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Abstract—We study the problem of quickest detection of a
change in the mean of an observation sequence, under the
assumption that both the pre- and post-change distributions have
bounded support. We first study the case where the pre-change
distribution is known, and then study the extension where only
the mean and variance of the pre-change distribution are known.
In both cases, no knowledge of the post-change distribution is
assumed other than that it has bounded support. For the case
where the pre-change distribution is known, we derive a test
that asymptotically minimizes the worst-case detection delay over
all post-change distributions, as the false alarm rate goes to
zero. We then study the limiting form of the optimal test as
the gap between the pre- and post-change means goes to zero,
which we call the Mean-Change Test (MCT). We show that the
MCT can be designed with only knowledge of the mean and
variance of the pre-change distribution. We validate our analysis
through numerical results for detecting a change in the mean of
a beta distribution. We also demonstrate the use of the MCT for
pandemic monitoring.

Index Terms—Quickest change detection (QCD), non-
parametric methods, minimax robust detection

I. INTRODUCTION

Quickest Change Detection (QCD) is a fundamental prob-
lem in mathematical statistics. Given a stochastic sequence
whose distribution changes at some unknown change-point,
the goal is to detect the change after it occurs as quickly
as possible, subject to false alarm constraints. The QCD
framework has had a wide range of applications, including
but not limited to line-outage in power systems [1], dim-target
manoeuvre detection [2], stochastic process control [3], struc-
tural health monitoring [4], and, more recently, in the Multi-
Armed Bandit (MAB) problem with piece-wise stationary
bandits [5]. Two formulations are used in the classical QCD
problem: the Bayesian formulation [6], where the change-
point is assumed to follow some prior distribution, and the
minimax formulation [7], [8], where the worst-case detection
delay is minimized over all possible change-points, subject
to false alarm constraints. In both the Bayesian and minimax
settings, if the pre- and post-change distributions are known,
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low-complexity efficient solutions to the QCD problem can be
found [9].

In many practical situations, we may not know the exact
distribution in the pre- or post-change regimes. Although it is
reasonable to assume that we can obtain a large amount of
data in the pre-change regime, this may not be the case for
the post-change regime. In applications such as the epidemic
detection problem and the MAB problem, a change in a spe-
cific statistic (e.g., the mean) of the distribution is of interest.
This is different from the original QCD problem where any
distributional change needs to be detected. Furthermore, in
many applications, the support of the distribution is bounded.
For example, the observations representing the fraction of
some specific group in the entire population are bounded
between 0 and 1. This is the case, for example, in the pandemic
monitoring problem that we discuss in detail in Section IV.

There have been a number of lines of work on the QCD
problem when the pre- and/or post-change distributions are
not completely known. The most prevalent is the Generalized
Likelihood Ratio (GLR) approach, in which the maximum
of the test statistics corresponding to each possible change-
points is used to construct the test. A GLR approach for a
Gaussian mean-change detection problem is proposed in [10].
A GLR test for the case where the pre- and post-change
distributions come from one-parameter exponential families
is analyzed in [11]. A kernel approach to construct GLR
statistics is discussed in [12]. More recently, a GLR mean-
change test for sub-Gaussian observations using scan statistics
is proposed and analyzed in [13], and this approach is applied
to the MAB problem in [5]. In all of these methods, the
complexity of computing the test statistic at each time-step
grows at least linearly with the number of samples. In practice,
a windowed version of the GLR test statistic is used to keep the
complexity small, while suffering some loss in performance.
An alternative to the GLR approach was given in [14], where a
histogram is used to estimate the post-change distribution, and
a low complexity test with a recursive structure is constructed.

Another line of work is the one based on a minimax robust
approach [15], in which it is assumed that the distributions
come from mutually exclusive uncertainty classes. Under cer-
tain conditions on the uncertainty classes, e.g., joint stochastic
boundedness [9], a low-complexity saddle-point solution to



the minimax robust QCD problem can be found. In this
paper, we use an asymptotic version of the minimax robust
QCD problem formulation to develop algorithms for the non-
parametric detection of a change in mean of an observation
sequence. Our contributions are as follows:

1) We study the problem of quickest detection of a change in
the mean of an observation sequence under the assump-
tion that no knowledge of the post-change distribution is
available other than that it has bounded support.

2) For the case where the pre-change distribution is known,
we derive a test that asymptotically minimizes the worst-
case detection delay over all possible post-change distri-
butions, as the false alarm rate goes to zero.

3) We study the limiting form of the optimal test as the gap
between the pre- and post-change means goes to zero,
which we call the Mean-Change Test (MCT). We show
that the MCT can be designed with only knowledge of
the mean and variance of the pre-change distribution. We
also study the performance of the MCT when the gap is
moderate.

4) We validate our analysis through numerical results for
detecting a change in the mean of a beta distribution.
We also demonstrate the use of the MCT for pandemic
monitoring.

II. PROBLEM STATEMENT

Let X1, . . . , Xt, · · · ∈ [0, 1] be independent samples, with
X1, . . . , Xν ∼ P0, and Xν+1, · · · ∼ P1. Let PP0,P1

ν {·} denote
the probability measure on the entire sequence of observations
when the pre- and post-change distributions are P0 and P1,
respectively, and the change-point is at t = ν, and let EP0,P1

ν [·]
denote the corresponding expectation. We will first consider
the case where P0 is completely known, and then study ex-
tensions to the cases where only partial (moment) information
about P0 is available. The change-time ν is unknown but
deterministic. The problem is to detect the change quickly
while not causing too many false alarms. Let τ be a stopping
time [9] defined on the observation sequence associated with
the detection rule, i.e. τ is the time at which we stop taking
observations and declare that the change has occurred. If both
the pre- and post-change distributions are known, Lorden [7]
proposed solving the following optimization problem to find
the best stopping time τ :

inf
τ∈Cα

WADDP0,P1 (τ) (1)

where

WADDP0,P1 (τ) :=

sup
ν≥1

ess supEP0,P1
ν

[
(τ − ν + 1)

+ |X1, . . . , Xν−1

]
(2)

is a worst-case delay metric and

C{P0}
α :=

{
τ : FARP0 (τ) ≤ α

}
(3)

is the feasible set where FARP0 (τ) := EP0,P1
∞ [τ ]

−1. Note that
EP0,P1
∞ [·] is the expectation operator when the change never

happens, and (·)+ := max{0, ·}.

Lorden also showed that Page’s Cumulative Sum (CUSUM)
algorithm [16] whose test statistic is given by:

ΛP0,P1(t) = max
1≤k≤t

t∑
i=k

lnLP0,P1(Xi)

=
(
ΛP0,P1(t− 1) + lnLP0,P1(Xt)

)+ (4)

with ΛP0,P1(0) = 0 solves the problem in (1) asymptotically,
where LP0,P1(x) = p1(x)/p0(x) is the likelihood ratio be-
tween the densities. The CUSUM stopping rule is given by:

τ
(
ΛP0,P1 , bα

)
:= inf{t : ΛP0,P1(t) ≥ bα} (5)

where bα := | lnα|. It was shown by Moustakides [17] that
Page’s test is exactly optimal for the problem in (1).

When the pre-change and post-change distributions are
unknown but belong to some uncertainty sets, a minimax
robust metric can be applied:

inf
τ∈CP0

α

sup
(P0,P1)∈P0×P1

WADDP0,P1 (τ) (6)

where the feasible set becomes

CP0
α =

{
τ : sup

P0∈P0

FARP0 (τ) ≤ α
}

(7)

A pair of uncertainty sets (P0,P1) is said to be jointly
stochastically (JS) bounded by (P̄0, P̄1) ∈ P0 × P1 if, for
any (P0, P1) ∈ P0 × P1 and any t > 0,

P0{LP̄0,P̄1(X) > t} ≤ P̄0{LP̄0,P̄1(X) > t} (8)

P1{LP̄0,P̄1(X) > t} ≥ P̄1{LP̄0,P̄1(X) > t} (9)

where LP̄0,P̄1 is the likelihood ratio between P̄1 and P̄0 as
defined previously [9]. The distributions P̄0 and P̄1) are called
least favorable distributions (LFDs) within the classes P0 and
P1, respectively. If the pair of pre- and post-change uncertainty
sets is JS bounded, the test statistic ΛP̄0,P̄1(t) with the stopping
rule τ(ΛP̄0,P̄1 , bα) solves (6) exactly [18].

A pair of uncertainty sets (P0,P1) is said to be weakly
stochastically (WS) bounded by (P̃0, P̃1) ∈ P0 × P1 if

D(P̃1||P̃0) ≤ D(P1||P̃0)−D(P1||P̃1) (10)

for all P1 ∈ P1, and

EP0

[
LP̃0,P̃1(X)

]
≤ EP̃0

[
LP̃0,P̃1(X)

]
= 1 (11)

for all P0 ∈ P0 [2], where EP [·] denotes the expectation
operator with respect to distribution P . It is shown in [2] that
if a pair of uncertainty sets is JS bounded by (P̄0, P̄1), it is
also WS bounded by (P̄0, P̄1).

Theorem II.1. [2] If (P̃0, P̃1) solves

inf
(P0,P1)∈P0×P1

D(P1||P0) (12)

and if furthermore, P1 is convex, and (11) holds for all
P0 ∈ P0, then (P0,P1) is WS bounded by (P̃0, P̃1), and



τ(ΛP̃0,P̃1 , bα) solves the problem in (6) asymptotically as
α→ 0. Also, the worst-case delay is

inf
τ∈CP0

α

sup
(P0,P1)∈P0×P1

WADDP0,P1 (τ) =
| lnα|

D(P̃1||P̃0)
(1 + o(1))

(13)

In this paper, we consider the problem of quickest change
detection for observations with bounded support. The goal is
to construct a test to detect when the mean of the observations
exceeds some pre-specified threshold, i.e., P1 ∈ P1 such that

P1 := {P : EP [X] ≥ η > µ0} (14)

In this expression, X denotes a generic observation in the
sequence, η is a pre-designed threshold on the mean, and
µ0 := EP0 [X]. Define

∆ :=
η − µ0

2
(15)

Also, for i = 0, 1, let the density (w.r.t. the Lebesgue measure)
of Pi be pi. Define

κ0(λ) = lnEP0
[
eλX

]
(16)

to be the cumulant-generating functiong (cgf) under measure
P0. We present our main results below.

III. MAIN RESULTS

A. Known Pre-change Distribution

Throughout we will assume that P1 is as defined in (14).
In this subsection, we study the case where P0 = {P0}.

Theorem III.1. For P0 = P0, and P1 given in (14), define

p∗1(x) = p0(x)eλ
∗x−κ0(λ∗) (17)

where κ0(λ) is the cgf under P0 and λ∗ satisfies

κ′0(λ∗) :=
EP0

[
Xeλ

∗X
]

EP0 [eλ∗X ]
= η (18)

Then, the statistic

ΛP0,P
∗
1 (t) = max

1≤k≤t

t∑
i=k

(λ∗Xi − κ0(λ∗)) (19)

and the stopping rule τ(ΛP0,P
∗
1 , bα) with threshold bα =

| lnα| solves the minimax robust problem in (6) asymptotically
as α→ 0, and

inf
τ∈CP0

α

sup
(P0,P1)∈P0×P1

WADDP0,P1 (τ) =
| lnα|

λ∗η − κ0(λ∗)
(1 + o(1))

(20)

Proof. We follow the procedure outlined in [19, Sec. 6.4.1].
We want to minimize D(P1||P0) = EP1 [ln(p1(x)/p0(x))]
subject to EP1 [X] ≥ η. We consider the Lagrangian

L(p1, λ, µ) = EP1 [ln(p1(x)/p0(x))]

+ λ(η − EP1 [X]) + µ

(
1−

∫
[0,1]

p1(x)dx

)

=

∫
[0,1]

(
ln
p1(x)

p0(x)
− λx− µ

)
p1(x)dx

+ λη + µ
(21)

where the Lagrange multiplier λ ≥ 0 corresponds to the
constraint that the post-change mean is greater than η, and
µ corresponds to the constraint that p1(x) is a probability
measure. For an arbitrary direction z, since p1 is continuous
by assumption, we take the Gateaux derivative with respect to
p1:

∇p1,zL(p1, λ, µ) := lim
h→0

L(p1 + hz, λ, µ)− L(p1, λ, µ)

h

=

∫
[0,1]

(
ln
p1(x)

p0(x)
− λx− µ′

)
zdx

(22)

where µ′ = µ− 1, and since z is arbitrary, we arrive at

ln
p1(x)

p0(x)
− λx− µ′ = 0 (23)

By the Generalized Kuhn–Tucker Theorem [20], if p0(x) is
bounded, p1(x) = p0(x)eλx+µ is a necessary condition for
optimality. Furthermore, since L(p1, λ, µ) is convex in p1, this
is also a global optimum. To satisfy the constraints,

µ′ = − ln

∫
[0,1]

p0e
λxdx = −κ0(λ) (24)

and λ∗ satisfies

η = EP1 [X] =
EP0

[
Xeλ

∗X
]

EP0 [eλ∗X ]
= κ′0(λ∗) (25)

Thus, P ∗1 in (17) minimizes the KL divergence when P0 is
known. By Theorem II.1, since (P0, P

∗
1 ) minimizes the KL

divergence, P1 is convex, and P0 is a singleton, the uncertainty
classes P0 × P1 are WS bounded by (P0, P

∗
1 ). Therefore, an

asymptotically optimal test is ΛP0,P
∗
1 as in (19).

Furthermore, the minimum KL-divergence is

D(P ∗1 ||P0) =

∫
[0,1]

(λ∗x− κ0(λ∗))p∗1(x)dx

= λ∗η − κ0(λ∗)

(26)

Hence, the worst-case delay satisfies

inf
τ∈C{P0}

α

sup
P1∈P1

WADDP0,P1 (τ) =
| lnα|

D(P ∗1 ||P0)
(1 + o(1))

=
| lnα|

λ∗η − κ0(λ∗)
(1 + o(1))

(27)

as α→ 0.



Since p0 is a density on [0, 1], p∗ is also a density on [0, 1].
Indeed, p∗ is an exponentially-tilted version (or the Esscher
transform) of p0.

B. Approximation for Small ∆

Even though we have an expression for the test statistic
when P0 is known, as given in (19), the exact solution of
λ∗ is not available in closed-form. Fortunately, if the mean-
change gap ∆ is small, we obtain a low-complexity test in
terms of only the pre-change mean and variance that closely
approximates the performance of the asymptotically minimax
optimal test in the previous section.

As the gap is asymptotically small, the worst-case post-
change mean η → µ0. Hence, λ∗ → 0. From the Taylor
expansion on κ0 around 0, we obtain

κ0(λ∗) = κ0(0) + κ′0(0)λ∗ +
κ′′0(0)

2
(λ∗)2 + o((λ∗)2)

= µ0λ
∗ +

σ2
0

2
(λ∗)2 + o((λ∗)2)

(28)

In this same regime, by continuity of κ′0(·),

λ∗ =
κ′0(λ∗)− κ′0(0)

κ′′0(0)
+ o(∆)

=
η − µ0

σ2
0

+ o(∆)

=
2∆

σ2
0

+ o(∆)

(29)

where we have used κ′0(λ∗) = η. Hence, the approximate test
statistic is

λ∗Xt − κ0(λ∗) = λ∗Xt − (µ0λ
∗ +

σ2
0

2
(λ∗)2) + o((λ∗)2)

=
2∆

σ2
0

(Xt − µ0)− σ2
0

2

(
2∆

σ2
0

)2

+ o(∆2)

=
2∆

σ2
0

(
Xt −

µ0 + η

2

)
+ o(∆2)

(30)

and the corresponding minimum KL-divergence is approxi-
mated as:

D(P ∗1 ||P0) =
2∆2

σ2
0

+ o(∆2) (31)

Let σ2
0 be the variance of X under P0. Since

2∆

σ2
0

(
Xt −

µ0 + η

2

)
> bα ⇐⇒ Xt −

µ0 + η

2
> b̃α (32)

where
b̃α :=

| lnα|σ2
0

2∆
=
| lnα|σ2

0

η − µ0
, (33)

the stopping rule τ(ΛP0,P
∗
1 , bα) can be approximated by the

stopping rule τ(Λ̃µ0,η, b̃α), where

Λ̃µ0,η(t) = max
1≤k≤t

t∑
i=k

(
Xi −

µ0 + η

2

)
=

(
Λ̃µ0,η(t− 1) +

(
Xt −

µ0 + η

2

))+
(34)

with Λ̃µ0,η(0) = 0. We call τ(Λ̃µ0,η, b̃α) the Mean-Change
Test (MCT), and Λ̃µ0,η the MCT statistic.

Noe that the worst-case delay satisfies

inf
τ∈C{P0}

α

sup
P1∈P1

WADDP0,P1 (τ) =
| lnα|

D(P ∗1 ||P0)
(1 + o(1))

≈ | lnα|σ
2
0

2∆2
(1 + o(1))

(35)

where the approximation becomes more accurate as ∆→ 0.
Therefore, if the gap is small, it is sufficient to know only

the mean and variance to construct a good approximation to
the asymptotically minimax robust test. Furthermore, only the
mean of the pre-change distribution is needed to construct the
MCT statistic. From the simulation results in Section IV, we
see that the performance of the MCT can be very close to that
of the asymptotically minimax robust test even for moderate
values of ∆. Since the mean and variance of a distribution
are much easier and more accurately estimated than the entire
density, this test can be useful and accurate when only a
moderate number of observations in the pre-change regime
is available.

C. Performance Analysis of MCT for moderate ∆

We now study the asymptotic performance of the MCT for
fixed ∆, as α→ 0.

Lemma III.2. Fix P0 ∈ P0. For simplicity, denote τ :=
τ(Λ̃µ0,η, b), Zi := Xi − (µ0 + η)/2, and St =

∑t
i=1 Zi.

For any threshold b > 1,

P0 {Sτ ≥ b} ≤ 2R0

√
b2

∆2
K1

(
R2

0b∆

σ2
0

)
exp

(
−R

2
0∆

σ2
0

b

)
∼
√

2πσ2
0b

∆3
exp

(
−2R2

0∆

σ2
0

b

)
, as b→∞

(36)

where

R0 = σ2
0/
(
σ2

0 + ∆ ·max{µ0, 1− µ0}/3
)

(37)

and Kβ(z) is the modified Bessel function of the second kind
with order β.

Proof. Let M = max{µ0/3, (1 − µ0)/3}. Note that
EP0 [Zi] = (µ0 − η)/2 = −∆. Thus, we have

P0 {Sτ ≥ b} = P0

{
τ∑
i=1

Zi ≥ b

}

=
∞∑
t=1

P0

{
t∑
i=1

Zi ≥ b, t = τ

}

≤
∞∑
t=1

P0

{
t∑
i=1

Zi ≥ b

}

=

∞∑
t=1

P0

{
t∑
i=1

(Zi + ∆) ≥ b+ t∆

}



(a)

≤
∞∑
t=1

exp

(
− (b+ t∆)2

2(tσ2
0 +M(b+ t∆))

)
(b)

≤
∫ ∞

0

exp

(
− (b+ x∆)2

2(xσ2
0 +M(b+ x∆))

)
dx

= a

∫ ∞
0

exp

(
− (a∆y + C)2

2y

)
dy

= ae−a∆C

∫ ∞
0

e−((a2∆2/2)y+(C2/2)y−1)dy

=
2C

∆
e−a∆CK1(a∆C) (38)

where a := (σ2
0 +M∆)−1 and C := σ2

0b/(σ
2
0 +M∆). In the

series of inequalities above, (a) is by Bernstein’s inequality
[21, p. 9], and (b) is from bounding the sum with an integral.
Since K1(z) ∼

√
π
2z e
−z as |z| → ∞, the asymptotic result

follows.

Theorem III.3. Let√
2πσ2

0 b̃
′
α

∆3
exp

(
−2R2

0∆

σ2
0

b̃′α

)
= α (39)

then (7) is satisfied asymptotically as α→ 0. Furthermore,

b̃′α =
b̃α
R2

0

(1 + o(1)) (40)

where R0 is defined in (37).

Proof. As α → 0, b̃′α → ∞. As a result, for any P1 ∈ P1,
P0 {Sτ ≥ b} ≤ α(1 + o(1)). From [22, Sec. 2.6], it can be
shown that

EP0,P1
∞ [τ ] =

EP0 [Sτ ]

P0 {Sτ ≥ b}

≥ 1

P0 {Sτ ≥ b}
≥ α−1(1 + o(1))

(41)

since EP0 [Sτ ] ≥ 1. Thus, the false alarm constraint is satisfied
asymptotically.

For the second result, it is sufficient to show that (b̃′α −
b̃α)/b̃α = R−2

0 − 1 + o(1). Let

D :=
2∆

σ2
0

b̃′α − | lnα| (42)

Note that the desired ratio (b̃′α− b̃α)/b̃α = D/| lnα|. Plugging
into (36), we have√

σ4
0π

∆4
(D + | lnα|)e−R

2
0(D+| lnα|) = α (43)

− 1

2
ln

(
σ4

0π

∆4
(D + | lnα|)

)
+R2

0(D+ | lnα|) = | lnα| (44)

Now, we hypothesize that D = D1| lnα|+o(| lnα|). The first
term then vanishes because

ln

(
σ4
0π

∆4
(D + | lnα|)

)
= ln

(
σ4
0π

∆4
((D1 + 1)| lnα|+ o(| lnα|)

)
= O(ln(| lnα|))
= o(| lnα|)

(45)

From the second term, we validate our hypothesis that

D = (R−2
0 − 1)| lnα|+ o(| lnα|) (46)

and the second result follows.

Remark. In practice, the threshold can be set to be σ2
0/(2R

2
0∆)

using equation (40).

Theorem III.4. Fix P0 ∈ P0. The worst-case delay satisfies

sup
P1∈P1

WADDP0,P1

(
τ(Λ̃µ0,η, b̃′α)

)
=
| lnα|σ2

0

2∆2R2
0

(1 + o(1))

(47)
as α→ 0.

Proof. For any P1 ∈ P1, as α→ 0,

WADDP0,P1

(
τ(Λ̃µ0,η, b̃′α)

)
=
b̃′α
∆

(1 + o(1))

=
b̃α

∆R2
0

(1 + o(1))

=
| lnα|σ2

0

2∆2R2
0

(1 + o(1))

(48)

where the first line is by renewal theory [23].

Remark. As ∆→ 0, R0 → 1. Thus, the result above becomes

sup
P1∈P1

WADDP0,P1

(
τ(Λ̃µ0,η, b̃′α)

)
∼ | lnα|σ

2
0

2∆2
(1 + o(1))

(49)
where o(1) goes zero as α and ∆ go to zero, which coincides
with the minimax robust worst-case delay in (35).
Remark. The WADD analysis above can be extended to the
case where in the post-change regime the observations are
independent but not necessarily identically distributed, as long
as all of these distributions belong to the uncertainty class P1.

IV. NUMERICAL RESULTS AND DISCUSSION

We study the performance of the proposed tests through
simulations for the case where the pre- and post-change
distributions are beta(4,16) (µ0 = 0.2) and beta(4.5,16)
(µ1 = 0.2195), respectively. The mean-threshold η is set to
be 0.21. In particular, we compare the performances for the
following three statistics:

1) The CUSUM statistic that knows both the pre- and post-
change distributions, defined in (4).

2) The statistic when only the pre-change distribution is
known, defined in (19).

3) The MCT statistic defined in (34).
For all three statistics, based on their recursive structure, it is
easy to show that the worst-case value of the change-point for
computing WADD in (1) is when ν = 0. Therefore we can
estimate the worst-case delay by simulating the post-change
distribution from time 0.

We see in Fig. 1 that the performance of MCT is very
close to that of the asymptotically minimax robust optimal
test that uses the full knowledge of the pre-change distribution.
Note that the MCT statistic only uses the pre-change mean;



Fig. 1. Performances of different statistics. The pre- and post-change
distribution are Beta(4,16) (µ0 = 0.2) and Beta(4.5,16) (µ1 = 0.2195),
respectively. The mean-threshold η = 0.21. .

Fig. 2. COVID-19 monitoring example. The upper subplot is the three-day
moving average of the new cases of COVID-19 as a fraction of the population
in Wayne County, MI (left), St. Louis County, MO (middle), and Hamilton
County, OH (right). The x-axis is the number days elapsed after January
21, 2020. The pre-change mean and variance are estimated using data from
days 120 to 150. The FAR threshold α is set to 0.01. For each county, the
mean-threshold η (in green) is set to be 3.3 times of the estimated pre-change
mean (in cyan). The lower subplot shows the evolution of the statistic Λ̃ in
the corresponding county. The Λ-threshold b̃α (in red) is calculated using
equation (33).

the variance is only needed for setting the threshold to meet
a given FAR constraint. In Fig. 2, we apply the MCT to
monitoring the spread of COVID-19 using new case data from
various counties in the US [24]. The incremental cases from
day to day can be assumed to be roughly independent. The
goal is to detect the onset of a new wave of the pandemic
based on the incremental cases as a fraction of the county
population exceeding some pre-specified level. The pre-change
mean and variance are estimated using observations for periods
in which the increments remain low and roughly constant.
We set the mean-threshold η to be a multiple of the pre-
change mean, with understanding that such a threshold might
be indicative of a new wave. With this choice, we observe that
the MCT statistic significantly and persistently crosses the test-
threshold around late November in all counties, which is strong
indication of a new wave of the pandemic. More importantly,
unlike the raw observations which are highly varying, the MCT
statistic shows a clear dichotomy between the pre- and post-
change settings, with the statistic staying near zero before
the purported onset of the new wave, and taking off nearly
vertically after the onset.
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