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Abstract—Catastrophic weather has significantly battered the U.S. Gulf Coast in recent years and ex-
posed critical deficiencies in the resilience across communities and organizations. These deficiencies com-
pel the devising of strategies to identify critical infrastructure components that require more attention with 
regard to building resilience. This article presents a holistic approach to assessing urban resilience by study-
ing the coresilience of infrastructure networks. For this purpose, Tallahassee, Florida is used as a case study 
with a focus on both power and roadway networks and includes real-life disaster data from three extreme 
weather events that recently hit the study area. This article contributes to the coresilience concept through: 

-
grated infrastructure network and feed the causality models, 2) developing novel coresilience metrics to 
spatially identify and evaluate the high-risk locations, and 3) presenting a comprehensive case study and ap-
plication of the developed approaches by using real-life data from three major storms that hit the study area.
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C
atastrophic weather has significantly battered the 
U.S. Gulf Coast in recent years and exposed weak-
nesses in emergency preparedness and response. 
Examples include hurricanes Hermine (2016) and 

Michael (2018) as well as a major storm in 2017 that hit 
the Florida Gulf Coast. These extreme weather events re-
vealed critical deficiencies in coordination among commu-
nities, organizations, and governments. Emergency relief 
operations were significantly affected by these hurricanes, 
which left the impacted region with partially flooded road-
ways and downed trees, utility poles, and power lines. 
Moreover, the lack of coordination among entities slowed 
the restoration of the failed infrastructure components. For 
example, power-restoration crews had to slow down due to 
the roadway closures caused by debris (e.g., fallen trees)—
especially when the operations of the public-works crews, 
who are responsible for removing the debris, were not co-
ordinated with restoration crews. Issues in coordination 
disproportionately impacted the populations at risk (e.g., 
lower income groups), who need and benefit from these 
services the most. Unfortunately, the magnitude and ad-
verse outcomes of extreme events are expected to increase 
in the near future due to the effect of climate change. Fur-
thermore, an aging infrastructure and increasing popula-
tion are also contributing to the devastating effects of these 
extreme events.

The magnitude of the outcomes of such extreme events 
is predisposed by the ability of the infrastructure compo-
nents to cope with the random and dynamic changes. In 
that context, infrastructure resilience can be defined as an 
infrastructure’s ability to cope with challenges imposed by 
extreme events. Any shortfall in the infrastructure resil-
ience can translate into deficiencies that can amplify the 
vulnerabilities of communities. Community resilience is 
a multidimensional characteristic defined by the layers of 
interconnected infrastructure networks. Therefore, the 
study of resilience should not only focus on a single net-
work attribute but also study the interdependencies among 
multilayer infrastructure networks. In accordance with 
this, a concept named coresilience was previously devel-
oped by the authors of this article [1]. Within this coresil-
ience concept, there is a need to 1) develop a geographical 
information systems (GIS)-based information-gathering 
approach to obtain an integrated infrastructure network 
and feed the causality models and 2) develop novel core-
silience metrics to spatially identify and evaluate high-risk 
locations. These metrics can be used to develop multi-
variate prioritized-risk maps to assess community vulner-
ability at multiple scales and dimensions, including the 
impact of the storms on infrastructure, the environment, 
and communities. Moreover, a deep neural network cau-
sality-based approach (DNNC) is developed to identify the 
causality structure behind the resilience of infrastructure 
segments.

Developing mathematical metrics through the perfor-
mance estimation of multiple infrastructure networks is a 
difficult task since infrastructure performance will defi-
nitely be affected by disaster-related disruptions, such as 
roadway closures due to flooding, storm surges, and fallen 
trees and utility poles. Therefore, a thorough assessment of 
the transportation and power networks, with a focus on in-
tegrating critical facilities, such as hospitals, land-use fea-
tures, and storm-related factors, is particularly important 
to making a hierarchical prioritization possible. To under-
stand and create an accurate hierarchical prioritization, it 
is necessary to comprehend the characteristic behavior of 
each infrastructure network and layer and the interdepen-
dency among these various networks. 

It is important to note that modeling and analysis be-
come challenging while dealing with the integration of 
various infrastructure networks due to reasons such as 
the curse of dimensionality, noise, irrelevant data, spar-
sity, and so on. The causality approach was utilized in this 
article to efficiently combine different networks. Although 
there have been several studies focusing on the identifi-
cation of underlying causal relationships, there have been 
very few studies that leverage neural network algorithms 
for this purpose.

Background
It is crucial to investigate the structural properties of net-
works to understand the complex dynamics of these inter-
dependent systems. In “Emergence of scaling in random 
networks” [2], the concept of scale-free networks and the 
Barabási-Albert model were introduced with their possible 
applications on natural, technological, and social systems. 
This was followed by an article [3] in which a method was 
developed to predict the growth dynamics of the individual 
vertices for the networks. For more information on the ad-
vancements with respect to complex networks, please refer 
to “Statistical mechanics of complex networks” [4]. Math-
ematical metrics were also developed to estimate the reli-
ability of the networks. For example, the concept of network 
efficiency was introduced in “Efficient behavior of small-
world networks” [5] and refined in “Is the Boston subway 
a small-world network?” [6], with insights on the usage of 
this concept on real-world transportation networks. Several 
other models were proposed to evaluate the global and local 
efficiency properties of complex transportation networks 
[7], [8]. Results indicated that the failure of a single node is 
sufficient to affect the reliability of the entire network if the 
node is among the ones with the largest load.

Using the Barabási-Albert model, power networks were 
analyzed in Chassin et al. [9], whereas the cascade of fail-
ures and multiple dependent, competing failure processes 
were studied in Buldyrev et al. [10] and Peng et al. [11], re-
spectively. The vulnerability of transportation networks 
has also been widely studied in the last two decades. Please 
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refer to Berdica et al. [12] for more details. The word vul-
nerability was introduced by Sarewitz et al. [13] as a mea-
sure to describe the inherent characteristics of a system 
that create the potential for harm. 

In Jenelius et al. [14], the concepts of link importance and 
site exposure were introduced to assess vulnerability and 
reliability through the increased travel cost due to roadway 
closures. An accessibility index was also derived to incor-
porate the distance-decay effect and the volume of traffic’s 
influence on the transportation networks [15]. With a focus 
on the effect of disasters on traffic conditions, Sumalee et 
al. [16] developed an optimization model, using Monte-
Carlo simulation, to approximate the capacity reliability of 
a transportation network. Similar disaster-related studies, 
with a prioritization of the minimization of the disruption 
caused by random and targeted attacks on the networks, 
were conducted [17]. Other studies, with a concentration 
on the effect of disasters on roadway links, were also con-
ducted [18]. An interesting study was presented by Jenelius 
[19], where long-term vulnerability issues were found to be 
directly related to the relationship between transportation 
networks and population densities. Recently, some studies 
aimed at causal characterizations of transportation, using 
the principles of causality. Causality theory is used in the 
literature to investigate the underlying relationships among 
different variables. There are many ongoing researches 
that focus on establishing better causality algorithms [20]. 
With the increasing popularity of neural networks, the uti-
lization of neural-network algorithms to reveal underlying 
direct and indirect causal relationships also increased [21], 
[22]. In this article, we propose using deep neural networks 
(DNNs) to identify causal relationships under extreme 
weather conditions, aiming to evaluate the most informa-
tive dependent variables for vulnerability assessment and 
resilience characterization.

There are several studies that focus on the resilience 
of interdependent infrastructure systems [23]–[31]. For 
instance, Mao et al. [26] demonstrated that resilience es-
timations drop by approximately 20% (when interdepen-
dencies are taken into account) by using a power and water 
infrastructure. Similarly, Almoghathawi et al. [25] also pri-
oritized the interdependent resilience of power and water 
networks and used an optimization approach to minimize 
the recovery period. The joint resilience of gas and power 
networks was studied by Ouyang and Wang [23]. However, 
the authors adopted one-way dependency (i.e., power in-
fluenced the gas network) between networks rather than 
interdependency and concentrated on system-wide resto-
ration efficiency. Among these studies, Fotouhi et al. [24] 
prioritized quantifying the resilience of traffic and elec-
tric system from a system-wide performance perspective. 
However, the authors did not consider the resilience quan-
tification of the individual components of the networks. 
These infrastructures exist for the communities relying on 

them, and, hence, resilience deficiencies in the infrastruc-
ture systems impact these communities [31], [32]. Thus, a 
population-vulnerability-based optimization model was 
proposed by Berfin et al. [31], which integrates the commu-
nity perspective into resilience, unlike previous studies, to 
achieve a community resilience. Similarly, the vulnerabil-
ity index in our study takes population into account in addi-
tion to the critical facilities. Among the resilience studies, a 
number focused on developing resilience metrics [33]–[36]. 
While some ([33], [36], and [34]) developed system-wide 
metrics to measure the infrastructure resilience, Kocatepe 
et al. [35] attempted to develop component-based metrics 
that can pinpoint the less-resilient parts of the whole net-
work. A comprehensive review of resilience studies con-
centrating on interdependent infrastructure systems from 
theory and practice perspectives can be found in “Resil-
ience engineering: theory and practice in interdependent 
infrastructure systems” [22].

Despite the availability of literature on the resilience of 
interdependent infrastructure systems, not many of these 
studies focus on the characterization of the interdependen-
cies between transportation and electricity networks [24], 
[37]–[39] or evaluate the resilience and vulnerability of 
these networks [2], [10], [16], [18], [19], [40]. However, the 
impact of the hurricanes and the identification of strategies 
to avoid the possible disruptions should clearly be studied 
extensively [41]–[46] to develop an integrated approach that 
can consider the coresilience of these networks. Despite 
recent efforts [1], [35], there is still a lack of a holistic ap-
proach to assessing the infrastructure resilience through 
studying the coresilience of power and transportation net-
works together.

Methodology
The coresilience concept was developed by the authors 
of this study to quantify the integrated power-and-trans-
portation network resilience [1]. In this article, previous 
work is improved by the development of a GIS-based, com-

-
bines individual networks and contains all of the relevant 
information for them to fully assess the resilience of the 
infrastructure system against storms and hurricanes. 
Furthermore, the proposed methodology was utilized to 
assess the vulnerability and resilience of the infrastruc-
ture networks, with a focus on critical facilities, such as 
hospitals.

The Development of Coresilience Metrics
A detailed methodology was developed in this article to 
evaluate the impact of the storms on the infrastructure net-
works of the City of Tallahassee, Florida. For this purpose, 
a single infrastructure network was produced by merging 
roadway and power networks (Figure 1).
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Vulnerability Index

The vulnerability index was calculated by using (1). The 
squared values used in the metric impose a higher weight 
to the repeating failures in the same segment. Moreover, 
the weights of outages and closures on the same segment 
are squared separately to avoid an overestimation of the 
effect of failures that occurred due to the same event (e.g., 
a closure and an outage occurring during Hermine in one 
single segment), considering that roadway closures and 
outages are highly associated.
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where Vi = -
ment ,i  e  is event ( , , , ),e E1 2 f=  E is the total number of 
events (i.e., disasters) used in assessment; IO ,e i  is an indica-
tor of whether there is an outage at segment i during event 
e; and IC ,e i  is an indicator of whether there is a closure at 
segment i during event e. I is equal to 1 if there is a closure 
or outage and is 0 otherwise.

Priority Index

The priority index (PI) is developed to prioritize infra-
structure components based on the importance of the fa-
cilities or customers they serve (i.e., a component serving 
to a hospital has priority over another component serving 
to a residential unit). The index was calculated using sev-
eral variables (Figure 2) (e.g., facilities, land use, number 
of customers) associated with the infrastructure segment 
(a full list is given in Table 1). The index equation is as 
follows:

 , ,P N i f,i f f i
f

) 6b=/  (2)

where Pi = the PI of infrastructure segment i, fb  is the 
coefficient utilized to weigh the effect of factor f (e.g., hos-
pital) on the ,Pi  and N ,if  is the extent/magnitude of the 
factor f [e.g., the number of beds at the hospital, number 
of students at school (1 if there is a supermarket, 0 other-
wise)] in regards to segment i. This article uses the avail-
able priority benchmarks for the critical facilities given in 
Kocatepe et al. [35] for the prioritization ( ). Note 
that the higher the criticality of a facility is, the higher the 
priority is as well. Hospitals have a PI based on their num-
ber of beds, and individual hospital priorities were cal-
culated by the multiplication of index with bed numbers. 
Similarly, schools’ PIs were calculated based on the num-
ber of enrolled students. However, customers and land-use 
features, such as residential and commercial entities, were 
given different priorities. 

Infrastructure Resilience Need

Following the development of vulnerability and priority 
indices, the infrastructure-resilience need metrics (RN) 
were calculated for each infrastructure segment i. These 
metrics can allow officials to spatiotemporally pinpoint 
segments that are preeminent while having the highest 
vulnerability to a hurricane. This metric is simply the nor-
malized product of priority and feeder vulnerability (3):

 , , .maxRN V P
V P i segmenti

i
i i

i i

)
) 6= ^ h  (3)

The PIs of facilities and the vulnerabilities of infra-
structure segments are included within the RN factor for 
every infrastructure segment.

Causality Analysis
To establish the proposed coresilience metrics, it is neces-
sary to fathom the interconnectivity of these metrics under 
extreme weather conditions. Therefore, a causal mecha-

FIG 1 The integration of both roadway and power networks into one 
complete infrastructure network. 

FIG 2 The facility and land-use features utilized to identify critical network 
components. 
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nism was used to quantify the relatedness of the need for 
resilience to the effects of these extreme weather events. 
Causality analysis provides more intrinsic information on 
the interdependencies between the power and transporta-
tion networks while focusing on their vulnerability and on 
the aforementioned critical facilities.

Among other approaches to identifying and inferring 
causal relationships, a DNN-based approach has been uti-
lized in this article due to its superiority [1]. Although there 
are several methods to identifying underlying causal re-
lationships, based on the authors’ previous studies, recur-
rent DNN was found to provide high accuracy and faster 
computation. This approach is based on recurrent neural 
networks, which can recognize more accurate patterns 
present in real-life, large data sets, such as power outages 
(POs) and roadway closures, and translate this information 
into vectors. DNNs, consisting of many hidden layers, are 
especially powerful in processing the input data. As such, 
this article utilized a neural network-based causality: the 
DNNC approach, developed in [1].

The selection of the optimal number of hidden layers is 
critical for the proposed methodology. This article uses a 
heuristic approach consisting of forward propagation for 
selecting the optimal number of hidden neurons. A layer-
wise implementation of the variance testing was applied 
to automatically determine the number of hidden units 
of hidden layers in the DNNC algorithm. In other words, 

various numbers of hidden layers were added one by one 
until the optimal accuracy versus speed was achieved. 
This number was increased gradually through the evalu-
ation of the neural network performance. Based on this 
approach, six hidden layers were selected for the DNNC 
method to identify the causal relationships among the in-
put variables. Alternative input variables were evaluated 
for their global Markov property-significance values. That 
is, for any stochastic process, the conditional distribution 
was evaluated to have dependency on both present and past 
states but not on the future states. If variables were known 
to have strong global Markov property, they were fed into 
the first recurrent neural network, and, if not, they were 
fed into the second recurrent neural network units. Based 
on the conditional variance test between each pair of vari-
ables, the highest variance variables were fed into the final 
network, which yielded the final causal model in the form 
of a directed acyclic graph. A brief description of the archi-
tecture used in the methodology is illustrated in Figure 3.

In addition, suppose , ,A B Zf  are different time-se-
ries data sets that represent POs, roadway closures, and 
weather and demographical information, which were fil-
tered based on the conditional variance. The conditional 
variance shows the variance of a random variable, X, given 
the values of the other one or more variable(s), such as Y. 
Consider two distinct variables, X and Y. The conditional 
variance is defined as follows:

 .Y yX Y y E X yVar Y
2 2n= = = - X^ ^h h6 @  (4)

On one hand, the variables having high conditional 
variances were fed into the first set of hidden layers. On 
the other hand, the inputs to the second set of hidden lay-
ers had low conditional variance. Activation functions 
were used to initialize the neurons of the deep learning 
network after the input categorization (i.e., low and high 
conditional variance groups). The logistic sigmoid activa-
tion function, shown in (5), was utilized:

 .f x
e1
1

x=
+ -^ h  (5)

In addition to the logistic sigmoid function, this article 
utilized another activation function, known as the hyper-
bolic function, shown next:

 .f x
e e
e e
x x

x x
=

+
-

-

-^ h  (6)

Following this conditional variance training, the out-
puts were filtered and characterized, as displayed in Fig-
ure 3. The aforementioned activation functions were used 
for the weight computation in the DNNC algorithm. Each 
input variable was cross measured for conditional vari-
ance with other time-series variables. In other words, 
a pairwise conditional variance test was performed for 

Factor Coefficient ∑Score

Facilities

Hospitals (per bed) 2.51 e-04 0.193

Health facility (Yes | No) 0.007 —

Fire stations (Yes | No) 0.056 —

Law enforcement (Yes | No) 0.030 —

Supermarket (Yes | No) 0.016 —

Grocery (Yes | No) 0.010 —

School (per student) 2.22 e-05 0.046

Land Use

Commercial (Yes | No) 0.050 —

Residential (high density) (Yes | No) 0.050 —

Residential (medium density) (Yes | No) 0.010 —

Residential (low density) (Yes | No) 0.005 —

Transportation (roadways) (Yes | No) 0.050 —

Utility buildings (Yes | No) 0.100 —

Traffic volume (annual average daily traffic) 7.75 e-07 0.05

Number of customers 3.78 e-05 0.05

Feeder hierarchy (eight levels) 6.25 e-03 0.05

Table 1. The priority coefficients. 
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all of the input variables. Variables were filtered based 
on the values obtained from the variance test. Based on 
the values of variance achieved, the variables were fed 
to the final DNN. The outputs from these two respec-
tive hidden layers formed causal graphs. These selected 
variables were fed into the final DNN output layer again. 

the efficient computation of the pairwise conditional vari-
ance values for all of the input variables. The outcomes of 
low-conditional-variance and high-conditional-variance 
DNNC units were fed into the final DNNC unit, leading 
to a causal graphical-model output in the context of the 
coresilience approach.

Study Area and Data Description
The City of Tallahassee, with a population of 286,272 [47], 
is the capital of Florida and a full-service municipality 
providing essential services to the region, including pow-
er, gas, water, solid waste, sewer, public works, an airport, 
and mass transit. Tallahassee has been hit by one storm 
and three major hurricanes since 2016. These extreme 
events, namely Hurricane Hermine (2016) [48], Hurri-
cane Irma (2017) [49], Hurricane Michael (2018) [50], and 
the January storm (2016) [51], caused significant disrup-
tions in the power grid and transportation network. The 
power and roadway infrastructures of Tallahassee were 
hit the hardest during the hurricanes Hermine and Mi-
chael. Hurricane Irma, on the other hand, did not directly 
hit Tallahassee. Rather, it had milder effects on the city, 
even though it was one of the most powerful hurricanes in 
recorded history.

The data resources used in this study were provided 
by the City of Tallahassee, including the POs and road-
way closures as well as the whole power-and-roadway-
network infrastructure (Figure 4). Moreover, several 
critical facilities (e.g., five hospitals, 13 fire stations, and 
14 police stations) are present in the city to serve the 
 victims of disasters [Figure 5(a)]. The roadway and pow-
er infrastructure of the city is displayed in Figure 4(a) 
and Figure 4(b), respectively, whereas the merged in-
frastructure network is illustrated in Figure 4(c). Figure 
5(a) presents the distribution of facilities in the city and 
land-use features of Tallahassee while Figure 5(b) out-
lines the land-use features (e.g., residential, commercial, 
and so on).

Results, Discussion, and Validation

Vulnerability, Priority, and RN
Developed metrics (see the histograms in Figure 6) helped 
illustrate the vulnerable and high-priority infrastructure 
components as well as the ones in need of improvement to 
enhance the resilience of the affected region (Figure 7). 
High-priority infrastructure segments identified via PI are 
displayed in Figure7(a) with bright pink colors. The impact 
of the critical facilities, such as hospitals and fire stations, 
on the PI can be observed by examining this figure togeth-
er with Figure 5(a). Figure 7(b) provides the results for the 
vulnerability metric. High-priority locations, presented in 
Figure 7(a), are more clustered, and it is possible to detect 
these areas since PI is calculated using the area informa-
tion, such as the land-use and facility locations. However, 

FIG 3 An overview of causality methodology.
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the vulnerability index is associated with individual links 
and the impacts of storms/hurricanes on those links. As 
such, highly vulnerable segments are dispersed rather 
than clustered, compared to the PI-based results.

The perfect solution would be to enhance the resilience 
of all infrastructure; however, it is generally not feasible, 
given the constrained budgets of the state and local gov-
ernments that focus on emergency planning and response. 

Therefore, it might be important for these agencies to al-
locate appropriate funds to increase the resilience of the 
most critical segments and locations. From this perspec-
tive, being vulnerable does not justify the need for resil-
ience. However, it is required for a segment to be both high 
priority and vulnerable. The RN index provides such an as-
sessment and identifies the most critical locations. Finally, 
RN illustrates those infrastructure segments, which the 

FIG 4 The study area’s (a) roadway network, (b) power network, and (c) merged infrastructure network. 
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city or any other relevant agency can identify and consider 
for future resilience-oriented investments.

Cross-Validation with Causal Inference
The DNNC algorithm was applied on the multidimension-
al data set consisting of weather variables, topographic 
variables, and infrastructure variables, including road 
closures (RCs) and failed power lines. The inputs to the 
DNNC network consist of time-series weather parameters, 
such as wind speed (WS), rain rate (RR), POs, roadway clo-
sures, and information regarding the critical infrastruc-
ture facilities and the topography. They also consist of 
information regarding the reasons for power failure, such 
as downed trees, affected power lines, downed transform-
ers, and so on. The coresilience graphical models devel-
oped for Hurricane Hermine (2016), the January storm 
(2017), and Hurricane Michael (2018) are illustrated in 
Figure 8(a)–(c), respectively.

From Figure 8(a), it is observed that WS combined with 
RR causes a higher number of customers to be affected by 
POs. Moreover, fallen trees also give rise to RN. Although 
ground truth does state that weather variables, such as WS 
and RR, are primary causes of outages, information theory 
points to other variables, such as trees, power lines, and 
RCs, to be used to model RN. In comparison with Hurricane 
Hermine and Hurricane Michael, the tropical storm that 
occurred in January 2017 was much lower in intensity.

To validate the causal model on a lower-intensity event, 
DNNC was applied on the January storm data set as well. The 

resultant coresilience graphical model is illustrated in Figure 
8(b). In this case, it is observed that the number of affected 
customers, POs, and roadway closures have causal-relation-
ship RN, along with the downed power lines and trees and 
weather variables, as seen in Hurricane Hermine. This case 
is also a perfect example of the change of causal relationships 
with the change in the granularity of data and sparsity.

Similarly, Hurricane Michael also lists RC, the num-
ber of affected customers, and the power lines failed due 
to trees downed as causes of RN and lists WS and RR as 
the primary causes. With these causal diagrams, it be-
comes possible to precisely identify the most informative 
variables in modeling RN. Ground truth and common 
knowledge help us in identifying endogenous variables, 
but associated variables, common cause, and exogenous 
or hidden variables can be identified with the use of cau-
sality theory. Therefore, DNNC successfully identifies the 
underlying causal relationships across various infrastruc-
ture networks, which, in turn, can help in modeling a more 
resilient system.

Conclusion and Future Work
This article presented a holistic approach to assessing ur-
ban resilience by studying the coresilience of infrastructure 
networks. The infrastructure resilience of an urban region 
(Tallahassee) was studied using the data from three ex-
treme weather events (one storm and two major hurricanes) 
that recently hit the Florida Gulf Coast in the United States. 
The resilience metrics proposed in this study aim to help 

FIG 5 (a) The facilities in Tallahassee. (b) The land-use features. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  10  •  MONTH 2021

identify the most critical locations by incorporating both 
the priorities and vulnerabilities of infrastructure segments 
and aim to provide future resilience-oriented investments 
for these segments. 

The resilience of transportation networks is not an 
isolated and independent problem and, hence, requires a 

coresilience-based assessment. Therefore, this study fo-
cuses on infrastructure resilience to assess transportation 
resilience. Such assessment can help other researchers to 
prioritize the interdependencies of roadway networks with 
other infrastructures, such as power and telecommunica-
tions networks. This is especially critical considering the 
future of transportation, with the widespread penetration 
of automated and connected vehicles as well as electric ve-
hicles that will rely on functioning power and telecommu-
nications infrastructures.

It is worth mentioning that there are certain limitations 
and caveats regarding the adopted methodology. The PI was 
calculated based on the spatial proximity of factors, such as 
facilities (e.g., hospitals, fire stations) or land-use features (e.g., 
commercial, residential), to the infrastructure segments. For 
example, an infrastructure segment closer to a fire station was 
considered as the one that could serve that station; hence, the 
PI of the segment was calculated accordingly. This is not a very 
strong assumption, considering that there is a high probabil-
ity that spatial proximity is a valid approach to identifying the 
facilities, which are served by each infrastructure segment. 
However, there is still a need to enhance this accuracy. Even 
though such an identification task would require an extensive 
effort, this is a very promising future direction.

Another limitation is associated with the coefficients of the 
factors used in the calculation of the priority indices. Some 
of these coefficients were derived from previous research, 
such as that by Kocatepe et al. [35], and most of them were 
identified based on expert experience and knowledge. A bet-
ter approach compels a better  methodology to ensure that 
authorities and decision makers can identify more-accurate 
coefficients for the PI metric, which is also a very good future 
research opportunity.
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