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Abstract—Vector autoregressive models provide a simple gen-
erative model for multivariate, time-series data. The autoregres-
sive coefficients of the vector autoregressive model describe a
network process. However, in real-world applications such as
macroeconomics or neuroimaging, time-series data arise not from
isolated network processes but instead from the simultaneous
occurrence of multiple network processes. Standard vector au-
toregressive models cannot provide insights about the underlying
structure of such time-series data. In this work, we present the
autoregressive linear mixture (ALM) model. The ALM proposes a
decomposition of time-series data into co-occurring network pro-
cesses that we call autoregressive components. We also present a
non-convex likelihood-based estimator for fitting the ALM model
and show that it can be solved using the proximal alternating
linearized minimization (PALM) algorithm. We validate the ALM
on both synthetic and real-world electroencephalography data,
showing that we can disambiguate task-relevant autoregressive
components that correspond with distinct network processes.

Index Terms—time series analysis, autoregressive processes,
mixture models, unsupervised learning, electroencephalography

I. INTRODUCTION

VECTOR autoregressive models describe multivariate
time-series with linear interactions among the variates at

multiple time-scales. Let (x[t])t∈Z be a d-dimensional vector-
valued time-series generated by a p-order autoregressive pro-
cess [1],

x[t] =

p∑
s=1

A[s]x[t− s] + n[t]. (1)

Here, (A[s])s=1,...,p with A[s] ∈ Rd×d for all s = 1, . . . , p
are the autoregressive coefficients, and (n[t])t∈Z is the d-
dimensional noise process, where n[t] ∼iid N (0,Σ) for some
Σ � 0 ∈ Rd×d. The autoregressive coefficients specify the
interaction among the variates. For example, the i, j-entry of
A[s] captures the effect of the j entry of x[t−s] on the i entry
of x[t]. These values could be correlated, anti-correlated, or
unrelated depending on whether Ai,j [s] is positive, negative,
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or zero. In this way, (1) provides a simple but powerful
generative model for natural data. Accordingly, practitioners
from network neuroscience and econometrics commonly use
vector autoregressive models and their variants to analyze data
and forecast future outcomes.

The autoregressive coefficients of a vector autoregressive
model describe a single network process, a structural rela-
tionship among the variates in time. However, in many real-
world applications, where time-series data are derived from
observation of complex natural phenomena such as macroe-
conomic data [2] and neuroimaging [3]–[5], we might ask: do
we believe that we observe an isolated network process? If not,
how do we account for the simultaneous occurrence of other
network processes? Using the example above, perhaps xi[t−s]
is positively correlated with xj [t] for a particular network
process and negatively correlated for another network process.
If these network processes co-occur, then we will observe no
correlation between the variates. If we are only interested in
prediction, this subtlety may not matter, but if we want to gain
insight into the process, this should be concerning.

In this work, we propose a model for the simultaneous
occurrence of network processes: the autoregressive linear
mixture (ALM) model. The ALM model posits a decom-
position of the autoregressive coefficients into r canonical
autoregressive components, i.e. A[s] =

∑r
j=1 cjDj [s] for

s = 1, . . . , p with cj ∈ R and Dj [s] ∈ Rd×d for all
j = 1, . . . , r and s = 1, . . . , p, so that the ALM model is
defined by the recurrence relation

x[t] =

p∑
s=1

r∑
j=1

cjDj [s]x[t− s] + n[t]. (2)

We will denote the ALM model of order p and number
of components r as ALM (p, r). The autoregressive compo-
nents

{
(Dj [s])s=1,...,p : j = 1, . . . , r

}
represent distinct net-

work processes, and the mixing coefficients c = (cj)j=1,...,r
indicate how these network processes co-occur to bring about
the observed activity.

In the remainder of the manuscript, we review related
time-series and mixture models. We present a non-convex
likelihood-based estimator for the ALM model and propose
to derive estimates using the proximal alternating linearized
minimization (PALM) algorithm [6]. We characterize the per-
formance of the PALM algorithm on simulated data. Using the
PALM algorithm, we fit the ALM model to electroencephalog-
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raphy (EEG) recordings from the ISRUC-Sleep dataset (avail-
able from sleeptight.isr.uc.pt/ISRUC Sleep/) [7]. We show that
the recovered autoregressive components correspond to known
network processes used for sleep-stage classification. We pro-
vide a software package for fitting the ALM model available
at github.com/addisonbohannon/alm with implementations of
all experiments in Sections IV and V.

II. BACKGROUND

A. Related Work

In time-series analysis, and specifically econometrics, re-
searchers have previously developed mixture models for au-
toregressive processes. These researchers have been interested
in generative models for time-series data which feature tran-
sient behavior such as bursts and cycles. The first mixture
autoregressive model is credited to Le, Martin, and Rafferty
for the development of the Gaussian mixture transition distri-
bution (GMTD) [8]. Wong and Li generalized the GMTD in
developing the mixture autoregressive (MAR) model [9]. The
MAR models each observation within a realization as a Gaus-
sian mixture of autoregressive processes. Various multivariate
extensions to the MAR have been proposed in Fong, et al. [10];
Bec, Rahbek, and Shephard [11]; Duekker, et al. [12]; and
Kalliovirta, Meitz, and Saikkonen [13]. Fong, et al. propose
the mixture vector autoregression (MVAR) model, which most
immediately generalizes the MAR. It is this model that we
use for comparison. Let (x[t])t∈Z be a random d-dimensional
vector-valued time-series and Ft be the σ-algebra generated by
observations up to time t, {x[s] : s ≤ t}. Also, let (z[t])t∈Z be
a random time-series of iid r-dimensional categorical random
variables with parameters (cj)j=1,...,r. Then, the MVAR with
r components is given by

P (x1[t] ≤ x1, . . . , xd[t] ≤ xd | Ft−1)

=
r∑
j=1

cjΦ

(
Σ
−1/2
j

(
x−

pj∑
s=1

Dj [s]x[t− s]

))
(3)

for any x = (xi)i=1,...,d ∈ Rd, where Φ(x) =
∏d
i=1 Φ (xi)

and Φ is the cumulative distribution function of the univariate
normal distribution, Σj � 0 is the covariance of the j
component, pj is the model order of the j component, and
(Dj [s])s=1,...,pj

are the autoregressive coefficients of the j
component.

To estimate the parameters of the MAR model, Wong and
Li propose an expectation-maximization (EM) algorithm [14].
Fong, et al. follow suit for the MVAR model [10]. In the
expectation step of the algorithm, the conditional expectation
of (z[t])t∈Z is computed. Then, in the maximization step, the
estimates of (cj)j=1,...,r and (Dj [s])s=1,...,pj

for j = 1, . . . , r

are updated using the conditional expectation of (z[t])t∈Z. If
(Σj)j=1,...,r is treated as an unknown parameter, then this
estimate is also updated during the maximization step.

In signal and image processing, researchers have found
many successful applications for a class of bilinear models
known as dictionary learning and non-negative matrix factor-
ization. Dictionary learning, or sparse coding, follows from
experimental work encoding natural images [15], [16]. In

dictionary learning, we are given realizations (xi)i=1,...,n for
which we want to find a dictionary in which the signals are
appropriately sparse, i.e.

xi =
r∑
j=1

ci,jdj + ni, (4)

where ci = (ci,j)j=1,...,r are the dictionary coefficients for
the i realization, (dj)j=1,...,r are the dictionary atoms, and
(ni)i=1,...,n is random noise [17]. In this model, sparsity
implies that ‖ci‖0 � r for all i = 1, . . . , n. Non-negative
matrix factorization adopts the generative model of dictionary
learning (4), but the coefficients ci need no longer be sparse,
rather the coefficients and basis vectors (dj)j=1,...,r are con-
strained to be in the positive orthant [18].

Under a Gaussian noise model, the maximum likelihood
estimator (MLE) for (4) is given by

arg min
D∈Rd×r

ci∈Rr, i=1,...,n

1

2n

n∑
i=1

‖xi −Dci‖2 , (5)

where D = [d1| · · · |dr]. Equation (5) is non-convex and
difficult to solve globally. Moreover, the parameters are non-
identifiable since for any

{
D, (ci)i=1,...,n

}
which minimizes

(5), so too does
{

DU,
(
U−1ci

)
i=1,...,n

}
for any U ∈ Rr×r

invertible. Numerous extensions to (5) and associated algo-
rithms have been proposed for its solution. Some notable
algorithms include the method of optimal directions [19], FO-
CUSS [20], k-SVD [17], feature-sign search algorithm [21],
ER-SpUD [22], and sum-of-squares [23]. Non-negative matrix
factorization has an expansive and independent literature from
dictionary learning as it developed largely in parallel. Berry,
et al. provide a good review of algorithms for non-negative
matrix factorization [24].

Other generative signal models which feature a decom-
position include principal component analysis (PCA) and
independent component analysis (ICA). These models posit
a linear decomposition of the signal into components as in
(4). As contrasted with dictionary learning, PCA looks for
orthogonal components which maximally account for variance
in the data [25], while dictionary learning specifically allows
for non-orthogonal components (atoms). ICA instead finds
components for which the sources (coefficients) are statis-
tically independent [26], wherein dictionary learning seeks
sparseness in the coefficients. The autoregressive structure of
ALM distinguishes it from dictionary learning, PCA, and ICA
models, in which the realizations arise instantaneously (or
causally) from the linear combination of unobserved sources.
In ALM, a realization arises from the instantaneous linear
combination of its own history as filtered through different
autoregressive coefficients.

B. Notation

We denote vectors as boldface, lower-case letters and ma-
trices as boldface, upper-case letters. The transpose of a real
matrix A is denoted AT , and the complex conjugate of a
complex matrix A is denoted A∗. We denote the realization
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of a random vector or matrix with a subscript, i.e. xi or
Ai. We denote the element of a vector or matrix with a
subscript without boldface, i.e. xj or Ai,j . Inner products
are denoted 〈·, ·〉. We reference the Frobenius inner product
of real matrices A,B, 〈A,B〉F = tr

(
ABT

)
, where tr (·)

denotes the trace of a matrix. Norms are denoted with double
bars. We use ‖·‖ to denote the vector 2-norm or matrix
operator norm, i.e. largest singular value. ‖·‖F refers to
the Frobenius norm, i.e. ‖A‖2F = 〈A,A〉F . We denote the
column-wise vectorization of a matrix vec (·). We denote the
Kronecker product as ⊗: for any A ∈ Rm×n and Bp×q ,
A⊗Bp(r−1)+v,q(s−1)+w = Ar,sBv,w. For self-adjoint matrices
A,B, A � B indicates that A −B is non-negative; A � B
indicates that A − B is positive. We use N, Z, and R to
denote the set of natural numbers, integers, and real numbers
respectively. We will denote probability as P and expectation
as E. We use ·̂ notation as shorthand for the Fourier transform
on Z, e.g. for (z[t])t∈Z, ẑ(ω) =

∑
t∈Z e

2πiωtz[t]. Realizations
are assumed to be in Rd throughout. We use big O notation to
relate the order of functions asymptotically. For instance, for
real-valued functions f and g, f(x) ∼ O (g(x)) implies that
f grows no faster than g as x→∞.

III. METHODOLOGY

A. Model

We can understand the ALM model as simultaneously the
linearization of the MVAR model and a dictionary learn-
ing model for vector autoregressive processes. Let (x[t])t∈Z,
(Ft)t∈Z, and Φ be defined as in (3). Then, we can write (2)
as

P (x1[t] ≤ x1, . . . , xd[t] ≤ xd | c,Ft−1)

= Φ

Σ−1/2

x−
r∑
j=1

cj

p∑
s=1

Dj [s]x[t− s]

 (6)

for any x ∈ Rd. In comparison to (3), we adopt the dictionary
learning convention and do not constrain the mixing coef-
ficients to be the parameters of a r-dimensional categorical
random variable. Rather, we treat the mixing coefficients as
random variables in a hierarchical model. For simplicity, we
assume that all autoregressive components share a common
model order, i.e. pj = pj′ for all j, j′ = 1, . . . , r, and that
there is a single noise process with covariance Σ � 0. These
assumptions can be relaxed. We refer to (Dj [s])s=1,...,p as the
j autoregressive component and c as the mixing coefficients
of the ALM (p, r) process.

The autoregressive coefficients of a standard vector au-
toregressive model specify the causal mechanism by which
variates in a multivariate signal interact. In this way, each
autoregressive component (Dj [s])s=1,...,p of (2) can be inter-
preted as a separate network process. In fact, each component
(Dj [s])s=1,...,p defines an infinite impulse response (IIR) filter
with transfer function

Hj(ω) =
(
I− D̂j(ω)

)−1

(7)

for ω ∈ [0, 1] and D̂j(ω) =
∑p
s=1 e

2πiωsDj [s]. The mixing
coefficients describe how these network processes combine to
bring about the observed signals.

VAR models are already notable for the challenges of
high-dimensional model-fitting. A single realization of an
ALM (p, r) process has more parameters than a single real-
ization of a VAR(p) process, rpd2 + r versus pd2. However,
the benefit in terms of model complexity arises in the case
of multiple realizations. Suppose that we observe n > 1
time-series realizations. If we attempt to fit a VAR(p) model
to each realization, then we must estimate npd2 parameters.
For the ALM (p, r) model, by assuming that the realizations
share a common set of autoregressive components but are
differentiated by the mixing coefficients, we must estimate
rpd2 +nr parameters. Only the mixing coefficients are linear
in the number of realizations. Asymptotically, for fixed d, p, r,
the relative model complexity of ALM to VAR depends on
the ratio of the number of autoregressive components r to the
complexity of a VAR(p) model pd2:

lim
n→∞

rpd2 + nr

npd2
=

r

pd2
.

For analysis in the finite case, let r < pd2. Then, the model
complexity of VAR(p) exceeds that of ALM (p, r) for n >
(rpd2)/(pd2 − r).

Although the ALM model linearly combines the autoregres-
sive components in (2), the components combine nonlinearly
to generate the signal from white noise. This can be seen in
the frequency domain of the moving average representation of
(2),

x̂(ω) = H(ω) · n̂(ω), (8)

where H denotes the combined transfer function,

H(ω) =

I−
r∑
j=1

cjD̂j(ω)

−1

. (9)

In general, we cannot relate the combined transfer function (9)
to the component transfer functions (7), except in the following
special cases addressed in Proposition 1.

Proposition 1. Suppose that (x[t])t∈Z is a realization
of an ALM (p, r) process with autoregressive compo-
nents

{
(Dj [s])s=1,...,p : j = 1, . . . , r

}
and mixing coefficients

(cj)j=1,...,r such that cj ≥ 0 for all j = 1, . . . , r and∑r
j=1 cj = 1. For each ω ∈ [0, 1]:

1) if for all j = 1, . . . , r, D̂j(ω) is self-adjoint and
D̂j(ω) ≺ I, then

‖H(ω)‖ ≤
r∑
j=1

cj ‖Hj(ω)‖ ;

2) if R := maxj∈{1,...,r}

∥∥∥D̂j(ω)
∥∥∥ < 1, then for ϕ(R) =

1+R
1−R ,

‖H(ω)‖ ≤ ϕ(R)

r∑
j=1

cj ‖Hj(ω)‖ .
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If
{

D̂j(ω) : j = 1, . . . , r
}

are not self-adjoint, one cannot
expect an upper bound such as in (1) of Proposition 1. In (2)
of Proposition 1, we achieve a similar result with the inclusion
of a constant which grows exponentially as R → 1. Ideally,
we would like to replace ϕ(R) with a constant independent of
R. However, although the constant 1+R

1−R may not be optimal
in (2) of Proposition 1, the following counterexample shows
that in the worst case, the constant must depend on R.

Example. Consider the case r = 2, c1 = c2 = 1
2 , D̂1(ω) =

R exp (i arccos(R)), D̂2(ω) = R exp (−i arccos(R)) then

‖H(ω)‖∑r
j=1 cj ‖Hj(ω)‖

=
1√

1−R2
.

Equation (8) provides insight into the stability and stationar-
ity of the ALM (p, r) process. Stability implies the transfer of
energy from noise to the signal decays sufficiently fast in time.
This dampening effect preserves the first and second moments
of the time-series. Accordingly, the stability of a vector autore-
gressive process implies wide-sense stationarity [1, Prop. 2.1].
We provide a sufficient condition for stability and wide-sense
stationarity of an ALM (p, r) process in Proposition 2.

Proposition 2. Let (x[t])t∈Z be a realization of an
ALM (p, r) process with autoregressive components{

(Dj [s])s=1,...,p : j = 1, . . . , r
}

and mixing coefficients
(cj)j=1,...,r. Then, (x[t])t∈Z is stable if

det

I−
r∑
j=1

cj

(
p∑
s=1

Dj [s]z
s

) 6= 0

for all z ∈ {z ∈ C : |z| ≤ 1}. If the process is stable, it is also
wide-sense stationary.

Stability yields a well-defined autocovariance function,

Γ[s] = Ex[t]xT [t− s], (10)

for s ∈ Z. The autocovariance function corresponds with the
spectral density function via a Fourier transform [27],

Γ̂(ω) =
∑
s∈Z

e2πiωsΓ[s]. (11)

We can use (8) and (11) to derive the autocovariance of an
ALM (p, r) process. This result is given in Proposition 3.

Proposition 3. Let
{

(Dj [s])s=1,...,p : j = 1, . . . , r
}

,
(cj)j=1,...,r, and noise covariance Σ � 0 define a stable
realization of an ALM (p, r) process. The spectral density
function is given by

Γ̂(ω) = H(ω)Σ−1H∗(ω),

where H(·) is defined as in (9), and the autocovariance
function is given by

Γ[s] =

∫ 1

0

e−2πiωsΓ̂(ω)dω.

B. Estimation
In this section, we address parameter estimation for the

ALM model based on maximizing the likelihood of the
realizations. From the likelihood model, we derive a non-
convex optimization problem. We present a proximal gradient
algorithm which guarantees convergence to a stationary point
of the objective.

1) Likelihood of realizations: Suppose we observe a finite
length realization of an ALM (p, r) process, (x[t])t=1,...,m+p.
As we can whiten the realizations, we can assume n[t] ∼iid
N (0, I) without loss of generality. If we take the first p
observations (x[t])t=1,...,p as fixed and known, the negative
log likelihood of the remaining realization is given by

− log P (x[p+ 1], . . . ,x[m+ p] | D1, . . . ,Dr, c) =

md

2
log (2π) +

m∑
t=p+1

1

2

∥∥∥∥∥∥x[t]−
p∑
s=1

r∑
j=1

cjDj [s]x[t− s]

∥∥∥∥∥∥
2

.

(12)
Let us define Y = [x[p+ 1] · · ·x[m+ p]]

T , Dj =

[Dj [1] · · ·Dj [p]]
T , c = [c1 · · · cr]T , and

X =

 xT [p] · · · xT [1]
. . . . . . . . .

xT [m− 1] · · · xT [m− p]

 .
Then, we can write (12) in stacked form,

− log P (Y,X | D1, . . . ,Dr, c) =
md

2
log (2π)

+
1

2

∥∥Y −X
[
D1 · · · Dr

]
(c⊗ I)

∥∥2

F
.

(13)

From (13), we note that the negative log likelihood yields
a bi-quadratic function in D = [D1 · · ·Dr] and c.

Equation (13) also reveals a problem of intrinsically lower
dimension. The unknown parameters, D and c, lie in the pre-
image of X, a tall matrix of rank no more than min(pd,m).
We define the sample autocovariance function as

R[s] =
1

m+ p− s

m+p∑
t=s+1

x[t]xT [t− s]. (14)

In Proposition 4, we show that the sample autocovariance
function (R[s])s=0,...,p is a sufficient statistic for estimation of
the autoregressive components and mixing coefficients. That
is, in lieu of the complete realization (md values), we require
only the sample autocovariance function ((p+ 1)d2 values) to
evaluate the likelihood.

Proposition 4. Let (x[t])t=1,...,m+p be a finite length real-
ization of an ALM (p, r) process with autoregressive com-
ponents

{
(Dj [s])s=1,...,p : j = 1, . . . , r

}
and mixing coeffi-

cients (cj)j=1,...,r. Then, the sample autocovariance function,
(R[s])s=0,...,p is a sufficient statistic for the autoregressive
components and mixing coefficients.

Note that
(

1
mXTY

)T
=
[
RT [1] · · ·RT [p]

]
, and

1

m
XTX =

 R[0] · · · R[p− 1]
...

. . .
...

R[p− 1] · · · R[0]

 .
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If we denote R0 = 1
mXTY and R = 1

mXTX, then by (13)
and Proposition 4,

− log P (R[0], . . . ,R[p] | D, c)

∝ 〈R0,D (c⊗ I)〉F +
1

2
〈D (c⊗ I) ,RD (c⊗ I)〉F .

(15)

We denote L (D1, . . . ,Dr, c) = 〈R0,D (c⊗ I)〉F +
1
2 〈D (c⊗ I) ,RD (c⊗ I)〉F .

2) Likelihood-based estimator: In order to infer the mix-
ing coefficients and autoregressive components of the ALM
model, we require not just a single realization but realizations
of different mixtures of the autoregressive components. With
only one realization, there are infinitely many decompositions
which can explain the realizations with the same likelihood.
In dictionary learning, the number of realizations required to
recover the underlying dictionary scales polynomially with the
number of components [22], [23]. We should expect that we
need a number and length of realizations that are polynomial
in the number of components and model order for reliable
recovery of autoregressive components in the ALM model.

Suppose that we observe n finite length realizations of an
ALM (p, r) process,

{
(xi[t])t=1,...,m+p : i = 1, . . . , n

}
,

from a common set of autoregressive components{
(Dj [s])s=1,...,p : j = 1, . . . , r

}
. That is,

xi[t] =

p∑
s=1

r∑
j=1

ci,jDj [s]xi[t− s] + ni[t]. (16)

Without loss of generality, we assume that ni[t] ∼iid N (0, I)
for all i = 1, . . . , n. From (15), we derive a maximum
likelihood estimator (MLE),

arg min
Dj∈Rpd×d, j=1,...,r

ci∈Rr, i=1,...,n

1

n

n∑
i=1

Li (D1, . . . ,Dr, ci) . (17)

Here, Li denotes the likelihood term defined by the sample
autocovariance function of realization i, (Ri[s])s=0,...,p. How-
ever, the estimator of (17) presents multiple problems. First,
we must estimate rpd2 + nr parameters from realization of
n(p+1)d2 values. That convergence of the sample autocovari-
ance function to the true autocovariance function depends on
m complicates this analysis. Regardless, there is a non-trivial
regime where the problem is not well-posed. Second, (17) is
non-convex. It is convex in Dj for all j = 1, . . . , r and ci for
all i = 1, . . . , n respectively, but not jointly. Consequently, we
do not have algorithms which can globally solve the estimation
problem efficiently. Third, the parameters are non-identifiable.
For any D and (ci)i=1,...,n which minimize (17), so too do
DU and

(
U−1ci

)
i=1,...,n

for any U ∈ Rrd×rd invertible.
Finally, the minimizers are unique only up to permutation.

We can address many of the problems outlined above with
a maximum a posteriori (MAP) estimator,

arg min
Dj∈Rpd×d, j=1,...,r

ci∈Rr, i=1,...,n

1

n

n∑
i=1

Li (D1, . . . ,Dr, ci)

+
1

n

n∑
i=1

µ ‖ci‖1 s.t. ‖Dj‖F = 1, j = 1, . . . , r,

(18)

where µ ∈ R. We assume that vector autoregressive processes
comprise a sparse mixture of unit-norm autoregressive compo-
nents in order to make the problem better posed. The mixing
coefficient constraints correspond to a Laplace prior distri-
bution, and the constraint on the autoregressive components
corresponds to a uniform prior distribution on the Frobenius
unit sphere. The constraints on the mixing coefficients elim-
inate ambiguity from arbitrary unitary transformations. The
constraints on the autoregressive components fix the scale
ambiguity problem. This leaves only a sign and permutation
ambiguity. Unfortunately, the objective is still non-convex, and
the unit norm constraint on the autoregressive components
makes the feasible set of the problem non-convex as well.
These model assumptions are not more exacting than those of
ICA [26] and dictionary learning [22], [28].

C. Algorithm

Non-convex optimization problems such as (18) are in-
tractable in the general case, requiring a brute force search
within the feasible set to be guaranteed to find the global
minimizer. Nonetheless, some simple and computationally
efficient algorithms yield surprising convergence guarantees
for problems arising from particular statistical models. For
an excellent review as it relates to matrix completion and
factorization, see Chi, Lu, and Chen [29]. Here, we con-
sider the proximal alternating linearized minimization (PALM)
algorithm of Bolte, Sabach, and Teboulle [6]. The PALM
algorithm exploits the block separation of the unit norm
constraint and penalty terms of (18) and the smoothness of
the negative log likelihood term from (15). Importantly, the
PALM algorithm provides a local convergence guarantee under
reasonable assumptions.

First, we note that we can write the unit norm con-
straint of (18) as a penalty term,

∑r
j=1 X‖·‖F =1 (Dj), where

X‖·‖F =1 (·) : Rpd×d → R is the characteristic function of the
unit Frobenius norm. That is, for any D ∈ Rpd×d,

X‖·‖F =1 (D) =

{
0 ‖D‖F = 1

∞ o.w.
. (19)

This gives the objective of (18) a form

H (D1, . . . ,Dr, c1, . . . , cn) +
r∑
j=1

f (Dj) +
n∑
i=1

g (ci) , (20)

where H = (1/n)
∑n
i=1 Li, f = X‖·‖F =1 (·), and g =

(µ/n) ‖·‖1. Importantly, H is a smooth function of all vari-
ables and the non-smooth terms f and g are block separable.

PALM is of a class of proximal gradient methods which
make use of the proximal operator [30], [31]. The proximal
operator of a function f : X → R, X ⊂ Rd is defined for
any x ∈ X [32]

proxf (x) = arg min
y∈X

f(y) +
1

2
‖x− y‖2 .

It defines a possibly set-valued map, proxf (·) : X → 2X .
The proximal operator generalizes the projection operator,
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Algorithm 1. Proximal Alternating Linearized Minimization (PALM)

Initialize D
(0)
1 , . . . ,D

(0)
r , c

(0)
1 , . . . , c

(0)
n

for k = 1, 2, . . . do
for j = 1, . . . , r do

D
(k)
j = P

(
D

(k−1)
j − α(k)

j ∇Dj
H
)

for i = 1, . . . , n do
c

(k)
i = S

(µ/n)β
(k)
i

(
c

(k−1)
i − β(k)

i ∇ciH
)

and for (19), the proximal operator can be implemented as
a projection,

P (D) = proxX‖·‖F =1(·) (D) =
D

‖D‖F
. (21)

Even though
{
D ∈ Rpd×d : ‖D‖F = 1

}
is a non-convex set,

(21) projects onto it uniquely. The proximal operator of
γ ‖·‖1 is the element-wise shrinkage operator, i.e. sγ(x) =
sgn (x) max(0, |x|−γ). We denote the vector shrinkage oper-
ator as Sγ .

PALM is an iterative algorithm in which we cyclically up-
date each block variable, D1, . . . ,Dr, c1, . . . , cn. An iteration
comprises a proximal gradient step and proximal update for
each block variable. That is, each parameter is updated with
a gradient step of H before a proximal update with respect
to f or g as appropriate. The PALM algorithm is shown in
Algorithm 1. Note that the gradient is evaluated with the most
current values of each parameter. For example, when updating
D

(k)
j , the gradient is evaluated at D

(k)
j−1 and D

(k−1)
j . In the

supplementary material, Algorithm 1 is illustrated in greater
detail.

In using the PALM algorithm, we inherit its theoretical
guarantees. This ensures that our algorithm finds a critical
point of (18). The result is global in nature: independent of
the initialization, the algorithm will converge to a critical point
of the objective. It does not guarantee that we find a global
minimum since the critical point may be a saddle point or
local minimum.

Proposition 5. Let the sequence of iterates({
D

(k)
1 , . . . ,D

(k)
r , c

(k)
1 , . . . , c

(k)
n

})
k≥0

be generated

according to Algorithm 1 and Ri denote the sample
autocovariance function of (xi[t])t=1,...,m+p as in (15).
Assume that ‖Ri‖ < ∞ for all i = 1, . . . , n and c

(k)
i,j < ∞

for all i = 1, . . . , n, j = 1, . . . , r, and k ≥ 0. Let

1) 0 < α
(k)
j <

∥∥∥ 1
n

∑n
i=1 c

(k−1)
i,j Ri

∥∥∥−1

and

2) 0 < β
(k)
i <

∥∥ 1
nGi

∥∥−1

for all i = 1, . . . , n and j = 1, . . . , r, where [Gi]j,j′ =∣∣∣〈D
(k)
j ,RiD

(k)
j′

〉
F

∣∣∣. Then, the the iterates will converge to
a critical point of (20).

As the ALM (p, r) model requires the estimation of many
parameters, we must also consider the computational com-
plexity of model fitting. We compare to the computational
complexity of the least-squares estimator for fitting a VAR(p)
model to each realization. Although the PALM algorithm

is iterative, we incur a one-time cost of O
(
nmp2d2

)
in

computing the sample autocovariance for each realization{
Ri = XT

i Xi : i = 1, . . . , n
}

. For the regime of large m
(m > pd2), this computation dominates the complexity of
the least-squares estimator [1, Eq. 3.2.7]. In the iterative
phase of PALM, for large n (n > r), the complexity is
dominated by multiplying the sample autocovariance and the
autoregressive component for every combination of realization
and component {RiDj : i = 1, . . . , n, j = 1, . . . , r}, a total
cost of O

(
nrp2d3

)
. Thus, we eliminate the dependence on

the length of realization m in the iterative phase of PALM.
Following estimation of the sample autocovariance for each
realization, the least-squares estimator for the VAR(p) process
requires a linear solve for each realization at a total cost of
O
(
np3d3

)
. Therefore, fitting an ALM (p, r) model with the

PALM algorithm has comparable computational complexity to
fitting a VAR(p) model to each realization for r ∼ O (p).

D. Recoverability and conditioning

We would like to provide a set of algebraic and statistical
conditions on the autoregressive components and mixing co-
efficients which would make (20) well-posed. In ICA, recov-
erability can be conditioned on the linear independence of the
mixing vectors and a statistical condition on the coefficients
[26, Def. 1]. Similarly, in dictionary learning, it is assumed that
the dictionary components are either linearly independent in
the undercomplete case [22] or incoherent in the overcomplete
case [28]. Assumptions on the coefficients serve to control the
correlation.

Naively, we might want to impose a condition on the
incoherence of the autoregressive components, i.e.

max
j,j′∈{1,...,r}:j 6=j′

〈Dj ,Dj′〉 ≤ τ (22)

for some appropriate τ > 0. However, recovery is not
done with the gram matrix with j, j′-entries 〈Dj ,Dj′〉. The
coefficient recovery depends on the conditioning of the gram
matrix G of Proposition 5. If we let m → ∞, then we see
that the autoregressive components must be incoherent in a
geometry induced by the respective autocovariance functions.
That is, we require

max
i∈1,...,n

j,j′∈{1,...,r}:j 6=j′
〈Dj ,ΓiDj′〉 ≤ τ (23)

for some τ > 0 to satisfy an incoherence condition. From
Proposition 3 and (9), we observe that Γi depends nonlinearly
on both the autoregressive components and mixing coeffi-
cients. Therefore, we cannot decouple the algebraic conditions
on the autoregressive components from the statistical condi-
tions on the coefficients.

IV. SIMULATIONS

In this section, we empirically characterize the performance
of Algorithm 1 with simulated data. We generate the data
according to the following model:

1) autoregressive coefficients (Dj)j=1,...,r are drawn
iid standard normal and then normalized via projection;
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2) mixing coefficients (ci)i=1,...,n have support of size
s < r; the support is chosen from a uniform distribution
over sets of size s; then, the coefficient values are drawn
from N

(
0, r−1/2I

)
; mixing coefficients are re-drawn

until they satisfy Proposition 2; and
3) realizations (xi[t])t=1,...,m are generated causally using

(2) with noise drawn from N
(
0, d−1/2I

)
; we discard

an initial 2000 samples to allow for mixing.
For validation, we use d = 5, r = 10, p = 2, and s = 3
unless otherwise stated. The experiments in this section are
implemented in Python using the ALM library available at
github.com/addisonbohannon/alm.

In addition to evaluating estimators by negative log like-
lihood, we use a pseudo-metric for error in recovery of the
autoregressive components that accounts for permutation and
sign ambiguity. That is,

d
(

(Dj)j=1,...,r ,
(
D′j
)
j=1,...,r

)
= arg min

S∈S,P∈Π

∥∥∥∥∥∥∥
vec (D1)

...
vec (Dr)

− (S⊗ I) (P⊗ I)

vec (D′1)
...

vec (D′r)


∥∥∥∥∥∥∥

2

,

(24)
where S is the set of r × r diagonal matrices with entries
±1, and Π is the set of r × r permutation matrices. When
(Dj)j=1,...,r and

(
D′j
)
j=1,...,r

correspond to the fitted and
generative autoregressive components respectively, we refer to
(24) as the component error.

A. Performance

Since (18) is non-convex, we explore the component error
of the estimated autoregressive components over random ini-
tializations of the algorithm. For the same set of realizations
(n = 1000 and m = 10 000), the algorithm begins with 5
distinct initializations. The initializations are selected using
the same procedure as used for generating problems (step 1
above). The results are shown in Figure 1.

The most apparent observation in Figure 1 is the monotonic
decrease in negative log likelihood. More significant is con-
sistency of the negative log likelihood achieved by each of the
respective initializations. Each distinct initialization achieves
the same negative log likelihood to within O

(
10−5

)
. This

would suggest that the algorithms are finding solutions in
some symmetry set, but the variable performance in terms of
component error complicates this interpretation. Apparently,
there are many equally likely explanations for the realizations
beyond that of the actual autoregressive components (and
signed permutations) that generated the realizations. This may
be a result of ill-posedness as discussed in Section III-B.

B. Effect of number and length of realizations

As described in Section III-B, we expect recovery to depend
polynomially on model order and number of components.
Here, we fix the model complexity and vary the scale of
realizations with respect to number and length of realizations.
Problem sizes are sampled in log-scale. We simulate 10
problems, vary the number and length of realizations available

(a) (b)

Fig. 1. Performance characterization of PALM algorithm. Each colored line
corresponds to a unique initialization of the algorithm for the same set of
realizations. (a) We show the negative log likelihood of the realizations
(18) versus the iteration. We observe monotonically increasing likelihood
(decreasing negative log likelihood) across all initializations. Moreover, all
initializations reach a common likelihood. (b) We show the component error
(24) against the iteration. The algorithm appears to have achieved the correct
factorization for more than one initialization but not all initializations.

for fitting the ALM model, and for each problem, initialize
the algorithm with 10 distinct initializations. We use the same
initializations across all problem scales in order to understand
how problem scale affects the estimation problem (18). We
report the average (over the 10 problems) minimum (over the
10 initializations) component error and average (over the 10
problems) standard deviation (over the 10 initializations) in
Figure 2.

(a) (b)

Fig. 2. Component error as a function of number and length of realizations (n
and m respectively). (a) We show the component error (24) (normalized for
the number of components) averaged over 10 problems sampled according
to Section III-B. The per-sample component error used in the average is
the minimum achieved from 10 distinct initializations. The component error
decays faster in length of realization than number of realizations. (b) We
show the standard deviations of component error among the 10 initializations
averaged over the 10 problems. We observe that standard deviation increases
with number and length of realizations.

Figure 2 provides insight into the surface of (18). Com-
ponent error decays more rapidly with increasing length of
realization than number of realizations. That the average com-
ponent error achieved improves with additional realizations
suggests that there exists a regime of n, m, p, and r for
which the region of convergence to the true generative model
increases. This would explain why for an equal number of
initializations, the algorithm more reliably finds better minima.
That standard deviation increases in this regime suggests that
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the problem does not feature a benign landscape since some
initializations achieve a component error far inferior to the
global minimum.

We can gain additional insight into the results shown in
Figure 2 by returning to (13). Suppose that we observe n
realizations of length m from an ALM (p, r) process. Then,
we can expand the negative log likelihood as follows for some{
Ai ∈ Rmd×d : i = 1, . . . , n

}
:

n∑
i=1

1

2
‖Yi −XiD (ci ⊗ I)‖2F

=
n∑
i=1

1

2
‖Yi −XiAi‖2F

−
n∑
i=1

〈Yi −XiAi,XiAi −XiD (ci ⊗ I)〉F

+
n∑
i=1

1

2
‖XiAi −XiD (ci ⊗ I)‖2F .

The first term on the right-hand side of the equality achieves
a minimum at Ai =

(
1
mXT

i Xi

)−1 ( 1
mXT

i Yi

)
for all i =

1, . . . , n. This is the least-squares estimator for vector autore-
gressive processes for each respective realization. Additionally,
it eliminates the cross-product so that the only error contribu-
tion comes from the third term on the right-hand side. This
term intuitively measures how well the autoregressive compo-
nents decompose the least-squares estimator. Alternatively, the
second and third terms on the right-hand side of the equality
vanish for Ai = D (ci ⊗ I) for all i = 1, . . . , n. However, we
have accepted sub-optimality in the first term since we can do
no better than the per-iteration least-squares estimator. Regard-
less of how well the autoregressive components decompose
the per-realization vector autoregressive models, there is an
implicit dependence on the error of the least-squares estimator,
which depends asymptotically on the length of realization m
[1, Prop. 3.1].

As noted in Section III-A, in modeling multiple time-series
realizations with an ALM (p, r) process instead of an individ-
ual VAR(p) process for each realization, we reduce the model
complexity. This reduced model complexity should manifest in
the component error. The error of the least-squares estimator
for a VAR(p) model, to which we refer as coefficient error, has
known asymptotic convergence rates of 1/

√
m, where m is the

length of the realization [1, Prop. 3.1]. When we independently
estimate the coefficients of n > 1 realizations, the error will be
additive. Therefore, we want to know at which point (if any),
component error of n realizations of an ALM (p, r) process is
as good as or better than 1/

√
m. We do not derive error rates

for ALM due to the complications discussed in Section III-D.
However, we can consider small sample error numerically. The
results of this analysis are shown in Figure 3.

In Figure 3, we compare the average error for the respective
models using the PALM algorithm for fitting the ALM (p, r)
model and the least-squares estimator for fitting the respective
VAR(p) models. As expected, the average coefficient error
for VAR decays logarithmically in m and independent of n.
The component error of ALM decays more rapidly in m for

(a) ALM (b) VAR

Fig. 3. Comparison of component error for ALM and coefficient error for
VAR models. For comparison, error in (a) is normalized for number of
components, and error in (b) is normalized for number of realizations. (a) The
figure is the same as in Figure 2 (a). (b) We show the average coefficient error
(normalized by the number of realizations) for 10 randomly sampled problems.
As expected, the coefficient error of VAR(p) models decays logarithmically in
the length of realization m, and this relationship is independent of the number
of realizations n. We observe considerable advantage to using the ALM (p, r)
model for small m, especially for large n. However, the component error
decays much slower in the small n regime as compared to the coefficient
error of VAR(p).

large n and more slowly in m for small n. We observe an
advantage to using the ALM (p, r) model for small m, but an
advantage to using the VAR(p) model for small n. Notably,
all of the simulated problems fall in the regime of greater
model complexity for the n VAR(p) processes than that of the
ALM (p, r) process, i.e. n > (rpd2)/(pd2 − r).

C. Model misspecification

We next investigate the robustness of the ALM model
and PALM algorithm to model misspecification. Equation (2)
offers an idealized generative model for signals. For signals
observed in the real-world, we will not know the model
order or number of autoregressive components. Therefore,
we evaluate the performance of the ALM model when the
data is generated from a different model complexity than
that used to fit the data. We investigate misspecifying model
order and number of autoregressive components separately.
For a fixed number of autoregressive components, we generate
data from ALM models of varying model orders (n = 1000,
m = 10 000), and we evaluate the fit of ALM models of
varying model orders with respect to negative log likelihood.
Similarly, for a fixed model order, we generate data from ALM
models of varying number of autoregressive components, and
we evaluate the fit of ALM models with varying number of
autoregressive components. The results are shown in Figure 4.

In Figure 4(a), we observe a clear pattern of decreasing
likelihood for increasing misspecification of the model order.
When the fitted model order is less than the generative
model order, we observe decreasing likelihood. Although the
effect of misspecification increases with increasing generative
model order, the relative effect of misspecification appears
to decrease. That we use a fixed number and length of
realizations for all problems likely accounts for this effect.
These results suggest that standard model selection techniques
such as Akaike information criterion (AIC) [33], [34] and
Bayesian information criterion (BIC) [35] can be used to select
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(a) Model order (b) Number of components

Fig. 4. Effect of model misspecification (n = 1000, m = 10 000). (a)
For a fixed number of autoregressive components, we show the negative log
likelihood as we vary the generative and fitted model orders p. Increasing
darkness of color corresponds to a decrease in likelihood. We observe a
decrease in likelihood (increase in negative log likelihood) for underspecified
models with the relative effect decreasing for increasing model order. (b) For
a fixed model order, we show the negative log likelihood as we vary the
generative and fitted number of components r. The same color scheme is
used as in (a). We observe decreased likelihood for underspecified models,
but the effect decreases with increasing number of components.

an appropriate model order. In light of the results in Figure 1,
we cannot draw conclusions about the underlying component
error.

In Figure 4(b), we observe again a decrease in likelihood
for underspecified models. When the fitted number of compo-
nents is less than the generative number of components, the
likelihood decreases. The effect decays rapidly in the number
of generative components. As in Figure 4(a), the effect likely
results from the number and length of realization being fixed.
The results indicate that AIC and BIC should successfully
select an appropriate number of components. As mentioned
above, these results do not provide insight into the underlying
component error.

V. APPLICATION

In this section, we apply the ALM model to EEG recordings
during sleep. In the following, we describe the data and how
we fit the ALM model. We compare the use of the ALM
model to that of MVAR and VAR models. We find that
the features defined by fitting the ALM model better predict
sleep stage. Moreover, the features form tight and separable
clusters corresponding to sleep stage. This suggests that the
autoregressive components learned by the ALM model are
task relevant. We further investigate representative sleep stages
according to the learned model and verify that it matches
the sleep literature. Finally, we analyze the individual au-
toregressive components as network processes, finding distinct
spectral and spatial features. The experiments in this section
are implemented in Python using the ALM library available
at github.com/addisonbohannon/alm.

A. Data

EEG signals, together with other physiological and pneumo-
logical data, allow practitioners to identify sleep stages in ac-
cordance with the standards defined by the American Academy
of Sleep Medicine (AASM) [36]. The AASM guideline defines
five different sleep stages: awake, N1 (drowsiness/transitional

sleep), N2 (light sleep), N3 (deep sleep) and rapid eye move-
ment (REM) sleep. The AASM guideline recommends assign-
ing sleep stages based on 30 s non-overlapping intervals of
recording. Sleep stages are identified based on the presence of
unique oscillatory components along different EEG frequency
bands, typically defined as δ (1-4 Hz), θ (4-8 Hz), α (8-13
Hz) and β (13-30 Hz). For example, N2 sleep is characterized
by the presence of sleep spindles, which are high amplitude
narrow-band oscillations in the 11-16 Hz frequency range,
whereas N3 sleep is characterized by low-frequency high-
amplitude waves in the 2-6 Hz frequency range (for more
details see [36]).

The ISRUC-Sleep database [7] comprises 118 subjects
across 3 different subgroups (Subgroups I, II and III). We
focus our analysis on the subjects in subgroup III (10 sub-
jects), those included as healthy controls. The EEG recordings
include 6 channels (F4, C4, O2, F3, C3, O1) recorded at
200 Hz and referenced to electrodes placed on the left and
right earlobes (i.e. d = 6). For each subject, we band-
pass filter the full-length recording between 0.3 and 35 Hz
using a Hamming windowed sinc FIR filter implemented in
MNE-Python [37], following the recommendation in [7]. We
extract non-overlapping, consecutive 30 s segments of data,
together with their sleep stage labels, producing 800–1000
realizations per subject (i.e. m = 6000, n = 800 − 1000).
Within realizations, we z-score normalize each channel. We
summarize the preprocessing details in Figure 5. While sleep
stage labels based on the AASM guideline are provided from
two different experts, we use the labels from only the first
expert in our preliminary analysis; Khalighi, et al. report
minimal differences in the sleep stage labels between the two
experts [7].

Fig. 5. Data processing procedure. For each subject: (a) we band-pass filter
the full-length 200 Hz recording between 0.3 and 35 Hz using a Hamming
windowed sinc FIR filter; (b) we partition the full-length recording into non-
overlapping 30 s segments of data to yield n realizations of length m; and
(c) within each realization, we z-score normalize the channels separately.

B. Model selection

Based on the model misspecification results from Section
IV, we use a model selection criteria inspired by BIC to select
an appropriate model complexity to fit the data [35]:

mBIC(p, r) = 2 ∗ L(p, r) + log (nm) ·
(
rpd2 + nr

)
. (25)
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In (25),

L(p, r) =
n∑
i=1

1

2
‖Yi −XiD

∗ (c∗i ⊗ I)‖2F +
n∑
i=1

mµ ‖c∗i ‖1 ,

(26)
where {c∗i : i = 1, . . . , n} and D∗ = [D∗1 · · ·D∗r ] are the
fitted mixing coefficients and autoregressive components from
Algorithm 1. We believe that the issues with well-posedness
discussed in Sections III-B and IV justify the harsh penalty
of (25). We leave model selection for the ALM as a path for
future inquiry.

We fit the ALM (p, r) model for p ∈ {4, 6, 8, 10, 12} and
r ∈ {2, 6, 10, 14, 18}. Due to the computational expense, we
use subject 8 (n = 999) to select the best model. The minimum
coincides with the ALM (4, 10) model. We use this model for
subsequent fitting and analysis of all subjects.

C. Reliability of autoregressive components

As in Section IV, the estimate that we obtain from the
PALM algorithm depends on the initialization, achieving
nearly identical penalized log likelihoods but providing differ-
ent solutions. For the results shown, we select the initialization
based on that which exhibits the spectral properties most
consistent with those outlined in the AASM [36]. These results
are included for comparison in the supplemental material.
For ICA modeling of neuroimaging data, similar challenges
are addressed with analysis of only components which arise
reliably across trials and relate to task-relevant phenomena
[38], [39]. Accordingly, data-driven analysis with ALM must
be supported with domain expertise. Investigating the reliabil-
ity of decomposition remains an open question for the ALM
model.

D. Results

In comparing the ALM model to that of the MVAR and
VAR models, we find that the features learned from fitting
the ALM model better discriminate sleep stage, providing
evidence for the appropriateness of the ALM model for sleep
data. Additionally, we attempt to distill representations of each
sleep stage from the learned model, and we highlight two
fruitful techniques for analysis and interpretation of the learned
autoregressive components. For most of the analysis, we report
results for subject 8. The results for the remaining subjects are
included in the supplementary material.

1) Comparison of ALM to MVAR and VAR models: We
hypothesize that sleep stages are best modeled as instantaneous
mixtures of network processes, making the ALM model more
appropriate than MVAR or VAR. The fitted coefficients of the
respective models define a feature map. We want to see if this
feature map discriminates the sleep stages. If so, this would
indicate that the models capture task-relevant phenomena. Our
analysis suggests that the ALM model better describes the data
than either the MVAR or VAR models.

For this analysis, we use the fitted mixing coefficients of
the ALM (4, 10) model as the features in a logistic regression
model to predict the sleep stage. Then, we compare the
results to that of MVAR and VAR. For each realization

(xi[t])t=1,...,m , we use the mixing coefficients ci ∈ Rr
as the feature vector. We evaluate the performance using a
nested cross-validation with balanced classes. For each subject,
the reported accuracy corresponds to the average multi-class
accuracy across 5 folds for the best initialization within each
fold according to a 5-fold cross-validation. For the MVAR
model, we use r = 10 autoregressive components and p = 4
model order. We allow the mixture coefficients to vary for each
realization, i.e.

{
(ci,j)j=1,...,r : i = 1, . . . , n

}
, to be consistent

with the ALM framework. We estimate all parameters using
an expectation-maximization algorithm detailed in the supple-
mentary material. As for the ALM (4, 10) model, we use the
mixture coefficients as the features in the logistic regression
and follow the same cross-validation procedure. For the VAR
model, we use a model order of p = 4. We estimate the
autoregressive coefficients for each realization using the least-
squares estimator. We use the autoregressive coefficients as the
features in a logistic regression with a five-fold cross validation
with balanced classes. All analyses are performed using Sci-kit
Learn [40]. Table I displays the results.

In Table I, we observe that all three models perform better
than chance on each subject as expected performance for a
random feature map is 20%. The ALM model has the greatest
average accuracy as well as the best classification performance
for 9 of the 10 subjects. We also observe that the ALM
model achieves superior classification performance to the VAR
model with many fewer parameters than VAR. For instance,
let n = 1000. The ALM (4, 10) model requires estimating
11 440 parameters. The VAR(4) model requires fitting 144 000
parameters.

We can also visualize the relationship of realizations using
the respective feature map for the ALM, MVAR, and VAR
models. For this, we use t-distributed stochastic neighbor
embedding (t-SNE) [41], a non-linear projection technique.
Figure 6 illustrates the results of the t-SNE analysis for each
model on subject 8. We also plot an average feature c̄` for
each sleep stage `. Let I` denote the set of realizations from
sleep stage `. Then, the sleep-stage centroid is given by

c̄` =
1

|I`|
∑
i∈I`

ci (27)

where ci is the mixing coefficient or autoregressive coefficient
corresponding to realization i.

In Figure 6, we observe that the ALM model features
the best clustering. The sleep stages form tight and non-
overlapping clusters. Interestingly, the relative positions ap-
pear to indicate relationships between the sleep stages:
N1↔N2↔N3, N1↔Awake, and N1↔REM. The first two
relationships are consistent with the AASM scoring manual,
while the latter is not [36]. The MVAR model retains the
same relationships between the sleep stage clusters, but the
clusters are more diffuse and overlapping. The VAR model
exhibits little clustering, with all classes overlapping. Figure 6
suggests that the mixture model captures something essential
about the sleep data that cannot be modeled with the standard
VAR model. This observation is consistent with observations
in ICA modeling of EEG applications [42], [43].
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TABLE I
SLEEP STAGE CLASSIFICATION RESULTS

Subject 1 2 3 4 5 6 7 8 9 10 Average

Accuracy
(%)

ALM 71.5 64.6 71.7 71.0 76.8 63.1 70.2 80.5 67.7 56.0 69.3
MVAR 43.1 33.2 47.5 44.1 49.2 40.4 58.2 62.8 34.5 47.8 46.1
VAR 62.4 58.2 62.8 63.6 64.8 54.5 64.1 72.2 58.0 66.4 62.7

Awake

N1

N2

N3

REM

(a) ALM (b) MVAR (c) VAR

Fig. 6. Distribution of features for each realization of subject 8 for ALM, MVAR, and VAR models visualized using t-SNE [41]. Each colored dot represents
the features for a 30 s realization of sleep data colored according to the expert-labeled sleep stage. Additionally, the centroids of the feature for each sleep
stage (27) are plotted as large circles. (a) Projection of the ALM mixing coefficients. Sleep stages N1, N2, N3 and REM exhibit tight clustering whereas the
awake class shows a broader distribution. The relative position of the realizations suggests a relationship between the sleep stages that is consistent with the
AASM [36]. (b) Projection of the MVAR mixing coefficients. All sleep stages show some clustering with considerable overlap between N2–N3 and N1–REM.
(c) Projection of the autoregressive coefficients of VAR. Sleep stages N1, N2, N3, and REM show some clustering, but all sleep stages overlap. Realizations
of awake seemingly form three distinct clusters.

In comparing the ALM model to that of MVAR and VAR
with a common model order and number of components, we
directly address the hypothesis that an instantaneous mixture
of network processes best describes the sleep data. The MVAR
model has the capacity to fit the same autoregressive compo-
nents, or network processes, as the ALM model. However, the
MVAR will mix the autoregressive components nonlinearly.
The VAR model has the capacity to exactly match the ALM
model. However, the results from Table I and Figure 6 provide
evidence that sleep stages are best modeled with ALM. Neither
the additional model complexity of fitting nonlinear mixtures
with MVAR nor the increased model capacity of VAR improve
modeling performance.

2) Learned representation of sleep stages: Based on the
results from the previous section, we use the mixing coefficient
centroids of the ALM model to define an average transfer
function for each sleep stage. With these transfer functions,
we generate signals and periodograms to verify the learned
representation.

We generate signals for each sleep stage ` with (2), the fitted
autoregressive components

{
(Dj [s])s=1,...,p : j = 1, . . . , r

}
,

and the average mixing coefficients defined in (27),(
(c̄`)j

)
j=1,...,r

, i.e.

x`[t] =

p∑
s=1

r∑
j=1

(c̄`)j Dj [s]x`[t− s] + n[t]. (28)

We also use the average mixing coefficents for each sleep stage

` to define a transfer function as in (9),

H`(ω) =

I−
r∑
j=1

(c̄`)j D̂j(ω)

−1

. (29)

With these sleep stage filters, we generate a periodogram from
the gain of the frequency response:

S`(ω) = ‖H`(ω)‖22 . (30)

The results of both the generated signal and periodogram for
Subject 8 are shown in Figure 7. The results for the remaining
subjects are included in the supplementary material.

In Figure 7, the awake periodogram shows a pronounced
peak in the α band. Transitioning to N1, N2, and N3, we
observe an increase in low frequency activity. The low fre-
quency activity peaks in N3. This behavior broadly tracks that
outlined in the AASM guidelines [36]. The spectral features of
the N2, N3, and REM stages do not exhibit the same peaked
activity as we observe in awake and N1. In the results for the
remaining subjects (provided in the supplementary material),
the peaked response of even the awake filter is not present.
These results suggest that the average mixing coefficient
insufficiently reflects the sleep stage, possibly as a result of the
nonlinearity of the transfer function (see discussion in Section
III-A and Prop. 1).

3) Analysis of the autoregressive components: We highlight
the ability to analyze the individual autoregressive components
of the fitted ALM model. We do so by first using the
component IIR filters of (7) to analyze the spectral properties
that they impart on signals and second performing functional
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Fig. 7. Class-conditional signals and periodogram for subject 8. Each row
corresponds to a sleep stage. For each sleep stage, we define an IIR filter
using (29) and the centroid of the mixing coefficients from (27). In the left
column, we generate signals from the stage-specific IIR filter acting on white
noise. Each color corresponds to an EEG channel. In the right columns,
periodograms show the spectral content of the sleep-stage filter. In the awake
filter, we observe a peaked frequency response in the α band as expected. For
the other filters, we observe increasing activity in δ and θ bands.

connectivity analysis of the channels. This allows us to under-
stand the spectral and spatial properties of the autoregressive
components.

To analyze the spectral properties of the autoregressive
components, we generate a component-specific periodogram
Sj(·) = ‖Hj(·)‖22 where Hj is defined as in (7). The
component periodograms for subject 8 are shown in Figure
8. Periodograms for the remaining subjects are included in
the supplementary material.

Figure 8 shows two notable global features: the compo-
nents partition the frequency domain and the gain decreases
with increasing frequency. Through a succession of peaked
responses, the components respond to every frequency from
0-35 Hz and exhibit a particular dense covering of 0-25 Hz:
component 7 responds to 0-10 Hz; component 4 responds to
10-12 Hz; component 5 responds to 11-13 Hz; component
10 responds to 13-15 Hz; component 8 responds to 15-17
Hz; component 2 responds to 18-20 Hz. The dense covering
of frequencies from 0-25 Hz covers the relevant frequencies
for sleep activity as reported in the AASM scoring manual
[36]. Interestingly, component 1 responds at 18-20 Hz and
again at 30-32 Hz. Components 3, 6, and 9 apparently do
not have peaked responses. The other notable phenomenon of
Figure 8 is the decrease in gain for increasing frequency. This
matches the so-called 1/f drop-off in power observed in EEG
recordings [44].
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Fig. 8. Component periodograms for subject 8. Each color corresponds to
a unique autoregressive component. For each autoregressive component, the
gain of the frequency response (30) is plotted from 0-50 Hz. 7 of the 10
autoregressive components show peaked frequency responses. We observe that
the autoregressive components partition the frequency domain and collectively
display a decrease in cumulative gain for increasing frequency.

In addition to analysis of the frequency response of the indi-
vidual autoregressive components, we can analyze the spatial
relationships of the autoregressive components. Causal time-
series modeling like that of autoregressive models captures
functional connectivity [3]. Here, we use the directed transfer
function (DTF), a multivariate version of Granger causality, to
infer the functional connectivity between two EEG channels.
The DTF between two channels d1, d2 is given by [45]

γ2
d1,d2(ω) =

|[Hj ]d1,d2 (ω)|2∑d
d′2=1

∣∣[Hj ]d1,d′2 (ω)
∣∣2 , (31)

where Hj is the component transfer function of the j au-
toregressive component as defined in (7). The DTF provides
a directed measure of connectivity among EEG channels,
i.e. γd1,d2(ω) corresponds to the effect channel d2 has on
d1 at frequency ω. We visualize the results of a functional
connectivity analysis for each autoregressive component of
subject 8 in Figure 9. The results for the remaining subjects
are included in the supplementary material.

In Figure 9, we evaluate functional connectivity among
the EEG channels within the EEG frequency bands: δ (1-
4 Hz), θ (4-8 Hz), α (8-13 Hz) and β (13-30 Hz). We
observe considerable variability in the connectivity patterns
among the components. Component 8, which has a peaked
frequency response, shows consistency in connectivity across
all frequency bands. Component 6, which has no peaked
frequency response, exhibits distinct connectivity patterns for
each frequency band to include lateral connectivity in the
frontal lobe in α-band and lateral connectivity in the occipital
lobe in β-band. The spectral analysis of Figure 8 together
with Figure 9 allows us to interrogate the unique contribution
of each autoregressive component to the model.
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Fig. 9. Connectivity matrices for subject 8. Each column of figures corresponds to one autoregressive component, and each row corresponds to a frequency
band. The d1, d2-element of each plot corresponds to the average DTF (31) for the frequency interval. Recall that this is a directed relationship, i.e. d2 → d1.
Only significant edges are shown in the plot (p < 0.05) [46]. The top-left and bottom-right quadrants of the connectivity plots correspond to intra-hemisphere
connections. Some components such as 8 exhibit consistent connections across all frequency bands, while others such as 6 exhibit considerable variability
between frequency bands. For instance, component 6 features lateral connectivity in the frontal lobe in α-band and lateral connectivity in the occipital lobe
in β-band.

VI. CONCLUSION

In this work, we introduce a new model for analyzing
time-series data which features the simultaneous mixture of
network processes. We derive a likelihood-based estimator for
the autoregressive components and mixing coefficients from
multiple realizations of an ALM (p, r) process. Although the
likelihood-based estimator yields a non-convex optimization
problem, we show that the PALM algorithm performs capably.
The validation results provide evidence that the region of
convergence to the global minimum increases with increasing
number and length of realizations. We fit the ALM model
to EEG recordings of healthy individuals during sleep and
show that ALM can disambiguate meaningful autoregressive
components that correspond with network processes used for
classifying sleep stages.

We identify two inter-related limitations of ALM in the
application to real-world data: reliability of estimates across
initializations and analytical understanding of what makes
a well-posed problem. As discussed in Section III-B, the
ALM model does not lend itself to separable conditions on
the autoregressive components and mixing coefficients that
facilitate recoverability. Practically, the well-posedness of the
problem manifests as variability in estimates between different
initializations, as discussed in Section V. These limitations
require further investigation.

The ALM model provides numerous interesting directions
of inquiry. First, it is worth noting that this work immediately
generalizes to any proper, lower semi-continuous function g.
Here, we consider a `1-norm penalty on the mixing coeffi-
cients, but we could as easily consider a `0-norm penalty or
constrain the mixing coefficients to be non-negative or in the
probability simplex. We would only need update the proximal
function applied in the coefficient update of Algorithm 1. Next,
we might want to know under what conditions the set of global

minima of (18) coincide with the generating parameters as
is shown for dictionary learning in [47]. Finally, we could
consider estimating the autoregressive components using non-
likelihood-based techniques such as generative adversarial
networks [48].

We believe that the ALM model offers a powerful generative
model for data-driven analysis of real-world time-series.
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APPENDIX

Proof of Proposition 1. For simplicity of notation, we will
omit the ω argument of the matrix-valued functions.

(1) Assume D̂j self-adjoint and D̂j ≺ I for all j = 1, . . . , r.
Note

‖Hj‖ =
∥∥∥(I− D̂j)

−1
∥∥∥ =

1

1− λmax

(
D̂j

) ,
where λmax (A) denotes the largest eigenvalue of A. A similar
identity holds for H = (I −

∑r
j=1 cjD̂j)

−1. Let v be the

normalized principal eigenvector of D0 :=
∑r
j=1 cjD̂j . Thus,

‖H‖ = 1/ (1− 〈D0v,v〉). Recall also that
〈
D̂jv,v

〉
≤

λmax

(
D̂j

)
. After noting that f(x) = 1/(1 − x) is convex

on x < 1, the statement follows from Jensen’s inequality:∥∥∥(I−D0)
−1
∥∥∥ =

1

1−
∑r
j=1 cj

〈
D̂jv,v

〉
≤

r∑
j=1

cj
1

1−
〈
D̂jv,v

〉
≤

r∑
j=1

cj
1

1− λmax

(
D̂j

)
=

r∑
j=1

cj

∥∥∥∥(I− D̂j

)−1
∥∥∥∥ .

(2) Assume now that
∥∥∥D̂j

∥∥∥ ≤ R < 1. Then D0 satisfies
‖D0‖ ≤ R as well. Note

1 =
∥∥∥(I− D̂j)(I− D̂j)

−1
∥∥∥ ≤ ∥∥∥I− D̂j

∥∥∥ ∥∥∥(I− D̂j)
−1
∥∥∥

≤ (1 +R)
∥∥∥(I− D̂j)

−1
∥∥∥ .

Then, 1 ≤ (1+R)
∑r
j=1 cj

∥∥∥(I− D̂j)
−1
∥∥∥. On the other hand,∥∥(I−D0)−1

∥∥ =
1

1− λmax (D0)
≤ 1

1−R
.

We obtain the desired result by multiplying the last two
inequalities.

Proof of Proposition 2. A stable p-order autoregressive pro-
cess with autoregressive coefficients (A[s])s=1,...,p satisfies

det

(
I−

p∑
s=1

A[s]zp

)
6= 0

for |z| ≤ 1 [1, Eq. 2.1.12]. Let
(∑r

j=1 cjDj [s]
)
s=1,...,p

define

an ALM (p, r). Then, the result follows from substitution of
A[s] =

∑r
j=1 cjDj [s].

Proof of Proposition 3. Provided that the mixing coefficients
are finite, the autocovariance function and spectral density
function are in one-one correspondence since the components
are square summable,

p∑
s=1

∥∥∥∥∥∥
r∑
j=1

cjDj [s]

∥∥∥∥∥∥
2

F

<∞.

Therefore, we can derive the autocovariance function as the
Fourier transform of the spectral density function [27],

Γ̂(ω) = Ex̂(ω)x̂∗(ω).

We can substitute (8) to get

Γ̂(ω) = H(ω) (En̂(ω)n̂∗(ω)) H(ω)∗.

The middle term simplifies to Σ. Then, by taking the Fourier
transform, we recover the desired result.
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Proof of Proposition 4. We will use the factorization theorem,
see e.g. [49, Prop. IV.C.1], which says that the sample au-
tocovariance function (R[s])s=1,...,p is a sufficient statistic
for the autoregressive components and mixing coefficients
if the likelihood of the realization (x[t])t=1,...,m+p can be
factored into the product of a function which depends on
the sample autocovariance, autoregressive components, and
mixing coefficients and a function which depends only on the
realization. That is,

P
(

(x[t])t=p+1,...,m+p

∣∣∣{(Dj [s])s : j
}
, (cj)j

)
= f

(
(x[t])t=p+1,...,m+p

)
g
(

(R[s])s

∣∣∣{(Dj [s])s : j
}
, (cj)j

)
for some functions f and g. Without loss of generality, let
us assume n[t] ∼iid N (0, I). The joint likelihood of the
realization under the ALM (p, r) model is

(2π)
md/2 P

(
(x[t])t=p+1,...,m+p

)
=

m+p∏
t=p+1

exp

−1

2

∥∥∥∥∥∥x[t]−
p∑
s=1

r∑
j=1

cjDj [s]x[t− s]

∥∥∥∥∥∥
2


= exp

− m+p∑
t=p+1

1

2

∥∥∥∥∥∥x[t]−
p∑
s=1

r∑
j=1

cjDj [s]x[t− s]

∥∥∥∥∥∥
2
 .

Here, we have conditioned on the first p observations of
each time-series. By expanding the norm and distributing the
summation in the exponential, we derive our desired sample
autocovariance terms:

−
m+p∑
t=p+1

1

2

∥∥∥∥∥∥x[t]−
p∑
s=1

r∑
j=1

cjDj [s]x[t− s]

∥∥∥∥∥∥
2

= −
m+p∑
t=p+1

1

2
‖x[t]‖2 +m

p∑
s=1

r∑
j=1

cj 〈R[s],Dj [s]〉F

− m

2

p∑
s,s′=1

r∑
j,j′=1

cjcj′ 〈Dj [s],Dj′ [s
′]R[s− s′]〉F .

We can now assemble this into the product of two terms—one
depending on the realization only, and one depending on the
sample autocovariances:

(2π)
md/2 P

(
(x[t])t=p+1,...,m+p

)
= exp

(
m+p∑
t=p+1

1

2
‖x[t]‖2

)

· exp

m p∑
s=1

r∑
j=1

cj 〈R[s],Dj [s]〉F

−m
2

p∑
s,s′=1

r∑
j,j′=1

cjcj′ 〈Dj [s],Dj′ [s
′]R[s− s′]〉F


This concludes the proof.

Proof of Proposition 5. We want to apply Theorem 1 of
Bolte, Sabach, and Teboulle [6].

First, we require that (20) is a Kurdyka–Łojasiewicz (KL)
function. For (20), H is a polynomial function and thus semi-
algebraic; f is a norm of rational order and so semi-algebraic
by [6, Example 4]; and g is the indicator function of a semi-
algebraic set and so semi-algebraic. Then, we can invoke [6,
Thm. 3], which says that any semi-algebraic function is also
a KL function.

Next, we require that f and g are proper and lower semi-
continuous and H is continuously differentiable. H is analytic
and so continuously differentiable. f is continuous and so
lower semi-continuous. As an indicator function, g is not
continuous but is lower semi-continuous. Both f and g are
proper functions.

Then, we must show the following: ∇DjH and ∇ciH are
globally Lipschitz continuous, those Lipschitz constants are
finite, and H is Lipschitz continuous on bounded subsets. The
latter is trivially satisfied since H ∈ C2 [6, Remark 3]. First,
we derive the block Lipschitz constant of ∇Dj

H:

‖∇Dj
H (D1, . . . ,Dj , . . . ,Dr, c1, . . . , cn)

−∇Dj
H
(
D1, . . . ,D

′
j , . . . ,Dr, c1, . . . , cn

)
‖F

≤

∥∥∥∥∥ 1

n

n∑
i=1

ci,jRi

∥∥∥∥∥ · ∥∥Dj −D′j
∥∥
F
.

Provided that ci,j < ∞ and ‖Ri‖ < ∞ for all i = 1, . . . , n,
the Lipschitz constant is finite. We can repeat the same
argument for all j = 1, . . . , r. Now, we derive the block
Lipschitz constant of ∇ci

H:

‖∇ci
H (D1, . . . ,Dr, c1, . . . , cj , . . . , cn)

−∇ci
H
(
D1, . . . ,Dr, c1, . . . , c

′
j , . . . , cn

)
‖F

≤
∥∥∥∥ 1

n
Gi

∥∥∥∥ · ‖ci − c′i‖ ,

where [Gi]j,j′ =
∣∣〈Dj ,RiDj′〉F

∣∣. The Lipschitz constant is
finite if ‖Ri‖ < ∞ since ‖Gi‖ ≤ 1

n ‖Ri‖ ·
∑r
j=1 ‖Dj‖2F =

1
n ‖Ri‖ <∞.

This concludes the proof as we can now apply [6, Thm.
1].


