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Abstract

Hurricanes affect thousands of people annually, with devastating consequences such as loss of life, vegetation and infrastruc-
ture. Vegetation losses such as downed trees and infrastructure disruptions such as toppled power lines often lead to road-
way closures. These disruptions can be life threatening for the victims. Emergency officials, therefore, have been trying to find
ways to alleviate such problems by identifying those locations that pose high risk in the aftermath of hurricanes. This paper
proposes an integrated methodology that utilizes both Google Earth Engine (GEE) and geographical information systems
(GIS). First, GEE is used to access Sentinel-2 satellite images and calculate the Normalized Difference Vegetation Index
(NDVI) to investigate the vegetation change as a result of Hurricane Michael in the City of Tallahassee. Second, through the
use of ArcGlIS, data on wind speed, debris, roadway density and demographics are incorporated into the methodology in
addition to the NDVI indices to assess the overall impact of the hurricane. As a result, city-wide hurricane impact maps are
created using weighted indices created based on all these data sets. Findings indicate that the northeast side of the city was
the worst affected because of the hurricane. This is a region where more seniors live, and such disruptions can lead to dra-
matic consequences because of the fragility of these seniors. Officials can pinpoint the identified critical locations for future
improvements such as roadway geometry modification and landscaping justification.

Natural disasters such as hurricanes affect thousands of
people annually with devastating consequences such as
loss of life, vegetation and infrastructure. Unfortunately,
the number of catastrophic hurricanes that have struck
the U.S. Gulf States such as Florida has increased over
recent years. National Oceanic and Atmospheric
Administration (NOAA) data shows that the South
Atlantic region suffered 15 named storms, eight hurri-
canes and two major hurricanes in 2018, considerably
more than the annual average of 12.1 named storms, 6.4
hurricanes and 2.7 major hurricanes from 1981 to 2010
(I). Hurricane Michael, for example, was a highly
destructive hurricane that struck the whole Florida
Panhandle in 2018, and was the first Category 5 hurri-
cane to strike the area since Hurricane Andrew in 1992.
Michael made a landfall with peak winds of more than
150 mph (240 km/h) and affected the states of Florida,
Georgia, North Carolina and even Virginia, causing
directly or indirectly the deaths of 59 people. The total
damage caused by Hurricane Michael was estimated to
be approximately $25 billion by the NOAA National
Centers for Environmental Information (2). As a result

of the high winds, vegetation losses such as downed trees
and infrastructure disruptions such as toppled power
lines led to substantial roadway closures within the
affected region. These roadway disruptions reduced the
accessibility and increased the emergency response travel
time, which created life threatening consequences for the
victims. Emergency officials, since then, have been trying
to find ways to alleviate roadway-related disruptions by
assessing the current roadway conditions and identifying
those locations that pose high risk in the aftermath of
such a hurricane.

Multiple studies have spatially and statistically investi-
gated the effect and damage of hurricanes. For example,
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Ulak et al. (3) evaluated the hurricane-induced power
outages because of Hurricane Hermine, and found that
victims affected by outages were spatially clustered at
particular regions rather than being distributed ran-
domly. As such, vulnerable locations should be identified
and effective strategies should be developed by cities and
other relevant agencies to reduce such damage caused by
hurricanes. Eskandarpour and Khodaei (4) performed a
similar disaster risk assessment and developed a machine
learning based method to predict potential outage of
power grid components. There are also many approaches
that have focused on the hurricane-induced high wind
risk. For instance, Shao et al. (5) investigated historical
hurricane data and pointed out that policies should pay
more intention to wind risks and fully incorporate these
risks into hazard reduction plans. A case study of
Hurricane Isabel was carried out by Ning et al. (6) to
study multiple hazards from hurricanes. Their findings
indicated that wind damage was not necessarily restricted
to the areas closest to the storm but also affected other
areas substantially.

Roadway networks are known to be one of the infra-
structure systems highly vulnerable to hurricanes. As
such, numerous studies have focused on the accessibility,
resilience, vulnerability and damage associated with
roadway networks. Kocatepe et al. (7) proposed a new
index, namely the Accessibility Decrease Index, to mea-
sure the emergency response travel time in the City of
Tallahassee after Hurricane Hermine. Results showed
those areas with less accessibility and roadways that had
high risk of closure during the one-week period after
Hermine hit the city. Chang (&) similarly assessed overall
performances and distributional impacts based on the
concept of accessibility. It was found that the distribu-
tions of loss and damage had spatial disparities, and
alternative restoration priorities should be designed from
a systems perspective. Li et al. (9), on the other hand,
developed a scenario-based model to select shelter loca-
tions to optimize the evacuation needs under hurricane
events. It was mentioned that different hurricane scenar-
ios should be considered, and transportation demands
should be collected when selecting locations for public
shelters. Wilmot and Mei (/0) evaluated a different trip
generation model for hurricane evacuations and stated
that the logistic regression and neural network models
performed better than the participation rate model.
Wolshon et al. (//) reviewed hurricane evacuation mod-
els and discussed policies and practices for transportation
systems including planning, operation, management, and
response. The study showed the need for better signs to
provide better information for the public in the context
of improving hurricane evacuations. The significant con-
tribution was to forecast the evacuation travel demand
and conduct an evacuation traffic analysis through the

application of intelligent transportation systems (ITS)
technologies based on the concept of convolutional
neural network, a well-known machine learning tech-
nique. Recently, Ghorbanzadeh et al. (/2) studied the
power outages and roadway closures in the City of
Tallahassee based on real-life data on the impacts of
Hurricane Hermine (2016) and Michael (2018) through-
out the city. The study showed those locations that were
under high risk of electricity outages and roadway dis-
ruptions, both statistically and spatially.

With recent improvements in the technology, remote
sensing and satellite image processing have been playing
more important roles in hurricane-related studies. For
example, Knorn et al. (/3) adapted the support vector
machines algorithm, whereas Shalaby and Tateishi (/4)
used a supervised classification methodology in the con-
text of image processing. Both showed high accuracy of
land use classification using data extracted from satellite
images. Noi and Kappas (/5) compared different classi-
fiers for land cover classification using Sentinel-2 image
data, and indicated that the classification resulted in high
overall accuracy, ranging from 90% to 95%. Similarly,
Aljoufie et al. (16) showed that remote sensing technol-
ogy could be applicable for analyzing the spatiotemporal
relationship between urban growth and transportation.
They developed eight urban growth and transportation
indices to extract information from satellite images.

Many studies also take advantage of geographical
information systems (GIS)-based tools for remote sen-
sing and satellite image processing purposes. Some of the
recent remote sensing studies, on the other hand, have
benefited from a newly-developing tool called Google
Earth Engine (GEE), which greatly increases the accessi-
bility of satellite data. For example, van Hell (/7) ana-
lyzed hurricane-induced land cover change from
Sentinel-2 optical images using GEE. The satellite image
was conveniently retrieved from the Earth Engine server.
Indices that highlight vegetation, sand and urban areas
in the images were calculated. Classification and valida-
tion processes were performed online to show the change
in each aspect. Johansen et al. (/8) evaluated the clearing
of woody vegetation in Australia through GEE. Four
approaches were investigated to detect the changes using
Landsat-5 TM and 7 ETM + time-series satellite
images. Results showed that the Normalized Difference
Vegetation Index (NDVI) was the most robust for calcu-
lating vegetation clearing probability.

A few studies have integrated GEE and GIS to focus
on the impact of hurricanes (19, 20). However, to the
authors’ knowledge, none of the existing studies have
integrated them to focus on the impact of hurricanes
based on real-life data. In this paper, GEE is used to
access Sentinel-2 satellite images and NDVI indices cal-
culated to investigate the vegetation change that
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Figure 1. Map of part of Florida, showing the study area.

happened as a result of Hurricane Michael in the City of
Tallahassee. Data on wind speed, debris, roadway den-
sity and demographics were also incorporated into the
integrated methodology in addition to the NDVI indices
to assess the impact of hurricane on the city. This type of
analysis can be critical for analyzing the impact associ-
ated with roadway disruptions. As such, officials can use
the findings of this research to pinpoint those locations
that pose high risk and develop better plans and policies
to improve the performance of the overall emergency
transportation operations.

Methodology
Study Area, Hurricane Michael and Data

In this paper, a case study was created with a focus on
the City of Tallahassee, the capital of Florida (Figure 1).
Tallahassee had a population of 193,551 as of year
2018 and it can be considered as mid-size city. There are
two major universities in Tallahassee, namely Florida
State University (FSU) and Florida Agricultural and
Mechanical University (FAMU). As a result, 35% of
the entire population are students (2/). In addition, since
it is the state capital, Tallahassee is the site for the
Florida State Capitol, Supreme Court of Florida,

Florida Governor’s Mansion, and nearly 30 state agency
headquarters. As such, it is critical for the transportation
network in the city to be operational even in the after-
math of hurricanes.

Hurricane Michael, a Category 5 hurricane, made
landfall near Mexico Beach in the Florida Panhandle
region on October 10, 2018. The storm led to maximum
sustained wind speeds of 161 mph (259 km/h) and pushed
a massive and destructive storm surge to the coast, which
resulted in catastrophic damage, particularly in those
areas closer to Panama City and Mexico Beach (2).
Michael surfed over land and pushed strong winds and
rain inland, and affected Tallahassee drastically although
it did not pass through the city. Maximum wind speeds
of 71 mph (114 km/h) were reached during Hurricane
Michael in Tallahassee. As a result of these high winds,
vegetation losses such as downed trees and infrastructure
disruptions such as toppled power lines led to substantial
roadway closures in the city. In several locations, power
outages and roadway closures lasted approximately a
week, and roadway closures made it very difficult for the
public to commute and for emergency vehicles to respond
to problems (22).

In this study, several datasets were used to conduct
the proposed methodology. First of all, Sentinel-2 satel-
lite imagery was used to calculate the vegetation change,
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Table 1. Band Information of Sentinel-2 Satellite

Sentinel-2 bands

Central wavelength (um)

Resolution (m)

Band |—Coastal aerosol
Band 2—Blue

Band 3—Green

Band 4—Red

Band 5—Vegetation red edge
Band 6—Vegetation red edge
Band 7—Vegetation red edge
Band 8—Near infrared

Band 8A—Vegetation red edge
Band 9—Water vapor

Band |0—SWIR—Cirrus
Band | [—SWIRI

Band 12—SWIR2

0.443 60
0.490 10
0.560 10
0.665 10
0.705 20
0.740 20
0.783 20
0.842 10
0.865 20
0.945 60
1.375 60
1.610 20
2.190 20

Note: SWIR = short-wave infrared.

which was obtained from GEE. Compared with Landsat
mission, a moderate resolution satellite, there are a few
advantages to choosing the Sentinel-2 mission. The new-
est Landsat 7 and 8 cross every point on Earth once every
16 days, whereas Sentinel-2 can create images of the same
location at least every five days. Another superiority of
Sentinel-2 is its 10 m resolution for blue, green, red and
near infrared (NIR) bands, which represents the key
information of a satellite image needed for vegetation
detection (23). Table 1 shows the relevant information on
bands, including their wavelength and resolution.
Population demographics were downloaded from the
U.S. Census (24), and roadway data were downloaded
from the GIS database of Leon County, Florida (25).
Both datasets were imported into ArcMap 10.6 as two-
dimensional shapefiles. Population data is presented by
census blocks in polygon type, which are the smallest
geographic units covering the entire city. Roadway data
was imported as line features and bounded with blocks
(Figure 2a). Data on debris caused by Hurricane Michael
were provided by the City of Tallahassee authority
(Figure 2b). Note that the collected debris in this paper
refers only to the material deposited by the hurricane.
Data was provided in the comma separated value (CSV)
format and converted into a shapefile for further use.
Each point of debris has its own longitude, latitude and
volume that shows where the debris was loaded and how
much debris was collected. Wind gust speed refers to
average wind speeds in no more than 20 s, whereas aver-
age wind speed indicates the average wind speed in a min-
ute or multiple minutes. Wind gust data was provided by
StormGEO Company in 3-h intervals from October 7 to
October 15 as 10 m resolution TIFF images. A total of
72 geo-referenced images was obtained.

The selection of factors was done based on the
observed impact of Hurricane Michael on the

communities and infrastructure of the City of
Tallahassee. Roadways were critically affected by
downed trees and poles because of high wind speeds. In
addition, vegetation debris caused by the hurricane
affected the whole city drastically. Roadways can also be
affected because of flooding and storm surges, but those
impacts are outside the scope of this study. In addition,
the impact on power lines and the magnitude of power
outages is also critical and can be considered in future
work. Other factors associated with socioeconomics,
such as household income, health, ethnicity and age, can
also be considered as part of the proposed model.

Methodology

In this paper, an integrated methodology is proposed
that utilizes both GEE and GIS. Figure 3 shows the
flowchart for the overall methodology. Steps of the
methodology are discussed in more detail in the follow-
ing subsections.

GEE. This study utilized GEE to host, visualize, and pro-
cess Sentinel-2 satellite imagery. GEE is a powerful
cloud-based platform that allows for world-wide geospa-
tial analysis and brings the massive computational cap-
abilities of Google to help solve a variety of critical
social issues. As such, a preprocessing workflow (Figure
3a) was implemented that combines image reduction,
image composition, cloud removal and calculation of
indices. The preprocessing workflow was applied to
Sentinel-2 Level-1C top of atmosphere data. The image
collection was first filtered by the region of interest,
namely the City of Tallahassee. A composite image from
before the hurricane was then retrieved from the period
between May 1 and September 1, 2018, whereas the



Chen et al

(a) (b)

P
1} Il v/
AL 1
1
N N
\\'@—L Legend \\@—L
5 *  Derbis s
City Limit 1:170,651 City Limit 1:170,651
007515 3 45 6 g 007515 3 45 6
[__] city Limit — i City Limit — i

Figure 2. Overview of data: (a) roadway network of Tallahassee and (b) location of collected debris.
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after-hurricane image was composited from the period
between October 31 and December 31, 2018.

Clouds and cloud shadows have been known to
reduce significantly the quality of the image data related
to image processing. Therefore, it was imperative to find
a way to detect clouds and cloud shadows in the satellite
images, and screen them correctly before performing any
type of remote sensing activity (26). To achieve this, the
QAO60 bitmask band was employed to cloud mask the
image collection. As a result, opaque and cirrus clouds
were masked out and images were scaled by 10,000. The
collection was also pre-filtered based on its own
CLOUDY_PIXEL_PERCENTAGE flag.

To create the best possible picture of the change that
happened in Tallahassee because of the hurricane,
indices were calculated based on the before and after
images, which have the potential to highlight characteris-
tics such as healthy vegetation, bare ground, urban area
and others. As the most common vegetation indicator,
the NDVI has been succesfully used to analyze green
vegetation. Therefore, this paper also utilizes an NDVI-
based approach. That is, if vegetation was ripped out by
the hurricane, trees would fall down, plants would die
and the chlorophyll would greatly decrease, leading to
decreased NDVI values. NDVI can be calculated on a
per-pixel basis as the normalized difference between the
red and near-infrared bands from an image, using
Equation 1:

NIR — RED

NDVI NIR + RED (M)
The vegetation change is defined as the NDVI of the
before-hurricane image subtracted from the NDVI of the
after-hurricane image based on each pixel. The results
were converted and exported to a GeoTIFF image for
future analysis in ArcGIS. Note that an NDVI value
below 0.2 is often characterized as water, barren areas of
rock, sand, or snow. Therefore, the pixels with NDVI
value lower than 0.2 were masked out. The average
NDVI change was 0.08 per pixel, which indicated that
the vegetation of Tallahassee suffered little damage from
Hurricane Michael since the hurricane did not hit the
city directly. The change of NDVI can also be negative,
which indicates an increase in greenness. This may hap-
pen since trees may fall on roadways and other places,
increasing the NDVI values of those locations but
decreasing the NDVI values for their original locations.

GIS. By integrating different types of data on wind
speed, debris, roadway density based on the length of
roadways and demographics in ArcGIS, impact maps
were obtained for the City of Tallahassee. For this pur-
pose, a “Raster Analysis” was conducted to create two
normalized weighted impact indices (NWII) for each

census population block. The first NWII (NWII;) is
based on the scenario in which all the factors are consid-
ered with equal importance. However, the population
density of an area can be one of the most important
determining factors for developing better emergency-
focused plans and policies. As such, understanding how
many people live in a particular area can help agencies
develop area-specific further improvements such as road-
way modification. Thus, the second NWII (NWII;) rep-
resents simply the population density-based weighted
average. The estimation of NWII, is a multistep process
(Figure 3b). The definitions of the two impact indices for
the proposed methodology are given in Equations 2 and
3, as follows:

NWII;, = w;Cpg + wyDpg + w3Wpg + waRpg + wsPpp

(2)

"_((C; + D; + W; + R;)"Pop;) ;)

NWIL, = 2i- S Pop,
i=1 i

where C represents the vegetation change data, D is col-
lected debris data, W is wind speed data, R is the road-
way length, P is the population and w values represent
the respective weight factors for NWII,, and i is the pixel
number.

Input data of all factors were first summed up in each
population block, and the index was calculated on a per-
pixel basis. The debris data were first imported to
ArcMap and converted into a shapefile. “Spatial Join”
tool was used to calculate the debris within each popula-
tion block. The length of roadways in each population
block was also summed up to represent an urban utiliza-
tion factor. The density distribution of the magnitude of
wind speed was determined using a kernel density estima-
tion (KDE)-based approach. A total 72 geo-referenced
wind speed images were first merged into a raster with
the maximum value of each pixel followed by a zonal
analysis to calculate the average wind gust in each popu-
lation block group.

Next, normalization was performed to find the inten-
sity level of each factor (e.g., wind speed level, debris
level, roadway network level). To normalize the input
data, a new field was created in each impact factor’s
attribute table to calculate a normalized value for each
factor. This value was then divided into 10 equal inter-
vals and labeled as “1” to “10,” where value of 1 indi-
cated the least intensity of factor and a value of 10
indicated the most intensity of factor. Zero values were
given a value of zero in the normalized fields. These new
intensity classes of each factor were converted from vec-
tor to raster using the “Polygon to Raster” tool. Lastly,
all the rasterized impact factors were combined into one
map based on raster analysis using the aforementioned
impact index equations. For NWII;, the “Weighted
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Sum” tool was used, which multiplied each raster by the
weight factor and then summed all the values. Since there
are just five factors, the weight was equally distributed
for NWII,. “Raster Calculator” was the key tool to cal-
culate NWII, which allows users to perform mathemati-
cal operations on each pixel. The weighted impact maps
for both indices were created to identify the impact level
for the whole city, examine critical locations, and con-
duct an assessment with respect to roadway disruptions.

Results

Impact Factors

Figure 4 shows an example of pre-processed median
Sentinel-2 composites (Figure 4a), an NDVI image of
before and after Hurricane Michael (Figure 4b), an NDVI
change map (Figure 4c¢), and converted shapfile of vegeta-
tion change per census block (Figure 4d). The maximum
and minimum NDVI values were found to be 0.853 and —
0.441, respectively. It can be observed that the NDVI
image from before Hurricane Michael showed darker
green than the after image, which indicates that NDVI val-
ues have decreased for many areas, especially in the north-
east and southwest of Tallahassee. This is because the
usually green tropical vegetation had been ripped out by
the strong winds of Hurricane Michael. The change map
also indicates that most of the city experienced at least a
medium to high decrease in the vegetation change.

The debris status was mapped in Figure 5a. It can
observed that most of the debris was collected diagonally,
from the east to the north of the city. Census blocks
located in the Lake Bradford area were found to have the
largest debris volume of 27,175 cubic yards. The average
debris was estimated to be 2,585 cubic yards. The road-
way urbanization map is presented in Figure 5b. It
appears that southeast Tallahassee has the densest road-
way network compared with other locations. Central
Tallahassee was also found to include many roadways,
because of its high roadway density, as well as the north-
east section of the city. Figure 5c¢ indicates that an area
on the west side of Tallahassee experienced higher wind
speeds than other locations since Hurricane Michael’s
path was closer to the west of the city. This led to higher
impact levels in the west of Tallahassee. Note that wind
speeds ranged between 62 and 76 mph. A different hurri-
cane could have a different path than Hurricane Michael,
and different sections of the city would be affected
accordingly. Figure 5d, on the other hand, demonstrates
the demographics based on the population density. The
most populated block is in the southeast of Tallahassee,
namely Southwood. It also reveals that the northeast side
of the city also has a higher population.

NWiII

After all the impact factors were estimated, the impact
index maps were created using “Zonal Statistics” to cal-
culate average impact levels for each census block. Figure
6 demonstrates both NWIIs for the City of Tallahassee.
Visual inspection of Figure 6a shows that major portions
of Tallahassee appear to experience a moderate impact
level based on the integrated data sets, including the
weather, debris, demographics, roadways and vegetation.
The highest impact locations were found to be the west
and north sections of the city. The areas around the
Seminole Manor and Mary Manor districts, as well as
the Ox Bottom Manor and Summerbrook districts, espe-
cially, were found to experience higher risk of hurricane-
induced disruptions such as roadway closures. That is,
these areas have higher possibility of high wind speeds,
debris and vegetation change, and the northeast side of
the town has a greater older adult population, which
makes the problem even more challenging. The southeast
of the city, the Southwood area, has also been found to
be affected more than other locations. The proposed
weighted index can provide higher values because of high
levels of urbanization (represented as the total length of
the roadways in a census block), even though the impacts
of wind and vegetation because of Michael were not high
in these areas.

Figure 6b, on the other hand, shows different results
based on the population density weighted averages. This
type of analysis can be conducted with weighting on
other factors as well and this paper simply considered the
population only. This map shifts the high impact areas to
the central and west sides of Tallahassee since the popu-
lation is higher in those areas. They include the two uni-
versities (Florida State University and Florida A&M
University) and one community college (Tallahassee
Community College) and are highly populated by gov-
ernment agency personnel since Tallahassee is the state
capital. Compared with Figure 6a, the Southwood area
showed lower impact in Figure 6b. The reason is that,
even though the population of the Southwood area is
high, the density is relatively low because of the large
census block area. On the contrary, a small census block
with extremely high population density above the
Southwood area has been affected more, as seen in
Figure 6b.

It is absolutely critical to validate the proposed model;
however, this requires the availability of data from multi-
ple hurricanes and locations. Given that hurricanes are
rare events, this becomes a challenging issue.
Nevertheless, in the future, the authors believe they can
test and validate the proposed model with data obtained
from other recent hurricanes such as Hermine and Irma.
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Figure 4. Overview of vegetation change: (a) Sentinel-2 satellite image of Tallahassee, (b) Normalized Difference Vegetation Index
(NDVI) image, (c) NDVI change in Google Earth Engine and (d) NDVI change in geographical information systems (GIS).
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Figure 5. Overview of impact factors mapped by census block: (a) debris, (b) roadways, (c) wind speed and (d) population density.
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Figure 6. City-wide hurricane impact maps for the City of Tallahassee: (a) equally weighted and (b) population weighted.

Following the validation, the developed technique can
also be utilized for predicting vulnerabilities because of
cascade failures (e.g., power outages and roadway clo-
sures because of downed trees, roadway closures because
of downed power lines or flooding because of storm
water as well as the impact of these disruptions on emer-
gency response times), which was experienced in all the
recent hurricanes. This would especially be useful to cit-
ies when setting priorities in their improvement programs
and for regulating vegetation management through zon-
ing, and it is an excellent future work direction.

Conclusions and Future Work

This study presented a two-stage model to analyze the
impact of Hurricane Michael on the City of Tallahassee
and developed city-wide hurricane impact maps at the
level of census blocks. The first stage included a complete
preprocessing workflow in GEE, including well-
established algorithms of image reduction, image compo-
sition, cloud removal and index calculation. The next
stage included a GIS-based analysis to create impact
maps for the city based on equal weights and population-

based weights. The information gained by such an inves-
tigation can assist city officials in identifying critical and
less resilient regions, and determining those demographic
and socioeconomic groups which were more affected by
the adverse consequences of the hurricane. For example,
findings showed that the northeast side of the city had
high impact levels, which is a region where more senior
populations (aged 65 and above) live, and disruptions on
that side of the city could lead to dramatic consequences
because of the fragility of these seniors. City officials can
pinpoint the identified critical locations for future
improvements such as roadway geometry modification
and landscaping justification. Governments might con-
sider having emergency response plans in critical loca-
tions for future hurricanes.

This paper extensively discussed why the Sentinel-2
satellite mission was chosen. The newest Landsat 7 and 8
cross every point on Earth once every 16 days, whereas
Sentinel-2 can create images of the same location at least
every five days. However, an orbital period of five days
is still a considerable time interval and this interval may
lead to loss of some important information during a hur-
ricane. Future research should pay attention to this
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limitation and explore ways to improve it. Due to limited
data access, few factors including population, roadway,
derbis, vegetation and wind speed were selected to derive
the impact index. These factors were drastically affected
by the impact of Hurricane Michael. In addition, the
impact on power outages or other socioeconomics fac-
tors such as housing, education, health, ethnicity and
agea is also critical and can be considered as part of the
proposed model in future work.

This study focused only on the City of Tallahassee;
however, the proposed methodology can be successfully
extended to other locations given the availability of data.
The proposed impact index could be enhanced using rele-
vant data on rainfall, power grid and power outages, and
socioeconomics. The proposed effort mainly focuses on
assessing the impact of Hurricane Michael on the City of
Tallahassee. Given the availability of data from multiple
hurricanes and locations, the developed indices can defi-
nitely be utilized for prediction purposes. That is, the
developed technique can be utilized for predicting vulner-
abilities because of cascade failures (e.g., power outages
and roadway closures because of downed trees, roadway
closures because of downed power lines or flooding
because of storm water as well as the impact of these dis-
ruptions on emergency response time), which were expe-
rienced in all the recent hurricanes. This predictive
analysis can be regularly performed at pre-determined
time intervals such as three or five years. This would be
especially useful to city authorities when setting priorities
in their improvement programs and for regulating vegeta-
tion management through zoning, and it is an excellent
future work direction. While making such a prediction
possible, it is critical to perform sensitivity analyses based
on the rate of change of key inputs to guide the adaptive
management based on the model. In future work, the pro-
posed model will also be tested with data obtained from
other recent hurricanes such as Hermine and Irma. Based
on the performance of the model with different input para-
meters, city governments can perform sensitivity-analysis
based risk assessments and make informed emergency
management decisions.

Acknowledgment

The authors would like to thank the City of Tallahassee and
StormGeo for providing data.

Author Contributions

The authors confirm contribution to the paper as follows: study
conception and design: Mingyang Chen, Tarek Abichou and
Eren Erman Ozguven; data collection: Mingyang Chen, Alican
Karaer, Eren Erman Ozguven, Tarek Abichou and Reza
Arghandeh; analysis and interpretation of results: Mingyang
Chen, Alican Karaer, Eren Erman Ozguven, Tarek Abichou,
Reza Arghandeh and Jaap Nienhius; draft manuscript

preparation: Mingyang Chen, Alican Karaer, Eren Erman
Ozguven, Tarek Abichou, Reza Arghandeh and Jaap Nienhius.
All authors reviewed the results and approved the final version
of the manuscript.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) received no financial support for the research,
authorship, and/or publication of this article.

References

1. NOAA National Centers for Environmental Information,
State of the Climate: Hurricanes and Tropical Storms for
Annual 2018, published online January 2019, retrieved on
November 3, 2019 from https://www.ncdc.noaa.gov/sotc/
tropical-cyclones/201813.

2. National Oceanic and Atmospheric Administration. Hurri-
cane Michael 2018. US Department of Commerce, Talla-
hassee, FL, 2018.

3. Ulak, M. B., A. Kocatepe, L. M. Konila Sriram, E. E.
Ozguven, and R. Arghandeh. Assessment of the Hurri-
cane-Induced Power Outages from a Demographic, Socio-
economic, and Transportation Perspective. Natural
Hazards, Vol. 92, No. 3, 2018, pp. 1489-1508. https://
doi.org/10.1007/s11069-018-3260-9.

4. Eskandarpour, R., and A. Khodaei. Machine Learning
Based Power Grid Outage Prediction in Response to
Extreme Events. IEEE Transactions on Power Systems,
IEEE, Vol. 32, No. 4, 2017, pp. 3315-3316.

5. Shao, W., M. Gardezi, and S. Xian. Examining the Effects
of Objective Hurricane Risks and Community Resilience
on Risk Perceptions of Hurricanes at the County Level in
the U.S. Gulf Coast: An Innovative Approach. Annals of
the American Association of Geographers, Vol. 108, No. 5,
2018, pp. 1389-1405. https://doi.org/10.1080/24694452.
2018.1426436.

6. Lin, N., J. A. Smith, G. Villarini, T. P. Marchok, and M.
L. Baeck. Modeling Extreme Rainfall, Winds, and Surge
from Hurricane Isabel (2003). Weather and Forecasting,
Vol. 25, No. 5, 2010, pp. 1342-1361. https://doi.org/
10.1175/2010WAF2222349.1.

7. Kocatepe, A., M. B. Ulak, G. Kakareko, E. E. Ozguven,
S. Jung, and R. Arghandeh. Measuring the Accessibility of
Critical Facilities in the Presence of Hurricane-Related
Roadway Closures and an Approach for Predicting Future
Roadway Disruptions. Natural Hazards, Vol. 95, No. 3,
2019, pp. 615-635. https://doi.org/10.1007/s11069-018-
3507-5.

8. Chang, S. E. Transportation Planning for Disasters: An
Accessibility Approach. Environment and Planning A:
Economy and Space, Vol. 35, No. 6, 2003, pp. 1051-1072.
https://doi.org/10.1068/a35195.


https://doi.org/10.1007/s11069-018-3260-9
https://doi.org/10.1007/s11069-018-3260-9
https://doi.org/10.1080/24694452.2018.1426436
https://doi.org/10.1080/24694452.2018.1426436
https://doi.org/10.1175/2010WAF2222349.1
https://doi.org/10.1175/2010WAF2222349.1
https://doi.org/10.1007/s11069-018-3507-5
https://doi.org/10.1007/s11069-018-3507-5
https://doi.org/10.1068/a35195

Transportation Research Record 00(0)

10.

12.

13.

14.

15.

16.

18.

Li, A. C. Y., L. Nozick, N. Xu, and R. Davidson. Shelter
Location and Transportation Planning under Hurricane
Conditions. Transportation Research Part E: Logistics and
Transportation Review, 2012. https://doi.org/10.1016/].tre
.2011.12.004.

Wilmot, C. G., and B. Mei. Comparison of Alternative
Trip Generation Models for Hurricane Evacuation. Natu-
ral Hazards Review, Vol. 5, No. 4, 2004, pp. 170-178. https://
doi.org/10.1061/(ASCE)1527-6988( 2004)5:4(170).

. Wolshon, B., E. Urbina, C. Wilmot, and M. Levitan.

Review of Policies and Practices for Hurricane Evacuation.
I: Transportation Planning, Preparedness, and Response.
Natural Hazards Review, Vol. 6, No. 3, 2005, p. 129. https://
doi.org/10.1061/(asce)1527-6988( 2005)6:3(129).
Ghorbanzadeh, M., M. Koloushani, M. B. Ulak, E. E.
Ozguven, and R. A. Jouneghani. Statistical and Spatial
Analysis of Hurricane-Induced Roadway Closures and
Power Outages. Energies, Vol. 13, No. 5, 2020, p. 1098.
https://doi.org/10.3390/en13051098.

Knorn, J., A. Rabe, V. C. Radeloff, T. Kuemmerle, J.
Kozak, and P. Hostert. Land Cover Mapping of Large
Areas using Chain Classification of Neighboring Landsat
Satellite Images. Remote Sensing of Environment, Vol. 113,
No. 5, 2009, pp. 957-964. https://doi.org/10.1016/j.rse.2009
.01.010.

Shalaby, A., and R. Tateishi. Remote Sensing and GIS for
Mapping and Monitoring Land Cover and Land-Use
Changes in the Northwestern Coastal Zone of Egypt.
Applied Geography, Vol. 27, No. 1, 2007, pp. 28-41. https://
doi.org/10.1016/j.apge0g.2006.09.004.

Noi, P. T., and M. Kappas. Comparison of Random For-
est, k-Nearest Neighbor, and Support Vector Machine
Classifiers for Land Cover Classification using Sentinel-2
Imagery. Sensors (Switzerland), Vol. 18, No. 1, 2018, p.
18. https://doi.org/10.3390/s18010018.

Aljoufie, M., M. Zuidgeest, M. Brussel, and M. van Maar-
seveen. Spatial-Temporal Analysis of Urban Growth and
Transportation in Jeddah City, Saudi Arabia. Cities, Vol.
31, 2013, pp. 57-68. https://doi.org/10.1016/j.cities.2012.04
.008.

. Van Hell, M. Detecting Hurricane Induced Changes on Sint

Maarten using Sentinel 2 Optical Data. The Effect of Hurri-
cane Irma. Faculty of Civil Engineering and Geosciences
TU Delft, 2018, pp. 1-62.

Johansen, K., S. Phinn, and M. Taylor. Mapping Woody
Vegetation Clearing in Queensland, Australia from Landsat

19.

20.

21.

22.

23.

24.

25.

26.

Imagery using the Google Earth Engine. Remote Sensing
Applications: Society and Environment, Vol. 1, 2015,
pp- 36-49. https://doi.org/10.1016/j.rsase.2015.06.002.
Tang, Z., Y. Li, Y. Gu, W. Jiang, Y. Xue, Q. Hu, T.
LaGrange, A. Bishop, J. Drahota, and R. Li. Assessing
Nebraska Playa Wetland Inundation Status During 1985—
2015 using Landsat Data and Google Earth Engine. Envi-
ronmental Monitoring and Assessment, Vol. 188, No. 12,
2016. https://doi.org/10.1007/s10661-016-5664-x.
Traganos, D., D. Poursanidis, B. Aggarwal, N. Chrysoula-
kis, and P. Reinartz. Estimating Satellite-Derived Bathy-
metry (SDB) with the Google Earth Engine and Sentinel-2.
Remote Sensing, Vol. 10, No. 6, 2018, p. 859. https://doi
.org/10.3390/rs10060859.

Lorenzo-Trueba, J., and A. D. Ashton. Rollover, Drown-
ing, and Discontinuous Retreat: Distinct Modes of Barrier
Response to Sea-Level Rise Arising from a Simple Mor-
phodynamic Model. Journal of Geophysical Research:
Earth Surface, Vol. 119, No. 4, 2014, pp. 779-801. https://doi
.org/10.1002/2013JF002941.

Gorelick, N., M. Hancher, M. Dixon, S. Ilyushchenko, D.
Thau, and R. Moore. Google Earth Engine: Planetary-
Scale Geospatial Analysis for Everyone. Remote Sensing of
Environment, Vol. 202, 2017, pp. 18-27. https://doi.org/
10.1016/j.rse.2017.06.031.

Engels, W.L. Vertebrate Fauna of North Carolina Coastal
Islands. A Study in the Dynamics of Animal Distribution
I. Ocracoke Island. American Midland Naturalist, Vol. 28,
No. 2, 2006, p. 273. https://doi.org/10.2307/2420817.
United States Census Bureau. Decennial Census Datasets.
https://www.census.gov/programs-surveys/decennial-cen-
sus/data/datasets.2016.html. Accessed April 26, 2019.
Street Centerlines - Leon County (LCSTSEG) and Geo-
Data Hub Tallahassee-Leon County GIS. https://geodata-
tlcgis.opendata.arcgis.com/datasets/street-centerlines-leon-
county-lcstseg. Accessed April 26, 2019.

Hu, T., and R. B. Smith. The Impact of Hurricane Maria
on the Vegetation of Dominica and Puerto Rico using Mul-
tispectral Remote Sensing. Remote Sensing, Vol. 10, No. 6,
2018, p. 827. https://doi.org/10.3390/rs10060827.

The contents of this paper and discussion represent the authors’
opinions and do not reflect the official views of the City of
Tallahassee or of StormGeo.


https://doi.org/10.1016/j.tre.2011.12.004
https://doi.org/10.1016/j.tre.2011.12.004
https://doi.org/10.1061/(ASCE)1527-6988(
https://doi.org/10.1061/(ASCE)1527-6988(
https://doi.org/10.1061/(asce)1527-6988(
https://doi.org/10.1061/(asce)1527-6988(
https://doi.org/10.3390/en13051098
https://doi.org/10.1016/j.rse.2009.01.010
https://doi.org/10.1016/j.rse.2009.01.010
https://doi.org/10.1016/j.apgeog.2006.09.004
https://doi.org/10.1016/j.apgeog.2006.09.004
https://doi.org/10.3390/s18010018
https://doi.org/10.1016/j.cities.2012.04.008
https://doi.org/10.1016/j.cities.2012.04.008
https://doi.org/10.1016/j.rsase.2015.06.002
https://doi.org/10.1007/s10661-016-5664-x
https://doi.org/10.3390/rs10060859
https://doi.org/10.3390/rs10060859
https://doi.org/10.1002/2013JF002941
https://doi.org/10.1002/2013JF002941
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.2307/2420817
https://www.census.gov/programs-surveys/decennial-census/data/datasets.2016.html
https://www.census.gov/programs-surveys/decennial-census/data/datasets.2016.html
https://geodata-tlcgis.opendata.arcgis.com/datasets/street-centerlines-leon-county-lcstseg
https://geodata-tlcgis.opendata.arcgis.com/datasets/street-centerlines-leon-county-lcstseg
https://geodata-tlcgis.opendata.arcgis.com/datasets/street-centerlines-leon-county-lcstseg
https://doi.org/10.3390/rs10060827

