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Abstract

Bridge inspection is an important step in preserving and rehabilitating transportation infrastructure for extending their
service lives. The advancement of mobile robotic technology allows the rapid collection of a large amount of inspection
video data. However, the data are mainly the images of complex scenes, wherein a bridge of various structural elements
mix with a cluttered background. Assisting bridge inspectors in extracting structural elements of bridges from the big
complex video data, and sorting them out by classes, will prepare inspectors for the element-wise inspection to deter-
mine the condition of bridges. This article is motivated to develop an assistive intelligence model for segmenting multi-
class bridge elements from the inspection videos captured by an aerial inspection platform. With a small initial training
dataset labeled by inspectors, a Mask Region-based Convolutional Neural Network pre-trained on a large public dataset
was transferred to the new task of multiclass bridge element segmentation. Besides, the temporal coherence analysis
attempts to recover false negatives and identify the weakness that the neural network can learn to improve.
Furthermore, a semi-supervised self-training method was developed to engage experienced inspectors in refining the
network iteratively. Quantitative and qualitative results from evaluating the developed deep neural network demonstrate
that the proposed method can utilize a small amount of time and guidance from experienced inspectors (3.58 h for label-
ing 66 images) to build the network of excellent performance (91.8% precision, 93.6% recall, and 92.7% fl-score).
Importantly, the article illustrates an approach to leveraging the domain knowledge and experiences of bridge profes-
sionals into computational intelligence models to efficiently adapt the models to varied bridges in the National Bridge
Inventory.
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Transportation. Results of the visual inspection are
inaccurate and vary largely among different inspectors
although the image reference approach is developed to
guide the inspection.?

Research has taken place to develop safer and more
efficient bridge inspection methods. Some adopted a
completely manual approach for the bridge routine
inspection, which requires a large number of inspector
hours* and inspection results vary largely among
inspectors. To make inspection faster, cheaper, safer,
more objective, and less interruptive to traffic, methods
to automate the bridge inspection have been developed.
Recently, mobile robots, such as unmanned aerial vehi-
cles (UAVs), have been proven to be very helpful in
dangerous, dull, or dirty applications.” Collecting
inspection video data using aerial platforms reduces or
eliminates the labor-intensive onsite inspection process
and allows inspectors to assess bridges from a safer
location. Yet, the use of robotic inspection platforms
has solved just part of the above-discussed issues, effi-
cient, reliable analysis of inspection video is another
important task.

Letting inspectors watch the collected videos for
hours and days is inefficient. It is desired that a tool
can be developed to assist inspectors in extracting struc-
tural elements from the inspection videos and sorting
them out by classes. Given a such tool, inspectors can
concentrate on the element-wise inspection. Besides, the
rating of a bridge needs to be provided by a compre-
hensive assessment that evaluates the impact of defects
on specific elements of the bridge.>®’ This requires to
spatially relate detected defects with bridge elements
where the defects are located. The above-mentioned
approach to the bridge condition evaluation suggests
that an important step of analyzing the inspection video
data is to extract and index images of bridge elements.
After that, defect evaluation and interpretation will
take place.

Extracting structural elements from the inspection
videos and sorting them out by classes is a very challen-
ging task for practitioners. On one hand, there could be
hours of videos that need to be analyzed for every indi-
vidual bridge of inspection. Watching hours of video to
locate the desired regions of interest is very cumber-
some work for a human. Humans are prone to fatigue.
Studies have shown that the human visual inspection
accuracy declines easily in dull, endlessly routine job.**
The inspector could easily miss elements in big video
data, left there without an examination. Fatigue and
boredom developed from repetitively watching hours of
video data induce the bias in assessing the bridge cle-
ments and evaluating the condition of the whole bridge.
On the other hand, bridge inspection videos captured
by aerial inspection platforms are mainly images of
complex scenes, wherein a bridge of various structural

elements mix with a cluttered background. Assisting
inspectors in analyzing the big complex video data is
greatly desired to improve their job efficiency. The
development of sensing technology and deep learning
methods has significantly advanced the image analysis
for defect detection.'®'® Yet, methods to create deep
learning models for defect detection and classification
are not directly applicable to the research problem of
this article for various reasons. For example, many of
the models require to take close-up images in a nearly
uniform testing background where defects are relatively
large and clear to analyze. Although deep learning
models for segmenting multiclass objects from images
are well developed in computer vision, extracting multi-
class bridge elements from inspection videos captured
by aerial robotic platforms is not a completely solved
problem.

A few studies have developed a strong base for infra-
structure component recognition using computer
vision.'”!® Extracting bridge structural elements from
videos captured by aerial inspection platforms is facing
additional challenges.'® These include, but not limited
to, motion blur, partial or full occlusion, illumination
variation, background variation, and so on. So far,
some studies®® ?* have reported their successful experi-
ences, for example, utilizing the temporal information
of objects in video data. But the additional computa-
tional cost is expensive. The high accuracy of deep
learning models for multiclass object detection and seg-
mentation relies on large-scale dense annotations for
model training. Yet annotating a huge amount of train-
ing data for bridge inspection is not only labor-intensive
but also expensive as it needs the knowledge of domain
experts.”* To truly assist bridge inspectors in their jobs,
the burden of data annotation should not be completely
passed to them. The efforts that domain experts, such
as inspectors, contribute to the deep learning model
development must be well controlled and best utilized.
The strict budget for inspector-annotated training data
and the high requirement on model performance moti-
vate the combination of self-training and active learning
to create a new model training approach, which are
delineated in the next section.

This article proposes a cost-effective method to cre-
ate an assistive intelligence model for detecting and seg-
menting multiclass structural elements from bridge
inspection videos captured by an aerial inspection plat-
form. Achieved job efficiency and the quality of the
model let inspectors truly benefit from the technology
advancement in their jobs. The assistive intelligence
model is not an artificial intelligence model isolated
from users. Instead, inspectors provide their expertise
to guide the development of a deep neural network,
which assures the network quickly converges to a satis-
factory tool for assisting themselves in analyzing the
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videos of any intended bridge of inspection. Filling the
gaps identified in this article, the proposed method has
anticipated technical contributions in threefold: (1) a
quick transfer of an existing deep learning network to
the task of detecting and segmenting multiclass struc-
tural elements from bridge inspection videos, (2) the
use of a lightweight temporal coherence analysis to
recover false negatives and identify weakness that the
network can learn to improve, and (3) the development
of a semi-supervised self-training (S°T) algorithm that
keeps human-in-the-loop to efficiently refine the deep
neural network iteratively.

The remainder of this article is organized as the fol-
lowing. The related work is discussed in the next sec-
tion. Then, the proposed method to create the assistive
intelligence model is delineated. After that, results from
evaluating the proposed method and the developed
model are discussed. In the end, conclusions and future
work are summarized.

Literature review

Being an important step before the detailed damage
assessment, extracting regions of interest from inspec-
tion video data is receiving attention from the bridge
health monitoring community. A few studies have
developed a strong base for infrastructure component
recognition using computer vision. For example,
Narazaki et al.'” used multiscale convolutional neural
networks (CNNs) to perform the pixel-wise classifica-
tion and smoothed the segmentation result using condi-
tional random forest. They used the scene classification
result to help reduce false positives of bridge compo-
nents in complex scene images. Recently, authors from
the same research group'® further examined two seman-
tic segmentation algorithms and three approaches to
integrate a scene classifier and a bridge component clas-
sifier. This study found that the sequential configura-
tion outperforms other configurations if the input is
complex scene images. Yeum et al.'” discussed various
difficulties in analyzing inspection video data collected
by aerial platforms and proposed a CNN-based
approach to locate and extract regions of interest from
images before performing the damage detection. The
study demonstrated the implementation of the devel-
oped neural network in finding candidate image
patches of welded joints of the truss structure. It also
showed that detecting highly relevant structural ele-
ments can greatly reduce the false positive and false
negative detection in the following step of damage
assessment. Yet, detecting and segmenting multiclass
structural elements from inspection videos collected by
aerial platforms is still not solved completely.

On multiclass object detection, the region-based
CNN (R-CNN)* has shown success in many

applications. The R-CNN uses the selective search?® to
generate region proposals to find objects in an image.
The Faster R-CNN?’ was proposed to make the R-
CNN faster. It offers improvements in both speed and
accuracy over its predecessors through the shared com-
putation and the use of a neural network to propose
regions. Then, the Mask R-CNN,® an extension of the
Faster R-CNN, was proposed to perform the bounding
box regression and the pixel-level segmentation simul-
tancously. The R-CNN and Mask R-CNN models
work well in detecting objects from static images. But
results may not be consistent when they process video
data. Therefore, the temporal coherence information of
objects in successive frames has been introduced to
address the issue of inconsistent detection;>*>? wherein,
the tubelet and optical flow are used to propagate fea-
tures from one frame to another. Temporal coherence
analysis methods in the literature are computationally
expensive due to the requirement for repeated motion
estimation and feature propagation. Seq-NMS** has a
modification only in the post-processing phase, and
thus, it is faster than others. However, seq-NMS tends
to increase the volume of false positives because it nei-
ther puts any penalty on false positives nor adds addi-
tional constraints to prevent the occurrence.

Creating a deep neural network usually requires a
huge amount of annotated data for model training.
The manual annotation of data is not only a costly pro-
cess but often prone to errors. To overcome this issue,
transfer learning is introduced to structural damage
detection.?® 3> With transfer learning, only a relatively
small dataset is needed to refine an existing deep net-
work, which reduces the training time while keeping a
good performance. Another way to tackle this annota-
tion problem is to use semi-supervised learning that
requires some labeled and some unlabeled training
data. Papandreo et al.** developed a method requiring
a small number of strongly annotated images and a
large number of weakly annotated images for training.
They used an expectation maximization method to gen-
erate the pixel-level annotation from weakly annotated
training data. Mittal et al.>* proposed an approach that
relies on adversarial training with a feature matching
loss to learn from unlabeled images. Some researchers
used the self-training, a wrapper-based semi-supervised
method,*® which starts training a network with only a
few annotated samples and then let the network auto-
matically annotate more training samples. This tech-
nique has been applied to a variety of image/video
processing applications**>’ to reduce the effort of
human annotation. While most semi-supervised learn-
ing methods save the data annotation effort compared
to supervised learning, their performance is still not
good enough. The primary reason for this challenge is
the quality of the automatically annotated data. The
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inclusion of some samples mislabeled by the network
itself may sharply deteriorate the training process.

Recently, a promising approach named active learn-
ing has been proposed to reduce the annotation cost
for training deep neural networks.’® The essence of
active learning is to train a network by actively select-
ing training samples from a pool of unlabeled data,
which will be labeled by a human annotator to retrain
the model. The fundamental assumption underlying
this approach is that selecting fewer but informative
data and allowing the model to learn with it may
achieve greater performance than training the network
using a large amount of labeled data. The performance
of active learning depends on the samples selected from
the unlabeled data. Traditional sampling methods do
not always guarantee to provide the most representa-
tive training samples in support of active learning
because of the dataset diversity and limited knowledge
about the dataset. Many strategies have been developed
for sampling data from unlabeled data for active learn-
ing.*® Uncertainty sampling is the most widely used
strategy, which queries for samples that it is most
unsure about. For example, Tian et al.* used clustering
and the fuzzy-set selection method to choose the most
uncertain and informative samples. This method
increases the training sample diversity. The use of
active learning in image classification has been widely
explored.***' However, the potential of active learning
is less thoroughly explored in the more complex task of
instance segmentation that usually has a relatively
higher annotation cost. Morrison et al.** considered
both spatial and semantic uncertainties of prediction
using the dropout sampling. By adding dropout layers
to the fully connected layers of the network, multiple
times of inference over the same image are made to
measure the segmentation uncertainty. A similar
approach was adopted by Gal et al.*} who used multi-
ple forward passes with dropout at the inference
(Monte Carlo dropout) to obtain better uncertainty
estimates for instance segmentation. Yang et al.**
trained a set of fully convolutional networks iteratively
and estimated uncertainty and similarity from an
ensemble of networks to determine new data for anno-
tation. The above-discussed studies demonstrated that
determining the most informative samples for active
learning is complex. Besides, uncertainty-based
approaches can be prone to querying outliers.*> Simple
but effective methods for recommending new data for
annotation are greatly desired.

Methodology

The proposed method to create the assistive intelligence
model for the multiclass bridge element segmentation is
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Figure 1. Overview of the proposed ST method with human-
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illustrated in Figure 1. First, a pre-trained Mask R-
CNN has been chosen. Then, a small set of initial train-
ing data, which are annotated by the inspector, is used
to fine-tune the network to transfer it for the new task
of multiclass bridge element segmentation. The trans-
ferred network will be improved iteratively until it
achieves the satisfactory performance. The shaded por-
tion in Figure 1 is the iterative process for performance
boosting. In each iteration of the ST with human-in-
the-loop, the network that has not reached the satisfied
performance will be applied to an unlabeled testing
dataset to obtain the detection and segmentation
results. Temporal coherence analysis of the results is
performed to recover false negative results that are
hard data for the network. After that, a small set of the
recovered hard data is selected as additional training
data that are removed from the unlabeled testing data-
set. The additional training data are then split into two
subsets, one has been automatically annotated by the
network trained from the current iteration and the
other subset is manually re-annotated by the inspector.
The additional training data along with the initial small
training dataset are then used to retrain the Mask R-
CNN in the next iteration to boost its performance.
The S°T method let the inspector annotate selected
samples that the current network failed to detect.
Through learning from its weakness, the performance
of the network increases quickly after a few iterations.

Adapting the deep neural network to a new task
through transfer learning

This study chose a Mask R-CNN as the tool for detect-
ing and segmenting bridge elements from inspection
video data. Figure 2 illustrates the structure of the Mask
R-CNN. Video data are input into the network frame-
by-frame following their order on the timeline. The
backbone of the network is a feature extractor that gen-
erates the feature map of each input image. A region
proposal network (RPN) creates proposal boxes named
anchors and predicts the possibility of an anchor being a
bridge element. Then, the RPN ranks anchors and
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Figure 2. The architecture of Mask R-CNN that performs the
detection and segmentation of multiclass bridge elements.

proposes those most likely containing bridge elements,
which are termed regions of interest (Rols). A layer
named Region of Interests Align (RolAlign) extracts the
Rols from the feature map, aligns them with the input
image, and converts them into fixed-size region feature
maps. The fixed-size feature maps of Rols are fed into
two independent branches: the network head branch
that performs the classification and bounding box gener-
ation, and the mask branch that independently generates
instance masks. Readers interested in the detail of Mask
R-CNN can refer to the work by He et al.?®

Training the Mask R-CNN for the new task of mul-
ticlass bridge element segmentation from the scratch
requires a large volume of annotated data to achieve a
satisfying prediction accuracy. This task does not have
a large volume of annotated data for model training.
To obtain high-quality annotated data, this task
requires the knowledge of professionals in the domain
of study. Only bridge inspectors are confident in anno-
tating bridge elements from the inspection videos. In
this study, transfer learning is first used to tackle this
challenge, which improves the learning of the new task
by transferring knowledge from a related task that has
already been learned.*®

The Mask R-CNN in this study was initialized by
adopting the ResNet-50 feature extractor?’ whose
weights have been pre-trained on the Microsoft COCO
dataset consisting of more than 120,000 labeled images
and around 1.5 millions of object instances in 80 cate-
gories.”* Then, transfer learning was used to adapt this
feature extractor to the setting of bridge inspection.
Specifically, the ResNet-50 was fine-tuned using a small
set of training data (7;) with a portion collected from

the intended bridges of inspection. The detail of the
fine-tuning process will be presented in the next section.

Temporal coherence analysis for recovering false
negative results

Mask R-CNN is a static image detector that processes
individual images independently. When it is applied to
frames of a video stream, false negative results are likely
to happen due to sudden scale changes, occlusion, or
motion blur. This study used the temporal coherence
information of objects in successive frames to recover
false negative detections and segmentations.

Consider a video clip that consists of a series of N
frames, indexed by i. In each frame, the network returns
M; objects with segmentations, indexed by j. An object
in a frame is highly likely to present in its neighboring
frames within a range of displacement. Let, o; ; desig-
nate object j in frame i. The center of the bounding box
for o; ; is specified by its coordinates C; ;= (x;;, ;). In
p frames, C; ; may shift to a surrounding pixel within a
spatial displacement of pAd where Ad is the maximum
displacement between two consecutive frames. Ad is
affected by both intrinsic and extrinsic camera para-
meters, as the Appendix explains. Ad is proportional to
the focal length of the camera and the maximum displa-
cement of the moving camera between capturing two
successive frames of image; it is inversely proportional
to the size of pixels in the images taken by the camera
and the distance of the camera to the object along the
optical axis. The study roughly estimated Ad according
to its formula in equation (5) using partial information
and then improved the estimation experimentally by
reviewing the inspection data. A value of 60 pixels was
found to be appropriate in this study. Figure 3 illus-
trates an example wherein a joint of the bridge in frame
i —4 is also shown in the succeeding four frames but
with displacements.

The algorithm of temporal coherence analysis for
recovering false negative results is summarized as the
pseudocode in Algorithm 1 and explained below. The
prediction threshold is set as a range [#,7,]. An object
with a prediction score within this range is possibly a
false negative prediction. Let S; ; denote the prediction
score for object o0; ;. The network immediately returns a
positive result if S; ;= ¢, and will not predict any object
if S;;<t;. Let O; be the set of confidently predicted

Figure 3. An illustration of spatial displacements.
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objects in frame i. The prediction score and the center
location of these objects, {(S; ;, C;)|oi; € O;}, are the
temporal coherence information for analyzing the suc-
ceeding k frames. That is, & is the temporal window that
defines the range of preceding frames where the tem-
poral coherence analysis searches the same objects as
the weakly predicted objects (e.g. they are possibly false
negative results) in the current frame. If #=<S; ;<t,, the
weakly predicted object o; ; is checked by referring to a
pair of preceding successive frames up to £ — 1 times,
starting from the nearest pair (frames i — 1 and i — 2)
to the farthest pair (frames i —k+1 and i — k). If an
object of the same class as o, ; is found in both frames
i—1 and i—2 (ie. there exists o,_1; € O;—1 and
0i-2,j" S 01;2 such that 0j—1,j =0i-2.j" :Oi,j)a and the
spatial displacements of o; ; from o;_1 7 and 0,_ j are
small, within Ad and 2Ad, respectively, this weakly pre-
dicted object is determined as a false negative predic-
tion. The false negative prediction is recovered by
adding it to O; and updating its score to be the average
score of S;_1 7 and S;_, . Otherwise, o, ; is searched in
O;_, and O,_3 to determine if it is a false negative result
that can be recovered. This search will continue as
needed. If o, ; is not found to be a positive result with
confidence in the neighboring frames after £ — 1 times
of temporal coherence analysis, it will be eliminated
from the candidate list. Using a pair of frames as the
reference instead of referring to a single frame will
make the temporal coherence rule more strict and mini-
mize the risk of progressively propagating a false posi-
tive result in a single frame to the target frame.

The appendix has explained factors that impact the
choice of Ad. The choice of k is relevant to Ad. Given
that Ad is 60 pixels, an object may appear in a sequence
of frames because the dimension of images is way
larger than 60 pixels. The object only appears in a short
video clip and then it disappears because the UAV
brings the camera away from the object. If & is too
small, for example k=1, the analysis does not fully uti-
lize the temporal coherence information of objects in
successive frames. If the & value is too large, false posi-
tive results will be propagated to many frames. Based
on the above-discussed facts, the study experimentally
examined the selection of & and found a k value of 4
which is suitable in this study.

The range of detection thresholds for the temporal
coherence analysis [#,t,] should be appropriately cho-
sen. The upper boundary ¢, should be high enough but
not extremely high to properly control both types of
false results. The lower boundary ¢ should be below
the upper boundary with a sufficient span to capture
most false negative results. Selecting an extremely small
lower boundary just increases the workload of tem-
poral coherence analysis, but it has minimal impact on
the result due to the control effect of the upper

Algorithm | Temporal Coherence Analysis for Recovering
False Negative Results.

/I N: the number of video frames;
Il M;: the number of objects in frame j;
/I Oj: the set of confidently predicted objects in frame i;
I1'S;,j: the prediction score of the jth object in frame i;
/1 G j: the center location of the jth object in frame i;
/l t; and t,: prediction thresholds;
/I k: the number of frames that have stored temporal coherence
information of predicted objects.
fori=1toN do
forj=1toM, do
if S,-,j =1, then
add object o;; to the set O; with its prediction score, §; j,
and the center location, G ;
else if S;j =t then
forg=1,2,..(k— 1) do
3 0ji—qj € O,‘,q & Oi—q—1,j7 € O,;qq s
30;,j = 0i—gq,j = Oi—q—1.j"
if &[G —Cigjll;<qAd
&[|Cij = Gigo1pllh=(q+ DA,

then
let S,"j = (S,'_q’jf + S,-_q_|,j~)/2,
add object o j to the set O; with its C;; and updated
i
break
end if
end for
end if
Eliminate the low score (<t,) object o;; from the candidate
list.
end for
end for

boundary. This study chose [0.5,0.9] as the threshold
range whose appropriateness was verified on small-
scale experiments.

The temporal coherence analysis identifies and picks
up samples that the current network fails to predict
correctly. Therefore, the proposed self-training method
effectively learns from its weakness in each round of
iterations. Since this temporal coherence is applied in
the inference stage, it is a computationally cheap
approach for evaluating and sampling new data for
annotation.

Refining the network through self-training with
human-in-the-loop

After transfer learning has initialized the Mask R-
CNN for the task of bridge inspection, the network
may need to be further refined, for example, by adding
additional training data. If the refined network has not
reached a satisfying performance, the refining process
will continue. To lower the cost of data annotation
and, meanwhile, maintain a good quality of the
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Algorithm 2 Iteratively Fine-Tuning the Network with S°T.

// I: index of iteration;
/I T): the training dataset for iteration /;
I V: unlabeled dataset for $°T;
/I R;: the recovered hard dataset from temporal coherence
analysis;
/'Sy a subset of R, which is sampled based on the sampling
method SP(s);
II'S), o2 a fraction of § in the size of o automatically annotated by
the trained network;
I St (1—a: a fraction of §; in the size of | — « to be manually
annotated by the inspector;
/I M;: the data annotated by the inspector and added to the
training dataset in iteration /.
for |=0do
Fine-tune the network with T,
break if the performance meets the requirement. Obtain R,
through the temporal coherence analysis,
if =0 then
sample §; from the prediction result,
else
sample §; from R, using the skip sampling method,
end if
Split S into two mutually exclusive parts, manually annotate
SI’ (I-a) tO obtain M,,
T =TIUMUS .,
increase « to lower the inspector’s workload in data
annotation if applicable.
end for

training data, the study chose the ST method that
engages the inspector in continuous refinement of the
network. In each iteration, a set of unlabeled data is
fed to the trained deep neural network to be labeled
automatically. Using the temporal coherence informa-
tion of predictions, hard samples are collected from this
newly created labeled data. A representative subset of
the hard samples is identified and added to the training
dataset to refine the network. Before this subset is
added to the training dataset, a portion of it is manu-
ally re-annotated by the inspector to guide the net-
work’s learning. This process continues iteratively until
the network performance reaches the target. The S°T
method with human-in-the-loop is further summarized
as the pseudocode in Algorithm 2.

Let / denote the index of iterations. Figure 4 shows
that a small training dataset 7 is created to transfer the
Mask R-CNN. Then, the network is applied to an unla-
beled dataset, V. If the performance of the network is
not satisfying, a portion of the prediction result is
sampled as the additional training data, denoted as S;.
For the initial iteration when /=0, this S; is taken from
all prediction result to guide the network. In each itera-
tion, the selected sampled data S; is eliminated from V
for the further assessment of future networks. For the

L = 0,1, is the index of iterations

-m Unlabeled Test easy samples
- Dataset To__ Dase bl recovered hard
training data, R,
lied Data _—
e povumiareow el O N ———
—> | V\UiZg St [ with TC[ ||
4 ! S s
trained
deep NN

automatic
annotation

sampled data, S;

manual annotation

Figure 4. Schematic diagram of the semi-supervised self-
training (S*T) for refining the Mask R-CNN model iteratively.

following iterations (i.e. />0), the S°T algorithm differ-
entiates hard samples from easy samples in V. Easy sam-
ples are segmented by the network with relatively high
reliability, whereas hard samples, R;, which contain a
variety of situations when objects are difficult to detect,
are recovered by the developed temporal coherence anal-
ysis. The sample S; (for />0) is selected only from the
recovered hard samples R;. S; is divided into two
mutually exclusive and collectively exhaustive subsets,
S« and S; 1_,, where a and 1 — « indicate their sizes in
proportion to S;. S; . has been automatically annotated
by the trained network in testing and directly added to
the training dataset. The inspector re-examines the
remainder of S; and corrects false predictions, if any,
before adding the inspector-annotated data M; to the
training dataset. That is, at the end of the /th iteration,
the training dataset is updated per equation (1)

T =TIUMUS, o (1)

The network is re-trained using the updated training
dataset and the prediction result is assessed. If the ter-
mination criterion has been met, the fine-tuning process
is terminated. Otherwise, it continues refining the net-
work. The termination criterion of the iterative process
is subject to the user’s choice considering the conse-
quences of false positive and false negative results,
respectively. This study chose to terminate the iterative
process when both precision and recall reach 90% or
higher, and fl-score is 92% or higher, at the
Intersection over Union (IoU) value 0.5.

This iterative process has two designs: the method
for sampling S; from R;, and the way of determining the
fraction of S; to be examined by the inspector.

Skip sampling method. Consecutive frames of a video are
similar and, therefore, sampling a portion of frames
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that are evenly distributed on the timeline would be
sufficient for representing the video. This study samples
S; from R;, for any iteration /, according to a skip sam-
pling strategy SP(s) that samples a frame and then
skips s frames. The choice of a value for s needs to con-
sider the inspection platform’s speed and the camera
speed. The unlabeled test dataset 7 is a time series of
N, frames. Isp is a 1 XN, indicator vector of binary vari-
ables that define frames to be sampled according to
SP(s); that is

[Sp (I’l) =1 (2)

for n=1,1+@+1),...,1++D|N/(s+1)]|. Iz, 1is
also a 1XN, indicator vector of binary variables that
identify the frames recovered by the temporal coher-
ence analysis. The Hadamard product of Iz ; and Isp
yields the vector Is ;

Ig =1Ip °Isp (3)

which identifies the frames to be sampled from R,
according to SP(s) for forming S;.

Regulating the amount of human guidance in S°T. A fraction
of the dataset S; from any iteration is automatically
annotated by the trained network. The initial perfor-
mance of the neural network is not high and data mis-
labeled by the network are present in S;. Through
examining a fraction of S; and correcting mislabeled
data, the experienced inspector guides the network to
quickly learn new features. S;, is the fraction of S;
which is added to the training dataset without further
human annotation. The inspector’s guidance can be
gradually reduced as the network starts to learn well by
itself and provide improved prediction. Therefore, the
fraction of automatically annotated data S;, can be
gradually increased over iterations. Choosing the initial
value of «a is also critical as it regulates the amount of
mislabeled data that may enter the training dataset
when the model performance is well below the target
performance. Determining an optimal selection of «
for the ST method is a research problem but going
beyond the scope of this article. The article illustrates
the impact of choosing « in Table 5.

Implementation and result discussion

This section illustrates the implementation and evalua-
tion of the proposed method to create the assistive intel-
ligence model for processing the bridge inspection video
data. Findings from this study are discussed.

—
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Pier wall
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Figure 5. Sample images with corresponding pixel-level object
polygon with labels.

The implementation detail

The data. BIRDS,*® an aerial inspection platform devel-
oped by the INSPIRE University Transportation
Center, was used to capture videos of bridges in inspec-
tion. The average speed of BIRDS is 20 miles per hour
(mph). The frame rate of the camera is 30 frames per
second (fps) and the image resolution is 3840 X 2160
in pixel. A dataset D, which is an inspection video of
4440 images, was used to develop and evaluate the
assistive intelligence model. The initial training dataset
Ty contains 40 images, with 18 images from D and 22
images from the inspection of other bridges. Choosing
some images of other bridges adds helpful data varia-
tion to the initial training dataset. In total, the initial
training dataset contains 482 objects with class labels,
which are from 10 different classes of bridge elements
interested to inspect. The 10 object classes are barrier,
slab, pier, pier cap, diaphragm, joint, bearing, pier wall,
bracket, and rivet, as illustrated in Figure 5. This study
used the image annotation tool VGG Image annota-
tor" to annotate labels of the objects and give pixel-
level coordinates to those objects. An unannotated
dataset V' that comprises 670 images from the dataset
D was particularly created for implementing the S°T
method. ¥ contains 5916 objects from the 10 classes. A
test dataset 7, has been created to evaluate the model
performance from each training iteration. This dataset
has 212 images with 1872 objects.
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Table |. Data sizes (# images) in transfer learning (TL) and
semi-supervised self-training (S°T).

L ST

I: index of iterations 0_ | 2 3
T}: training dataset (equation (1)) 40 48 85 118
Ri: recovered hard data samples - 13 79 50
Si: a sampled subset of R, - 37 33

a: % of §; for automatic annotation — 70 80

Si, o automatically annotated data - 26 26

M;: manually annotated data 8 I 7

Initial adaptation. The proposed method was implemen-
ted by extending an existing implementation of Mask
R-CNN by Matterport Inc.”® Training and testing were
performed using two Nvidia Tesla V100 GPUs with
32GB of memory. The pre-trained ResNet-50 feature
extractor was fine-tuned using the initial training data-
set Ty. Different data augmentation techniques have
been applied during the training stage to improve the
model’s ability to generalize at various applicability
where input data distortion is present. Those include
horizontal flip, rotation, translation, color distortion,
and random noise. The network head and the mask
head (see Figure 2) were trained for 30 epochs while
keeping all the parameters of the previous layers fixed.
Each epoch consists of 100 training iterations.
Stochastic gradient descent was used as the optimizer
and the momentum was 0.9. The learning rate of 0.001
and a batch size of 4 were used in this training process
that took about 21 min to complete. According to
Algorithm 2, after the Mask R-CNN is transferred to
have an initial adaptation to the task of bridge inspec-
tion, V is annotated by this network. Considering the
performance of the initially adapted network, eight
images, which are about 1% of the images in V, are
selected and re-annotated by the inspector and added
to the initial training dataset Ty, becoming 77, the train-
ing dataset for the next iteration. These eight images
are excluded from V for further iterations. Letting the
inspector to check a small amount of the prediction
result of the initially adapted network in accordance
with the performance is a practical approach to con-
trolling the quality of the training dataset.

Inference and iterative refining. Table 1 summarizes the
iterative training process for fine-tuning the deep neural
network using the ST method with the inspector’s gui-
dance. Refining the network for the first iteration of
the S*T method was initiated with the last epoch of the
previous iteration (i.e. the transfer learning) and contin-
ued for 20 more epochs. Then, the remainder of the
dataset V, V\S), is annotated by the refined network.

Temporal coherence analysis is applied to ¥\, which
contain objects with prediction scores between 0.5 and
0.9 to recover false negative results. This study consid-
ered 0.5 as the lower boundary of prediction threshold
t; and 0.9 as the upper boundary ¢,, which were found
to minimize the volume of false negative results based
on numerical experiments. The temporal coherence
analysis in the first iteration recovered 113 frames, and
37 frames of these were sampled according to SP(2),
the sampling strategy considered by this study. In this
study, @ was 70% in the first iteration, which means
the inspector re-annotated 30% of S; before adding
them to the training dataset. In the second iteration,
the network was refined using the updated training
dataset 7, and then it was used to evaluate V'\(So U S).
Temporal coherence analysis recovered 79 images, and
33 images were sampled and added to the training
dataset. « was increased to 80% of S, and the inspector
annotated only 7 images out of the 33 before adding
them to the training dataset. The iterative process was
terminated after the third iteration of training when the
target performance is achieved.

Quantitative results

In this study, experiments were conducted to evaluate
the merits of the proposed method, the job efficiency of
the developed assistive intelligence model, and its gen-
eralization capacity.

Object detection results

To evaluate the performance of object detection with
the developed deep neural network, three standard eva-
luation matrices were used in this study:

® Precision: it counts the number of correct predic-
tions out of the total number of predictions;

e Recall: it counts the number of correct predictions
out of the total number of ground truth objects;

e Fl1-Score: it is the harmonic mean of precision and
recall.

This study used the IoU to determine whether a pre-
dicted object can be considered as a correct prediction.
The IoU is the intersection between the predicted
bounding box and the ground truth bounding box over
the union of them. The ability of the network to cor-
rectly detect objects was evaluated on a range of IoU
threshold values from 0.1 to 0.9 at a step of 0.1. The
precision, recall, and fl-score from evaluating the test
dataset T, are summarized in Table 2. From the table,
it can be observed that, given an IoU threshold value
in the range of [0.1, 0.5], the Mask R-CNN that was
initially transferred in for the bridge of inspection
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Table 2. Performance (%) of transfer learning (TL) and semi-supervised self-training (ST) in iterations.

Iteration, | TL ST
0 | 2 3
loU
0.1 Precision 87.5 86.3 94.0 93.45
Recall 81.0 95.4 93.5 95.30
Fl-score 84.1 90.6 93.8 94.4
0.2 Precision 87.1 85.7 93.9 93.5
Recall 80.7 94.8 93.3 95.3
Fl-score 834 90.0 93.6 94.4
0.3 Precision 86.8 85.2 93.7 934
Recall 80.3 94.2 93.2 95.2
Fl-score 834 89.5 93.4 94.3
04 Precision 84.6 842 93.2 93.1
Recall 78.3 93.1 92.7 94.9
Fl-score 81.3 88.5 93.0 94.0
0.5 Precision 80.3 81.7 90.7 91.8
Recall 74.4 90.3 90.1 93.6
Fl-score 77.2 85.8 90.4 92.7
0.6 Precision 75.9 77.4 85.7 88.5
Recall 70.2 85.6 85.1 90.2
Fl-score 73.0 81.3 85.4 89.3
0.7 Precision 65.4 66.6 74.6 78.1
Recall 60.5 73.6 74.2 79.6
Fl-score 60.5 73.6 742 79.6
0.8 Precision 43.7 43.8 50.1 49.0
Recall 40.5 485 49.8 49.9
Fl-score 42.1 46.0 49.9 49.5
0.9 Precision 6.3 3.0 6.7 4.6
Recall 59 3.3 6.7 47
Fl-score 6.1 3.1 6.7 47

achieved the precision from 80.3% to 87.5%, the recall
from 74.4% to 81.0%, and fl-score from 77.2% to
84.1%. The performance indicates that the transferred
network demonstrated some adaptability to the new
task, but the amount of false negative detection is non-
negligible. The performance of the network has not
reached a satisfying level.

Therefore, the network was iteratively refined using
the proposed ST method with human-in-the-loop to
seek further improvement. After being re-trained in the
first iteration, the recall was effectively increased by
15%, approximately. For example, when the IoU
threshold value is 0.5, the precision increases from
80.3% to 81.7%, and recall becomes 90.3% from
74.4%, yielding a 85.8% fl-score after the first itera-
tion. The changes indicate that M|, the additional small
set of manually annotated hard samples added to the
training dataset, effectively improves the ability to cor-
rectly detect more objects. The performance of the net-
work has met the requirement after being refined for
additional two iterations, reaching 91.8% precision,
93.6% recall, and 92.7% fl-score at the IoU threshold
value 0.5. The S°T method has effectively brought the
performance of the network to a satisfying level. As the

IoU threshold value decreases gradually from 0.5 to 0.1
at a step size of 0.1, the evaluation becomes less conser-
vative. Consequently, fewer false negative detections
are rendered by the network but maybe more false posi-
tive detections. However, selecting a higher IoU thresh-
old value makes the evaluation more conservative. As it
increases gradually from 0.5 to 0.9 at a step size of 0.1,
the f1-score is diminishing, signifying the reduction of
both precision and recall values. In this application set-
ting, false positive detections are less concerned than
false negative detections. This is because the inspector
will retrieve and analyze frames that contain detected
and segmented objects that he or she wants to inspect.
Therefore, false positive detections can be found and
eliminated by the inspector. But, false negatives are
more critical because inspectors cannot overlook any
potential damages. From the analysis above, it can be
inferred that this S°T method is very applicable to the
development of the proposed assistive intelligence
model for detecting bridge elements from inspection
videos.

Another important observation from the table is the
relationship between the IoU threshold value and the
recall value during the iterative process of network
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fine-tuning. A variation of a recall value within a range
of 6.6% has been observed after the initial adaptation
through transfer learning when the IoU threshold value
increases from 0.1 to 0.5. However, this variation
reduces in each successive iteration. For example, after
the third iteration, this variation reduces to 1.6%.
Precision and recall values at any of the IoU threshold
values increase over iterations and reach the maximum
after the third iteration. For example, at the IoU
threshold value 0.5, fl-score increases about 8.6%,
4.6%, and 2.3%, respectively, from their previous itera-
tion. This means the network learns new features from
each iteration and gradually moves toward the learning
limit. The improvement rate is diminishing during the
iterative process. When the IoU threshold value contin-
ues to increase from 0.5 and onward, the recall value in
any iteration drops rapidly and has been less than 10%
when the IoU threshold value is 0.9. Moreover, the
increasing trend of the recall value over iterations slows
down quickly at the IoU threshold value 0.6. When the
IoU threshold value is greater than 0.6, the increasing
trend of recall over iterations is rapidly flatted out and
becomes a decreasing trend. The reason for this sharp
decrease in recall value along with the increase in the
IoU threshold value is that the network considers a
detected object as a true positive detection only if the
overlap between the ground truth and the bounding
box of the detected object is very high, which increases
the amount of false negative detections and decreases
the amount of true positive detections.

Instance segmentation results. The study also evaluated
the quality of the proposed assistive intelligence model
in segmenting bridge elements from inspection videos.
The mask IoU is a measure of segmentation quality,
which is the ratio of the overlap between the predicted
segmentation mask and the ground truth mask to the
union of these two masks. The predicted segmentation
mask is considered as a true positive prediction if the
mask ToU value is no less than a pre-specified thresh-
old. The higher the threshold value is selected for the
evaluation, the stricter the evaluation becomes.
Accordingly, the precision for each class can be calcu-
lated. After that, the average of the class-level precision
values, named mean precision and denoted as mP, is
determined.

Figure 6 shows the curve of mP value during the
iterative process for fine-tuning the network at four lev-
els of mask IoU threshold value, wherein the x-axis
represents the number of iterations and the y-axis rep-
resents the mP value. The plot shows the mP curve at
the mask IoU threshold value 0.4 is an upwarding
curve on the top of other curves. The mP value at the
end of the iterative process reaches 93%. When the
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Figure 6. The mean precision (mP) over iterations at different
mask loU threshold values.

Table 3. Cost-effectiveness of transfer learning in comparison
with training from the scratch.

Training  Precision  Recall  FlI

time (h) (%) (%) (%)
Training from scratch 13.2 323 18.3 234
Transfer learning 0.33 80.3 744 772

mask IoU threshold value increases to 0.5, the curve
just drops slightly and the shape of the curve has no
change. The mP value at the end of the iterative process
reaches 92%. However, with a larger mask IoU thresh-
old value, such as 0.75, the mP curve clearly drops to a
lower position. This is because the amount of true posi-
tive results at a larger mask IoU threshold value is low
although the total number of correctly segmented
objects increases over iterations.

Efficiency of transfer learning. To demonstrate the high
cost-effectiveness of transfer learning for the initial
adaptation, this study trained a Mask R-CNN from the
scratch using 144 annotated images. Results of the com-
parison are summarized in Table 3. The first 600 epochs
for training the network from scratch took 13.2 h, and
the network performance (32.3% precision, 18.3%
recall, and 23.4% fl-score with an IoU threshold value
0.5) 1s well below the target performance when it was
tested on the dataset 7. The experiment clearly demon-
strates that the network requires a huge number of
training samples to be trained from the scratch, which
is infeasible for developing the desired model of inspec-
tion video data analysis due to the scarcity of labeled
data. The proposed transfer learning used only 40
annotated images as the training dataset and took only
20 min to transfer the capability of an existing Mask R-
CNN in multiclass object detection and segmentation
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Table 4. Comparison of the proposed approach to directly transferring a Mask R-CNN with various volumes of training dataset.

Method No. of manually Annotation Training Inference Precision Recall Fl-score
annotated images time (min) time (min) speed (%) (%) (%)
(s/frame)
Mask R-CNN 22 72 18 0.55 68.0 68.4 68.2
Mask R-CNN 44 143 20 0.55 82.0 79.0 80.5
Mask R-CNN 220 715 33 0.55 85.8 91.8 88.7
Mask R-CNN 440 1430 66 0.55 89.7 92.3 91.0
Self-training 48 156 72 0.55 88.9 76.7 82.4
Our approach 66 215 72 0.55 91.8 93.6 92.7

R-CNN: region-based convolutional neural network.
The bold font in Table 4 highlights the best results.

to the new task with bridge elements. The performance
of the transferred Mask R-CNN has a much better
result (80.3% precision, 74.4% recall, and 77.2% f1 at
the IoU 0.5). The comparison summarized in Table 3
demonstrates that transfer learning reduced the training
time by at least 95% and has improved the performance
of the network tremendously.

Comparison with a state-of-the-art method. This study com-
pared the proposed approach (i.e. transfer learning plus
ST with human-in-the-loop) to the Mask R-CNN
adapted with transfer learning only and the traditional
self-learning, from the perspectives of annotation time,
training time, inference speed, and accuracy. To show
the reliance of the performance of the transferred Mask
R-CNN on the volume of training dataset, this study
measured the performance of the Mask R-CNN after
independently transferred with four random training
datasets: 0.5% (22 images), 1% (44 images), 5% (220
images), and 10% (440 images) of images in Dataset D.
Results from the comparison are summarized in
Table 4. It is observed that the transfer learning by
itself can improve the performance of the network, but
the improvement is at a rapidly increasing cost of anno-
tation time. Transferring the Mask R-CNN with 440
annotated images took 1430 min (i.e. 23.8 h) for data
annotation and 66 min for training. This network
achieves 89.7% precision, 92.3% recall, and 91.0% f1-
score, close to the performance of the proposed
approach in this article. The proposed approach
reduces the annotation time by 85% with a comparable
training time (only 6 min longer), and it achieves a bet-
ter performance (91.8% precision, 93.6% recall, and
92.7% fl-score). Self-training does not use the inspec-
tor guidance in the iterative re-training process, thus
saving about 1 h of annotation time compared to the
S’T with human-in-the-loop. But the performance is
not satisfying. The inference speed of all the models is
0.55 s per frame. This comparative study demonstrated

that the ST method with human-in-the-loop is more
cost-effective compared to directly transferring the
Mask R-CNN. It also significantly improves the model
performance compared to traditional self-training, due
to the engagement of experienced inspectors in the
iterative re-training process. The impact of human-in-
the-loop on self-training is further examined.

The impact of human-in-the-loop on selftraining. The S°T
method that keeps human-in-the-loop is a combination
of self-training and active learning. The portion of
additional training data re-annotated by experienced
inspectors in each iteration of the self-training process
may impact the efficiency of model development and
the performance of the resulting final model. This study
used four experiments to illustrate the impact of
human-in-the-loop on self-training, which are summar-
ized in Table 5. The four experiments all began with
the same initial model whose performance is 80.3%
precision, 74.4% recall, and 77.2% fl-score. In all the
experiments, the model is trained for three iterations.
Inspectors annotated eight images to retrain the initial
model for the first iteration. With this iteration, the
performance is increased to 81.7% precision, 90.3%
recall, and 85.8% fl-score. After that, the four experi-
ments differ in the ratio of model-annotated additional
training data («). If an experiment yields satisfying
model performance (i.e. both recall and precision are at
least 90%, and fl-score is at least 92% at the IoU
threshold value 0.5) within three iterations, the final
performance is highlighted as bold.

Experiment 1 is our approach in Tables 2 and 4.
Compared to Experiment 1, Experiment 2 let the
inspector relabel more data for the second and third
iterations of training. It not only provided a satisfying
performance at the end of Iteration 3 but also increased
the fl-score with a small margin over that from
Experiment 1. Compared to Experiment 1, Experiment
3 used less inspector-annotated additional training data
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Table 5. Variants of inspector engagement in self-training.
Iterations 0 | 2 3

| Precision (%) 80.3 81.7 90.1 91.8
Recall (%) 744 90.3 90.7 93.6
Fl-score (%) 77.2 85.8 90.4 92.7
St (frame) 0 26 26
M, (frame) 8 I 7
a; (%) 0 70 80

2 Precision (%) 80.3 81.7 91.8 94.5
Recall (%) 74.4 90.3 84.7 91.5
Fl-score (%) 77.2 85.8 88.1 93.0
Si.a (frame) 0 22 26
M, (frame) 8 I5 I
a; (%) 0 60 70

3 Precision (%) 80.3 8l1.7 90.1 91.7
Recall (%) 744 90.3 90.7 92.1
Fl-score (%) 77.2 85.8 90.4 91.9
Si, o« (frame) 0 26 28
M, (frame) 8 I 3
ay (%) 0 70 90

4 Precision (%) 80.3 81.7 88.3 88.9
Recall (%) 74.4 90.3 75.7 76.7
Fl-score (%) 772 85.8 81.5 824
Si.o (frame) 0 37 33
M, (frame) 8 0 0
a; (%) 0 100 100

for the third iteration. Although it does not achieve the
target performance at the end of the third iteration, f1-
score is just below the target by 0.1% of a tiny margin.
That is, the target performance is likely to be reached
in the next iteration of training. Unlike Experiments 1—
3 that are all self-training with human-in-the-loop,
Experiment 4 is the traditional self-training without
human-in-the-loop. That is, the model teaches itself by
adding additional data to the training dataset itera-
tively. The added new data are those with the most
confident label prediction by the model. To make it a
fair comparison, Experiment 4 used the same amount
of additional training data as Experiment 1 in each
iteration except that the additional data for Iterations 2
and 3 are all model-annotated. By the end of the third
iteration, the model performance is well below the tar-
get performance. The drop of the model performance
from the first iteration to the second iteration and the
slow increase in the performance from the second itera-
tion to the third iteration indicate that including the
inspector’s guidance in self-training is critical.

The proposed S*T method with human-in-the-loop
(in Experiments 1-3) has tremendously improved the
efficiency of model development as it is compared to
the supervised learning method (Mask R-CNNs in
Table 4). Its performance improvement has a large
margin over the traditional self-training (in Experiment
4). Further optimizing the engagement of inspectors in

self-training has just incremental improvement against
the heuristic strategy of this article.

Job efficiency of the assistive intelligence model. A full image
usually contains multiple elements of the bridge. An
inspector needs to search and find all the elements, seg-
ment each identified element by marking its boundary,
and provide the object name. On average, each image
in this study contains 15 objects of different sizes and
shapes. To provide better quality, a polygon rather
than a rectangle is preferred for segmenting identified
bridge elements. Drawing a tight polygon on a single
object may require defining 15-30 points on the image.
On average, it took around 3.25 min to detect and
manually segment bridge elements in a full image in
this study. Not to mention that issues related to human
factors, such as the fatigue developed from repeatedly
working on high cognitive tasks, further lengthen the
time required for manually analyzing the big video data
collected from bridge inspection. The approach that
this article proposes requires inspectors to analyze a
small amount of data manually, helping the network
achieve satisfying performance in object detection and
segmentation. The automated data processing relieves
inspectors from the time-consuming labor work. The
developed assistive intelligence model can finish the
same job with very high accuracy but with only 0.55 s
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Figure 7. An example of temporal coherence analysis.

per image, which is 350 times faster than the manual
approach. The impact of the improved work efficiency
is tremendous because a real-world task usually
requires analyzing hundreds of thousands of images.

In the real-world implementation, the developed
assistive intelligence model will detect and segment
bridge elements from the inspection video data. Then,
the inspector retrieves the elements of interests from
the large pool of video frames and evaluates damages
or other defects associated with them. The developed
model assists inspectors in that, it reduces the human
effort in searching and finding the needed data so that
inspectors can focus on knowledge-intensive tasks.
Moreover, by removing the burden of browsing hours
of videos to look for bridge elements for evaluation,
inspectors are less likely to work in a state of fatigue or
lacking focus.

Generalization capability of the proposed method. To assess
if the developed network is applicable to other bridges,
the study used it to detect and segment the same 10
classes of bridge elements of another two bridges,
named Bridges A and B. Correspondingly, the bridge
that has had a network developed for is named Bridge
C. When the network built for Bridge C was applied to
Bridges A and B, the performance of it is comparable
to that of the initial network for Bridge C. The trained
network achieves 76.8% precision, 73.0% recall, and
74.8% f1-score for Bridge A; and for Bridge B it accom-
plishes 61.2% precision, 60.0% recall, and 60.6% f1-
score. Bridge A is more similar to Bridge C than Bridge
B. Therefore, the network trained for Bridge C per-
forms better in analyzing the inspection data of Bridge
A than Bridge B. Therefore, the network for Bridge C
has a certain degree of generalization, and it is good
enough to serve as the initial network for other bridges.
Further implementing the S>T method developed in this

article will adapt the assistive intelligence model devel-
oped for Bridge C to Bridges A and B, respectively, to
achieve the target performance on these bridges.

Qualitative results

The developed assistive intelligence model was tested
on the inspection dataset D. Some qualitative examples
selected from the testing result are illustrated below.

An illustrative example of temporal coherence
analysis

Figure 7 illustrates an example wherein the temporal
coherence analysis improves the model performance by
eliminating false negative results. In the first row of
Figure 7, the single-image based network correctly pre-
dicted the diaphragm in the first and the fourth frames,
however, failed to detect it in the second and the third
frames. The second row is the result after applying the
temporal coherence analysis, which shows that the dia-
phragm was correctly segmented in all of the four
frames. Note that false negative results are more severe
than false positive results in the task of bridge inspec-
tion. Because false positives rendered by the deep net-
work can be rechecked by the inspectors but false
negatives ignored by the network will not have such an
opportunity. Therefore, effectively reducing false nega-
tive results is particularly more important for the bridge
inspection.

Representative examples of successful detection and
segmentation
Figure 8 (a) illustrates some representative examples of

successful segmentation of bridge elements by the devel-
oped network. The first column of Figure 8(a) is an
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Figure 8. Examples of (a) successful detection and segmentation and (b) false negative detection.

example that a partial joint of different scales in three
images is detected and segmented correctly from all
images. The second column illustrates the capability of
detecting and segmenting a rivet from various views.
The network successfully detects and segments the rivet
in a low light condition, as the second figure in Column
2 illustrates. The third column comprises successful
examples of segmenting the rivet at a wide range of
scale variations. The fourth column shows that the
developed network is successful in detecting and seg-
menting multiple objects at various distances in com-
plex scenes.

Representative examples of false negative detection

The red bounding boxes in Figure 8(b) represent false
negative results by the developed network. The dia-
phragm in the top frame and the pier cap in the middle
frame are difficult to recognize because of the dark illu-
mination level. In the bottom frame, the developed net-
work fails to detect the barrier due to the high
exposure. The rivet in the bottom frame is not detected
because of its similar appearance with the background.
External illumination sources on inspection platforms
and image contrast enhancement techniques are poten-
tial solutions to overcome these challenges.

Conclusion

This article presents a method to develop an assistive
intelligence model to support bridge inspectors in seg-
menting multiclass bridge elements from big complex
video data collected by aerial inspection platforms.
With a small initial training dataset annotated by
inspectors, a Mask R-CNN pre-trained on a large pub-
lic dataset was transferred to the new task of bridge
inspection. Then, the temporal coherence analysis was
used to recover false negative results and thus identify
the weakness of the current network to improve, which

adds a nearly negligible additional computation load
during the inference compared to other methods based
on the motion guidance. An S°T algorithm was devel-
oped to engage the inspector in refining the network
iteratively. The domain knowledge of the inspector
quickly brought the network’s performance to a satisfy-
ing level.

Assessment results of the developed assistive intelli-
gence model showed that the proposed approach to the
model development uses a small amount of time and
guidance from bridge inspectors to achieve a high per-
formance in segmenting multiclass structural elements
from the big complex inspection videos. For example,
the developed model has achieved around 94% of pre-
cision, 92% of recall, and 92% mAP when the IoU
threshold value is 0.5. The study revealed that having
sufficient guidance from experienced bridge inspectors,
particularly in early iterations of the S°T for refining
the network is critical for maintaining the quality of
the training dataset. The amount of human annotation
can be gradually reduced as the network becomes more
reliable in performing its tasks.

The article has identified rooms for improvement.
Adapting the assistive intelligence model to bridges with
additional structural elements is the next step to extend
this article. One important future work is to improve
the inference speed. While the developed model is able
to achieve a high performance with a small amount of
human hours and the computation time for training the
network, improving the testing speed to have the real-
time inference capability is highly desired. Moreover,
contextual information and the spatial correlation
among objects could be utilized to further improve the
segmentation accuracy. Another future work will evalu-
ate the change in cognitive load and other psychological
states of inspectors assisted by the assistive intelligence
in bridge inspection. The evaluation involves using bio-
metric sensors, such as eye movement trackers and elec-
troencephalogram (EEG), to detect heavy cognitive
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load, fatigue, and loss of focus of inspectors in their
tasks.
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Appendix |

Figure 9 describes an object in the 3D camera reference
frame and the 2D image pixel reference frame. At a cer-
tain time, the coordinates of the object in the camera
reference frame are (x,y,z)7, and (x,,, y,»)” is the image
pixel reference frame. The relationship of these two sets
of coordinates of the object is determined as

Xm ox| f |x/z
= - 4
ot P =t el
where (ox,oy)T represent the coordinates of the princi-

pal point (in pixel) of images, f is the focal length of
camera, and s, is the size of pixel (millimeter per pixel
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Figure 9. Intrinsic camera parameters define the relationship between the camera reference frame and the image pixel reference

frame.

and it is assumed to be the same on both X, and Y,
axes in this study). (oy,0,)", f, and s,, are intrinsic cam-
era parameters.

In this study, the object is static, and the camera is
moving, in the world reference frame. But in the cam-
era reference frame, the object is moving. Imaging that
the object moves from (x,y,z)’ to (v,y,2)7 in 1/usin
the camera reference frame, where u is the speed of the
camera in capturing images (i.e. how many images are
taken per second). Accordingly, the object moves from
Comsym)’ to (¥),¥,)7 in the next frame of image.
(',»,Z)" must be within an L2 ball of radius & cen-
tered at (x,y, 2)T. The radius of the ball is determined
by the maximum linear and rotational speeds of the
camera. Therefore, the displacement of the object from
one frame of image to the next frame is

Ar= \/(x/m - xm)z + ()/'m _ym)z

, 2 , 2
LEEY o
/ E Ad

<l =
Smmin (|z], |2/])

Equation (5) shows the maximum displacement of an
object (Ad) from one frame to the next frame of image
is proportional to the focal length (1) and the radius of
the L2 ball that defines the boundary of the object’s
relative motion rate in the camera reference frame (E).
Ad is inversely proportional to the size of pixel s, and
the minimum distance of the camera to the object along
the optical axis when the two successive frames are cap-
tured (min (|z],|Z'])). Equation (5) indicates Ad is
affected by intrinsic camera parameters f and s,,.
Extrinsic parameters affect Ad too because the term
E/min (|z],|z']) is determined by the position and
motion rate of the camera in the world reference frame.



