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Abstract—Catastrophic weather has significantly battered the U.S. Gulf Coast in recent years and ex-
posed critical deficiencies in the resilience across communities and organizations. These deficiencies com-
pel the devising of strategies to identify critical infrastructure components that require more attention with
regard to building resilience. This article presents a holistic approach to assessing urban resilience by study-
ing the coresilience of infrastructure networks. For this purpose, Tallahassee, Florida is used as a case study
with a focus on both power and roadway networks and includes real-life disaster data from three extreme
weather events that recently hit the study area. This article contributes to the coresilience concept through:
1) developing a geographical information system-based information-gathering approach to obtain an inte-
grated infrastructure network and feed the causality models, 2) developing novel coresilience metrics to
spatially identify and evaluate the high-risk locations, and 3) presenting a comprehensive case study and ap-
plication of the developed approaches by using real-life data from three major storms that hit the study area.
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atastrophic weather has significantly battered the

U.S. Gulf Coast in recent years and exposed weak-

nesses in emergency preparedness and response.

Examples include hurricanes Hermine (2016) and
Michael (2018) as well as a major storm in 2017 that hit
the Florida Gulf Coast. These exireme weather events re-
vealed critical deficiencies in coordination among commu-
nities, organizations, and governments. Emergency relief
operations were significantly affected by these hurricanes,
which left the impacted region with partially flooded road-
ways and downed trees, utility poles, and power lines.
Moreover, the lack of coordination among entities slowed
the restoration of the failed infrastructure components. For
example, power-restoration crews had to slow down due to
the roadway closures caused by debris (e.g., fallen trees)—
especially when the operations of the public-works crews,
who are responsible for removing the debris, were not co-
ordinated with restoration crews. Issues in coordination
disproportionately impacted the populations at risk (e.g.,
lower income groups), who need and benefit from these
services the most. Unfortunately, the magnitude and ad-
verse outcomes of extreme events are expected to increase
in the near future due to the effect of climate change. Fur-
thermore, an aging infrastructure and increasing popula-
tion are also contributing to the devastating effects of these
extreme events.

The magnitude of the outcomes of such extreme events
is predisposed hy the ability of the infrastructure compo-
nents to cope with the random and dynamic changes. In
that context, infrastructure resilience can be defined as an
infrastructure’s ability to cope with challenges imposed by
extreme events. Any shortfall in the infrastructure resil-
ience can translate into deficiencies that can amplify the
vulnerabilities of communities. Community resilience is
a multidimensional characteristic defined by the layers of
interconnected infrastructure networks. Therefore, the
study of resilience should not only focus on a single net-
work attribute but also study the interdependencies among
multilayer infrastructure networks. In accordance with
this, a concept named coresilience was previously devel-
oped by the authors of this article [1]. Within this coresil-
ience concept, there is a need to 1) develop a geographical
information systems (GIS)-based information-gathering
approach to obtain an integrated infrastructure network
and feed the causality models and 2) develop novel core-
silience metrics to spatially identify and evaluate high-risk
locations. These metrics can be used to develop multi-
variate prioritized-risk maps to assess community vulner-
ability at multiple scales and dimensions, including the
impact of the storms on infrastructure, the environment,
and communities. Moreover, a deep neural network cau-
sality-based approach (DNNC) is developed to identify the
causality structure behind the resilience of infrastructure
segments.
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Developing mathematical metrics through the perfor-
mance estimation of multiple infrastructure networks is a
difficult task since infrastructure performance will defi-
nitely be affected by disaster-related disruptions, such as
roadway closures due to flooding, storm surges, and fallen
trees and utility poles. Therefore, a thorough assessment of
the transportation and power networks, with a focus on in-
tegrating critical facilities, such as hospitals, land-use fea-
tures, and storm-related factors, is particularly important
to making a hierarchical prioritization possible. To under-
stand and create an accurate hierarchical prioritization, it
is necessary to comprehend the characteristic behavior of
each infrastructure network and layer and the interdepen-
dency among these various networks.

It is important to note that modeling and analysis bhe-
come challenging while dealing with the integration of
various infrastructure networks due to reasons such as
the curse of dimensionality, noise, irrelevant data, spar-
sity, and so on. The causality approach was utilized in this
article to efficiently combine different networks. Although
there have been several studies focusing on the identifi-
cation of underlying causal relationships, there have heen
very few studies that leverage neural network algorithms
for this purpose.

Background

It is crucial to investigate the structural properties of net-
works to understand the complex dynamics of these inter-
dependent systems. In “Emergence of scaling in random
networks” [2], the concept of scale-free networks and the
Barabasi-Albert model were introduced with their possible
applications on natural, technological, and social systems.
This was followed by an article [3] in which a method was
developed to predict the growth dynamics of the individual
vertices for the networks. For more information on the ad-
vancements with respect to complex networks, please refer
to “Statistical mechanics of complex networks” [4]. Math-
ematical metrics were also developed to estimate the reli-
ability of the networks. For example, the concept of network
efficiency was introduced in “Efficient behavior of small-
world networks” [5] and refined in “Is the Boston subway
a small-world network?” [6], with insights on the usage of
this concept on real-world transportation networks. Several
other models were proposed to evaluate the global and local
efficiency properties of complex transportation networks
[7], [8]. Results indicated that the failure of a single node is
sufficient to affect the reliability of the entire network if the
node is among the ones with the largest load.

Using the Barabasi-Albert model, power networks were
analyzed in Chassin et al. [9], whereas the cascade of fail-
ures and multiple dependent, competing failure processes
were studied in Buldyrev et al. [10] and Peng et al. [11], re-
spectively. The vulnerability of transportation networks
has also been widely studied in the last two decades. Please
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refer to Berdica et al. [12] for more details. The word vul-
nerability was introduced by Sarewitz et al. [13] as a mea-
sure to describe the inherent characteristics of a system
that create the potential for harm.

In Jenelius et al. [14], the concepts of link importance and
site exposure were introduced to assess vulnerability and
reliability through the increased travel cost due to roadway
closures. An accessibility index was also derived to incor-
porate the distance-decay effect and the volume of traffic’s
influence on the transportation networks [15]. With a focus
on the effect of disasters on traffic conditions, Sumalee et
al. [16] developed an optimization model, using Monte-
Carlo simulation, to approximate the capacity reliability of
a transportation network. Similar disaster-related studies,
with a prioritization of the minimization of the disruption
caused by random and targeted attacks on the networks,
were conducted [17]. Other studies, with a concentration
on the effect of disasters on roadway links, were also con-
ducted [18]. An interesting study was presented by Jenelius
[19], where long-term vulnerability issues were found to he
directly related to the relationship between transportation
networks and population densities. Recently, some studies
aimed at causal characterizations of transportation, using
the principles of causality. Causality theory is used in the
literature to investigate the underlying relationships among
different variables. There are many ongoing researches
that focus on establishing better causality algorithms [20].
With the increasing popularity of neural networks, the uti-
lization of neural-network algorithms to reveal underlying
direct and indirect causal relationships also increased [21],
[22]. In this article, we propose using deep neural networks
(DNNs) to identify causal relationships under extreme
weather conditions, aiming to evaluate the most informa-
tive dependent variables for vulnerability assessment and
resilience characterization.

There are several studies that focus on the resilience
of interdependent infrastructure systems [23]-[31]. For
instance, Mao et al. [26] demonstrated that resilience es-
timations drop by approximately 20% (when interdepen-
dencies are taken into account) by using a power and water
infrastructure. Similarly, Almoghathawi et al. [25] also pri-
oritized the interdependent resilience of power and water
networks and used an optimization approach to minimize
the recovery period. The joint resilience of gas and power
networks was studied by Ouyang and Wang [23]. However,
the authors adopted one-way dependency (i.e., power in-
fluenced the gas network) between networks rather than
interdependency and concentrated on system-wide resto-
ration efficiency. Among these studies, Fotouhi et al. [24]
prioritized quantifying the resilience of traffic and elec-
tric system from a system-wide performance perspective.
However, the authors did not consider the resilience quan-
tification of the individual components of the networks.
These infrastructures exist for the communities relying on
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them, and, hence, resilience deficiencies in the infrastruc-
ture systems impact these communities [31], [32]. Thus, a
population-vulnerability-based optimization model was
proposed by Berfin et al. [31], which integrates the commu-
nity perspective into resilience, unlike previous studies, to
achieve a community resilience. Similarly, the vulnerabil-
ity index in our study takes population into account in addi-
tion to the critical facilities. Among the resilience studies, a
number focused on developing resilience metrics [33]-[36].
While some ([33], [36], and [34]) developed system-wide
metrics to measure the infrastructure resilience, Kocatepe
et al. [35] attempted to develop component-based metrics
that can pinpoint the less-resilient parts of the whole net-
work. A comprehensive review of resilience studies con-
centrating on interdependent infrastructure systems from
theory and practice perspectives can be found in “Resil-
ience engineering: theory and practice in interdependent
infrastructure systems” [22].

Despite the availability of literature on the resilience of
interdependent infrastructure systems, not many of these
studies focus on the characterization of the interdependen-
cies between transportation and electricity networks [24],
[37]-[39] or evaluate the resilience and vulnerability of
these networks [2], [10], [16], [18], [19], [40]. However, the
impact of the hurricanes and the identification of strategies
to avoid the possible disruptions should clearly be studied
extensively [41]-[46] to develop an integrated approach that
can consider the coresilience of these networks. Despite
recent efforts [1], [35], there is still a lack of a holistic ap-
proach to assessing the infrastructure resilience through
studying the coresilience of power and transportation net-
works together.

Methodology

The coresilience concept was developed by the authors
of this study to quantify the integrated power-and-trans-
portation network resilience [1]. In this article, previous
work is improved by the development of a GIS-based, com-
plete integration of power and roadway networks. As such,
this article creates an infrastructure network that com-
bines individual networks and contains all of the relevant
information for them to fully assess the resilience of the
infrastructure system against storms and hurricanes.
Furthermore, the proposed methodology was utilized to
assess the vulnerability and resilience of the infrastruc-
ture networks, with a focus on critical facilities, such as
hospitals.

The Development of Coresilience Metrics

A detailed methodology was developed in this article to
evaluate the impact of the storms on the infrastructure net-
works of the City of Tallahassee, Florida. For this purpose,
a single infrastructure network was produced by merging
roadway and power networks (Figure 1).
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Vulnerability Index

The vulnerability index was calculated by using (1). The
squared values used in the metric impose a higher weight
to the repeating failures in the same segment. Moreover,
the weights of outages and closures on the same segment
are squared separately to avoid an overestimation of the
effect of failures that occurred due to the same event (e.g.,
a closure and an outage occurring during Hermine in one
single segment), considering that roadway closures and
outages are highly associated.

E 2 E 2
Vi= <Z Iom> + (Z Icm>
e=1 e=1

1, thereisa closure/outage
0, no closure/outage

for I=f(x)={ , @
where /= the vulnerability index of infrastructure seg-
ment i, e isevent (e=1,2,..., K), E is the total number of
events (i.e., disasters) used in assessment; fo,, is an indica-
tor of whether there is an outage at segment i during event
e; and I¢,, is an indicator of whether there is a closure at
segment i during event e. I is equal to 1 if there is a closure
or outage and is 0 otherwise.

Priority Index

The priority index (PI) is developed to prioritize infra-
structure components based on the importance of the fa-
cilities or customers they serve (i.e., a component serving
to a hospital has priority over another component serving
to a residential unit). The index was calculated using sev-
eral variables (Figure 2) (e.g., facilities, land use, number
of customers) associated with the infrastructure segment
(a full list is given in Table 1). The index equation is as
follows:

Pi=zf:/3f*Nf,ia vi, f @

where P;=the PI of infrastructure segment i, B, is the
coefficient utilized to weigh the effect of factor /' (e.g., hos-
pital) on the P, and Ny is the extent/magnitude of the
factor f [e.g., the number of beds at the hospital, number
of students at school (1 if there is a supermarket, 0 other-
wise)] in regards to segment i. This article uses the avail-
able priority benchmarks for the critical facilities given in
Kocatepe et al. [35] for the prioritization (Table 1). Note
that the higher the criticality of a facility is, the higher the
priority is as well. Hospitals have a PI based on their num-
ber of beds, and individual hospital priorities were cal-
culated by the multiplication of index with bed numbers.
Similarly, schools’ PIs were calculated hased on the num-
ber of enrolled students. However, customers and land-use
features, such as residential and commercial entities, were
given different priorities.
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FIG 1 The integration of both roadway and power networks into one
complete infrastructure network.
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FIG 2 The facility and land-use features utilized to identify critical network
components.

B0 ® 0 &

Infrastructure Resilience Need
Following the development of vulnerability and priority
indices, the infrastructure-resilience need metrics (RN)
were calculated for each infrastructure segment i. These
metrics can allow officials to spatiotemporally pinpoint
segments that are preeminent while having the highest
vulnerability to a hurricane. This metric is simply the nor-
malized product of priority and feeder vulnerability (3):

Vi P,

B.]Viz maX(V;*Pl)’

Vi, segment. 3)

The PIs of facilities and the vulnerabilities of infra-
structure segments are included within the RN factor for
every infrastructure segment.

Causality Analysis

To establish the proposed coresilience metrics, it is neces-
sary to fathom the interconnectivity of these metrics under
extreme weather conditions. Therefore, a causal mecha-
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Table 1. The priority coefficients.

Factor Coefficient YScore
Facilites
Hospitals (per bed) 2.51e-04 0.193
Health facility (Yes | No) 0.007 —
Fire stations (Yes | No) 0.056 =
Law enforcement (Yes | No) 0.030 —
Supermarket (Yes | No) 0.016 —
Grocery (Yes | No) 0.010 —
School (per student) 2.22 e-05 0.046
Land Use
Commercial (Yes | No) 0.050 —
Residential (high density) (Yes | No) 0.050 =
Residential (medium density) (Yes | No) 0.010 —
Residential (low density) (Yes | No) 0.005 =
Transportation (roadways) (Yes | No) 0.050 —
Utility buildings (Yes | No) 0.100 —
Traffic volume (annual average daily traffic) 7.75e-07 0.05
Number of customers 3.78e-05 0.05
Feeder hierarchy (eight levels) 6.25e-03 0.05

nism was used to quantify the relatedness of the need for
resilience to the effects of these extreme weather events.
Causality analysis provides more intrinsic information on
the interdependencies between the power and transporta-
tion networks while focusing on their vulnerability and on
the aforementioned critical facilities.

Among other approaches to identifying and inferring
causal relationships, a DNN-based approach has been uti-
lized in this article due to its superiority [1]. Although there
are several methods to identifying underlying causal re-
lationships, based on the authors’ previous studies, recur-
rent DNN was found to provide high accuracy and faster
computation. This approach is based on recurrent neural
networks, which can recognize more accurate patterns
present in real-life, large data sets, such as power outages
(POs) and roadway closures, and translate this information
into vectors. DNNs, consisting of many hidden layers, are
especially powerful in processing the input data. As such,
this article utilized a neural network-based causality: the
DNNC approach, developed in [1].

The selection of the optimal number of hidden layers is
critical for the proposed methodology. This article uses a
heuristic approach consisting of forward propagation for
selecting the optimal number of hidden neurons. A layer-
wise implementation of the variance testing was applied
to automatically determine the number of hidden units
of hidden layers in the DNNC algorithm. In other words,
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various numbers of hidden layers were added one by one
until the optimal accuracy versus speed was achieved.
This number was increased gradually through the evalu-
ation of the neural network performance. Based on this
approach, six hidden layers were selected for the DNNC
method to identify the causal relationships among the in-
put variables. Alternative input variables were evaluated
for their global Markov property-significance values. That
is, for any stochastic process, the conditional distribution
was evaluated to have dependency on both present and past
states but not on the future states. If variables were known
to have strong global Markov property, they were fed into
the first recurrent neural network, and, if not, they were
fed into the second recurrent neural network units. Based
on the conditional variance test between each pair of vari-
ables, the highest variance variables were fed into the final
network, which yielded the final causal model in the form
of a directed acyclic graph. A brief description of the archi-
tecture used in the methodology is illustrated in Figure 3.

In addition, suppose A, B,... Z are different time-se-
ries data sets that represent POs, roadway closures, and
weather and demographical information, which were fil-
tered based on the conditional variance. The conditional
variance shows the variance of a random variable, X, given
the values of the other one or more variable(s), such as Y.
Consider two distinct variables, X and Y. The conditional
variance is defined as follows:

Var(X|Y =y)=E[X?|Y = y]— wap ()~ )

On one hand, the variables having high conditional
variances were fed into the first set of hidden layers. On
the other hand, the inputs to the second set of hidden lay-
ers had low conditional variance. Activation functions
were used to initialize the neurons of the deep learning
network after the input categorization (i.e., low and high
conditional variance groups). The logistic sigmoid activa-
tion function, shown in (5), was utilized:

1
x)= - 5
J@) =17 5)

In addition to the logistic sigmoid function, this article
utilized another activation function, known as the hyper-
bolic function, shown next:

gr _ efx
S(x)= Fre® (6)

Following this conditional variance training, the out-
puts were filtered and characterized, as displayed in Fig-
ure 3. The aforementioned activation functions were used
for the weight computation in the DNNC algorithm. Each
input variable was cross measured for conditional vari-
ance with other time-series variables. In other words,
a pairwise conditional variance test was performed for
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FIG 3 An overview of causality methodology.

all of the input variables. Variables were filtered based
on the values obtained from the variance test. Based on
the values of variance achieved, the variables were fed
to the final DNN. The outputs from these two respec-
tive hidden layers formed causal graphs. These selected
variables were fed into the final DNN output layer again.
The advantage of utilizing a neural network approach is
the efficient computation of the pairwise conditional vari-
ance values for all of the input variables. The outcomes of
low-conditional-variance and high-conditional-variance
DNNC units were fed into the final DNNC unit, leading
to a causal graphical-model output in the context of the
coresilience approach.

Study Area and Data Description

The City of Tallahassee, with a population of 286,272 [47],
is the capital of Florida and a full-service municipality
providing essential services to the region, including pow-
er, gas, water, solid waste, sewer, public works, an airport,
and mass transit. Tallahassee has been hit by one storm
and three major hurricanes since 2016. These extreme
events, namely Hurricane Hermine (2016) [48], Hurri-
cane Irma (2017) [49], Hurricane Michael (2018) [50], and
the January storm (2016) [51], caused significant disrup-
tions in the power grid and transportation network. The
power and roadway infrastructures of Tallahassee were
hit the hardest during the hurricanes Hermine and Mi-
chael. Hurricane Irma, on the other hand, did not directly
hit Tallahassee. Rather, it had milder effects on the city,
even though it was one of the most powerful hurricanes in
recorded history.
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The data resources used in this study were provided
by the City of Tallahassee, including the POs and road-
way closures as well as the whole power-and-roadway-
network infrastructure (Figure 4). Moreover, several
critical facilities (e.g., five hospitals, 15 fire stations, and
14 police stations) are present in the city to serve the
victims of disasters [Figure 5(a)]. The roadway and pow-
er infrastructure of the city is displayed in Figure 4(a)
and Figure 4(b), respectively, whereas the merged in-
frastructure network is illustrated in Figure 4(c). Figure
5(a) presents the distribution of facilities in the city and
land-use features of Tallahassee while Figure 5(b) out-
lines the land-use features (e.g., residential, commercial,
and so on).

Results, Discussion, and Validation

Vulnerability, Priority, and RN

Developed metrics (see the histograms in Figure 6) helped
illustrate the vulnerable and high-priority infrastructure
components as well as the ones in need of improvement to
enhance the resilience of the affected region (Figure 7).
High-priority infrastructure segments identified via PI are
displayed in Figure7(a) with bright pink colors. The impact
of the critical facilities, such as hospitals and fire stations,
on the PI can be observed by examining this figure togeth-
er with Figure 5(a). Figure 7(b) provides the results for the
vulnerability metric. High-priority locations, presented in
Figure 7(a), are more clustered, and it is possible to detect
these areas since PI is calculated using the area informa-
tion, such as the land-use and facility locations. However,
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FIG 4 The study area’s (a) roadway network, (b) power network, and (c) merged infrastructure network.

the vulnerability index is associated with individual links
and the impacts of storms/hurricanes on those links. As
such, highly vulnerable segments are dispersed rather
than clustered, compared to the PI-based results.

The perfect solution would be to enhance the resilience
of all infrastructure; however, it is generally not feasible,
given the constrained budgets of the state and local gov-
ernments that focus on emergency planning and response.

Therefore, it might be important for these agencies to al-
locate appropriate funds to increase the resilience of the
most critical segments and locations. From this perspec-
tive, being vulnerable does not justify the need for resil-
ience. However, it is required for a segment to be both high
priority and vulnerable. The RN index provides such an as-
sessment and identifies the most critical locations. Finally,
RN illustrates those infrastructure segments, which the
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FIG 5 (a) The facilities in Tallahassee. (b) The land-use features.

city or any other relevant agency can identify and consider
for future resilience-oriented investments.

Cross-Validation with Causal Inference

The DNNC algorithm was applied on the multidimension-
al data set consisting of weather variables, topographic
variables, and infrastructure variables, including road
closures (RCs) and failed power lines. The inputs to the
DNNC network consist of time-series weather parameters,
such as wind speed (WS), rain rate (RR), POs, roadway clo-
sures, and information regarding the critical infrastruc-
ture facilities and the topography. They also consist of
information regarding the reasons for power failure, such
as downed trees, affected power lines, downed transform-
ers, and so on. The coresilience graphical models devel-
oped for Hurricane Hermine (2016), the January storm
(2017), and Hurricane Michael (2018) are illustrated in
Figure 8(a)-(c), respectively.

From Figure 8(a), it is observed that WS combined with
RR causes a higher number of customers to he affected by
POs. Moreover, fallen trees also give rise to RN. Although
ground truth does state that weather variables, such as WS
and RR, are primary causes of outages, information theory
points to other variables, such as trees, power lines, and
RCs, to be used to model RN. In comparison with Hurricane
Hermine and Hurricane Michael, the tropical storm that
occurred in January 2017 was much lower in intensity.

To validate the causal model on a lower-intensity event,
DNNC was applied on the January storm data set as well. The
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resultant coresilience graphical model is illustrated in Figure
8(b). In this case, it is observed that the number of affected
customers, POs, and roadway closures have causal-relation-
ship RN, along with the downed power lines and trees and
weather variables, as seen in Hurricane Hermine. This case
is also a perfect example of the change of causal relationships
with the change in the granularity of data and sparsity.

Similarly, Hurricane Michael also lists RC, the num-
ber of affected customers, and the power lines failed due
to trees downed as causes of RN and lists WS and RR as
the primary causes. With these causal diagrams, it be-
comes possible to precisely identify the most informative
variables in modeling RN. Ground truth and common
knowledge help us in identifying endogenous variables,
but associated variables, common cause, and exogenous
or hidden variables can be identified with the use of cau-
sality theory. Therefore, DNNC successfully identifies the
underlying causal relationships across various infrastruc-
ture networks, which, in turn, can help in modeling a more
resilient system.

Conclusion and Future Work

This article presented a holistic approach to assessing ur-
ban resilience by studying the coresilience of infrastructure
networks. The infrastructure resilience of an urban region
(Tallahassee) was studied using the data from three ex-
treme weather events (one storm and two major hurricanes)
that recently hit the Florida Gulf Coast in the United States.
The resilience metrics proposed in this study aim to help
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FIG 6 Histograms of (a) the PI, (b) vulnerability index, and (c) RN.

identify the most critical locations by incorporating both
the priorities and vulnerabilities of infrastructure segments
and aim to provide future resilience-oriented investments
for these segments.

The resilience of transportation networks is not an
isolated and independent problem and, hence, requires a
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coresilience-based assessment. Therefore, this study fo-
cuses on infrastructure resilience to assess transportation
resilience. Such assessment can help other researchers to
prioritize the interdependencies of roadway networks with
other infrastructures, such as power and telecommunica-
tions networks. This is especially critical considering the
future of transportation, with the widespread penetration
of automated and connected vehicles as well as electric ve-
hicles that will rely on functioning power and telecommu-
nications infrastructures.

It is worth mentioning that there are certain limitations
and caveats regarding the adopted methodology. The PI was
calculated based on the spatial proximity of factors, such as
facilities (e.g., hospitals, fire stations) or land-use features (e.g.,
commercial, residential), to the infrastructure segments. For
example, an infrastructure segment closer to a fire station was
considered as the one that could serve that station; hence, the
Pl of the segment was calculated accordingly. This is not a very
strong assumption, considering that there is a high probabil-
ity that spatial proximity is a valid approach to identifying the
facilities, which are served by each infrastructure segment.
However, there is still a need to enhance this accuracy. Even
though such an identification task would require an extensive
effort, this is a very promising future direction.

Another limitation is associated with the coefficients of the
factors used in the calculation of the priority indices. Some
of these coefficients were derived from previous research,
such as that by Kocatepe et al. [35], and most of them were
identified hased on expert experience and knowledge. A bet-
ter approach compels a better methodology to ensure that
authorities and decision makers can identify more-accurate
coefficients for the PI metric, which is also a very good future
research opportunity.
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