the ob-

served event.
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observed occur in 1.0% of all summers from 1920 to 2018 in the

entire ensemble. The CESM1-LE also simulates 1-yr drops in

SPNA SST that are consistent and even larger than the de-

crease that occurred from 2014 to 2015 (Fig. 8c). From this

cursory analysis, there is no immediate concern that CESM1

cannot simulate a cold anomaly or large declines in SPNA SST

as was observed in 2015.

We next assess NAO variability in the CESM1-LE to de-

termine if winter and spring NAO conditions as positive as

observed in 2015 (12.4 for DJFM NAO; orange line, Fig. 7c)

can be simulated in CESM1. As in the histograms of SPNA

SST, Fig. 7c shows the observed (orange) and CESM1-LE

(purple columns and black range bars) December–March

(DJFM) mean NAO index, binned in increments of 0.5.

While winters with 11 NAO index are simulated more fre-

quently than observed, the occurrence of NAO index greater

than 11.25 is consistent in observations and the CESM1-LE.

The occurrence of winters with NAO index greater than or

equal to 12.4 is extremely rare, occurring only once in obser-

vations from 1920 to 2018 and in only eight winters in all 40

ensemble members over the same period (0.2% of all possible

winters). Depending on the ensemble member, the occurrence

of such a positive NAO is 0%–2%, as compared with 1% in

observations over the same time period.

It is worth noting that, although the positive winter NAO

was likely a key factor in the evolution of the 2015 cold blob,

SPNA cold extremes do not require positive winter NAO

conditions to occur in general: SPNA heat content is not

determined by surface fluxes alone. There are only weak

correlations between DJFM NAO index and SPNA SST

anomalies in both observations and the CESM1-LE. Using

annual mean SPNA SST anomalies from ERSSTv5 and

DJFM NAO calculated from HadSLP2r (1920–2018), the

correlation is 20.22, which is 90% significant; the same

correlation using the full CESM1-LE during the same time

period is 20.26 (95% significant). In the CESM1-LE, sub-

sampling by positive DJFM NAO (NAO . 11.5) and low

SPNA SST anomalies (SST , 20.58C) suggests that these

conditions can be associated with each other, but is not an

absolute requirement (Fig. 9). Since 1980, the CESM1-LE

indicates a tendency for SPNA cold events to occur only

when the DJFM NAO index is near neutral or positive (dark

purple markers, Fig. 9a). Likewise, since 2000, very positive

DJFM NAO is associated only with near-neutral or negative

SPNA SST anomaly (Fig. 9b). For both very positive NAO

and very cold SPNA conditions though, there are many

events in the CESM1-LE where one can occur without the

other (light purple markers). In the observed record (orange

markers), there are too few occurrences of both metrics

(NAO index during cold events and SPNA SST anomaly

during positive NAO events) to make a strong pronounce-

ment either way. For example, there are only five SPNA cold

events and two SPNA warm events that occurred with DJFM

NAO . 11.5 (Fig. 9b); the occurrence of more cold events

than warm ones could be due to chance.

Given the rareness of the observed SPNA SST and NAO

conditions, we next examine if extending the CESM1-DPLE

ensemble size increases the range of SPNA SST and NAO

conditions to encompass the 2015 observations. Annual mean

SPNA conditions as cold as or colder than observed in 2015

occur in about 1.9% of the years in the CESM1-LE, or roughly

1 out of every 50 years. Based on this occurrence rate in the

CESM1-LE, the lack of a CESM1-DPLE cold blob could be by

chance, and extending the ensemble size beyond 40 might

widen the range sufficiently. To test this possibility, 20 addi-

tional CESM1-DPLE members are added to the November

2014 hindcast, which are illustrated by the blue portion of the

FIG. 8. Fraction of occurrence of (a) SPNA SST annual mean

anomalies, (b) JJA anomalies, and (c) the 1-yr change of annual

mean anomalies in the CESM1-LE (transparent purple bars) and

ERSSTv5 (orange bars) from 1920 to 2018. One-year changes

are calculated from annual means based on the calendar year

(January–December). A brown bar color is seen where the orange

and purple bars overlap. Gray lines indicate the observed value

from 2015 and the 2014–15 drop. Black bars indicate the range

of natural variability using the CESM1-LE’s ensemble minimum

and maximum. A 1964–2014 climatology is used to calculate all

anomalies.
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histogram in Fig. 4d. While a few ensemble members with

negative SST anomalies in summer 2015 are added, none has

colder conditions than the original 40 members. The simula-

tion of positive SST anomalies is also increased. These results

suggest that something about the ICs is hindering rather

than preconditioning the simulation of a summer SPNA cold

anomaly.

Roughly 440 more 1-yr-long ensemble members would be

required to simulate a winter NAO as positive as observed

(which corresponds to an occurrence rate of 0.2%). Extending

the ensemble that far is infeasible, but it is nonetheless

encouraging that the 20-member extension does add a few

ensemble members with relatively positive winter NAO con-

ditions, though none as positive as observed (not shown). One

of these additional positive NAO ensemble members con-

tributes to the composite in Fig. 7d. The inability of the

CESM1-DPLE to produce a single ensemble member with

such positive NAO conditions could be due to the extremeness

of the event making it particularly unpredictable, and the lack

of a cold blob in the CESM1-DPLE may be a related result.

Deficiencies in the ICs, however, also could have contributed, a

possibility that we turn to next.

2) EVALUATING THE IMPACT OF NEW ICS

We have identified three issues with the ICs used in the

November 2014 CESM1-DPLE hindcast that may have af-

fected the simulation of North Atlantic climate in the CESM1-

DPLE. The atmospheric ICs differ from observations in a way

that delays fall sea ice formation; the SPNA upper ocean is too

salty and not cold enough at the time of initialization, and

stratospheric zonal wind anomalies have the opposite sign

from observed anomalies. Each of these three issues could

have individually impacted the evolution of the 2015 cold blob

and NAO in the CESM1-DPLE.

First, the November B-K sea ice extent bias from observa-

tions is the most negative in the November 2014 CESM1-

DPLE hindcast of all 64 hindcasts (Fig. 10a). Based on recent

studies, the lack of early sea ice cover could influence the

evolution of winter and spring atmospheric circulation, pro-

moting a more negative NAO (Li and Wang 2013; Kim et al.

2014; Peings and Magnusdottir 2014; Sun et al. 2015; Screen

2017). While the low B-K sea ice anomaly in the CESM1-

DPLE disappears after fall sea ice formation has completed, it

is possible that the autumn sea ice statemight have an influence

on the late-winter NAO response in a way that winter sea ice

might not. Based on lagged correlations of observedNovember

FIG. 10. CESM1-DPLE and CESM1-LE November 2014 sea

ice area (SIA), sea ice concentration (SIC), and SLP difference

from observations. (a) CESM1-DPLE ensemble-mean November

Barents–Kara SIA difference from HadISST SIA is most negative

during 2014 (blue line). (b) The CESM1-DPLE ensemble mean

November-mean SIC difference fromHadISST (shading) and SLP

difference from HadSLP2r (contours). (c) The same differences

using CESM1-LEmember #34 instead of the CESM1-DPLE. Solid

(dashed) contours indicate positive (negative) SLP anomalies and

are plotted every 4 hPa with the zero contour omitted.

FIG. 9. Joint analysis of DJFM NAO index and SPNA SST

anomaly in the CESM1-LE (purple) and observations (HadSLP2r

and ERSSTv5; orange). (a) An annual mean SPNA SST anomaly

of 20.58C is used to subsample the DJFM NAO index. (b) A

DJFM NAO index of 11.5 is used to subsample SPNA SST

anomalies. A 1964–2014 climatology is used to calculate all

anomalies. Subsampled CESM1-LE results are indicated by dark

purple markers with the full CESM1-LE indicated by light purple

markers for context.
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B-K sea ice with the subsequent winter and spring SLP (not

shown), the negative sea ice anomaly could be responsible for

roughly one-third of the too negative wind strength anomaly in

the hindcast’s winter 2015. Improving the sea ice simulation

might lead to more positive NAO conditions in January and

March 2015.

The negative sea ice bias is much larger in the hindcast after

two weeks of integration than it is in the sea ice ICs (not

shown). We instead trace the low November B-K sea ice

anomaly to the atmospheric ICs from the CESM1-LE.

Atmospheric ICs are drawn from restart files that were peri-

odically saved from only one of the CESM1-LE members

(#34). During November 2014, #34 exhibited an anomalously

strong high centered over Siberia and a low centered northeast

of Iceland that together pushed the sea ice edge northward,

impeding ice formation in the B-K Seas (Fig. 10b). The

anomalous November 2014 SLP and sea ice patterns in

CESM1-LE #34 are uncannily similar to those in the

November 2014CESM1-DPLE ensemblemean (Fig. 10c). The

day-by-day evolution of these fields in both simulations mirror

each other through the third week of November, when their

SLP patterns finally begin to diverge (not shown). Something

about the 1 November 2014 atmospheric state in CESM1-LE

#34 has particularly high predictability, which in this case af-

fects the November sea ice formation. Similar atmospheric-

driven sea ice formation delay is not seen in any of the other

CESM1-DPLE hindcasts.

To test if the atmospheric ICs are responsible for the sea ice

bias and, indirectly, the lack of positive winter NAOand SPNA

cold blob, a 10-member hindcast is initialized on 1 November

2014 with different atmospheric ICs, referred to here as the Nov-

Ice hindcast. This hindcast uses ICs from CESM1-LE member

34 on 1 November 2004. The November 2004 state from #34 has

a high pressure pattern north of Iceland (which should advect

ice southward and/or increase ice formation via wind-driven

cooling in the B-K Seas) and it has the largest November mean

B-K sea ice extent of any other year in theCESM1-LE. ICs from

#34’s 1 November 2004 restart should produce a more neutral or

positive November sea ice anomaly. Everything else about this

hindcast follows the CESM1-DPLE protocol.

November sea ice concentration is indeed improved in the

B-K Seas, although it is still a bit too low outside the B-K Seas

(Fig. 11). In the Nov-Ice hindcast, November SLP shows a

negative NAO bias relative to observations. Despite an im-

provement in November sea ice simulation, by midwinter the

SLP pattern indicates even weaker SPNA westerlies relative to

the CESM1-DPLE—even more negative NAO conditions. In

addition, the SPNA cold anomaly is lost during the first month.

These results suggest that sea ice has little influence on the at-

mospheric circulation or the deepening of the SPNA cold blob.

The second issue is that the SPNAocean ICs, which are from

the CESM1-FOSI simulation, are not as cold or as fresh as ob-

served from November 2014 through spring 2015 in the upper

500m (Fig. 12). Together, these conditions translate to increased

stratification in the upper 100m in the CESM1-FOSI relative to

EN4, which could indicate altered air–sea coupling through

spring 2015. In the first few months of its evolution, CESM1-

DPLE salinity follows the FOSI’s. In the upper 50–100m, the

CESM1-DPLE starts with a cold anomaly of ;0.68C that

becomes a surface-confined warm layer by summer. Under the

warm layer are weakly negative temperature anomalies that are

warmer than the CESM1-FOSI’s. By summer 2015, very differ-

ent stratification anomalies exist across these datasets that are set

mostly by the strongly surface-amplified temperature anomalies.

With a cold blob amplified at the surface, EN4 shows even

weaker stratification (i.e., positive ds/dz anomaly), which the

CESM1-FOSI mostly emulates due to the atmospheric bound-

ary forcing. Without the constraining surface forcing, however,

the CESM1-DPLE shows increased stratification (negative ds/

dz anomaly), due to its anomalously warm surface conditions.

To test if ICs from the CESM1-FOSI are the cause of

the CESM1-DPLE’s warm SPNA during summer 2015, we

next examine a hindcast initialized from EN4-derived ICs

(EN4-Anom-Init). Temperature and salinity anomalies in

EN4-Anom-Init are computed relative to a hindcast where the

ocean and sea ice fields are initialized from CESM1-LE cli-

matology (Climo-Init; see bottom row, Fig. 12). Through its

first year of integration, the November 2014 EN4-Anom-Init

ensemble mean has a SPNA that is both fresher and colder

than in the CESM1-DPLE hindcast. The cold and fresh

FIG. 11. SLP, SIC, and SPNASST results of the Nov-Ice hindcast.

(a) The difference of November-mean SIC between the Nov-Ice

hindcast and HadISST (contours) and the difference of November-

mean SLP between the hindcast andHadSLP2r (shading). The same

contours/shading intervals as in Fig. 10 are used. (b) The ensemble-

mean FMA SLP difference between the Nov-Ice hindcast and the

CESM1-DPLE: SLP contours are every 1 hPa with the zero line

omitted. (c) SPNA SST evolution in the Nov-Ice hindcast is com-

pared to that from the CESM1-DPLENovember 2014 hindcast and

ERSSTv5.
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anomaly in the EN4-Anom-Init hindcast decays and the tem-

perature anomaly is weaker than that in EN4. The anomaly-

initialized hindcast does not have the summer warm bias that

the surface CESM1-DPLE has, but it still does not have an

intense cold blob as observed (Fig. 13). Interestingly, the

spread in winter NAO conditions in the EN4-Anom-Init

hindcast includes ensemble members with more positive con-

ditions in January and March 2015, even though there are

fewer ensemble members than in the CESM1-DPLE (Fig.

13b). These minor improvements due to fresher and colder ICs

suggest that the original CESM1-DPLE ocean ICs are partly

responsible for the deficiencies seen here.

Finally, we assess the influence of using atmospheric ICs

derived from observed conditions. Skill of interannual-to-

decadal predictions was assumed to be insensitive to atmo-

spheric ICs because their influence is lost within weeks; this

assumption was the justification for using atmospheric restart

files from CESM1-LE #34 as the atmospheric ICs. For our cold

blob case study, however, this assumption may not be valid,

as atmospheric ICs may be key to amplifying cold SPNA

conditions in the first six months. One possibility for how

atmospheric ICs can affect subseasonal to seasonal (S2S)

predictions is through the wintertime NAO’s link to the ex-

tratropical stratospheric circulation; sudden weakening of the

stratospheric westerlies, for example, can cause NAO-negative

conditions in the troposphere (see Butler et al. 2019, and ref-

erences therein). S2S predictability of stratospheric polar cir-

culation is in turn connected to tropical tropospheric

phenomena (Domeisen et al. 2020). By initializing the atmo-

sphere from CESM1-LE #34 rather than an observed source,

NAO initial value predictability involving a two-way

tropospheric–stratospheric pathway is missing. Indeed, the

CESM1-DPLE hindcast’s evolution of the extratropical

Northern Hemisphere stratospheric jet shows little resem-

blance to what was observed during winter and spring 2015.

Figure 14a shows that ERA-I extratropical zonal-mean zonal

wind (here measured near the latitude of maximum strato-

spheric jet strength, 508–708N) has positive anomalies that

stretch from surface to stratosphere during December 2014,

February 2015, and March 2015. In contrast, the CESM1-

DPLE ensemble mean has consistent negative anomalies at

50 hPa (or higher) from December through March, which ap-

pear associated with weak negative tropospheric anomalies

from January through March.

The ERAI-IC hindcast does not have an improved predic-

tion of the SPNA cold blob or of the November 2014 atmo-

spheric circulation (Figs. 14c and 15). It has a positive

November 2014 mean SPNA SST anomaly, not negative as it

was for the original November 2014 CESM1-DPLE hindcast

and observations. This stark difference is traced to the

FIG. 12. Evolution of SPNAupper-600m anomalous (left) potential temperature, (center) salinity, and (right) stratification in (first row)

EN4, (second row) CESM1-FOSI, (third row) CESM1-DPLE, and (fourth row) EN4-Anom-Init hindcasts. All anomalies are calculated

relative to each dataset’s 1964–2014 climatology.
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evolution of the SPNA atmosphere during the first month of

theCESM1-DPLE hindcast.As described above for theNov-Ice

hindcast, the SLP pattern in the first two weeks of the CESM1-

DPLE hindcast mirrors that in the CESM1-LE #34 (Figs. 10b,c).

This pattern, associated with anomalously strong zonal mean

winds to the south of Iceland, likely caused the negative surface

heat flux anomalies through turbulent heat fluxes (Fig. 6). The

persistence of the anomalously strong subpolar SLP gradient is

likely behind the rapid drop in SPNA SST during the first two

weeks of evolution (Fig. 15b). Part of the reason why the SPNA

SST in the CESM1-DPLE is a good match with observations in

November 2014 is because of the initial two-week SST drop as-

sociated with #34’s unrealistic atmospheric ICs.

The evolution in the first month of the ERAI-IC hindcast

is very different from that in the CESM1-DPLE. During

November 2014, an anomalous high pressure centered over

Greenland is associated with an anomalously strong SLP gra-

dient in the SPNA and positive surface heat flux anomalies that

warm the subpolar ocean (Fig. 15c). Like the CESM1-DPLE

November SLP pattern, the atmospheric pattern has little re-

semblance to what was observed (Fig. 6). The anomalous

surface warming is associated with a 0.48C increase in SPNA

SST during the first 30 days of integration. After only one

month, the cold blob is both colder and larger in the CESM1-

DPLE hindcast than in the ERAI-IC hindcast (Figs. 15d,e).

One area, however, where there is an improvement in the

ERAI-IC hindcast was in the Northern Hemisphere near-

surface zonal-mean zonal-wind: in the 508–708N latitude band,

tropospheric (e.g., 1000–500 hPa) zonal wind is more positive

during winter and spring 2015 (i.e., more NAO positive

conditions; Fig. 14c) in the ERAI-IC hindcast than in the

CESM1-DPLE. Beyond that one improvement though, en-

semble mean zonal-mean zonal-wind in the ERAI-IC hindcast

does not resemble the observed quantity more than the origi-

nal CESM1-DPLE does.

4. Discussion

We have focused on two possibilities to explain why the

CESM1-DPLE was unable to encompass the 2015 SPNA cold

blob in its spread: that the occurrence of this event was rare and

that the prediction was degraded by a deficiency in the ICs.

Based on an analysis of the occurrence of SPNA SST cold

events in observations and in the CESM1-LE, an ensemble size

of 40 might be slightly too small to produce one cold event.

Extending the CESM1-DPLE hindcast to a size of 60 still did

not result in a single cold event or increase the range.While the

EAP preconditioned the SPNA for a cold extreme from 2013

to 2014, positive NAO conditions during winter and spring

2015 were essential for the evolution of the cold blob. Unlike

SPNA SST, the observed positive NAO conditions of 2015

were rare and unlikely to be encompassed by chance with only

60 ensemble members. The 2015 positive NAO index was a

once-in-the-historic-record event in HadSLP2r, and an NAO

of such magnitude occurred in only eight winters in all of the

CESM1-LE’s 40 members from 1920 to 2018. If the NAO’s

magnitude is not predictable on seasonal to interannual time

scales, then the cold blob’s peak magnitude—and likely the

fresh blob (Holliday et al. 2020)—is also not predictable as a

FIG. 14. Zonal-mean zonal-wind evolution at 508–708N from

November 2014 through December 2015 in (a) ERA-Interim

(ERAI), (b) the CESM1-DPLE ensemble mean, and (c) the

ERAI-IC hindcast.

FIG. 13. (a) SPNA SST and (b) NAO evolution in the EN4-

anomaly-initialized hindcast (gray) and observations (black). For

reference, the minimums and maximums from the CESM1-DPLE

are illustrated (blue dashed lines).
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result. Multiple studies, however, have shown that hindcasts ini-

tialized in November do have DJF NAO forecast skill exceeding

that of a persistence forecast (Scaife et al. 2014; Kang et al. 2014;

Dunstone et al. 2016;Athanasiadis et al. 2017).Beyond fourmonths

of lead time, the evidence supporting NAO predictability is varied.

Kang et al. (2014) show that multiple model hindcasts initialized in

November haveArctic Oscillation prediction skill that degrades by

March,which, incidentally,was akeymonth for the 2015 coldblob’s

sustained cooling. In contrast, Athanasiadis et al. (2020) demon-

strate thatweakbut statistically significant prediction skill does exist

in the CESM1-DPLE for annual-mean NAO during the first lead

year, with higher skill for even longer lead times. Dunstone et al.

(2016) show predictable second winter NAO in the Met Office

decadal prediction system (DePreSys). They identify stratospheric

polar vortex strength and its link to solar forcing as key processes.

These studies suggest that the NAO in general is predictable on

seasonal and longer time scales, and that something about the ICs,

initialization protocol, or other systematic model deficiency could

explain the CESM1-DPLE’s inability to predict the 2015 cold blob.

The extreme NAO conditions of this particular event, however,

may not have been predictable; regardless, a prediction system

should be able to encompass it as a possibility.

Concerning model deficiencies, CESM1 like most CMIP-

class models has a cold bias to the south of Greenland that is

caused by amisplacedGulf Stream andNorthAtlantic Current

path (e.g., Eden et al. 2004; Weese and Bryan 2006). Because

the cold bias exists in a place with large baroclinicity and at the

start of the storm track, its effect on surface heat fluxes influ-

ences downstream climate and later NAO evolution through

transient eddy feedbacks on the time-mean flow (Kushnir et al.

2002; Keeley et al. 2012; Drews and Greatbatch 2016). Scaife

et al. (2011) show that increasing atmosphere and ocean hor-

izontal resolution improves the cold bias and Atlantic blocking

in one model. The results of Chassignet et al. (2020), however,

suggest that increased horizontal resolution is not necessarily a

solution to the large surface SST biases in the SPNA. Coarse

atmospheric vertical resolution and a too-low stratospheric top

are other model deficiencies that could also affect the repre-

sentation of the NAO and related processes (Omrani et al.

2014; Butler et al. 2016; Peings and Magnusdottir 2016; Scaife

et al. 2019).

The inability to predict the NAO in this CESM1-DPLE

hindcast may be a symptom of the signal-to-noise (S2N) par-

adox issue, where an ensemble mean prediction has higher

correlation with observations than it does with any of its en-

semble members (Eade et al. 2014; Scaife et al. 2014; Scaife

and Smith 2018). The issue appears in multiple models, in

atmosphere-only and coupled atmosphere–ocean configura-

tions, and for a variety of climate processes, including theNAO

(Smith et al. 2020). An implication is that the predictable sig-

nal’s amplitude is too low relative to noise. The source of the

S2N paradox has yet to be identified, although it has been

suggested to be caused by deficiencies in atmospheric eddy

feedbacks on the mean flow, air–sea coupling, and/or atmo-

spheric parameterizations (Scaife and Smith 2018). The poor

2015 NAO and cold blob prediction in the CESM1-DPLE

hindcast could be attributable to a too weak magnitude of a

predictable NAO signal. Having statistically significant NAO

correlation with observations for lead year one and longer

hindcasts (Athanasiadis et al. 2020) may not be sufficient if a

large NAO magnitude is necessary for the large surface fluxes

required in an event such as the cold blob. Having a too weak

predictable NAO signal relative to noise could also explain

why the CESM1-DPLE has difficulty predicting large 1-yr

SPNA SST fluctuations (Fig. 2d). If a S2N issue were partly

responsible, however, extending the ensemble size should have

revealed a weak but predictable NAO signal. That such a signal

was not found could indicate a severe S2N problem requiring

FIG. 15. Results from ERAI-IC hindcast. SPNA SST time series from the ERAI-ICs hindcast and the CESM1-DPLE are compared

using both (a) monthly means and (b) daily means. (c) November 2014 monthly mean surface heat flux (shading) and SLP (contours)

anomalies for the ERAI-ICs hindcast use the same contour and shading intervals as in Fig. 6. November 2014 mean SST anomalies are

presented for both (d) the ERAI-ICs and (e) the CESM1-DPLE hindcasts.
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more ensemble members than is feasible, or conversely, that a

too weak NAO signal is not a cause in this case. Because the

S2N issue is common across models, other decadal prediction

systems may similarly struggle to predict the cold blob if a too

weakNAO signal is at fault. A follow-up study using additional

models will examine these possibilities.

If the CESM1-DPLE does have too weak of a predictable

NAO signal, then that could explain why additional IC-based

experiments here were not successful. The greatest surprise in

these experiments was that the hindcast using ERA-Interim at-

mospheric ICs has an even warmer SPNA prediction than the

original CESM1-DPLE hindcast. SPNA SST is too high starting

immediately in November 2014 in the ERAI-IC hindcast, and

there is little change to the atmospheric zonal mean circulation

compared to the CESM1-DPLE. Ironically, the CESM1-DPLE’s

early match to SPNA SST observations is likely due to the in-

correct atmospheric ICs from CESM1-LE #34. Part of the

warming is because the cold blob is smaller in spatial extent than

was observed. Using a smaller box to define the SPNA can

produce a negative anomaly, though still weaker than observed.

Such a cherry-picking exercise, however, ignores the observed

large spatial extent of the 2015 cold blob. Regardless, that #34’s

ICs produce a prediction that better matches observations than

observation-based ICs is surprising. While using observed atmo-

spheric ICs in the next set ofCESMdecadal predictions is a logical

next step, these results suggest that there may be little improve-

ment in the SPNA, especially if a more systematic model defi-

ciency is involved.

Anomaly initialization was implemented in CESM1 for the first

time to test the influenceof observedocean ICs in a computationally

cost-effective way. The initial results using anomaly-initialization

show modest improvement from the original CESM1-DPLE hind-

cast. The EN4-Anom-Init hindcast produces an ensemble mean

SPNA SST with a near-zero anomaly during summer 2015, lacking

the pronounced 2015 warm overshoot in the CESM1-DPLE en-

semble mean. It also features more ensemble members with nega-

tive summer SPNA SST anomalies and positive NAO conditions

than in the CESM1-DPLE. Like the CESM1-DPLE, however, the

EN4-Anom-Init hindcast starts losing the initial SPNAcoldanomaly

during the first month of evolution. Improved ocean ICs may be a

way forward and it will be interesting to study the 2015 cold blob in

anticipated CESM hindcasts using ICs from the Japanese 55-Year

Reanalysis driving ocean–sea ice (Tsujino et al. 2018) forced FOSI.

With the benefit of hindsight, it is perhaps unsurprising that

the hindcast initialized to improve November B-K sea ice

formation does not have an improved winter NAO prediction.

The Nov-Ice hindcast used atmospheric ICs that promote

faster fall ice formation in the B-K Seas. November B-K sea ice

is improved, but removing the November low pressure anom-

aly traced to CESM1-LE #34 also leads to an immediate

November SPNA warming. Springtime midlatitude surface

westerlies weaken further, the opposite of the anticipated cir-

culation response (Fig. 11). Re-examining the literature on the

influence of sea ice on atmospheric circulation suggests a few

additional reasons why this hindcast had the opposite of its

intended effect on the NAO. While we are able to find a sta-

tistically significant observed relationship between November

Barents–Kara sea ice extent and winter and spring NAO (not

presented), the correlation was sensitive to the length of the dataset,

required linear detrending, needed 3-month low-pass filtering to

extract significant results, and was field significant only during

February–April. With so much manipulation required to extract it,

the relationship seems tenuous at best (see, e.g.,Wilks 2016), an idea

that is reinforced in two recent studies.Warner et al. (2020) perform

the regression thatwe just described using theERA-I reanalysis and

HadISSTv2, and find a weakly significant relationship with lowB-K

sea ice extent correlated with a negative NAO-like pattern. When

they perform the same regression on individual ensemble mem-

bers from atmosphere-only experiments with multiple climate

models, they find some ensemble members that match the ob-

served regression pattern and others with the opposite-signed

regression pattern: the observed relationship between B-K sea ice

and the atmosphere’s response may instead be an artifact of in-

ternal variability. Warner et al. (2020) then demonstrate that B-K

sea ice and NAO responses are both independently related to La

Niña, suggesting that the relationship between the two is not

causal. The strength of the relationship between variability in

Northern Hemisphere sea ice and atmospheric circulation is also

quantified using atmosphere-only ensembles from multiple

models in Liang et al. (2020). They find that only 1.5%of the total

atmospheric circulation variance can be explained by variability in

sea ice. In light of these results, even if a pattern of atmospheric

circulation is definitively attributable to sea ice variability, it is

unsurprising that atmospheric variability related to non–sea ice

processes has the greater contribution in our additional hindcast.

5. Conclusions

The CESM1-DPLE skillfully predicts SPNA SST including

its multidecadal time scale and encompasses the observations

within its range every year, except for 2015 when the region

experienced near-record cold conditions. As reported byYeager

(2020), the 2015 cold blob stands out as a high-frequency, at-

mospheric-forced event that took place during a period of

thermohaline spindown, and that the CESM1-DPLE otherwise

has a decent prediction of upper OHC cooling post-2010. The

purpose of our study has been to examine what led to this pre-

diction failure in order to illuminate directions for future CESM

prediction system development. During winter and spring 2015,

the amplification of the subpolar cold blob was associated with

positive winter and spring NAO conditions that likely drove

cooling by surface heat fluxes and ocean advection. Not a single

CESM1-DPLEmember has as positiveNAOconditions as were

observed. An examination of the CESM1-LE suggests that

CESM1 simulates subpolar cold blobs with occurrence consis-

tent with observations, but that the NAO conditions of 2015

were exceedingly rare. Deficiencies in the ICs of the ocean, at-

mosphere, and sea ice in the November 2014 CESM1-DPLE

hindcast were identified, including too little November Barents–

Kara sea ice, too warm and salty SPNA upper ocean condi-

tions, and stratospheric zonal winds that evolved opposite to

observations. Additional hindcasts were performed to test if

more realistic atmosphere and ocean ICs related to these defi-

ciencies produced better cold blob predictions. Little improve-

ment was demonstrated, and in some hindcasts, the skill

was further degraded. Using observation-derived atmospheric
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ICs—low-hanging fruit for the next generation ofCESMdecadal

predictions—is unlikely to produce great improvement on its

own in the SPNA. As a particularly difficult event to predict, the

2015 cold blob case is a strong candidate for focused testing.

If CESM1 has little to no seasonal NAO predictability due to

ICs, then 40 ensemble members would be far too few to en-

compass the 2015NAO in its range. The extremeness of the 2015

NAO could have also made this event particularly unpredict-

able. An examination of the 2015 cold blob in other prediction

systems, which is currently ongoing, should further illuminate if

the event can be predicted and what features are associated with

skill across models. We suspect that a prediction system with

relatively high NAO prediction skill—whether due to model

structure or initialization method—would also have a 2015 cold

blob prediction that better matches observations. If, however,

the amplitude of the predictable NAO signal is also too low in

othermodels, as suggested by the generality of the S2N paradox,

then this event’s unpredictability may be a common finding.
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