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Abstract In this paper, we consider the decomposition of positive semidefinite
matrices as a sum of rank one matrices. We introduce and investigate the properties
of various measures of optimality of such decompositions. For some classes of pos-
itive semidefinite matrices, we give explicitly these optimal decompositions. These
classes include diagonally dominant matrices and certain of their generalizations,
2 x 2, and a class of 3 x 3 matrices.
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1 Introduction

The finite-dimensional matrix factorization problem that we shall investigate was
partially motivated by a related infinite-dimensional problem, which we briefly
recall.

Suppose that H is an infinite-dimensional separable Hilbert space, with norm || - ||
and inner product (-, -). Let Z; C B(HH) be the subspace of trace-class operators. For
a detailed study on trace-class operators, see [5, 9]. Consider an orthonormal basis
{wy},>1 for H, and let

H! = [f € H A=Y 1 wadl < °°]'

n=1
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For a sequence ¢ = (cmn)fnon=1 € ¢!, we consider the operator T, : H — H
given by

T.f= Z Zcmn<fa Wy) Wiy -

m=1n=1

We say that T is of Type A with respect to the orthonormal basis {wy, },>1 if, for
an orthogonal set of eigenvectors {g,},>1 of T, such that T, = Z;ﬁ] gn ® g,, with
convergence in the strong operator topology, we have that

00
2

E lgnlll* < oo.

n=1

Similarly, we say that the operator 7 is of Type B with respect to the orthonormal
basis {wy},>1 if there is some sequence of vectors {v,},>1 in H such that 7, =
Y o2 | vn ® U, with convergence in the strong operator topology and we have that

00
2

E llvalll* < oo.

n=1

It is easy to see that if 7, is of Type A, then it is of Type B. However, there exist
finite rank positive trace-class operators which are neither of Type A nor of Type
B. We refer to [7] for more details. In [1], we proved that there exist positive trace-
class operators 7, of Type B which are not of Type A. Furthermore, this answers
negatively a problem posed by Feichtinger [6].

Our main interest is in a finite-dimensional version of the above problem. Before
stating it, we set the notations that will be used through this chapter.

For n > 2, we denote the set of all complex Hermitian n X n matrices as
§" := §"(C), positive semidefinite matrices as S} := S (C), and positive definite
matrices % | = S (C). It is clear that S’ is a closed convex cone. Note that
§" = S — S is the (real) vector space of Hermitian matrices. We will also use the
notation U (n) for the set of n X n unitary matrices.

For A € ", we let |Al11 = 22,221 |Ak¢l, and we let [|Allz, = D p_; Akl
where A1 < Ay < ... < X, are the eigenvalues of A. We recall that the operator
norm of A € §" is given by |[Allop = max{[Ak] :,A1 < Ay < ... < A,} where

{Ax};—, is the set of eigenvalues of A. In addition, the Frobenius norm of A is given

by |Allp: = V/trAA* = \/ZZZI > %—; |Ake|?. One important fact that will be used

implicitly throughout the paper is that all the norms defined on S” are equivalent
and thus give rise to the same topological structure on S”.

Similarly, for a vector x = (xx);_, € C", and p € (0, 00), we let ||x||§ =
Y i—y |xk|? define the usual ¢” norm, p > 1, with the usual modification when
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p = oo and p = 0. As pointed out above, all these norms are equivalent on C" and
give rise to the same topology.

The goal of this chapter is to investigate optimal decompositions of a matrix
Ae Sj’_ (C) as a sum of rank one matrices. In Sect. 2, we introduce some measures
of optimality of the kinds of decompositions we seek and investigate the relationship
between these measures. However, before doing so, we give an exact statement
of the problems we shall address and review some results about the convex cone
S (C). In Sect. 3, we restrict our attention to some classes of matrices in S’} (C),
including diagonally dominant matrices. Finally, in Sect.4, we report on some
numerical experiments designed to find some of these optimal decompositions.

2 Preliminaries and Measures of Optimality

In the first part of this section, we collect some foundational facts on convex subsets
of §". The second part will be devoted to introducing some quantities that will serve
as measures of optimality of the decomposition results we seek.

2.1 Preliminaries

We denote the convex hull of a set S by coS. For the compact set X = {xx* :
x € C" and ||x]; = 1}, we let ' = coX and 2 = co (X U {0}). Observe that
Q C 81 (C). In fact, the following result holds.

Definition 2.1 An extreme point is a point such that it is not a convex combination
of other points.

Lemma 2.2 Q is closed and compact convex subset of S} (C) with int Q # §.
Furthermore, the set of extreme points of Q is X U {0}.

The proof is based on one of the versions of the Minkowski-Carathéodory
Theorem, which, for completeness, we recall. We refer to [3, 4, 8] for more details
and background.

Theorem 2.3 ([4, Proposition 3.1][8, Lemma 4.1] (Minkowski-Carathéodory
Theorem)) Let A be a compact convex subset of a normed vector space X of finite
dimension n. Then any point in A is a convex combination of at most n + 1 extreme
points. Furthermore, we can fix one of these extreme points resulting in expressing
any point in A is a convex combination of at most n extreme points in addition to
the one we fixed.

Proof of Lemma 2.2 2 can be written as
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m m
Q= {Zwkxkx,f :m > 1, an integer, wy, .., Wy > O,Zwk <L |xli=11=<k §m}
k=1 k=1

m m
= U D weonai o w2 0.3 we = Ll = 1,1 <k < m)
k=1 k=1

m>1

:UQm,

m=>1

m m
where Q,, = { Do wWXEXy W, Wy, =0, > wp < 1 Il =1,1 <k < m}
k=1 k=1

Notice that C7§22 C..CQ, C. Cq. B; Minkowski-Carathéodory Theorem
if T € Q,then T € Qdim s7(C)+1. Therefore

Q=Jm=21U...UQn, =Qpy,

m>1
n’+1 n+1
={ > nwat s Y a=laz0lul =1k 1 sk <n’+1]
k=1 k=1

We recall that the dimension of S”(C) as a real vector space over is n2. As such,
and since X is compact, we conclude that 2 as a convex hull of a compact set is
compact.

To show that int Q2 # (J, take 2,]1—21 € Q. We prove that for 0 < r <
the ball

217, we have

1 1
B,( I):{—I+T:T:T*;||T||0p<r}cs2.

2 2n?

n
Let T = Y Mouvy, lvella = 1, and [Ag| < |IT]lop < r. Now
k=1

1 1 . k . *
W] +7T = W};Ukvk +I;)\.kvkvk

" 1 Vi ve \F
—Hk) ||vk||2-<—) ( ) .
2 <2n2 P Ukl ol

k=1

Also

1 1
2 2

n n n
2
ol = ol < | Dl P | (D21 =Valvda = v
j=1 j=1 j=1
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Hence
TLIPEPTRRSS oY LIV V- Ln? <1
— — v n e rlin=-— rn- <
2n2 M= L\ ) T =T 22 2

In addition, because r < we conclude that

1

2n?’

(] +T)x,x) > IxI* (35 —r) >0
2n? ’ — 2n? —

for all x € C". Consequently, 2’171 + T > 0. We conclude that B, (217 1 ) C Q
where we use the norm ||A||, for convenience. m|

By a similar argument, I is also compact convex subset of S’ (C).

2.2  Measures of Optimality

We next introduce and study the properties of some quantities defined on S” and
which will serve as measures of optimality of the rank one decompositions of
matrices in S’} .

Definition 2.4 For A € S}, let

yr(A) == inf el (1)
A=Y sngi 2, "
n>1 =
If A e S", welet
y(A):= _inf > lgallillali, )

A= Z gnhy; n>1

n>1

and

yo(A):= _inf (y4+(B) +y4+(C)) = inf A D el + D Mt ] -
A=B-C, A=Y gngi— Y hihg et =1
B,CeS! n>1 k>1 = =

3)
We collect some of the properties of these functionals.

Proposition 2.5 The functionals given in Definition 2.4 are sub-additive. In partic-
ular, the following statements hold.

(a) Given A, B € S, we have y+(A + B) < y+(A) + y+(B)
(b) Given A, B € §", we have y (A + B) < y(A) + y(B)
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(¢) Given A, B € §", we have yy(A + B) < yp(A) + yo(B)
In addition, if a > 0, we have y, (aA) = ay(A) when A € S'}, and
{ y(@A) = laly(A)
vo@A) = lalyo(A)
for A e S"anda € R.

Proof Let e > 0 and choose {gi}r>1 C C" and {h}x>1 C C" such that

Zkzl ”gk”% < y+(A)+¢€/2
Yot lld < v (B) +¢€/2

with A =3 . gkg; and B = ;- hihy. It follows that

A+ B = ngg}: + thhz = Zﬁfz*»

k>1 k>1 >1

after reindexing. Furthermore,

DSOSl =D Mgkl + DAkl < v (A) + v4(B) + €.

£>1 k>1 k>1
The rest of the statements are proved in a similar manner, so we omit the details.
O
The next result gives a comparison among the quantities defined above.

Proposition 2.6 For any A € S", the following statements hold.

(@) y(A) = n(A) =2y (A).
®) 11All7, < 1Al < wo(A) < 2y (A). If, in addition, we assume that A € S,
then we have

ANz, = 1Al = vo(A) < y4+(A).

Proof

(a) Let A € S" suchthat A = A* = ) grg; — > hihi. Then,
k=1 k=1

y(A) <Y gkl + D Al

k=1 k=1

Consequently, y (A) < y(A).
Fix ¢ > 0 and let {gk},f’lzl, {hk}}{”:] be such that A = Z,I(W:l grhy and
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M
> lklliliaely < v (A) +e.
k=1

Furthermore, rescale gi and Ay so that || gkll; = ||hkll;-
Let x; = 5(gk + i) and ye = 5(gx — hy). Then

D wxp =Y vk = 5 > anhi + 3 D hgi=A
k=1 k=1 k=1 k=1

Note also [lxklly < llgklly = ll2klly and [lyclly < llgklly = Ak lly. Thus

M M M
Yo(A) < D el + D vl <2 llgwlli < 2v(A) + 2.
k=1 k=1 k=1

Since ¢ > 0 was arbitrary, the second inequality follows.

27

(b) Since ||A|lz, = maxyeyn) Real tr(AU), let Uy € U (n) denote the unitary that

achieves the maximum and makes the trace real. Then

n

IAllZ,=tr(AUp) = Y Y Are(Uo)ex < (Z > IAke|>

k=1 (=1 k=1 ¢=1

n n
. U, < Arel = ||A .
(m}gxm?xu ow)_zy kel = Al

k=1 =1

Suppose that A € S/ and let € > 0. Choose {g}x>1 C C" such that A =

> k>18k8; and

D lgkllf < v(A) +e.
k>1

It follows that

Y0(4) < Y llgell < v4(A) +e.
k>1

O

The upper bound 2y (A) is tight as we show in Proposition 2.8. We next show that

[l - 1l1.1 and y (-) are identical on S".

Lemma 2.7 Forany A € S, we have || All1,1 = y(A). Consequently, (S",y) is a

normed vector space.

Proof Let A € §" and € > 0. Choose {g;};>1,{h;}j>1 C C" such that A

2 gjh with 3 igjlli - 1Al <y (A) + €. It follows that
J j
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A=Y 1A =1 gihiha< D lgihtlia< Y gl - Ikl <y (A)+e.
J J

ij J

Thus [|All1,1 < ¥ (A).
On the other hand, for A € §", we can write: A = (A; ;)i j = Q_(Ai ;)i - sT
J

i

then
y(A) <Y A 18l = 14i 1 = [|All1.-
J ij
Therefore ||All1,1 = Y (A). O

In fact, yy defines also a norm on S". More precisely, we have the following
result.

Proposition 2.8 (S", yy) is normed vector space. Furthermore, yy is Lipschitz with
constant 2 on §":

[ (A) = yo(B)l _
A.Besn Az 1A — Bl

“4)

Proof We have already established in Proposition 2.5 that yy satisfies the triangle
inequality and is homogenous. Furthermore, suppose that y9(A) = 0. It follows that
A=0.

For the last part, let A, B € S". We have

Y (B) = yo(B — A+ A) < yo(B — A) 4+ yo(A)
Y0(A) = yo(B — B+ A) < yo(B) + yo(—B + A)
So [yo(B) — yo(A)| < yo(B — A) <2y(B — A) <2||[B — Al1,1.

To show the Lipschitz constant is exactly 2 (and hence the upper bound 2 is tight
in Proposition 2.6(a)), consider the matrix

01
A= .
i
Note ||A]l1,1 = 2. For any decomposition A = B — C with B, C € $2, we have
ab ae
B = , C =
|:b c] [e c]
witha,c > 0and b — e = 1. Then

Y0(A) = y1.(B) + 4 (C) =2 y(B) + v (C) = 2a + 2|b| + 2|1 — b| + 2¢ = 4|b| + 4|1 — b| = 4,
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thanks to ac > b* and ac > ¢2. On the other hand,

A:%[i][ll]—%[jl}[l—l]

which certifies y9(A) = 4. The proof is now complete. O

We have now established that yy, y = || - [|1,1 are equivalent norms on S”. In
addition, we proved in Proposition 2.6 that y (A) = [|A|l1,1 < y4+(A) for A € §'[.
A natural question that arises is whether a converse estimate holds. More precisely,
the rest of the chapter will be devoted to investigating the following questions.

Question 2.1 Fixn > 2.

(1) Does there exist a constant C > 0, independent of n such that for all A € S",
we have

Y+ (A) < C-||All1,1.
(2) For a given A € Si, give an algorithm to find {h1, ha, .., hps} such that A =

S hih with

M
y(A) = [l
k=1

We begin by justifying why the second question makes sense. In particular, we
prove that Y4 (A) is achieved for a certain decomposition.

Theorem 2.9 Given T € S,

n2+1
. 2 . 2
ye(Ty=_inf Y fglf=min > gl
T:Z 8k 8 k1 n241 k=1
k=1 = T=3) ggi =

2
for some {gj, }Z:{l c C.

Proof LetT € S} (C),

re(M = _inf > ekl

= T
Assume T # 0, then y,(T) > 0. Let T = -7,
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gkl < 8k ) ( )*
A (T)Z k8 me lgel 2w exe

=1 =1 gkl =1
_ Dl _ _
where w; = EH) and ¢, = ”ng Hence ) wy = V+(T) Z ||gk||l 1 and

k=1
llex]l1 = 1. Therefore y+(7~”) = 1. It follows that T € T
By Minkowski-Carathéodory Theorem 2.3

241 n?+1
T = Zwk~ekez,wk >0, Zwk:l'

Therefore
n +l
ye(T) = min > fgli.
n +l . k=1
Z gk 8},

m}

The next question one could ask is how to find an optimal decomposition for
A € S that achieves the value y (A). The following technical tool will be useful
in addressing this question, at least for small size matrices.

Theorem 2.10 Suppose that A € S (C) and 'y € C". Then A — yy* € S (C) if
and only if there exists x € C" such that y = Ax and (Ax, x) < 1. When equality
holds, then A — yy* will have rank one less than that of A.

Proof The case y = 0 is trivial, so we can assume without loss of generality that

y#0.
Suppose there exists a vector y such that y = Ax and (Ax, x) < 1. For any

vector z and observe that [(Ax, z)|? < (Ax, x)(Az, z). Consequently,
(A — yy")z,2) = (Az,2) — [{Ax, 2)|> > (Az, 2) — (Ax, x)(Az, z) = (Az,2)(1 — (Ax,x)) > 0.

When (Ax,x) = 1, we ((A — yy")x,x) = (Ax,x) — [(y,x)]*> = (Ax,x) —
[(Ax, x)|? = 0. It follows that x € N'(A—yy*). Combining the fact that x ¢ N (A),
we have rank(A — yy*) < rank(A).

For the converse, suppose that A — yy™ is positive semidefinite, where y € C”".
Write y = Ax + z where x € C" and Az = 0. It follows that

(A= yyz,2) = —[(y,2)* <0

with equality only if 0 = (z, y) = (z, Ax + z) = (z, z) which implies z = 0. In
addition,
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(A = yy)x, x) = (Ax, x) — (Ax,x)* 2 0

implies (Ax, x) < 1. O
The following result follows from Theorem 2.10

Corollary 2.11 Forany A € S (C), we have
A) = i A — Axx*A) + | Ax|?
Y+(A) (Ax’ggll’x#om( xx"A) + [[Ax]ly

< min  y (A — Axx*A) + [|Ax|3.
(Ax,x)=1

Proof Let A € S and 0 # x € C" such that (Ax, x) < 1. Then by Theorem 2.10
and Proposition 2.5(a), we see that

A) < i A— Axx*A Ax|)?
Y+ ( )_<Ax,yglérll,x;é0y+( xx"A) + || Ax|ly

On the other hand, let A = Z,ivzl ukuz be an optimal decomposition, that is
y+(A) = Z,I(V:l ||uk||%. Since A — Axx*A € §', we can write A — Axx*A =
Y e Uk v;. Hence, A = py vevy + Axx* A, and by the optimality, we see that

y(A — Axx*A) + | Ax|] < Y lluell + 1Ax (1} < y4(A)
k=1

O

We recall that 2 = co (X U {0}) where X = {xx* : x € C" || x||; = 1}. We now
give a characterization of €2 in terms of y4 that is equivalent to the one proved in
Lemma 2.2.

Lemma 2.12 Using the notations of Lemma 2.2, the following result holds. Q2 =
{T € SL(C) : y(T) = 1}

Proof LetT € {T € S (C) : y4(T) < 1}. Then

n2+1 n2+1
T=7" agi= ) wXeX;,
k=1 k=1

n?+1
where wy = ||gk||% and X; = ”g‘i"”l . Therefore 4 (T) = Y wy < 1. Hence
k=1

n?+1
T = Z WXk X; 4 (1 =y (1)) -0 € Q.
k=1
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Conversely, let T € Q. Then T = ) wi X X7, wx > 0, and ) wi < 1. Hence
k k

yi(M) <Y we -y (X =Y wp < 1.
k k

In fact, y can be identified with the following gauge-like function @gq
S (C) — R defined as follows:

po(T) =inf{r > 0: T € tQ}.

Lettr = {t > 0 : T € tQ}. Then 77 is nonempty, since ﬁ elc Q=
T € y+(T)Q2 = y4+(T) € tr. Therefore pq(T) < y4(T). In fact, the following
stronger result holds.

Lemma 2.13 For each T € S, we have po(T) = y(T)

Proof We need to prove y4(T) < po(T).If t € 7, then % €Q,

n?+1 n2+1
— = D WA, Wi ey 20, Y we < 1 el =1, Yk,
k=1 k=1
n?+1 n?+1

T=Y twxxi=) gs;
k=1 k=1

n’+1 n?+1
where g = /Twgxg. Now y (T) < Y0 twi =1t ) wp <t = y(T) < pa(T).
k=1 k=1

O

Remark 1t follows that ¢q is also positively homogeneous and sub-additive, hence
convex. However, we point out that ¢q is not a Minkowski gauge function since €2
does not include a neighborhood of 0.

We close this section with a discussion of some regularity properties of y. .

Theorem 2.14 Fix§ > 0. Let Cs = {T € S} : T = 8I,tr(T) < 1}, then y, :
Cs — R is Lipschitz continuous on Cs with Lipschitz constant (n/8) + n>/?.

Proof We show thatV Ty, T» € Cs,
n 2
¥4 (T) = y4 (D) < (5 +n°) IT) = Tall.
Define

~ 1)
T="+-——7-(T—T).
1T — Tyl
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Then
- )
Amin(T) = Anin(12) — | T2 — T1) | = Amin(T2) — 6 = 0.

T2 — Tl

Consequently, T € Sh.

Now
) T, — T, -

T T 17> 1l 7

= 1
§+ T2 =Tl S+ T2 =Tl
The convexity of y, yields

o) < ——2 oy + 220l gy,
5T — T 5+ 11— T

which implies

172 = Tl (v+(F) = y4(T0)

Y+(T2) — v+ (T1) < )

S+ T2 — Tl
We have
- - L—-T 32
v+(T) <ntr(T)=n-tr(lh) + 6 - tr | ———— | | < n-tr(h)+én’*.  (6)
17> — Tl
() = [ Tilliy =Y (T j| = tr(T1) = né. (7)
iJ
Using Equations (6) and (7), we get
V(D) = y(T1) < n-tr(Do) + 6n*/% —nd < n - tr(T) + én’/%. ®)
Now
| T2—T1 || ~ n 3/2
P = (1) = 2 (e D=y (M) < (BT [ 5 - 11T+
Y+() —y+(Th) _n 3/2
— < — . tr(Th) +n’'~. O]
172 — Thll §
Similarly
y+(T) —y+(12) _n 3/2
———— < —-tr(T) +n’". (10)
17 — T2 s
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Therefore
1)) — T
ly+(T1) — y+(12)] < max (e (1), tr(Ty)) + n¥2 < % 4 32, (11
1T — T2 d 8
o

In fact, we can prove a stronger result if we restrict to S} .
Corollary 2.15 y, : S (C) — R is continuous. Further, let T € S} (C) and
§ = %kmin(T) > 0. Then for every S € S, (C) with ||IT — S|| <6,

ly+(T) — v+ _

n
< —.tr(T) + 212
IT =S| 8

Proof LetT € 8, (C) and § = %Amin(T) > 0. Forany § € 8, (C) with |T —
S|l <6, and every x € C", we have that

(Sx, x) = ((S = T)x, x) + (Tx, x) = (=8 + Amin(T))Ix||* = 8]lx|1%.
Using this (11) becomes

[y (T) — y+(S)| n 3/2

— < —max (r(T), tr(S)) + n’'~.
IT — S 8

However, tr(S) < tr(T) + /né. Therefore,

ly+(T) — v+ _

n
<= tr(T) + 22,
IT =S| 8

3 Finding Optimal Rank One Decomposition for Some
Special Classes of Matrices

In this section we consider several classes of matrices in Sj’_ for which the answer to
Question 2.1 is affirmative.

3.1 Diagonally Dominant Matrices

Recall that a matrix A € S (C) is said to be diagonally dominant if A;; >
Z?:] |A;j| for each i = 1,2,..., n. If the inequality is strict for each i, we say
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that the matrix is strictly diagonally dominant. The following result can be proved
for any diagonally dominant matrix in S .

Theorem 3.1 Let A € '} be a diagonally dominant matrix. Then y (A) = yp(A) =
yi(A).

Proof Lete; = (0,...,0,1,0,...,0) and u;;(x) = (0, ..., /%, ..., /X, ..., 0).
Given a diagonally dominant matrix A, we consider the following decomposition of

A2

A= Zuij(Aij)Mij(Aij)* + Z(Aii - Z |AijDee;.

i<j i Jell,...n\{i}

It follows that

yr(A) <D AAGI+ Y (A= Y 1A

i<j i je(l,...n)\{i}

=D A+ A=) 3 14yl
i<j i i je{l,...n\{i}

=Y A1+ A — Y 20A;l
i<j i i<j

= llAlli,1.

O

The case of diagonally dominant matrices is a particular case of the following
more general decomposition result:

Theorem 3.2 Assume A € S'} admits a decomposition
n
A= Z uiju;f/—i—Zvivf (12)
I<i<j<n i=1

where each u; j has non-zero entries at most on positions i and j and each v; has
non-zero entries at most on position i. Then y4(A) = ||A|l1.1.

Proof The hypothesis implies

T
uij:[0...0%.;1.0...061.1.;1.0...0]
and

v,-=[0~-0di0~~-0]T
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where ¢;j;; is on position i, ¢;;; j is on position j, and d; is on position i. Without loss
of generality, we can assume d; € R and ¢;;.;, ¢;;.; € C. We write A = (a;;)

n
ij=I
where for 1 <i < j <n,a;j = ¢;},iCij;j, whereas for 1 <i <n,

i—1 n
2 2 2
ajj = d; +Z|Cji;i| + E cijiil ™
Jj=1

j=itl
These imply

n n
S Mgl Y il =Y (gl + g l) + Y =Y laigl = 1Al
i=1

I<i<j<n I<i<j<n i=1 1<i,j<n

Now the proof is complete. O

3.2 The Cases for Matrices in Sf|'_ (C) forn € {2, 3}

Proposition 3.3 Suppose that A € S, then

y+(A) = [|All11.

Proof 1If A = uu™ is a rank 1 matrix in Si, the proof is straightforward. Suppose

a Z:| with ab—|c|? > 0. Using the Lagrange decomposition

Ae S_%_isrankZ.A = |:
c

[10], we can write

a- |G a)e | o o]

a

The result then follows. O

For certain 3 x 3 matrices, the Lagrange decomposition [10] is optimal. In
particular, we have the following result.

Proposition 3.4 Let A € S3 be of rank 2 or 3. If

b

Il
ol SR
Q _”U
~ Qo
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then

2(lae—bc|+|bl|c|—alel)
v+ (A) < [[All1,1 + a .

In particular, if |ae — bc| + |b||c| = ale|, then y,(A) = ||All1,1 and the Lagrange
decomposition (which in this case is the LDL factorization) is optimal.

Proof We first assume that A has rank 3. In this case, A must be positive definite
and adf # 0. Indeed, if one of the diagonal term, say f = 0, then using the fact

that A € S3 would imply that df — |e|> = —|e|*> > 0 which is impossible.
Let
Ja
1 b
up = J_EASI =1 Va |
/
Va

where {§; }1.3:1 is the standard ONB for C3. By Theorem 2.10, the matrix A — u Uy
In fact, in this case, this is a rank 2 matrix given by

0 0 0

2 7
A—uuf=|0d- L o ke
-~ o lel?

06—7 f——

a

Let
0
4 — 1bP
1
uy = —(A—wuDd =" _ "
b1 —y
d== >
g Lo

It follows that A — uju} — upu’ = uzu’y where

0
w=| 0

detA
ad—|b|?

Consequently, the Lagrange decomposition of A is A = ujuy + upul + uzuj
which implies that

3
2(jlae—bc|+|bllc|—
yi(A) < Y llugll = [[Ally,y + 2eebelrbllcizaled,
k=1
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Now suppose that the rank of A is 2. In this case, it is possible for adf = 0.
However, only one of the diagonal element can be 0. So assume that f = 0, then
we also get that e = ¢ = 0. In this case

ab0
AlbdoO
000
which reduces to Proposition 3.3. Thus, we may assume without loss of generality

that adf # 0. In this case, we can proceed as above. However, because the rank of
the matrix A is now 2, we see that A = uju} + upu’ and

2(lae=be|+|blc|=ale])
- .

Vi (A) < lud I3 + lualld = 1A +
Remark

(1) If one of the off diagonal elements b, or c is 0, then Proposition 3.4 shows that
the Lagrange decomposition is optimal for y4 (A).

1 07
(2) Supposen =4 andletV = ﬁ (1) 11 , and consider

1 1]

1 0 11

1 —11
A=vvli =1L

4l1-120

11 02

Then A has rank 2, and the ||A]|;,1 = 1. However, y+(A) # y(A).

4 Numerics

Here we inspect upper bounds of y;(A)/||Al1,1 for A an N x N matrix with
simulated data. We randomly generate symmetric positive definite matrices and
compute upper bounds on y4(A)/||All1,1 with different decompositions of A. The
first step is generating Gaussian distributed realizations in a matrix size N by N.
Then by multiplying by its transpose, the result is symmetric positive semidefinite,
denoted A. Let Ay denote a collection of 30 independent realizations of this random
matrix.
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We consider two factorizations of the matrix A: the LDL and the Eigen matrix
decomposition. Specifically:

N
LDL: A= Z Vv
k=1

with vy vectors that have the top k — 1 entries 0, and

N
Eigen: A = ngg;g
k=1

where {g1, ..., g,} are the eigenvectors, each scaled by the corresponding eigen-
value’s square-root. For each decomposition, denote:

N

N
Jepr(A) =Y llvell} and Jeigen(A) = > gl
k=1 k=1

Let Frpr and Fgijgen denote the worst upper bounds over the N realization
ensemble:

JiprL(A)

FLDL(N) = max —
AeAy Al

JEigen(A)

Fg; N) = max ———
Eigen () = 10 Al

We plot these worst upper bounds after 30 realizations for various N in Figure 1.

In the same figure, we plot the analytic approximations of these two curves
using a square root functions and a logarithmic function. The square root function
was scaled as ¢v/N to closely fit the Eigen decomposition bound, Fgjgen(V).
Numerically we obtained ¢ = 4/5.

From these plots, we notice a clearly strictly increasing trend. Furthermore,
the LDL factorization produces a smaller (tighter) upper bound than the Eigen
decomposition. On the other hand, as we show in Theorem 2.9, any optimal
decomposition may take N2 + 1 vectors. By limiting the number of vector to N,
one should not expect to achieve the optimal bound y4 (A) with any decomposition.
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Decomposition performance via sampling random matrices

100 T T
FIdI (N) : I1dl decomposition S
Feigen (N) : eigen decomposition
80 | 4/5*sqrt(N) i
***** log(N)
70 | 4
60 4
50 - 1
40 + s |

0 5000 10000 15000
size of sqare matrix A; N

Fig. 1 For each size N, 30 random matrices are sampled and decomposed in different ways. The
worst upper bound of y; (A) is plotted for various N. Reference curves are also plotted to indicate
trend
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