


Transportation. Results of the visual inspection are

inaccurate and vary largely among different inspectors

although the image reference approach is developed to

guide the inspection.3

Research has taken place to develop safer and more

efficient bridge inspection methods. Some adopted a

completely manual approach for the bridge routine

inspection, which requires a large number of inspector

hours4 and inspection results vary largely among

inspectors. To make inspection faster, cheaper, safer,

more objective, and less interruptive to traffic, methods

to automate the bridge inspection have been developed.

Recently, mobile robots, such as unmanned aerial vehi-

cles (UAVs), have been proven to be very helpful in

dangerous, dull, or dirty applications.5 Collecting

inspection video data using aerial platforms reduces or

eliminates the labor-intensive onsite inspection process

and allows inspectors to assess bridges from a safer

location. Yet, the use of robotic inspection platforms

has solved just part of the above-discussed issues, effi-

cient, reliable analysis of inspection video is another

important task.

Letting inspectors watch the collected videos for

hours and days is inefficient. It is desired that a tool

can be developed to assist inspectors in extracting struc-

tural elements from the inspection videos and sorting

them out by classes. Given a such tool, inspectors can

concentrate on the element-wise inspection. Besides, the

rating of a bridge needs to be provided by a compre-

hensive assessment that evaluates the impact of defects

on specific elements of the bridge.3,6,7 This requires to

spatially relate detected defects with bridge elements

where the defects are located. The above-mentioned

approach to the bridge condition evaluation suggests

that an important step of analyzing the inspection video

data is to extract and index images of bridge elements.

After that, defect evaluation and interpretation will

take place.

Extracting structural elements from the inspection

videos and sorting them out by classes is a very challen-

ging task for practitioners. On one hand, there could be

hours of videos that need to be analyzed for every indi-

vidual bridge of inspection. Watching hours of video to

locate the desired regions of interest is very cumber-

some work for a human. Humans are prone to fatigue.

Studies have shown that the human visual inspection

accuracy declines easily in dull, endlessly routine job.8,9

The inspector could easily miss elements in big video

data, left there without an examination. Fatigue and

boredom developed from repetitively watching hours of

video data induce the bias in assessing the bridge ele-

ments and evaluating the condition of the whole bridge.

On the other hand, bridge inspection videos captured

by aerial inspection platforms are mainly images of

complex scenes, wherein a bridge of various structural

elements mix with a cluttered background. Assisting

inspectors in analyzing the big complex video data is

greatly desired to improve their job efficiency. The

development of sensing technology and deep learning

methods has significantly advanced the image analysis

for defect detection.10–16 Yet, methods to create deep

learning models for defect detection and classification

are not directly applicable to the research problem of

this article for various reasons. For example, many of

the models require to take close-up images in a nearly

uniform testing background where defects are relatively

large and clear to analyze. Although deep learning

models for segmenting multiclass objects from images

are well developed in computer vision, extracting multi-

class bridge elements from inspection videos captured

by aerial robotic platforms is not a completely solved

problem.

A few studies have developed a strong base for infra-

structure component recognition using computer

vision.17,18 Extracting bridge structural elements from

videos captured by aerial inspection platforms is facing

additional challenges.19 These include, but not limited

to, motion blur, partial or full occlusion, illumination

variation, background variation, and so on. So far,

some studies20–23 have reported their successful experi-

ences, for example, utilizing the temporal information

of objects in video data. But the additional computa-

tional cost is expensive. The high accuracy of deep

learning models for multiclass object detection and seg-

mentation relies on large-scale dense annotations for

model training. Yet annotating a huge amount of train-

ing data for bridge inspection is not only labor-intensive

but also expensive as it needs the knowledge of domain

experts.24 To truly assist bridge inspectors in their jobs,

the burden of data annotation should not be completely

passed to them. The efforts that domain experts, such

as inspectors, contribute to the deep learning model

development must be well controlled and best utilized.

The strict budget for inspector-annotated training data

and the high requirement on model performance moti-

vate the combination of self-training and active learning

to create a new model training approach, which are

delineated in the next section.

This article proposes a cost-effective method to cre-

ate an assistive intelligence model for detecting and seg-

menting multiclass structural elements from bridge

inspection videos captured by an aerial inspection plat-

form. Achieved job efficiency and the quality of the

model let inspectors truly benefit from the technology

advancement in their jobs. The assistive intelligence

model is not an artificial intelligence model isolated

from users. Instead, inspectors provide their expertise

to guide the development of a deep neural network,

which assures the network quickly converges to a satis-

factory tool for assisting themselves in analyzing the
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videos of any intended bridge of inspection. Filling the

gaps identified in this article, the proposed method has

anticipated technical contributions in threefold: (1) a

quick transfer of an existing deep learning network to

the task of detecting and segmenting multiclass struc-

tural elements from bridge inspection videos, (2) the

use of a lightweight temporal coherence analysis to

recover false negatives and identify weakness that the

network can learn to improve, and (3) the development

of a semi-supervised self-training (S3T) algorithm that

keeps human-in-the-loop to efficiently refine the deep

neural network iteratively.

The remainder of this article is organized as the fol-

lowing. The related work is discussed in the next sec-

tion. Then, the proposed method to create the assistive

intelligence model is delineated. After that, results from

evaluating the proposed method and the developed

model are discussed. In the end, conclusions and future

work are summarized.

Literature review

Being an important step before the detailed damage

assessment, extracting regions of interest from inspec-

tion video data is receiving attention from the bridge

health monitoring community. A few studies have

developed a strong base for infrastructure component

recognition using computer vision. For example,

Narazaki et al.17 used multiscale convolutional neural

networks (CNNs) to perform the pixel-wise classifica-

tion and smoothed the segmentation result using condi-

tional random forest. They used the scene classification

result to help reduce false positives of bridge compo-

nents in complex scene images. Recently, authors from

the same research group18 further examined two seman-

tic segmentation algorithms and three approaches to

integrate a scene classifier and a bridge component clas-

sifier. This study found that the sequential configura-

tion outperforms other configurations if the input is

complex scene images. Yeum et al.19 discussed various

difficulties in analyzing inspection video data collected

by aerial platforms and proposed a CNN-based

approach to locate and extract regions of interest from

images before performing the damage detection. The

study demonstrated the implementation of the devel-

oped neural network in finding candidate image

patches of welded joints of the truss structure. It also

showed that detecting highly relevant structural ele-

ments can greatly reduce the false positive and false

negative detection in the following step of damage

assessment. Yet, detecting and segmenting multiclass

structural elements from inspection videos collected by

aerial platforms is still not solved completely.

On multiclass object detection, the region-based

CNN (R-CNN)25 has shown success in many

applications. The R-CNN uses the selective search26 to

generate region proposals to find objects in an image.

The Faster R-CNN27 was proposed to make the R-

CNN faster. It offers improvements in both speed and

accuracy over its predecessors through the shared com-

putation and the use of a neural network to propose

regions. Then, the Mask R-CNN,28 an extension of the

Faster R-CNN, was proposed to perform the bounding

box regression and the pixel-level segmentation simul-

taneously. The R-CNN and Mask R-CNN models

work well in detecting objects from static images. But

results may not be consistent when they process video

data. Therefore, the temporal coherence information of

objects in successive frames has been introduced to

address the issue of inconsistent detection;20–22 wherein,

the tubelet and optical flow are used to propagate fea-

tures from one frame to another. Temporal coherence

analysis methods in the literature are computationally

expensive due to the requirement for repeated motion

estimation and feature propagation. Seq-NMS23 has a

modification only in the post-processing phase, and

thus, it is faster than others. However, seq-NMS tends

to increase the volume of false positives because it nei-

ther puts any penalty on false positives nor adds addi-

tional constraints to prevent the occurrence.

Creating a deep neural network usually requires a

huge amount of annotated data for model training.

The manual annotation of data is not only a costly pro-

cess but often prone to errors. To overcome this issue,

transfer learning is introduced to structural damage

detection.29–32 With transfer learning, only a relatively

small dataset is needed to refine an existing deep net-

work, which reduces the training time while keeping a

good performance. Another way to tackle this annota-

tion problem is to use semi-supervised learning that

requires some labeled and some unlabeled training

data. Papandreo et al.33 developed a method requiring

a small number of strongly annotated images and a

large number of weakly annotated images for training.

They used an expectation maximization method to gen-

erate the pixel-level annotation from weakly annotated

training data. Mittal et al.34 proposed an approach that

relies on adversarial training with a feature matching

loss to learn from unlabeled images. Some researchers

used the self-training, a wrapper-based semi-supervised

method,35 which starts training a network with only a

few annotated samples and then let the network auto-

matically annotate more training samples. This tech-

nique has been applied to a variety of image/video

processing applications36,37 to reduce the effort of

human annotation. While most semi-supervised learn-

ing methods save the data annotation effort compared

to supervised learning, their performance is still not

good enough. The primary reason for this challenge is

the quality of the automatically annotated data. The
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inclusion of some samples mislabeled by the network

itself may sharply deteriorate the training process.

Recently, a promising approach named active learn-

ing has been proposed to reduce the annotation cost

for training deep neural networks.38 The essence of

active learning is to train a network by actively select-

ing training samples from a pool of unlabeled data,

which will be labeled by a human annotator to retrain

the model. The fundamental assumption underlying

this approach is that selecting fewer but informative

data and allowing the model to learn with it may

achieve greater performance than training the network

using a large amount of labeled data. The performance

of active learning depends on the samples selected from

the unlabeled data. Traditional sampling methods do

not always guarantee to provide the most representa-

tive training samples in support of active learning

because of the dataset diversity and limited knowledge

about the dataset. Many strategies have been developed

for sampling data from unlabeled data for active learn-

ing.38 Uncertainty sampling is the most widely used

strategy, which queries for samples that it is most

unsure about. For example, Tian et al.39 used clustering

and the fuzzy-set selection method to choose the most

uncertain and informative samples. This method

increases the training sample diversity. The use of

active learning in image classification has been widely

explored.40,41 However, the potential of active learning

is less thoroughly explored in the more complex task of

instance segmentation that usually has a relatively

higher annotation cost. Morrison et al.42 considered

both spatial and semantic uncertainties of prediction

using the dropout sampling. By adding dropout layers

to the fully connected layers of the network, multiple

times of inference over the same image are made to

measure the segmentation uncertainty. A similar

approach was adopted by Gal et al.43 who used multi-

ple forward passes with dropout at the inference

(Monte Carlo dropout) to obtain better uncertainty

estimates for instance segmentation. Yang et al.44

trained a set of fully convolutional networks iteratively

and estimated uncertainty and similarity from an

ensemble of networks to determine new data for anno-

tation. The above-discussed studies demonstrated that

determining the most informative samples for active

learning is complex. Besides, uncertainty-based

approaches can be prone to querying outliers.45 Simple

but effective methods for recommending new data for

annotation are greatly desired.

Methodology

The proposed method to create the assistive intelligence

model for the multiclass bridge element segmentation is

illustrated in Figure 1. First, a pre-trained Mask R-

CNN has been chosen. Then, a small set of initial train-

ing data, which are annotated by the inspector, is used

to fine-tune the network to transfer it for the new task

of multiclass bridge element segmentation. The trans-

ferred network will be improved iteratively until it

achieves the satisfactory performance. The shaded por-

tion in Figure 1 is the iterative process for performance

boosting. In each iteration of the S3T with human-in-

the-loop, the network that has not reached the satisfied

performance will be applied to an unlabeled testing

dataset to obtain the detection and segmentation

results. Temporal coherence analysis of the results is

performed to recover false negative results that are

hard data for the network. After that, a small set of the

recovered hard data is selected as additional training

data that are removed from the unlabeled testing data-

set. The additional training data are then split into two

subsets, one has been automatically annotated by the

network trained from the current iteration and the

other subset is manually re-annotated by the inspector.

The additional training data along with the initial small

training dataset are then used to retrain the Mask R-

CNN in the next iteration to boost its performance.

The S3T method let the inspector annotate selected

samples that the current network failed to detect.

Through learning from its weakness, the performance

of the network increases quickly after a few iterations.

Adapting the deep neural network to a new task

through transfer learning

This study chose a Mask R-CNN as the tool for detect-

ing and segmenting bridge elements from inspection

video data. Figure 2 illustrates the structure of the Mask

R-CNN. Video data are input into the network frame-

by-frame following their order on the timeline. The

backbone of the network is a feature extractor that gen-

erates the feature map of each input image. A region

proposal network (RPN) creates proposal boxes named

anchors and predicts the possibility of an anchor being a

bridge element. Then, the RPN ranks anchors and

Figure 1. Overview of the proposed S3T method with human-

in-the-loop.
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proposes those most likely containing bridge elements,

which are termed regions of interest (RoIs). A layer

named Region of Interests Align (RoIAlign) extracts the

RoIs from the feature map, aligns them with the input

image, and converts them into fixed-size region feature

maps. The fixed-size feature maps of RoIs are fed into

two independent branches: the network head branch

that performs the classification and bounding box gener-

ation, and the mask branch that independently generates

instance masks. Readers interested in the detail of Mask

R-CNN can refer to the work by He et al.28

Training the Mask R-CNN for the new task of mul-

ticlass bridge element segmentation from the scratch

requires a large volume of annotated data to achieve a

satisfying prediction accuracy. This task does not have

a large volume of annotated data for model training.

To obtain high-quality annotated data, this task

requires the knowledge of professionals in the domain

of study. Only bridge inspectors are confident in anno-

tating bridge elements from the inspection videos. In

this study, transfer learning is first used to tackle this

challenge, which improves the learning of the new task

by transferring knowledge from a related task that has

already been learned.46

The Mask R-CNN in this study was initialized by

adopting the ResNet-50 feature extractor47 whose

weights have been pre-trained on the Microsoft COCO

dataset consisting of more than 120,000 labeled images

and around 1.5 millions of object instances in 80 cate-

gories.24 Then, transfer learning was used to adapt this

feature extractor to the setting of bridge inspection.

Specifically, the ResNet-50 was fine-tuned using a small

set of training data (T0) with a portion collected from

the intended bridges of inspection. The detail of the

fine-tuning process will be presented in the next section.

Temporal coherence analysis for recovering false

negative results

Mask R-CNN is a static image detector that processes

individual images independently. When it is applied to

frames of a video stream, false negative results are likely

to happen due to sudden scale changes, occlusion, or

motion blur. This study used the temporal coherence

information of objects in successive frames to recover

false negative detections and segmentations.

Consider a video clip that consists of a series of N

frames, indexed by i. In each frame, the network returns

Mi objects with segmentations, indexed by j. An object

in a frame is highly likely to present in its neighboring

frames within a range of displacement. Let, oi, j desig-

nate object j in frame i. The center of the bounding box

for oi, j is specified by its coordinates Ci, j = (xi, j, yi, j). In

p frames, Ci, j may shift to a surrounding pixel within a

spatial displacement of pDd where Dd is the maximum

displacement between two consecutive frames. Dd is

affected by both intrinsic and extrinsic camera para-

meters, as the Appendix explains. Dd is proportional to

the focal length of the camera and the maximum displa-

cement of the moving camera between capturing two

successive frames of image; it is inversely proportional

to the size of pixels in the images taken by the camera

and the distance of the camera to the object along the

optical axis. The study roughly estimated Dd according

to its formula in equation (5) using partial information

and then improved the estimation experimentally by

reviewing the inspection data. A value of 60 pixels was

found to be appropriate in this study. Figure 3 illus-

trates an example wherein a joint of the bridge in frame

i� 4 is also shown in the succeeding four frames but

with displacements.

The algorithm of temporal coherence analysis for

recovering false negative results is summarized as the

pseudocode in Algorithm 1 and explained below. The

prediction threshold is set as a range [tl, tu]. An object

with a prediction score within this range is possibly a

false negative prediction. Let Si, j denote the prediction

score for object oi, j. The network immediately returns a

positive result if Si, j ø tu and will not predict any object

if Si, j\tl. Let Oi be the set of confidently predicted

Figure 2. The architecture of Mask R-CNN that performs the

detection and segmentation of multiclass bridge elements.

Figure 3. An illustration of spatial displacements.
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objects in frame i. The prediction score and the center

location of these objects, f(Si, j, Ci, j)joi, j 2 Oig, are the

temporal coherence information for analyzing the suc-

ceeding k frames. That is, k is the temporal window that

defines the range of preceding frames where the tem-

poral coherence analysis searches the same objects as

the weakly predicted objects (e.g. they are possibly false

negative results) in the current frame. If tl<Si, j\tu, the

weakly predicted object oi, j is checked by referring to a

pair of preceding successive frames up to k � 1 times,

starting from the nearest pair (frames i� 1 and i� 2)

to the farthest pair (frames i� k + 1 and i� k). If an

object of the same class as oi, j is found in both frames

i� 1 and i� 2 (i.e. there exists oi�1, j0 2 Oi�1 and

oi�2, j00 2 Oi�2 such that oi�1, j0 = oi�2, j00 = oi, j), and the

spatial displacements of oi, j from oi�1, j0 and oi�2, j00 are

small, within Dd and 2Dd, respectively, this weakly pre-

dicted object is determined as a false negative predic-

tion. The false negative prediction is recovered by

adding it to Oi and updating its score to be the average

score of Si�1, j0 and Si�2, j00 . Otherwise, oi, j is searched in

Oi�2 and Oi�3 to determine if it is a false negative result

that can be recovered. This search will continue as

needed. If oi, j is not found to be a positive result with

confidence in the neighboring frames after k � 1 times

of temporal coherence analysis, it will be eliminated

from the candidate list. Using a pair of frames as the

reference instead of referring to a single frame will

make the temporal coherence rule more strict and mini-

mize the risk of progressively propagating a false posi-

tive result in a single frame to the target frame.

The appendix has explained factors that impact the

choice of Dd. The choice of k is relevant to Dd. Given

that Dd is 60 pixels, an object may appear in a sequence

of frames because the dimension of images is way

larger than 60 pixels. The object only appears in a short

video clip and then it disappears because the UAV

brings the camera away from the object. If k is too

small, for example k = 1, the analysis does not fully uti-

lize the temporal coherence information of objects in

successive frames. If the k value is too large, false posi-

tive results will be propagated to many frames. Based

on the above-discussed facts, the study experimentally

examined the selection of k and found a k value of 4

which is suitable in this study.

The range of detection thresholds for the temporal

coherence analysis ½tl, tu� should be appropriately cho-

sen. The upper boundary tu should be high enough but

not extremely high to properly control both types of

false results. The lower boundary tl should be below

the upper boundary with a sufficient span to capture

most false negative results. Selecting an extremely small

lower boundary just increases the workload of tem-

poral coherence analysis, but it has minimal impact on

the result due to the control effect of the upper

boundary. This study chose ½0:5, 0:9� as the threshold

range whose appropriateness was verified on small-

scale experiments.

The temporal coherence analysis identifies and picks

up samples that the current network fails to predict

correctly. Therefore, the proposed self-training method

effectively learns from its weakness in each round of

iterations. Since this temporal coherence is applied in

the inference stage, it is a computationally cheap

approach for evaluating and sampling new data for

annotation.

Refining the network through self-training with

human-in-the-loop

After transfer learning has initialized the Mask R-

CNN for the task of bridge inspection, the network

may need to be further refined, for example, by adding

additional training data. If the refined network has not

reached a satisfying performance, the refining process

will continue. To lower the cost of data annotation

and, meanwhile, maintain a good quality of the

Algorithm 1 Temporal Coherence Analysis for Recovering
False Negative Results.

// N: the number of video frames;
// Mi: the number of objects in frame i;
// Oi: the set of confidently predicted objects in frame i;
// Si, j: the prediction score of the jth object in frame i;
// Ci, j: the center location of the jth object in frame i;
// tl and tu: prediction thresholds;
// k: the number of frames that have stored temporal coherence
information of predicted objects.
for i= 1 to N do

for j= 1 toMi do
if Si, j ø tu then

add object oi, j to the set Oi with its prediction score, Si, j,
and the center location, Ci, j

else if Si, j ø tl then

for q= 1, 2, :::(k� 1) do
9 oi�q, j0 2 Oi�q & oi�q�1, j00 2 Oi�q�1,

’oi, j = oi�q, j0 = oi�q�1, j00

if &jjCi, j � Ci�q, j0 jj2<qDd

&jjCi, j � Ci�q�1, j00 jj2<(q+ 1)Dd,

then
let Si, j = (Si�q, j0 + Si�q�1, j00 )=2,
add object oi, j to the set Oi with its Ci, j and updated
Si, j,
break

end if
end for

end if
Eliminate the low score (\tu) object oi, j from the candidate
list.

end for
end for
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training data, the study chose the S3T method that

engages the inspector in continuous refinement of the

network. In each iteration, a set of unlabeled data is

fed to the trained deep neural network to be labeled

automatically. Using the temporal coherence informa-

tion of predictions, hard samples are collected from this

newly created labeled data. A representative subset of

the hard samples is identified and added to the training

dataset to refine the network. Before this subset is

added to the training dataset, a portion of it is manu-

ally re-annotated by the inspector to guide the net-

work’s learning. This process continues iteratively until

the network performance reaches the target. The S3T

method with human-in-the-loop is further summarized

as the pseudocode in Algorithm 2.

Let l denote the index of iterations. Figure 4 shows

that a small training dataset T0 is created to transfer the

Mask R-CNN. Then, the network is applied to an unla-

beled dataset, V . If the performance of the network is

not satisfying, a portion of the prediction result is

sampled as the additional training data, denoted as Sl.

For the initial iteration when l = 0, this Sl is taken from

all prediction result to guide the network. In each itera-

tion, the selected sampled data Sl is eliminated from V

for the further assessment of future networks. For the

following iterations (i.e. l.0), the S3T algorithm differ-

entiates hard samples from easy samples in V . Easy sam-

ples are segmented by the network with relatively high

reliability, whereas hard samples, Rl, which contain a

variety of situations when objects are difficult to detect,

are recovered by the developed temporal coherence anal-

ysis. The sample Sl (for l.0) is selected only from the

recovered hard samples Rl. Sl is divided into two

mutually exclusive and collectively exhaustive subsets,

Sl,a and Sl, 1�a, where a and 1� a indicate their sizes in

proportion to Sl. Sl,a has been automatically annotated

by the trained network in testing and directly added to

the training dataset. The inspector re-examines the

remainder of Sl and corrects false predictions, if any,

before adding the inspector-annotated data Ml to the

training dataset. That is, at the end of the lth iteration,

the training dataset is updated per equation (1)

Tl + 1 = Tl [Ml [ Sl,a ð1Þ

The network is re-trained using the updated training

dataset and the prediction result is assessed. If the ter-

mination criterion has been met, the fine-tuning process

is terminated. Otherwise, it continues refining the net-

work. The termination criterion of the iterative process

is subject to the user’s choice considering the conse-

quences of false positive and false negative results,

respectively. This study chose to terminate the iterative

process when both precision and recall reach 90% or

higher, and f1-score is 92% or higher, at the

Intersection over Union (IoU) value 0.5.

This iterative process has two designs: the method

for sampling Sl from Rl, and the way of determining the

fraction of Sl to be examined by the inspector.

Skip sampling method. Consecutive frames of a video are

similar and, therefore, sampling a portion of frames

Algorithm 2 Iteratively Fine-Tuning the Network with S3T.

// l: index of iteration;
// Tl : the training dataset for iteration l;
// V: unlabeled dataset for S3T;
// Rl : the recovered hard dataset from temporal coherence
analysis;
// Sl : a subset of Rl , which is sampled based on the sampling
method SP(s);
// Sl,a: a fraction of Sl in the size of a automatically annotated by
the trained network;
// Sl, (1�a): a fraction of Sl in the size of 1� a to be manually
annotated by the inspector;
// Ml: the data annotated by the inspector and added to the
training dataset in iteration l.
for lø 0 do

Fine-tune the network with Tl ,
break if the performance meets the requirement. Obtain Rl
through the temporal coherence analysis,
if l = 0 then
sample Sl from the prediction result,

else
sample Sl from Rl using the skip sampling method,

end if
Split Sl into two mutually exclusive parts, manually annotate
Sl, (1�a) to obtain Ml ,
Tl + 1 = Tl [Ml [ Sl,a,
increase a to lower the inspector’s workload in data
annotation if applicable.

end for

Figure 4. Schematic diagram of the semi-supervised self-

training (S3T) for refining the Mask R-CNN model iteratively.
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that are evenly distributed on the timeline would be

sufficient for representing the video. This study samples

Sl from Rl, for any iteration l, according to a skip sam-

pling strategy SP(s) that samples a frame and then

skips s frames. The choice of a value for s needs to con-

sider the inspection platform’s speed and the camera

speed. The unlabeled test dataset V is a time series of

Nv frames. ISP is a 13Nv indicator vector of binary vari-

ables that define frames to be sampled according to

SP(s); that is

ISP(n) = 1 ð2Þ

for n= 1, 1+ (s+ 1), . . . , 1+ (s+ 1) Nv=(s+ 1)b c. IR, l is

also a 13Nv indicator vector of binary variables that

identify the frames recovered by the temporal coher-

ence analysis. The Hadamard product of IR, l and ISP
yields the vector IS, l

IS, l = IR, l 8 ISP ð3Þ

which identifies the frames to be sampled from Rl

according to SP(s) for forming Sl.

Regulating the amount of human guidance in S3T. A fraction

of the dataset Sl from any iteration is automatically

annotated by the trained network. The initial perfor-

mance of the neural network is not high and data mis-

labeled by the network are present in Sl. Through

examining a fraction of Sl and correcting mislabeled

data, the experienced inspector guides the network to

quickly learn new features. Sl,a is the fraction of Sl
which is added to the training dataset without further

human annotation. The inspector’s guidance can be

gradually reduced as the network starts to learn well by

itself and provide improved prediction. Therefore, the

fraction of automatically annotated data Sl,a can be

gradually increased over iterations. Choosing the initial

value of a is also critical as it regulates the amount of

mislabeled data that may enter the training dataset

when the model performance is well below the target

performance. Determining an optimal selection of a

for the S3T method is a research problem but going

beyond the scope of this article. The article illustrates

the impact of choosing a in Table 5.

Implementation and result discussion

This section illustrates the implementation and evalua-

tion of the proposed method to create the assistive intel-

ligence model for processing the bridge inspection video

data. Findings from this study are discussed.

The implementation detail

The data. BIRDS,48 an aerial inspection platform devel-

oped by the INSPIRE University Transportation

Center, was used to capture videos of bridges in inspec-

tion. The average speed of BIRDS is 20 miles per hour

(mph). The frame rate of the camera is 30 frames per

second (fps) and the image resolution is 3840 3 2160

in pixel. A dataset D, which is an inspection video of

4440 images, was used to develop and evaluate the

assistive intelligence model. The initial training dataset

T0 contains 40 images, with 18 images from D and 22

images from the inspection of other bridges. Choosing

some images of other bridges adds helpful data varia-

tion to the initial training dataset. In total, the initial

training dataset contains 482 objects with class labels,

which are from 10 different classes of bridge elements

interested to inspect. The 10 object classes are barrier,

slab, pier, pier cap, diaphragm, joint, bearing, pier wall,

bracket, and rivet, as illustrated in Figure 5. This study

used the image annotation tool VGG Image annota-

tor49 to annotate labels of the objects and give pixel-

level coordinates to those objects. An unannotated

dataset V that comprises 670 images from the dataset

D was particularly created for implementing the S3T

method. V contains 5916 objects from the 10 classes. A

test dataset Ts has been created to evaluate the model

performance from each training iteration. This dataset

has 212 images with 1872 objects.

Figure 5. Sample images with corresponding pixel-level object

polygon with labels.
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Initial adaptation. The proposed method was implemen-

ted by extending an existing implementation of Mask

R-CNN by Matterport Inc.50 Training and testing were

performed using two Nvidia Tesla V100 GPUs with

32GB of memory. The pre-trained ResNet-50 feature

extractor was fine-tuned using the initial training data-

set T0. Different data augmentation techniques have

been applied during the training stage to improve the

model’s ability to generalize at various applicability

where input data distortion is present. Those include

horizontal flip, rotation, translation, color distortion,

and random noise. The network head and the mask

head (see Figure 2) were trained for 30 epochs while

keeping all the parameters of the previous layers fixed.

Each epoch consists of 100 training iterations.

Stochastic gradient descent was used as the optimizer

and the momentum was 0.9. The learning rate of 0.001

and a batch size of 4 were used in this training process

that took about 21 min to complete. According to

Algorithm 2, after the Mask R-CNN is transferred to

have an initial adaptation to the task of bridge inspec-

tion, V is annotated by this network. Considering the

performance of the initially adapted network, eight

images, which are about 1% of the images in V , are

selected and re-annotated by the inspector and added

to the initial training dataset T0, becoming T1, the train-

ing dataset for the next iteration. These eight images

are excluded from V for further iterations. Letting the

inspector to check a small amount of the prediction

result of the initially adapted network in accordance

with the performance is a practical approach to con-

trolling the quality of the training dataset.

Inference and iterative refining. Table 1 summarizes the

iterative training process for fine-tuning the deep neural

network using the S3T method with the inspector’s gui-

dance. Refining the network for the first iteration of

the S3T method was initiated with the last epoch of the

previous iteration (i.e. the transfer learning) and contin-

ued for 20 more epochs. Then, the remainder of the

dataset V , VnS0, is annotated by the refined network.

Temporal coherence analysis is applied to VnS0, which
contain objects with prediction scores between 0.5 and

0.9 to recover false negative results. This study consid-

ered 0.5 as the lower boundary of prediction threshold

tl and 0.9 as the upper boundary tu, which were found

to minimize the volume of false negative results based

on numerical experiments. The temporal coherence

analysis in the first iteration recovered 113 frames, and

37 frames of these were sampled according to SP(2),

the sampling strategy considered by this study. In this

study, a was 70% in the first iteration, which means

the inspector re-annotated 30% of S1 before adding

them to the training dataset. In the second iteration,

the network was refined using the updated training

dataset T2 and then it was used to evaluate Vn(S0 [ S1).

Temporal coherence analysis recovered 79 images, and

33 images were sampled and added to the training

dataset. a was increased to 80% of S2 and the inspector

annotated only 7 images out of the 33 before adding

them to the training dataset. The iterative process was

terminated after the third iteration of training when the

target performance is achieved.

Quantitative results

In this study, experiments were conducted to evaluate

the merits of the proposed method, the job efficiency of

the developed assistive intelligence model, and its gen-

eralization capacity.

Object detection results

To evaluate the performance of object detection with

the developed deep neural network, three standard eva-

luation matrices were used in this study:

� Precision: it counts the number of correct predic-

tions out of the total number of predictions;
� Recall: it counts the number of correct predictions

out of the total number of ground truth objects;
� F1-Score: it is the harmonic mean of precision and

recall.

This study used the IoU to determine whether a pre-

dicted object can be considered as a correct prediction.

The IoU is the intersection between the predicted

bounding box and the ground truth bounding box over

the union of them. The ability of the network to cor-

rectly detect objects was evaluated on a range of IoU

threshold values from 0.1 to 0.9 at a step of 0.1. The

precision, recall, and f1-score from evaluating the test

dataset Ts are summarized in Table 2. From the table,

it can be observed that, given an IoU threshold value

in the range of [0.1, 0.5], the Mask R-CNN that was

initially transferred in for the bridge of inspection

Table 1. Data sizes (# images) in transfer learning (TL) and

semi-supervised self-training (S3T).

TL S3T

l: index of iterations 0 1 2 3

Tl : training dataset (equation (1)) 40 48 85 118
Rl : recovered hard data samples – 113 79 50
Sl : a sampled subset of Rl – 37 33
a: % of Sl for automatic annotation – 70 80
Sl,a: automatically annotated data – 26 26
Ml : manually annotated data 8 11 7
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achieved the precision from 80.3% to 87.5%, the recall

from 74.4% to 81.0%, and f1-score from 77.2% to

84.1%. The performance indicates that the transferred

network demonstrated some adaptability to the new

task, but the amount of false negative detection is non-

negligible. The performance of the network has not

reached a satisfying level.

Therefore, the network was iteratively refined using

the proposed S3T method with human-in-the-loop to

seek further improvement. After being re-trained in the

first iteration, the recall was effectively increased by

15%, approximately. For example, when the IoU

threshold value is 0.5, the precision increases from

80.3% to 81.7%, and recall becomes 90.3% from

74.4%, yielding a 85.8% f1-score after the first itera-

tion. The changes indicate that M0, the additional small

set of manually annotated hard samples added to the

training dataset, effectively improves the ability to cor-

rectly detect more objects. The performance of the net-

work has met the requirement after being refined for

additional two iterations, reaching 91.8% precision,

93.6% recall, and 92.7% f1-score at the IoU threshold

value 0.5. The S3T method has effectively brought the

performance of the network to a satisfying level. As the

IoU threshold value decreases gradually from 0.5 to 0.1

at a step size of 0.1, the evaluation becomes less conser-

vative. Consequently, fewer false negative detections

are rendered by the network but maybe more false posi-

tive detections. However, selecting a higher IoU thresh-

old value makes the evaluation more conservative. As it

increases gradually from 0.5 to 0.9 at a step size of 0.1,

the f1-score is diminishing, signifying the reduction of

both precision and recall values. In this application set-

ting, false positive detections are less concerned than

false negative detections. This is because the inspector

will retrieve and analyze frames that contain detected

and segmented objects that he or she wants to inspect.

Therefore, false positive detections can be found and

eliminated by the inspector. But, false negatives are

more critical because inspectors cannot overlook any

potential damages. From the analysis above, it can be

inferred that this S3T method is very applicable to the

development of the proposed assistive intelligence

model for detecting bridge elements from inspection

videos.

Another important observation from the table is the

relationship between the IoU threshold value and the

recall value during the iterative process of network

Table 2. Performance (%) of transfer learning (TL) and semi-supervised self-training (S3T) in iterations.

Iteration, l TL S3T

0 1 2 3

IoU
0.1 Precision 87.5 86.3 94.0 93.45

Recall 81.0 95.4 93.5 95.30
F1-score 84.1 90.6 93.8 94.4

0.2 Precision 87.1 85.7 93.9 93.5
Recall 80.7 94.8 93.3 95.3
F1-score 83.4 90.0 93.6 94.4

0.3 Precision 86.8 85.2 93.7 93.4
Recall 80.3 94.2 93.2 95.2
F1-score 83.4 89.5 93.4 94.3

0.4 Precision 84.6 84.2 93.2 93.1
Recall 78.3 93.1 92.7 94.9
F1-score 81.3 88.5 93.0 94.0

0.5 Precision 80.3 81.7 90.7 91.8
Recall 74.4 90.3 90.1 93.6
F1-score 77.2 85.8 90.4 92.7

0.6 Precision 75.9 77.4 85.7 88.5
Recall 70.2 85.6 85.1 90.2
F1-score 73.0 81.3 85.4 89.3

0.7 Precision 65.4 66.6 74.6 78.1
Recall 60.5 73.6 74.2 79.6
F1-score 60.5 73.6 74.2 79.6

0.8 Precision 43.7 43.8 50.1 49.0
Recall 40.5 48.5 49.8 49.9
F1-score 42.1 46.0 49.9 49.5

0.9 Precision 6.3 3.0 6.7 4.6
Recall 5.9 3.3 6.7 4.7
F1-score 6.1 3.1 6.7 4.7
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fine-tuning. A variation of a recall value within a range

of 6.6% has been observed after the initial adaptation

through transfer learning when the IoU threshold value

increases from 0.1 to 0.5. However, this variation

reduces in each successive iteration. For example, after

the third iteration, this variation reduces to 1.6%.

Precision and recall values at any of the IoU threshold

values increase over iterations and reach the maximum

after the third iteration. For example, at the IoU

threshold value 0.5, f1-score increases about 8.6%,

4.6%, and 2.3%, respectively, from their previous itera-

tion. This means the network learns new features from

each iteration and gradually moves toward the learning

limit. The improvement rate is diminishing during the

iterative process. When the IoU threshold value contin-

ues to increase from 0.5 and onward, the recall value in

any iteration drops rapidly and has been less than 10%

when the IoU threshold value is 0.9. Moreover, the

increasing trend of the recall value over iterations slows

down quickly at the IoU threshold value 0.6. When the

IoU threshold value is greater than 0.6, the increasing

trend of recall over iterations is rapidly flatted out and

becomes a decreasing trend. The reason for this sharp

decrease in recall value along with the increase in the

IoU threshold value is that the network considers a

detected object as a true positive detection only if the

overlap between the ground truth and the bounding

box of the detected object is very high, which increases

the amount of false negative detections and decreases

the amount of true positive detections.

Instance segmentation results. The study also evaluated

the quality of the proposed assistive intelligence model

in segmenting bridge elements from inspection videos.

The mask IoU is a measure of segmentation quality,

which is the ratio of the overlap between the predicted

segmentation mask and the ground truth mask to the

union of these two masks. The predicted segmentation

mask is considered as a true positive prediction if the

mask IoU value is no less than a pre-specified thresh-

old. The higher the threshold value is selected for the

evaluation, the stricter the evaluation becomes.

Accordingly, the precision for each class can be calcu-

lated. After that, the average of the class-level precision

values, named mean precision and denoted as mP, is

determined.

Figure 6 shows the curve of mP value during the

iterative process for fine-tuning the network at four lev-

els of mask IoU threshold value, wherein the x-axis

represents the number of iterations and the y-axis rep-

resents the mP value. The plot shows the mP curve at

the mask IoU threshold value 0.4 is an upwarding

curve on the top of other curves. The mP value at the

end of the iterative process reaches 93%. When the

mask IoU threshold value increases to 0.5, the curve

just drops slightly and the shape of the curve has no

change. The mP value at the end of the iterative process

reaches 92%. However, with a larger mask IoU thresh-

old value, such as 0.75, the mP curve clearly drops to a

lower position. This is because the amount of true posi-

tive results at a larger mask IoU threshold value is low

although the total number of correctly segmented

objects increases over iterations.

Efficiency of transfer learning. To demonstrate the high

cost-effectiveness of transfer learning for the initial

adaptation, this study trained a Mask R-CNN from the

scratch using 144 annotated images. Results of the com-

parison are summarized in Table 3. The first 600 epochs

for training the network from scratch took 13.2 h, and

the network performance (32.3% precision, 18.3%

recall, and 23.4% f1-score with an IoU threshold value

0.5) is well below the target performance when it was

tested on the dataset Ts. The experiment clearly demon-

strates that the network requires a huge number of

training samples to be trained from the scratch, which

is infeasible for developing the desired model of inspec-

tion video data analysis due to the scarcity of labeled

data. The proposed transfer learning used only 40

annotated images as the training dataset and took only

20 min to transfer the capability of an existing Mask R-

CNN in multiclass object detection and segmentation

Figure 6. The mean precision (mP) over iterations at different

mask IoU threshold values.

Table 3. Cost-effectiveness of transfer learning in comparison

with training from the scratch.

Training
time (h)

Precision
(%)

Recall
(%)

F1
(%)

Training from scratch 13.2 32.3 18.3 23.4
Transfer learning 0.33 80.3 74.4 77.2
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to the new task with bridge elements. The performance

of the transferred Mask R-CNN has a much better

result (80.3% precision, 74.4% recall, and 77.2% f1 at

the IoU 0.5). The comparison summarized in Table 3

demonstrates that transfer learning reduced the training

time by at least 95% and has improved the performance

of the network tremendously.

Comparison with a state-of-the-art method. This study com-

pared the proposed approach (i.e. transfer learning plus

S3T with human-in-the-loop) to the Mask R-CNN

adapted with transfer learning only and the traditional

self-learning, from the perspectives of annotation time,

training time, inference speed, and accuracy. To show

the reliance of the performance of the transferred Mask

R-CNN on the volume of training dataset, this study

measured the performance of the Mask R-CNN after

independently transferred with four random training

datasets: 0.5% (22 images), 1% (44 images), 5% (220

images), and 10% (440 images) of images in Dataset D.

Results from the comparison are summarized in

Table 4. It is observed that the transfer learning by

itself can improve the performance of the network, but

the improvement is at a rapidly increasing cost of anno-

tation time. Transferring the Mask R-CNN with 440

annotated images took 1430 min (i.e. 23.8 h) for data

annotation and 66 min for training. This network

achieves 89.7% precision, 92.3% recall, and 91.0% f1-

score, close to the performance of the proposed

approach in this article. The proposed approach

reduces the annotation time by 85% with a comparable

training time (only 6 min longer), and it achieves a bet-

ter performance (91.8% precision, 93.6% recall, and

92.7% f1-score). Self-training does not use the inspec-

tor guidance in the iterative re-training process, thus

saving about 1 h of annotation time compared to the

S3T with human-in-the-loop. But the performance is

not satisfying. The inference speed of all the models is

0.55 s per frame. This comparative study demonstrated

that the S3T method with human-in-the-loop is more

cost-effective compared to directly transferring the

Mask R-CNN. It also significantly improves the model

performance compared to traditional self-training, due

to the engagement of experienced inspectors in the

iterative re-training process. The impact of human-in-

the-loop on self-training is further examined.

The impact of human-in-the-loop on self-training. The S3T

method that keeps human-in-the-loop is a combination

of self-training and active learning. The portion of

additional training data re-annotated by experienced

inspectors in each iteration of the self-training process

may impact the efficiency of model development and

the performance of the resulting final model. This study

used four experiments to illustrate the impact of

human-in-the-loop on self-training, which are summar-

ized in Table 5. The four experiments all began with

the same initial model whose performance is 80.3%

precision, 74.4% recall, and 77.2% f1-score. In all the

experiments, the model is trained for three iterations.

Inspectors annotated eight images to retrain the initial

model for the first iteration. With this iteration, the

performance is increased to 81.7% precision, 90.3%

recall, and 85.8% f1-score. After that, the four experi-

ments differ in the ratio of model-annotated additional

training data (a). If an experiment yields satisfying

model performance (i.e. both recall and precision are at

least 90%, and f1-score is at least 92% at the IoU

threshold value 0.5) within three iterations, the final

performance is highlighted as bold.

Experiment 1 is our approach in Tables 2 and 4.

Compared to Experiment 1, Experiment 2 let the

inspector relabel more data for the second and third

iterations of training. It not only provided a satisfying

performance at the end of Iteration 3 but also increased

the f1-score with a small margin over that from

Experiment 1. Compared to Experiment 1, Experiment

3 used less inspector-annotated additional training data

Table 4. Comparison of the proposed approach to directly transferring a Mask R-CNN with various volumes of training dataset.

Method No. of manually
annotated images

Annotation
time (min)

Training
time (min)

Inference
speed
(s/frame)

Precision
(%)

Recall
(%)

F1-score
(%)

Mask R-CNN 22 72 18 0.55 68.0 68.4 68.2
Mask R-CNN 44 143 20 0.55 82.0 79.0 80.5
Mask R-CNN 220 715 33 0.55 85.8 91.8 88.7
Mask R-CNN 440 1430 66 0.55 89.7 92.3 91.0
Self-training 48 156 72 0.55 88.9 76.7 82.4
Our approach 66 215 72 0.55 91.8 93.6 92.7

R-CNN: region-based convolutional neural network.

The bold font in Table 4 highlights the best results.
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for the third iteration. Although it does not achieve the

target performance at the end of the third iteration, f1-

score is just below the target by 0.1% of a tiny margin.

That is, the target performance is likely to be reached

in the next iteration of training. Unlike Experiments 1–

3 that are all self-training with human-in-the-loop,

Experiment 4 is the traditional self-training without

human-in-the-loop. That is, the model teaches itself by

adding additional data to the training dataset itera-

tively. The added new data are those with the most

confident label prediction by the model. To make it a

fair comparison, Experiment 4 used the same amount

of additional training data as Experiment 1 in each

iteration except that the additional data for Iterations 2

and 3 are all model-annotated. By the end of the third

iteration, the model performance is well below the tar-

get performance. The drop of the model performance

from the first iteration to the second iteration and the

slow increase in the performance from the second itera-

tion to the third iteration indicate that including the

inspector’s guidance in self-training is critical.

The proposed S3T method with human-in-the-loop

(in Experiments 1–3) has tremendously improved the

efficiency of model development as it is compared to

the supervised learning method (Mask R-CNNs in

Table 4). Its performance improvement has a large

margin over the traditional self-training (in Experiment

4). Further optimizing the engagement of inspectors in

self-training has just incremental improvement against

the heuristic strategy of this article.

Job efficiency of the assistive intelligence model. A full image

usually contains multiple elements of the bridge. An

inspector needs to search and find all the elements, seg-

ment each identified element by marking its boundary,

and provide the object name. On average, each image

in this study contains 15 objects of different sizes and

shapes. To provide better quality, a polygon rather

than a rectangle is preferred for segmenting identified

bridge elements. Drawing a tight polygon on a single

object may require defining 15–30 points on the image.

On average, it took around 3.25 min to detect and

manually segment bridge elements in a full image in

this study. Not to mention that issues related to human

factors, such as the fatigue developed from repeatedly

working on high cognitive tasks, further lengthen the

time required for manually analyzing the big video data

collected from bridge inspection. The approach that

this article proposes requires inspectors to analyze a

small amount of data manually, helping the network

achieve satisfying performance in object detection and

segmentation. The automated data processing relieves

inspectors from the time-consuming labor work. The

developed assistive intelligence model can finish the

same job with very high accuracy but with only 0.55 s

Table 5. Variants of inspector engagement in self-training.

Iterations 0 1 2 3

1 Precision (%) 80.3 81.7 90.1 91.8
Recall (%) 74.4 90.3 90.7 93.6
F1-score (%) 77.2 85.8 90.4 92.7
Sl,a (frame) 0 26 26
Ml (frame) 8 11 7
al (%) 0 70 80

2 Precision (%) 80.3 81.7 91.8 94.5
Recall (%) 74.4 90.3 84.7 91.5
F1-score (%) 77.2 85.8 88.1 93.0
Sl,a (frame) 0 22 26
Ml (frame) 8 15 11
al (%) 0 60 70

3 Precision (%) 80.3 81.7 90.1 91.7
Recall (%) 74.4 90.3 90.7 92.1
F1-score (%) 77.2 85.8 90.4 91.9
Sl,a (frame) 0 26 28
Ml (frame) 8 11 3
al (%) 0 70 90

4 Precision (%) 80.3 81.7 88.3 88.9
Recall (%) 74.4 90.3 75.7 76.7
F1-score (%) 77.2 85.8 81.5 82.4
Sl,a (frame) 0 37 33
Ml (frame) 8 0 0
al (%) 0 100 100
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per image, which is 350 times faster than the manual

approach. The impact of the improved work efficiency

is tremendous because a real-world task usually

requires analyzing hundreds of thousands of images.

In the real-world implementation, the developed

assistive intelligence model will detect and segment

bridge elements from the inspection video data. Then,

the inspector retrieves the elements of interests from

the large pool of video frames and evaluates damages

or other defects associated with them. The developed

model assists inspectors in that, it reduces the human

effort in searching and finding the needed data so that

inspectors can focus on knowledge-intensive tasks.

Moreover, by removing the burden of browsing hours

of videos to look for bridge elements for evaluation,

inspectors are less likely to work in a state of fatigue or

lacking focus.

Generalization capability of the proposed method. To assess

if the developed network is applicable to other bridges,

the study used it to detect and segment the same 10

classes of bridge elements of another two bridges,

named Bridges A and B. Correspondingly, the bridge

that has had a network developed for is named Bridge

C. When the network built for Bridge C was applied to

Bridges A and B, the performance of it is comparable

to that of the initial network for Bridge C. The trained

network achieves 76.8% precision, 73.0% recall, and

74.8% f1-score for Bridge A; and for Bridge B it accom-

plishes 61.2% precision, 60.0% recall, and 60.6% f1-

score. Bridge A is more similar to Bridge C than Bridge

B. Therefore, the network trained for Bridge C per-

forms better in analyzing the inspection data of Bridge

A than Bridge B. Therefore, the network for Bridge C

has a certain degree of generalization, and it is good

enough to serve as the initial network for other bridges.

Further implementing the S3T method developed in this

article will adapt the assistive intelligence model devel-

oped for Bridge C to Bridges A and B, respectively, to

achieve the target performance on these bridges.

Qualitative results

The developed assistive intelligence model was tested

on the inspection dataset D. Some qualitative examples

selected from the testing result are illustrated below.

An illustrative example of temporal coherence

analysis

Figure 7 illustrates an example wherein the temporal

coherence analysis improves the model performance by

eliminating false negative results. In the first row of

Figure 7, the single-image based network correctly pre-

dicted the diaphragm in the first and the fourth frames,

however, failed to detect it in the second and the third

frames. The second row is the result after applying the

temporal coherence analysis, which shows that the dia-

phragm was correctly segmented in all of the four

frames. Note that false negative results are more severe

than false positive results in the task of bridge inspec-

tion. Because false positives rendered by the deep net-

work can be rechecked by the inspectors but false

negatives ignored by the network will not have such an

opportunity. Therefore, effectively reducing false nega-

tive results is particularly more important for the bridge

inspection.

Representative examples of successful detection and

segmentation

Figure 8 (a) illustrates some representative examples of

successful segmentation of bridge elements by the devel-

oped network. The first column of Figure 8(a) is an

Figure 7. An example of temporal coherence analysis.
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example that a partial joint of different scales in three

images is detected and segmented correctly from all

images. The second column illustrates the capability of

detecting and segmenting a rivet from various views.

The network successfully detects and segments the rivet

in a low light condition, as the second figure in Column

2 illustrates. The third column comprises successful

examples of segmenting the rivet at a wide range of

scale variations. The fourth column shows that the

developed network is successful in detecting and seg-

menting multiple objects at various distances in com-

plex scenes.

Representative examples of false negative detection

The red bounding boxes in Figure 8(b) represent false

negative results by the developed network. The dia-

phragm in the top frame and the pier cap in the middle

frame are difficult to recognize because of the dark illu-

mination level. In the bottom frame, the developed net-

work fails to detect the barrier due to the high

exposure. The rivet in the bottom frame is not detected

because of its similar appearance with the background.

External illumination sources on inspection platforms

and image contrast enhancement techniques are poten-

tial solutions to overcome these challenges.

Conclusion

This article presents a method to develop an assistive

intelligence model to support bridge inspectors in seg-

menting multiclass bridge elements from big complex

video data collected by aerial inspection platforms.

With a small initial training dataset annotated by

inspectors, a Mask R-CNN pre-trained on a large pub-

lic dataset was transferred to the new task of bridge

inspection. Then, the temporal coherence analysis was

used to recover false negative results and thus identify

the weakness of the current network to improve, which

adds a nearly negligible additional computation load

during the inference compared to other methods based

on the motion guidance. An S3T algorithm was devel-

oped to engage the inspector in refining the network

iteratively. The domain knowledge of the inspector

quickly brought the network’s performance to a satisfy-

ing level.

Assessment results of the developed assistive intelli-

gence model showed that the proposed approach to the

model development uses a small amount of time and

guidance from bridge inspectors to achieve a high per-

formance in segmenting multiclass structural elements

from the big complex inspection videos. For example,

the developed model has achieved around 94% of pre-

cision, 92% of recall, and 92% mAP when the IoU

threshold value is 0.5. The study revealed that having

sufficient guidance from experienced bridge inspectors,

particularly in early iterations of the S3T for refining

the network is critical for maintaining the quality of

the training dataset. The amount of human annotation

can be gradually reduced as the network becomes more

reliable in performing its tasks.

The article has identified rooms for improvement.

Adapting the assistive intelligence model to bridges with

additional structural elements is the next step to extend

this article. One important future work is to improve

the inference speed. While the developed model is able

to achieve a high performance with a small amount of

human hours and the computation time for training the

network, improving the testing speed to have the real-

time inference capability is highly desired. Moreover,

contextual information and the spatial correlation

among objects could be utilized to further improve the

segmentation accuracy. Another future work will evalu-

ate the change in cognitive load and other psychological

states of inspectors assisted by the assistive intelligence

in bridge inspection. The evaluation involves using bio-

metric sensors, such as eye movement trackers and elec-

troencephalogram (EEG), to detect heavy cognitive

Figure 8. Examples of (a) successful detection and segmentation and (b) false negative detection.
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load, fatigue, and loss of focus of inspectors in their

tasks.
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40. Beluch WH, Geneweinü TN, rnberger A, et al. The power

of ensembles for active learning in image classification.

In: Proceedings of the IEEE conference on computer vision

and pattern recognition, Salt Lake City, UT, 18–23 June

2018, pp. 9368–9377. New York: IEEE.

41. Sener O and Savarese S. Active learning for convolutional

neural networks: a core-set approach. In: International

Conference on Learning Representations, https://openre-

view.net/forum?id=H1aIuk-RW

42. Morrison D, Milan A and Antonakos E. Uncertainty-

aware instance segmentation using dropout sampling. Tech-

nical report, CVPR Robotic Vision Probabilistic Object

Detection Challenge, https://nikosuenderhauf.github.io/

roboticvisionchallenges/assets/papers/CVPR19/rvc_4.pdf

43. Gal Y, Islam R and Ghahramani Z. Deep bayesian active

learning with image data. In: Proceedings of the 34th

international conference on machine learning, Sydney,

NSW, Australia, 6–11 August 2017, pp. 1183–1192. New

York: ACM.

44. Yang L, Zhang Y, Chen J, et al. Suggestive annotation: a

deep active learning framework for biomedical image seg-

mentation. In: International conference on medical image

computing and computer-assisted intervention, Quebec

City, QC, Canada, 10–14 September 2017, pp. 399–407.

New York: Springer.

45. Siddiqui Y, Valentin J and Nießner M. ViewAL: active

learning with viewpoint entropy for semantic segmenta-

tion. In: Proceedings of the IEEE/CVF conference on com-

puter vision and pattern recognition, Seattle, WA, 13–19

June 2020, pp. 9433–9443.

46. Goodfellow I, Bengio Y and Courville A. Deep learning.

Massachusetts, MA: MIT Press, 2016.

47. He K, Zhang X, Ren S, et al. Deep residual learning for

image recognition. In: Proceedings of the IEEE conference

on computer vision and pattern recognition, Las Vegas,

NV, 27–30 June 2016, pp. 770–778. New York: IEEE.

48. Ghen G. Bridge inspection robot deployment systems

(BIRDS). Technical report, Department of Transporta-

tion, 2020, https://rip.trb.org/view/1596887

49. Dutta A and Zisserman A. The VIA annotation software

for images, audio and video. In: Proceedings of the 27th

ACM international conference on multimedia MM ’19,

Nice, 21–25 October 2019, pp. 2276–2279. New York:

ACM.

50. Abdulla W. Mask R-CNN for object detection and

instance segmentation on Keras and TensorFlow, 2017,

https://github.com/matterport/Mask_RCNN

Appendix 1

Figure 9 describes an object in the 3D camera reference

frame and the 2D image pixel reference frame. At a cer-

tain time, the coordinates of the object in the camera

reference frame are (x, y, z)T , and (xm, ym)
T is the image

pixel reference frame. The relationship of these two sets

of coordinates of the object is determined as

xm
ym

� �

=
ox
oy

� �

�
f

sm

x=z
y=z

� �

ð4Þ

where (ox, oy)
T represent the coordinates of the princi-

pal point (in pixel) of images, f is the focal length of

camera, and sm is the size of pixel (millimeter per pixel

Karim et al. 17



and it is assumed to be the same on both Xm and Ym
axes in this study). (ox, oy)

T , f , and sm are intrinsic cam-

era parameters.

In this study, the object is static, and the camera is

moving, in the world reference frame. But in the cam-

era reference frame, the object is moving. Imaging that

the object moves from (x, y, z)T to (x0, y0, z0)T in 1=u s in

the camera reference frame, where u is the speed of the

camera in capturing images (i.e. how many images are

taken per second). Accordingly, the object moves from

(xm, ym)
T to (x0m, y

0
m)

T in the next frame of image.

(x0, y0, z0)T must be within an L2 ball of radius e cen-

tered at (x, y, z)T . The radius of the ball is determined

by the maximum linear and rotational speeds of the

camera. Therefore, the displacement of the object from

one frame of image to the next frame is

Dr =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(x0m � xm)
2
+ (y0m � ym)

2

q

=
f

sm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x0

z0
�
x

z

� �2

+
y0

z0
�
y

z

� �2

s

<
f

sm

E

min (jzj, jz0j)
=Dd

ð5Þ

Equation (5) shows the maximum displacement of an

object (Dd) from one frame to the next frame of image

is proportional to the focal length (f ) and the radius of

the L2 ball that defines the boundary of the object’s

relative motion rate in the camera reference frame (E).

Dd is inversely proportional to the size of pixel sm and

the minimum distance of the camera to the object along

the optical axis when the two successive frames are cap-

tured (min (jzj, jz0j)). Equation (5) indicates Dd is

affected by intrinsic camera parameters f and sm.

Extrinsic parameters affect Dd too because the term

E=min (jzj, jz0j) is determined by the position and

motion rate of the camera in the world reference frame.

Figure 9. Intrinsic camera parameters define the relationship between the camera reference frame and the image pixel reference

frame.
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