
Optimal �1 Rank One Matrix
Decomposition

Radu Balan, Kasso A. Okoudjou, Michael Rawson, Yang Wang,
and Rui Zhang

Abstract In this paper, we consider the decomposition of positive semidefinite
matrices as a sum of rank one matrices. We introduce and investigate the properties
of various measures of optimality of such decompositions. For some classes of pos-
itive semidefinite matrices, we give explicitly these optimal decompositions. These
classes include diagonally dominant matrices and certain of their generalizations,
2 × 2, and a class of 3 × 3 matrices.
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1 Introduction

The finite-dimensional matrix factorization problem that we shall investigate was
partially motivated by a related infinite-dimensional problem, which we briefly
recall.

Suppose that H is an infinite-dimensional separable Hilbert space, with norm ‖·‖
and inner product 〈·, ·〉. Let I1 ⊂ B(H) be the subspace of trace-class operators. For
a detailed study on trace-class operators, see [5, 9]. Consider an orthonormal basis
{wn}n≥1 for H, and let

H
1 =

{
f ∈ H : |||f ||| :=

∞∑
n=1

|〈f,wn〉| < ∞
}
.
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For a sequence c = (cmn)
∞
m,n=1 ∈ �1, we consider the operator Tc : H → H

given by

Tcf =
∞∑

m=1

∞∑
n=1

cmn〈f,wn〉wm.

We say that Tc is of Type A with respect to the orthonormal basis {wn}n≥1 if, for
an orthogonal set of eigenvectors {gn}n≥1 of Tc such that Tc = ∑∞

n=1 gn ⊗ gn, with
convergence in the strong operator topology, we have that

∞∑
n=1

|||gn|||2 < ∞.

Similarly, we say that the operator Tc is of Type B with respect to the orthonormal
basis {wn}n≥1 if there is some sequence of vectors {vn}n≥1 in H such that Tc =∑∞

n=1 vn ⊗ vn with convergence in the strong operator topology and we have that

∞∑
n=1

|||vn|||2 < ∞.

It is easy to see that if Tc is of Type A, then it is of Type B. However, there exist
finite rank positive trace-class operators which are neither of Type A nor of Type
B. We refer to [7] for more details. In [1], we proved that there exist positive trace-
class operators Tc of Type B which are not of Type A. Furthermore, this answers
negatively a problem posed by Feichtinger [6].

Our main interest is in a finite-dimensional version of the above problem. Before
stating it, we set the notations that will be used through this chapter.

For n ≥ 2, we denote the set of all complex Hermitian n × n matrices as
Sn := Sn(C), positive semidefinite matrices as Sn+ := Sn+(C), and positive definite
matrices Sn++ := Sn++(C). It is clear that Sn+ is a closed convex cone. Note that
Sn = Sn+ − Sn+ is the (real) vector space of Hermitian matrices. We will also use the
notation U(n) for the set of n × n unitary matrices.

For A ∈ Sn, we let ‖A‖1,1 = ∑n
k,�=1 |Ak,�|, and we let ‖A‖I1 = ∑n

k=1 |λk|
where λ1 ≤ λ2 ≤ . . . ≤ λn are the eigenvalues of A. We recall that the operator
norm of A ∈ Sn is given by ‖A‖op = max{|λk| :, λ1 ≤ λ2 ≤ . . . ≤ λn} where
{λk}nk=1 is the set of eigenvalues of A. In addition, the Frobenius norm of A is given

by ‖A‖Fr = √
trAA∗ =

√∑n
k=1

∑n
�=1 |Ak�|2. One important fact that will be used

implicitly throughout the paper is that all the norms defined on Sn are equivalent
and thus give rise to the same topological structure on Sn.

Similarly, for a vector x = (xk)
n
k=1 ∈ C

n, and p ∈ (0,∞), we let ‖x‖p
p =∑n

k=1 |xk|p define the usual �p norm, p ≥ 1, with the usual modification when
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p = ∞ and p = 0. As pointed out above, all these norms are equivalent on C
n and

give rise to the same topology.
The goal of this chapter is to investigate optimal decompositions of a matrix

A ∈ Sn+(C) as a sum of rank one matrices. In Sect. 2, we introduce some measures
of optimality of the kinds of decompositions we seek and investigate the relationship
between these measures. However, before doing so, we give an exact statement
of the problems we shall address and review some results about the convex cone
Sn+(C). In Sect. 3, we restrict our attention to some classes of matrices in Sn+(C),
including diagonally dominant matrices. Finally, in Sect. 4, we report on some
numerical experiments designed to find some of these optimal decompositions.

2 Preliminaries and Measures of Optimality

In the first part of this section, we collect some foundational facts on convex subsets
of Sn. The second part will be devoted to introducing some quantities that will serve
as measures of optimality of the decomposition results we seek.

2.1 Preliminaries

We denote the convex hull of a set S by coS. For the compact set X = {xx∗ :
x ∈ C

n and ‖x‖1 = 1}, we let � = coX and � = co (X ∪ {0}). Observe that
� ⊂ Sn+(C). In fact, the following result holds.

Definition 2.1 An extreme point is a point such that it is not a convex combination
of other points.

Lemma 2.2 � is closed and compact convex subset of Sn+(C) with int � �= ∅.

Furthermore, the set of extreme points of � is X ∪ {0}.
The proof is based on one of the versions of the Minkowski-Carathéodory

Theorem, which, for completeness, we recall. We refer to [3, 4, 8] for more details
and background.

Theorem 2.3 ([4, Proposition 3.1][8, Lemma 4.1] (Minkowski-Carathéodory
Theorem)) Let A be a compact convex subset of a normed vector space X of finite
dimension n. Then any point in A is a convex combination of at most n + 1 extreme
points. Furthermore, we can fix one of these extreme points resulting in expressing
any point in A is a convex combination of at most n extreme points in addition to
the one we fixed.

Proof of Lemma 2.2 � can be written as
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� =
{ m∑

k=1

wkxkx
∗
k : m ≥ 1, an integer, w1, .., wm ≥ 0,

m∑
k=1

wk ≤ 1, ‖xk‖1 = 1, 1 ≤ k ≤ m
}

=
⋃
m≥1

{ m∑
k=1

wkxkx
∗
k : w1, .., wm ≥ 0,

m∑
k=1

wk ≤ 1, ‖xk‖1 = 1, 1 ≤ k ≤ m
}

=
⋃
m≥1

�m,

where �m =
{ m∑

k=1
wkxkx

∗
k : w1, .., wm ≥ 0,

m∑
k=1

wk ≤ 1, ‖xk‖1 = 1, 1 ≤ k ≤ m
}

.

Notice that �1 ⊂ �2 ⊂ .. ⊂ �m ⊂ .. ⊂ �. By Minkowski-Carathéodory Theorem
if T ∈ �, then T ∈ �dim Sn(C)+1. Therefore

� =
⋃
m≥1

�m = �1 ∪ . . . ∪ �n2+1 = �n2+1

=
{ n2+1∑

k=1

tkxkx
∗
k :

n2+1∑
k=1

tk = 1, tk ≥ 0, ‖xk‖1 = 1,∀k, 1 ≤ k ≤ n2 + 1
}

We recall that the dimension of Sn(C) as a real vector space over is n2. As such,
and since X is compact, we conclude that � as a convex hull of a compact set is
compact.

To show that int � �= ∅, take 1
2n2 I ∈ �. We prove that for 0 < r < 1

2n2 , we have
the ball

Br

(
1

2n2
I

)
=
{ 1

2n2
I + T : T = T ∗; ‖T ‖op < r

}
⊂ �.

Let T =
n∑

k=1
λkvkv

∗
k , ‖vk‖2 = 1, and |λk| ≤ ‖T ‖op < r. Now

1

2n2
I + T = 1

2n2

n∑
k=1

vkv
∗
k +

n∑
k=1

λkvkv
∗
k

=
n∑

k=1

(
1

2n2
+ λk

)
‖vk‖2

1 ·
(

vk

‖vk‖1

)
·
(

vk

‖vk‖1

)∗
.

Also

‖vk‖1 =
n∑

j=1

|vk,j | ≤
⎛
⎝ n∑

j=1

|vk,j |2
⎞
⎠

1
2

·
⎛
⎝ n∑

j=1

1

⎞
⎠

1
2

= √
n‖vk‖2 = √

n.
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Hence

‖ 1

2n2
I + T ‖1,1 ≤

n∑
k=1

(
1

2n2
+ λk

)
‖vk‖2

1 ≤ n

(
1

2n2
+ r

)
n = 1

2
+ rn2 < 1

In addition, because r < 1
2n2 , we conclude that

〈( 1
2n2 I + T )x, x〉 ≥ ‖x‖2( 1

2n2 − r) ≥ 0

for all x ∈ C
n. Consequently, 1

2n2 I + T ≥ 0. We conclude that Br

(
1

2n2 I
)

⊂ �

where we use the norm ‖A‖1,1 for convenience. ��
By a similar argument, � is also compact convex subset of Sn+(C).

2.2 Measures of Optimality

We next introduce and study the properties of some quantities defined on Sn and
which will serve as measures of optimality of the rank one decompositions of
matrices in Sn+.

Definition 2.4 For A ∈ Sn+, let

γ+(A) := inf
A=∑

n≥1
gng∗

n

∑
n≥1

‖gn‖2
1. (1)

If A ∈ Sn, we let

γ (A) := inf
A=∑

n≥1
gnh∗

n

∑
n≥1

‖gn‖1‖hn‖1, (2)

and

γ0(A):= inf
A=B−C,
B,C∈Sn+

(γ+(B) + γ+(C))= inf
A=∑

n≥1
gng∗

n− ∑
k≥1

hkh
∗
k

⎛
⎝∑

n≥1

‖gn‖2
1 +

∑
k≥1

‖hk‖2
1

⎞
⎠ .

(3)

We collect some of the properties of these functionals.

Proposition 2.5 The functionals given in Definition 2.4 are sub-additive. In partic-
ular, the following statements hold.

(a) Given A,B ∈ Sn+, we have γ+(A + B) ≤ γ+(A) + γ+(B)

(b) Given A,B ∈ Sn, we have γ (A + B) ≤ γ (A) + γ (B)
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(c) Given A,B ∈ Sn, we have γ0(A + B) ≤ γ0(A) + γ0(B)

In addition, if a ≥ 0, we have γ+(aA) = aγ+(A) when A ∈ Sn+, and

{
γ (aA) = |a|γ (A)

γ0(aA) = |a|γ0(A)

for A ∈ Sn and a ∈ R.

Proof Let ε > 0 and choose {gk}k≥1 ⊂ C
n and {hk}k≥1 ⊂ C

n such that

{∑
k≥1 ‖gk‖2

1 ≤ γ+(A) + ε/2∑
k≥1 ‖hk‖2

1 ≤ γ+(B) + ε/2

with A = ∑
k≥1 gkg

∗
k and B = ∑

k≥1 hkh
∗
k. It follows that

A + B =
∑
k≥1

gkg
∗
k +

∑
k≥1

hkh
∗
k =

∑
�≥1

f�f
∗
� ,

after reindexing. Furthermore,

∑
�≥1

‖f�‖2
1 =

∑
k≥1

‖gk‖2
1 +

∑
k≥1

‖hk‖2
1 ≤ γ+(A) + γ+(B) + ε.

The rest of the statements are proved in a similar manner, so we omit the details.
��

The next result gives a comparison among the quantities defined above.

Proposition 2.6 For any A ∈ Sn, the following statements hold.

(a) γ (A) ≤ γ0(A) ≤ 2γ (A).
(b) ‖A‖I1 ≤ ‖A‖1,1 ≤ γ0(A) ≤ 2γ (A). If, in addition, we assume that A ∈ Sn+,

then we have

‖A‖I1 ≤ ‖A‖1,1 ≤ γ0(A) ≤ γ+(A).

Proof

(a) Let A ∈ Sn such that A = A∗ = ∑
k≥1

gkg
∗
k − ∑

k≥1
hkh

∗
k . Then,

γ (A) ≤
∑
k≥1

‖gk‖2
1 +

∑
k≥1

‖hk‖2
1.

Consequently, γ (A) ≤ γ0(A).
Fix ε > 0 and let {gk}Mk=1, {hk}Mk=1 be such that A = ∑M

k=1 gkh
∗
k and
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M∑
k=1

‖gk‖1‖hk‖1 ≤ γ (A) + ε.

Furthermore, rescale gk and hk so that ‖gk‖1 = ‖hk‖1.
Let xk = 1

2 (gk + hk) and yk = 1
2 (gk − hk). Then

M∑
k=1

xkx
∗
k −

M∑
k=1

yky
∗
k = 1

2

M∑
k=1

gkh
∗
k + 1

2

M∑
k=1

hkg
∗
k = A

Note also ‖xk‖1 ≤ ‖gk‖1 = ‖hk‖1 and ‖yk‖1 ≤ ‖gk‖1 = ‖hk‖1. Thus

γ0(A) ≤
M∑

k=1

‖xk‖2
1 +

M∑
k=1

‖yk‖2
1 ≤ 2

M∑
k=1

‖gk‖2
1 ≤ 2γ (A) + 2ε.

Since ε > 0 was arbitrary, the second inequality follows.
(b) Since ‖A‖I1 = maxU∈U(n) Real tr(AU), let U0 ∈ U(n) denote the unitary that

achieves the maximum and makes the trace real. Then

‖A‖I1=tr(AU0) =
n∑

k=1

n∑
�=1

Ak�(U0)�k ≤
(

n∑
k=1

n∑
�=1

|Ak�|
)

·
(

max
k

max
�

|(U0)�k|
)

≤
n∑

k=1

n∑
�=1

|Ak�| = ‖A‖1,1.

Suppose that A ∈ Sn+ and let ε > 0. Choose {gk}k≥1 ⊂ C
n such that A =∑

k≥1 gkg
∗
k and

∑
k≥1

‖gk‖2
1 < γ+(A) + ε.

It follows that

γ0(A) ≤
∑
k≥1

‖gk‖2
1 < γ+(A) + ε.

��
The upper bound 2γ (A) is tight as we show in Proposition 2.8. We next show that
‖ · ‖1,1 and γ (·) are identical on Sn.

Lemma 2.7 For any A ∈ Sn, we have ‖A‖1,1 = γ (A). Consequently, (Sn, γ ) is a
normed vector space.

Proof Let A ∈ Sn and ε > 0. Choose {gj }j≥1, {hj }j≥1 ⊂ C
n such that A =∑

j

gjh
∗
j with

∑
j

‖gj‖1 · ‖hj‖1 ≤ γ (A) + ε. It follows that
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‖A‖1,1=
∑
i,j

|Ai,j |=‖
∑
j

gjh
∗
j‖1,1≤

∑
j

‖gjh
∗
j‖1,1≤

∑
j

‖gj‖1 · ‖hj‖1≤γ (A)+ε.

Thus ‖A‖1,1 ≤ γ (A).

On the other hand, for A ∈ Sn, we can write: A = (Ai,j )i,j = (
∑
j

(Ai,j ))i · δT
i ,

then

γ (A) ≤
∑
j

‖Ai,j‖1 · ‖δi‖1 =
∑
i,j

|Ai,j | = ‖A‖1,1.

Therefore ‖A‖1,1 = γ (A). ��
In fact, γ0 defines also a norm on Sn. More precisely, we have the following

result.

Proposition 2.8 (Sn, γ0) is normed vector space. Furthermore, γ0 is Lipschitz with
constant 2 on Sn:

sup
A,B∈Sn,A�=B

|γ0(A) − γ0(B)|
‖A − B‖1,1

= 2. (4)

Proof We have already established in Proposition 2.5 that γ0 satisfies the triangle
inequality and is homogenous. Furthermore, suppose that γ0(A) = 0. It follows that
A = 0.

For the last part, let A,B ∈ Sn. We have

γ0(B) = γ0(B − A + A) ≤ γ0(B − A) + γ0(A)

γ0(A) = γ0(B − B + A) ≤ γ0(B) + γ0(−B + A)

So |γ0(B) − γ0(A)| ≤ γ0(B − A) ≤ 2γ (B − A) ≤ 2‖B − A‖1,1.

To show the Lipschitz constant is exactly 2 (and hence the upper bound 2 is tight
in Proposition 2.6(a)), consider the matrix

A =
[

0 1
1 0

]
.

Note ‖A‖1,1 = 2. For any decomposition A = B − C with B,C ∈ S2+, we have

B =
[

a b

b c

]
, C =

[
a e

e c

]

with a, c ≥ 0 and b − e = 1. Then

γ0(A) ≥ γ+(B) + γ+(C) ≥ γ (B) + γ (C) = 2a + 2|b| + 2|1 − b| + 2c ≥ 4|b| + 4|1 − b| ≥ 4,
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thanks to ac ≥ b2 and ac ≥ e2. On the other hand,

A = 1

2

[
1
1

] [
1 1
]− 1

2

[
1

−1

] [
1 −1

]

which certifies γ0(A) = 4. The proof is now complete. ��
We have now established that γ0, γ = ‖ · ‖1,1 are equivalent norms on Sn. In

addition, we proved in Proposition 2.6 that γ (A) = ‖A‖1,1 ≤ γ+(A) for A ∈ Sn+.
A natural question that arises is whether a converse estimate holds. More precisely,
the rest of the chapter will be devoted to investigating the following questions.

Question 2.1 Fix n ≥ 2.

(1) Does there exist a constant C > 0, independent of n such that for all A ∈ Sn+,
we have

γ+(A) ≤ C · ‖A‖1,1.

(2) For a given A ∈ Sn+, give an algorithm to find {h1, h2, .., hM } such that A =∑M
k=1 hkh

∗
k with

γ+(A) =
M∑

k=1

‖hk‖2
1.

We begin by justifying why the second question makes sense. In particular, we
prove that γ+(A) is achieved for a certain decomposition.

Theorem 2.9 Given T ∈ Sn+,

γ+(T ) = inf
T =∑

k≥1
gkg

∗
k

∑
k≥1

‖gk‖2
1 = min

T =
n2+1∑
k=1

gkg
∗
k

n2+1∑
k=1

‖gk‖2
1

for some {gk}n2+1
k=1 ⊂ C

n.

Proof Let T ∈ Sn+(C),

γ+(T ) = inf
T =∑

k≥1
gkg

∗
k

∑
k≥1

‖gk‖2
1.

Assume T �= 0, then γ+(T ) > 0. Let T̃ = T
γ+(T )

,
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T̃ = 1

γ+(T )

∑
k≥1

gkg
∗
k =

∑
k≥1

‖gk‖2
1

γ+(T )
·
(

gk

‖gk‖1

)
·
(

gk

‖gk‖1

)∗
=
∑
k≥1

wk · eke
∗
k ,

where wk = ‖gk‖2
1

γ+(T )
and ek = gk

‖gk‖1
. Hence

∑
k≥1

wk = 1
γ+(T )

∑
k≥1

‖gk‖2
1 = 1 and

‖ek‖1 = 1. Therefore γ+(T̃ ) = 1. It follows that T̃ ∈ �.

By Minkowski-Carathéodory Theorem 2.3

T̃ =
n2+1∑
k=1

wk · eke
∗
k , wk ≥ 0,

n2+1∑
k=1

wk = 1.

Therefore

γ+(T ) = min
n2+1∑
k=1

gkg
∗
k

n2+1∑
k=1

‖gk‖2
1.

��
The next question one could ask is how to find an optimal decomposition for

A ∈ Sn+ that achieves the value γ+(A). The following technical tool will be useful
in addressing this question, at least for small size matrices.

Theorem 2.10 Suppose that A ∈ Sn+(C) and y ∈ C
n. Then A − yy∗ ∈ Sn+(C) if

and only if there exists x ∈ C
n such that y = Ax and 〈Ax, x〉 ≤ 1. When equality

holds, then A − yy∗ will have rank one less than that of A.

Proof The case y = 0 is trivial, so we can assume without loss of generality that
y �= 0.

Suppose there exists a vector y such that y = Ax and 〈Ax, x〉 ≤ 1. For any
vector z and observe that |〈Ax, z〉|2 ≤ 〈Ax, x〉〈Az, z〉. Consequently,

〈(A − yy∗)z, z〉 = 〈Az, z〉 − |〈Ax, z〉|2 ≥ 〈Az, z〉 − 〈Ax, x〉〈Az, z〉 = 〈Az, z〉(1 − 〈Ax, x〉) ≥ 0.

When 〈Ax, x〉 = 1, we 〈(A − yy∗)x, x〉 = 〈Ax, x〉 − |〈y, x〉|2 = 〈Ax, x〉 −
|〈Ax, x〉|2 = 0. It follows that x ∈ N (A−yy∗). Combining the fact that x /∈ N (A),

we have rank(A − yy∗) < rank(A).

For the converse, suppose that A − yy∗ is positive semidefinite, where y ∈ C
n.

Write y = Ax + z where x ∈ C
n and Az = 0. It follows that

〈(A − yy∗)z, z〉 = −|〈y, z〉|2 ≤ 0

with equality only if 0 = 〈z, y〉 = 〈z,Ax + z〉 = 〈z, z〉 which implies z = 0. In
addition,
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〈(A − yy∗)x, x〉 = 〈Ax, x〉 − 〈Ax, x〉2 ≥ 0

implies 〈Ax, x〉 ≤ 1. ��
The following result follows from Theorem 2.10

Corollary 2.11 For any A ∈ Sn+(C), we have

γ+(A) = min〈Ax,x〉≤1,x �=0
γ+(A − Axx∗A) + ‖Ax‖2

1

≤ min〈Ax,x〉=1
γ+(A − Axx∗A) + ‖Ax‖2

1.

Proof Let A ∈ Sn+ and 0 �= x ∈ C
n such that 〈Ax, x〉 ≤ 1. Then by Theorem 2.10

and Proposition 2.5(a), we see that

γ+(A) ≤ min〈Ax,x〉≤1,x �=0
γ+(A − Axx∗A) + ‖Ax‖2

1

On the other hand, let A = ∑N
k=1 uku

∗
k be an optimal decomposition, that is

γ+(A) = ∑N
k=1 ‖uk‖2

1. Since A − Axx∗A ∈ Sn+, we can write A − Axx∗A =∑n
k=1 vkv

∗
k . Hence, A = ∑n

k=1 vkv
∗
k + Axx∗A, and by the optimality, we see that

γ+(A − Axx∗A) + ‖Ax‖2
1 ≤

∑
k=1

‖vk‖2
1 + ‖Ax‖2

1 ≤ γ+(A)

��
We recall that � = co (X ∪ {0}) where X = {xx∗ : x ∈ C

n ‖x‖1 = 1}. We now
give a characterization of � in terms of γ+ that is equivalent to the one proved in
Lemma 2.2.

Lemma 2.12 Using the notations of Lemma 2.2, the following result holds. � =
{T ∈ Sn+(C) : γ+(T ) ≤ 1}.
Proof Let T ∈ {T ∈ Sn+(C) : γ+(T ) ≤ 1}. Then

T =
n2+1∑
k=1

gkg
∗
k =

n2+1∑
k=1

wkXkX
∗
k ,

where wk = ‖gk‖2
1 and Xk = gk

‖gk‖1
. Therefore γ+(T ) =

n2+1∑
k=1

wk ≤ 1. Hence

T =
n2+1∑
k=1

wkXkX
∗
k + (1 − γ+(T )) · 0 ∈ �.
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Conversely, let T ∈ �. Then T = ∑
k

wkXkX
∗
k , wk ≥ 0, and

∑
k

wk ≤ 1. Hence

γ+(T ) ≤
∑

k

wk · γ+(XkX
∗
k ) =

∑
k

wk ≤ 1.

��
In fact, γ+ can be identified with the following gauge-like function ϕ� :

Sn+(C) → R defined as follows:

ϕ�(T ) = inf{t > 0 : T ∈ t�}.

Let τT = {t > 0 : T ∈ t�}. Then τT is nonempty, since T
γ+(T )

∈ � ⊂ � ⇒
T ∈ γ+(T )� ⇒ γ+(T ) ∈ τT . Therefore ϕ�(T ) ≤ γ+(T ). In fact, the following
stronger result holds.

Lemma 2.13 For each T ∈ Sn+, we have ϕ�(T ) = γ+(T )

Proof We need to prove γ+(T ) ≤ ϕ�(T ). If t ∈ τT , then T
t

∈ �,

T

t
=

n2+1∑
k=1

wkxkx
∗
k , w1, .., wn2+1 ≥ 0,

n2+1∑
k=1

wk ≤ 1, ‖xk‖1 = 1,∀k.

T =
n2+1∑
k=1

twkxkx
∗
k =

n2+1∑
k=1

gkg
∗
k ,

where gk = √
twkxk. Now γ+(T ) ≤

n2+1∑
k=1

twk = t
n2+1∑
k=1

wk ≤ t ⇒ γ+(T ) ≤ ϕ�(T ).

��
Remark It follows that ϕ� is also positively homogeneous and sub-additive, hence
convex. However, we point out that ϕ� is not a Minkowski gauge function since �

does not include a neighborhood of 0.

We close this section with a discussion of some regularity properties of γ+.

Theorem 2.14 Fix δ > 0. Let Cδ = {T ∈ Sn+ : T ≥ δI, tr(T ) ≤ 1}, then γ+ :
Cδ → R is Lipschitz continuous on Cδ with Lipschitz constant (n/δ) + n3/2.

Proof We show that ∀ T1, T2 ∈ Cδ ,

|γ+(T1) − γ+(T2)| ≤
(n

δ
+ n2

)
‖T1 − T2‖.

Define

T̃ = T2 + δ

‖T2 − T1‖ (T2 − T1).
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Then

λmin(T̃ ) ≥ λmin(T2) −
∥∥∥∥ δ

‖T2 − T1‖ (T2 − T1)

∥∥∥∥ = λmin(T2) − δ ≥ 0.

Consequently, T̃ ∈ Sn+.

Now

T2 = δ

δ + ‖T2 − T1‖T1 + ‖T2 − T1‖
δ + ‖T2 − T1‖ T̃ .

The convexity of γ+ yields

γ+(T2) ≤ δ

δ + ‖T2 − T1‖γ+(T1) + ‖T2 − T1‖
δ + ‖T2 − T1‖γ+(T̃ ),

which implies

γ+(T2) − γ+(T1) ≤
‖T2 − T1‖

(
γ+(T̃ ) − γ+(T1)

)
δ + ‖T2 − T1‖ . (5)

We have

γ+(T̃ ) ≤ n·tr(T̃ ) = n·
[
tr(T2) + δ · tr

(
T2 − T1

‖T2 − T1‖
)]

≤ n·tr(T2)+δn3/2. (6)

γ+(T1) ≥ ‖T1‖1,1 =
∑
i,j

|(T1)i,j | ≥ tr(T1) ≥ nδ. (7)

Using Equations (6) and (7), we get

γ+(T̃ ) − γ+(T1) ≤ n · tr(T2) + δn3/2 − nδ ≤ n · tr(T2) + δn3/2. (8)

Now

γ+(T2)−γ+(T1) ≤ ‖T2−T1‖
δ

(
γ+(T̃ )−γ+(T1)

)
≤ ‖T2−T1‖

[n
δ

· tr(T2)+n3/2
]

⇒ γ+(T2) − γ+(T1)

‖T2 − T1‖ ≤ n

δ
· tr(T2) + n3/2. (9)

Similarly

γ+(T1) − γ+(T2)

‖T1 − T2‖ ≤ n

δ
· tr(T1) + n3/2. (10)



34 R. Balan et al.

Therefore

|γ+(T1) − γ+(T2)|
‖T1 − T2‖ ≤ n

δ
· max (tr(T1), tr(T2)) + n3/2 ≤ n

δ
+ n3/2. (11)

��
In fact, we can prove a stronger result if we restrict to Sn++.

Corollary 2.15 γ+ : Sn++(C) → R is continuous. Further, let T ∈ Sn++(C) and
δ = 1

2λmin(T ) > 0. Then for every S ∈ Sn++(C) with ‖T − S‖ ≤ δ,

|γ+(T ) − γ+(S)|
‖T − S‖ ≤ n

δ
· tr(T ) + 2n3/2.

Proof Let T ∈ Sn++(C) and δ = 1
2λmin(T ) > 0. For any S ∈ Sn++(C) with ‖T −

S‖ ≤ δ, and every x ∈ C
n, we have that

〈Sx, x〉 = 〈(S − T )x, x〉 + 〈T x, x〉 ≥ (−δ + λmin(T ))‖x‖2 = δ‖x‖2.

Using this (11) becomes

|γ+(T ) − γ+(S)|
‖T − S‖ ≤ n

δ
· max (tr(T ), tr(S)) + n3/2.

However, tr(S) ≤ tr(T ) + √
nδ. Therefore,

|γ+(T ) − γ+(S)|
‖T − S‖ ≤ n

δ
· tr(T ) + 2n3/2.

��

3 Finding Optimal Rank One Decomposition for Some
Special Classes of Matrices

In this section we consider several classes of matrices in Sn+ for which the answer to
Question 2.1 is affirmative.

3.1 Diagonally Dominant Matrices

Recall that a matrix A ∈ Sn+(C) is said to be diagonally dominant if Aii ≥∑n
j=1 |Aij | for each i = 1, 2, . . . , n. If the inequality is strict for each i, we say
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that the matrix is strictly diagonally dominant. The following result can be proved
for any diagonally dominant matrix in Sn+.

Theorem 3.1 Let A ∈ Sn+ be a diagonally dominant matrix. Then γ (A) = γ0(A) =
γ+(A).

Proof Let ei = (0, . . . , 0, 1, 0, . . . , 0) and uij (x) = (0, . . . ,
√

x, . . . ,
√

x, . . . , 0).
Given a diagonally dominant matrix A, we consider the following decomposition of
A ([2])

A =
∑
i<j

uij (Aij )uij (Aij )
∗ +

∑
i

(Aii −
∑

j∈{1,...,n}\{i}
|Aij |)eie

∗
i .

It follows that

γ+(A) ≤
∑
i<j

4|Aij | +
∑

i

(Aii −
∑

j∈{1,...,n}\{i}
|Aij |)

=
∑
i<j

4|Aij | +
∑

i

Aii −
∑

i

∑
j∈{1,...,n}\{i}

|Aij |

=
∑
i<j

4|Aij | +
∑

i

Aii −
∑
i<j

2|Aij |

= ‖A‖1,1.

��
The case of diagonally dominant matrices is a particular case of the following

more general decomposition result:

Theorem 3.2 Assume A ∈ Sn+ admits a decomposition

A =
∑

1≤i<j≤n

uiju
∗
ij +

n∑
i=1

viv
∗
i (12)

where each ui,j has non-zero entries at most on positions i and j and each vi has
non-zero entries at most on position i. Then γ+(A) = ‖A‖1,1.

Proof The hypothesis implies

uij = [
0 · · · 0 cij ;i 0 · · · 0 cij ;j 0 · · · 0

]T
and

vi = [
0 · · · 0 di 0 · · · 0

]T
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where cij ;i is on position i, cij ;j is on position j , and di is on position i. Without loss
of generality, we can assume di ∈ R and cij ;i , cij ;j ∈ C. We write A = (aij )

n
i,j=1

where for 1 ≤ i < j ≤ n, aij = cij ;icij ;j , whereas for 1 ≤ i ≤ n,

aii = d2
i +

i−1∑
j=1

|cji;i |2 +
n∑

j=i+1

|cij ;i |2.

These imply

∑
1≤i<j≤n

‖uij‖2
1 +

n∑
i=1

‖vi‖2
1 =

∑
1≤i<j≤n

(|uij ;i | + |uij ;j |
)2 +

n∑
i=1

d2
i =

∑
1≤i,j≤n

|ai,j | = ‖A‖1,1.

Now the proof is complete. ��

3.2 The Cases for Matrices in Sn
+(C) for n ∈ {2, 3}

Proposition 3.3 Suppose that A ∈ S2+, then

γ+(A) = ‖A‖1,1.

Proof If A = uu∗ is a rank 1 matrix in S2+, the proof is straightforward. Suppose

A ∈ S2+ is rank 2. A =
[
a c

c̄ b

]
with ab−|c|2 > 0. Using the Lagrange decomposition

[10], we can write

A =
[√

a
c̄√
a

] [√
a c√

a

]
+
[

0√
b − |c|2

a

] [
0
√

b − |c|2
a

]

The result then follows. ��
For certain 3 × 3 matrices, the Lagrange decomposition [10] is optimal. In

particular, we have the following result.

Proposition 3.4 Let A ∈ S3+ be of rank 2 or 3. If

A =
⎡
⎣a b c

b d e

c e f

⎤
⎦



Optimal �1 Rank One Matrix Decomposition 37

then

γ+(A) ≤ ‖A‖1,1 + 2(|ae−bc|+|b||c|−a|e|)
a

.

In particular, if |ae − bc| + |b||c| = a|e|, then γ+(A) = ‖A‖1,1 and the Lagrange
decomposition (which in this case is the LDL factorization) is optimal.

Proof We first assume that A has rank 3. In this case, A must be positive definite
and adf �= 0. Indeed, if one of the diagonal term, say f = 0, then using the fact
that A ∈ S3+ would imply that df − |e|2 = −|e|2 > 0 which is impossible.

Let

u1 = 1√
a
Aδ1 =

⎡
⎢⎣

√
a

b√
a

c√
a

⎤
⎥⎦ ,

where {δi}3
i=1 is the standard ONB for C3. By Theorem 2.10, the matrix A − u1u

∗
1.

In fact, in this case, this is a rank 2 matrix given by

A − u1u
∗
1 =

⎡
⎢⎣

0 0 0

0 d − |b|2
a

e − bc
a

0 e − cb
a

f − |c|2
a

⎤
⎥⎦

Let

u2 = 1√
d−|b|2

a

(A − u1u
∗
1)δ2 =

⎡
⎢⎢⎢⎢⎣

0√
d − |b|2

a

e− cb
a√

d−|b|2
a

⎤
⎥⎥⎥⎥⎦ .

It follows that A − u1u
∗
1 − u2u

∗
2 = u3u

∗
3 where

u3 =
⎡
⎢⎣

0
0√
detA

ad−|b|2

⎤
⎥⎦ .

Consequently, the Lagrange decomposition of A is A = u1u
∗
1 + u2u

∗
2 + u3u

∗
3

which implies that

γ+(A) ≤
3∑

k=1

‖uk‖2
1 = ‖A‖1,1 + 2(|ae−bc|+|b||c|−a|e|)

a
.
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Now suppose that the rank of A is 2. In this case, it is possible for adf = 0.
However, only one of the diagonal element can be 0. So assume that f = 0, then
we also get that e = c = 0. In this case

A

⎡
⎣a b 0

b d 0
0 0 0

⎤
⎦

which reduces to Proposition 3.3. Thus, we may assume without loss of generality
that adf �= 0. In this case, we can proceed as above. However, because the rank of
the matrix A is now 2, we see that A = u1u

∗
1 + u2u

∗
2 and

γ+(A) ≤ ‖u1‖2
1 + ‖u2‖2

1 = ‖A‖1,1 + 2(|ae−bc|+|b||c|−a|e|)
a

.

��
Remark

(1) If one of the off diagonal elements b, or c is 0, then Proposition 3.4 shows that
the Lagrange decomposition is optimal for γ+(A).

(2) Suppose n = 4 and let V = 1√
14

⎡
⎢⎢⎣

1 0
0 1
1 −1
1 1

⎤
⎥⎥⎦, and consider

A = V V T = 1
14

⎡
⎢⎢⎣

1 0 1 1
0 1 −1 1
1 −1 2 0
1 1 0 2

⎤
⎥⎥⎦

Then A has rank 2, and the ‖A‖1,1 = 1. However, γ+(A) �= γ (A).

4 Numerics

Here we inspect upper bounds of γ+(A)/‖A‖1,1 for A an N x N matrix with
simulated data. We randomly generate symmetric positive definite matrices and
compute upper bounds on γ+(A)/‖A‖1,1 with different decompositions of A. The
first step is generating Gaussian distributed realizations in a matrix size N by N.
Then by multiplying by its transpose, the result is symmetric positive semidefinite,
denoted A. Let AN denote a collection of 30 independent realizations of this random
matrix.
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We consider two factorizations of the matrix A: the LDL and the Eigen matrix
decomposition. Specifically:

LDL : A =
N∑

k=1

vkv
∗
k

with vk vectors that have the top k − 1 entries 0, and

Eigen : A =
N∑

k=1

gkg
∗
k

where {g1, . . . , gn} are the eigenvectors, each scaled by the corresponding eigen-
value’s square-root. For each decomposition, denote:

JLDL(A) =
N∑

k=1

‖vk‖2
1 and JEigen(A) =

N∑
k=1

‖gk‖2
1

Let FLDL and FEigen denote the worst upper bounds over the N realization
ensemble:

FLDL(N) = max
A∈AN

JLDL(A)

‖A‖1,1

FEigen(N) = max
A∈AN

JEigen(A)

‖A‖1,1

We plot these worst upper bounds after 30 realizations for various N in Figure 1.
In the same figure, we plot the analytic approximations of these two curves

using a square root functions and a logarithmic function. The square root function
was scaled as c

√
N to closely fit the Eigen decomposition bound, FEigen(N).

Numerically we obtained c = 4/5.
From these plots, we notice a clearly strictly increasing trend. Furthermore,

the LDL factorization produces a smaller (tighter) upper bound than the Eigen
decomposition. On the other hand, as we show in Theorem 2.9, any optimal
decomposition may take N2 + 1 vectors. By limiting the number of vector to N ,
one should not expect to achieve the optimal bound γ+(A) with any decomposition.
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Decomposition performance via sampling random matrices

0 5000 10000 15000
size of sqare matrix A; N
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Fldl (N) : ldl decomposition

Feigen (N) : eigen decomposition

4/5*sqrt(N)
log(N)

Fig. 1 For each size N , 30 random matrices are sampled and decomposed in different ways. The
worst upper bound of γ+(A) is plotted for various N . Reference curves are also plotted to indicate
trend
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