
1738 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 3, MARCH 2020

On Lipschitz Bounds of General

Convolutional Neural Networks
Dongmian Zou , Radu Balan, and Maneesh Singh

Abstract— Many convolutional neural networks (CNN’s) have
a feed-forward structure. In this paper, we model a general
framework for analyzing the Lipschitz bounds of CNN’s and
propose a linear program that estimates these bounds. Several
CNN’s, including the scattering networks, the AlexNet and the
GoogleNet, are studied numerically. In these practical numerical
examples, estimations of local Lipschitz bounds are compared to
these theoretical bounds. Based on the Lipschitz bounds, we next
establish concentration inequalities for the output distribution
with respect to a stationary random input signal. The Lipschitz
bound is further used to perform nonlinear discriminant analysis
that measures the separation between features of different classes.

Index Terms— Lipschitz bounds, convolutional neural net-
works, scattering networks, linear programming, adversarial
perturbation.

I. INTRODUCTION

CONVOLUTIONAL neural networks (CNN’s) have

proved to be an effective tool in various image processing

tasks. The convolutional layers at different levels are capable

of extracting different details from images. As a feature

extractor, a CNN is stable to small variations from the input

and therefore performs well in a variety of classification,

detection and segmentation problems.

The scattering transform [1], [2] is a special type of CNN

that can be represented with a multilayer structure (thus also

called a scattering network). Although the filters are designed

wavelets rather than learned, the scattering transform proves to

be an effective feature extractor. In the mathematical analysis

of scattering network, it is proved [1, Th. 2.10] that the

scattering transform is invariant to translation. However, this is

true only if we take the full representation where the limiting

Manuscript received July 28, 2017; revised July 19, 2019; accepted
November 12, 2019. Date of publication December 23, 2019; date of current
version February 14, 2020. The work of Dongmian Zou was supported in
part by NSF under Grant DMS-1413249. The work of Radu Balan was
supported in part by NSF under Grant DMS-1413249 and Grant DMS-
1816608, in part by Army Research Office (ARO) under Grant W911NF-
16-1-0008, and in part by Laboratory for Telecommunication Sciences (LTS)
under Grant H9823031D00560049.

Dongmian Zou was with the Department of Mathematics, University of
Maryland, College Park, MD 20742 USA, and also with the Institute for
Mathematics and its Applications, University of Minnesota, Minneapolis,
MN 55455 USA. He is now with the School of Mathematics, University
of Minnesota, Minneapolis, MN 55455 USA (e-mail: dzou@umn.edu).

Radu Balan is with the Department of Mathematics, University of Maryland,
College Park, MD 20742 USA (e-mail: rvbalan@cscamm.umd.edu).

Maneesh Singh is with Verisk Analytics, Jersey City, NJ 07310 USA
(e-mail: Maneesh.Singh@verisk.com).

Communicated by E. Abbe, Associate Editor for Machine Learning.
Color versions of one or more of the figures in this article are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2019.2961812

scale J → ∞. In practice, we take a finite J and therefore only

have stability with respect to translation. The mathematical

analysis for the stability properties of scattering networks is

not limited to wavelets: for instance, it is generalized by using

semi-discrete frames as filters in [3], [4], and time-frequency

atoms as filters in [5]. In all these cases, the scattering

transforms are Lipschitz continuous with Lipschitz constant

L = 1, which is an important factor for the provable stability

properties.

A scattering network extracts features from every convolu-

tional layer. This is not the case for a general CNN. In [6]

a CNN is defined as a neural network which has at least

one convolution unit. Many widely-adapted CNN models have

either a sequential structure (e.g. the AlexNet [7]) or a more

complex feed-forward structure (e.g. the GoogleNet [8]). For

those models, stability is still an important issue. Intuitively,

keeping the same energy in the feature, we should train the

network so that the features are as stable as possible to small

perturbations before using dense layers to do the classification.

In [9], the authors use the large Lipschitz bound of each single

layer to illustrate that the AlexNet could be very unstable

with respect to small perturbation on the input image. In fact,

changing a small number of pixels could “fool” the network so

that it produces wrong classification results. In general, a small

Lipschitz bound of the entire transform implies the robustness

of a CNN to small perturbations.

“Fooling” networks is naturally connected to adversarial

networks. Indeed, Lipschitz bounds are already used in train-

ing adversarial networks other than just quantitatively showing

the robustness. In [10], the authors propose an objective

function for training generative adversarial networks where

they use (the distance between) the Lipschitz constant (and 1)

as a penalty term. However, there is no direct way to impose

it. Later in [11], the authors use a gradient penalty inspired by

the fact that a function is 1-Lipschitz if its gradient is bounded

by 1.

Although it plays an important role in deep learning,

the study of Lipschitz bounds is not completely addressed

by existing literature. The frameworks in [1]–[5] analyze the

1-Lipschitz transformations but are limited to the scattering

transforms and do not generalize automatically to general

CNN’s. Reference [9] provides a Lipschitz bound using the

product of Bessel bounds of each layer, but in general lacks

tightness for non-sequential models such as the scattering

network. Our paper fills in the gap between these approaches,

by providing a unified stability analysis that applies to both

the scattering networks (as in [1]–[5]) and to the more gen-

0018-9448 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 12,2020 at 15:18:17 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5618-5791

ZOU et al.: ON LIPSCHITZ BOUNDS OF GENERAL CNNs 1739

Fig. 1. The structure of a network layer. The network we consider consists of a number of layers, which makes the structure “deep”.

eral convolutional networks. Our framework is flexible and

compatible with architectures that may or may not generate

outputs from hidden layers. The results presented in this paper

are optimal for scattering networks and in general tighter than

taking the product of Bessel bounds in each layer. Our focus is

on estimation of these Lipschitz bounds, and how they relate to

stochastic processes. We discuss how the Lipschitz bounds can

be used for classification, but we do not focus on extending

these results to generative adversarial networks. Instead we

study numerically a few examples, including the AlexNet and

the GoogleNet.

For practical CNN’s such as the AlexNet and the

GoogleNet, we discovered that the estimated bounds are

about three orders of magnitude more conservative than the

numerically estimated local Lipschitz bounds. We give a

detailed discussion on the source of looseness in the main

text. Surprisingly, even the local Lipschitz bounds are not

close to the empirical bounds evaluated over pairs of inputs.

Specifically, the empirical bounds are still three orders of mag-

nitude smaller: the largest local Lipschitz bound is obtained

numerically to be of order 1, whereas on an extensive study

using ImageNet [12] images, the ratio between the energy

of output variation to the energy of input variation is of the

order 10−3. To bridge this gap, we observe the change of

the effect of ReLU units and max poolings, and propose a

simple model that estimate the “empirical” ReLU units and

max poolings. Interestingly, the resulting estimate based on the

local Lipschitz bound is much closer to the empirical bound.

Before discussing our framework in mathematical details,

we first overview the CNN architecture considered in this

paper (the details are given in the main text) and provide

some guidance to the notations. The framework is applicable

to the scattering network [1], [2], the AlexNet [7] and the

GoogleNet [8]. It can also be used to analyze models such

as Long-Short Term Memory [13]. We state the theory for

continuous signals, but explain how to adapt it for the discrete

case (which is the case for AlexNet and GoogleNet). We focus

on the feature extraction part of the network and do not discuss

the fully connected layers that are usually put on top of the

structure, though the fully connected layers can be regarded

as a special case of convolutional layers. The CNN that we

consider has a feed-forward structure and consists of different

layers (it is possible to use infinitely many layers to represent

a feedback structure). We define the layers according to the

convolutions. Specifically, each layer consists of input nodes,

convolutional filters, detection / merge operations, pooling

filters, output (feature) nodes and (hidden) output nodes.

• The input nodes are signals passed to the current layer.

That could come from the hidden output nodes in the

previous layer, or the input signal to the network.

• The convolutional filters are the filters that perform

convolution with the signal from the input nodes. Suppose

y is the signal in an input node, and g is the convolutional

filter, the output is

z(t) = y∗g(t) =

Z

y(t−s)g(s)ds =

Z

y(s)g(t−s)ds .

• The pooling filters are low-pass convolutional filters that

lower the complexity before the feature is extracted as

output. Note that these are still linear translation-invariant

operations which are commonly used in scattering net-

works. The nonlinear operations such as max pooling and

average pooling are contained in the detection operations.

• The (feature) output nodes are outputs of the convolu-

tional neural network. As we specified earlier, these nodes

form a subset of the representation. Once the represen-

tation is extracted, the specific machine learning tasks,

such as classification and prediction, will be performed

on the representation.

• The dilation operations are “changes of scale” on the

space variables. A dilation operation on a signal f(x),
x ∈ Rd, can be represented using a d×d invertible matrix

D. The dilated signal is f(Dx).
• The detection operations are nonlinear operations that

apply pointwise to the output of the convolutional fil-

ters. The nonlinearities have Lipschitz constant 1 (e.g.

ReLU functions). In addition to applying the nonlinearity,

the outputs can be aggregated by merge operations to

produce a single output for dimensionality reduction. The

max pooling and average pooling are modeled in this

manner.

• The (hidden) output nodes are signals that propagate

to the next layer. The signals at the output nodes are

identical to those at the input nodes of the next layer.

In this paper, unless otherwise specified, we use f to denote

the input and output signals of a CNN, h to denote the hidden

features, and g to denote filters. The input signal on the d-

dimensional Euclidean space has finite energy, that is, f ∈
L2(Rd). The Fourier transform of f , denoted by f̂ , is defined

formally to be

f̂(ω) =

Z

Rd

f(x)e−2πiω·xdx , ω ∈ R
d .

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 12,2020 at 15:18:17 UTC from IEEE Xplore. Restrictions apply.

1740 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 3, MARCH 2020

TABLE I

SUMMARY OF THE THREE NOTIONS OF LIPSCHITZ CONSTANTS

and we refer the readers to [14] for rigorous definitions for f
when f ∈ L2(Rd) or when f is a generalized function. The

filters of CNN are taken from the Banach Algebra of tempered

distributions with an essentially bounded Fourier Transform,

that is,

B =
�

g ∈ S0(Rd), kĝk∞ < ∞
�

. (1)

We have a detailed discussion of this algebra in Appen-

dix C. We use k·kp to denote the Lp-norm corresponding

to the Lebesgue integral. For a matrix A, At denotes its

transpose, and A∗ denotes its conjugate transpose. We use

kAkop = maxkxk
2
=1 kAxk2 to denote the operator norm of

A, kAk∗ = trace(
√

A∗A) to denote its nuclear norm, and

kAkFr =
p

trace(A∗A) to denote its Frobenius norm.

A. Contribution of the Work

In this paper, we analyze the Lipschitz bound of a general

CNN and its application in stationary processes and nonlinear

discriminant analysis. We first introduce a general framework

which is able to model CNN specific operations. According

to the framework, we derive a linear program of which the

optimal value is a Lipschitz bound of the CNN with respect

to the Bessel bounds of the layers.

For large classes of scattering networks the linear program

yields an optimal estimate of the Lipschitz bound. In other

feed-forward networks, the estimate is usually conservative.

To address this issue, two different local estimates are pro-

posed. The first estimate is based on local linearization

around the operating input. The second estimate takes into

account long-range interactions between activation maps for

two different inputs. Extensive experiments were performed to

compare the three Lipschitz constants with empirical divided

differences from CNN outputs corresponding to input samples.

For clarity, the three notions of Lipschitz constants are

summarized in Table I.

In this paper, Lipschitz constant is defined with respect to

changes in the input. Such Lipschitz constants are then used to

perform nonlinear discriminant analysis. In contrast, [11], [15],

[16] utilize the gradient with respect to the input instead of

the Lipschitz constant. It is worth noting also that many other

papers on neural networks discuss gradients with respect to

the network parameters, for instance, the neural tangent kernel

[17], [18] and the mean-field analysis [19]. This, however,

is different than the approach in the current paper.

The paper is organized as follows. Section II sets up the

mathematical problem by defining the layers of a CNN.

Section III states the results on estimating the Lipschitz

bounds. Section IV illustrates examples from the scattering

network to the AlexNet and the GoogleNet. Section V dis-

cusses how the Lipschitz bounds relate to concentration results

for stationary processes on CNN’s. Section VI discusses using

the Lipschitz bounds to construct a nonlinear discriminant.

II. DEFINING A CNN

The overall structure of an M -layer CNN is illustrated

in Figure 2. The picture shows how an input propagates

through the layers while generating outputs at each layer.

The details of the layers are described in the following two

subsections. If no merge operation is present at a certain layer,

the convolutional layer is modeled as a linear operation fol-

lowed by nonlinearity; if there are merge operations, different

types of merge operations are modeled separately.

A. A Layer Without Merge Operations

If a certain layer does not contain any merging, we can

model the filters as a linear transform from signals on all the

input nodes. In the m-th layer, the set of input nodes is denoted

by Im = {Nm,1, Nm,2, · · · , Nm,nm
} and the set of output

nodes by Om = {N 0
m,1, N 0

m,2, · · · , N 0
m,n′

m
}. Further, the set

of output generating nodes is denoted by Vm = {Vm,1, Vm,2,

· · · , Vm,nm
}. With this notation, let hm,1, hm,2, · · · , hm,nm

be the signals on the input nodes, a linear operator T (m) is a

n0
m-by-nm array of filters T

(m)
n′,n in B such that

h♠
m,n′ =

nm
X

n=1

T
(m)
n′,n ∗ hm,n , 1 ≤ n0 ≤ n0

m,

is received before downsampled by the d-by-d invertible

matrix Dm,n′ and sent into a nonlinearity σm,n′ to output

h0
m,n′(x) = σm,n′

�

h♠
m,n′(Dm,n′x)

�

.

Moreover, let φm,1, · · · , φm,nm
define the filters for the output

generating nodes. The signals at the feature output nodes are

fm,n = hm,n ∗ φm,n .

For the m-th layer, we define three types of Bessel bounds

as follows. For each ω ∈ Rd, denote T̂ (m)(ω) to be the n0
m ×

nm matrix that contains the Fourier transform T̂
(m)
n′,n of T

(m)
n′,n

at ω, for 1 ≤ n ≤ nm, 1 ≤ n0 ≤ n0
m. Also for each ω,

denote Ψ̂(m)(ω) to be the nm × nm diagonal matrix that has

φ̂m,n(ω), the Fourier transform of the convolutional filter at ω,

as its (n, n) entry. Let ∆(m) be the n0
m ×n0

m diagonal matrix

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 12,2020 at 15:18:17 UTC from IEEE Xplore. Restrictions apply.

ZOU et al.: ON LIPSCHITZ BOUNDS OF GENERAL CNNs 1741

Fig. 2. The detail of an M -layer CNN. The signals at output nodes are identical as at input nodes in the next layer. There may or may not be output
generation in each layer.

Fig. 3. The detail of the m-th layer with no merge operations. Nm,n denote the input nodes, N 0
m,n′

denote the hidden output nodes, Vm,n denote the

feature output nodes. φm,n denote the pooling filters, Dm,n′ denote the dilation factors, and σm,n′ denote the 1-Lipschitz nonlinearities. The notations in
blue represent the signals at each node. hm,n denote the input signals of the layer. h0

m,n′
denote the hidden output signals that are passed to the next layers.

h♠

m,n′
denote the signals received after passing the linear operator T (m) . fm,n denote the signals at the feature output nodes.

with (detDm,n′)−1/2 as its (n0, n0) entry. The 1st type Bessel

bound for the m-th layer is defined to be

B(1)
m = sup

ω∈Rd

	

	

	

	

∆(m)T̂ (m)(ω)

Ψ̂(m)(ω)

�	

	

	

	

2

op

, (2)

the 2nd type Bessel bound for the m-th layer is defined to be

B(2)
m = sup

ω∈Rd

	

	

	∆(m)T̂ (m)(ω)
	

	

	

2

op
, (3)

and the 3rd type Bessel bound is defined to be

B(3)
m = sup

ω∈Rd

	

	

	Ψ̂(m)(ω)
	

	

	

2

op
. (4)

In general, the Bessel bound quantifies how the energy is

magnified by convolution. The bound is finite if the filters form

semi-discrete frames (see [4, Appendix A]). Our definition

acts in the spectral domain and it naturally yields estimates

of the the Lipschitz bounds: see (30) in Appendix A. The

need for three types of Bessel bounds is related to different

types of energy mixing: input-to-combined hidden and feature

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 12,2020 at 15:18:17 UTC from IEEE Xplore. Restrictions apply.

1742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 3, MARCH 2020

Fig. 4. The three types of merge. Left: Type I - taking sum of the inputs; middle: Type II - taking p-norm aggregation of the inputs; right: Type III - taking
pointwise product of the inputs.

Fig. 5. In the continuous case, the max pooling is modeled as Type II aggregation for p = ∞, and the average pooling is modeled as Type I aggregation.
Here Tν denotes translation by ν: Tνg(x) := g(x − ν).

output nodes, input-to-hidden output nodes, and input-to-

feature output nodes. Intuitively, B
(1)
M is the Bessel bound

for the frame composed of both T
(m)
n′,n and φm,n, B

(2)
M is

for the frame of T
(m)
n′,n and B

(3)
M is for the frame of φm,n

only. For a layer with merge operations, the Bessel bounds

share the same intuition, but their estimates have different

mathematical representations. We describe that in the next

section.

B. A Layer With Merge Operations

There are three types of merging. Type I takes inputs

y1, · · · , yk from k channels, applies a nonlinearity function

σ1, · · · , σk respectively, and then sums them up. That is,

the output is

z =

k
X

j=1

σj(yj) . (5)

Type II takes inputs y1, · · · , yk from k channels, apply a

nonlinearity on each signal, and then aggregates them by a

pointwise p-norm. That is, the output is

z =





k
X

j=1

|σj(yj)|p




1/p

, if p < ∞ ; (6)

and

z = max
j=1,··· ,k

|σj(yj)| , if p = ∞ . (7)

Type III takes inputs y1, · · · , yk from k channels, apply a

nonlinearity on each signal, and then performs a pointwise

multiplication. The nonlinearity σj should satisfy kσjk∞ ≤ 1
for each j. The output is

z =

k
Y

j=1

σj(yj) . (8)

We point out that the standard pooling operations in most

discrete CNN’s can be modeled in the continuous case by these

merge operations. Specifically, max pooling is the operation

of taking the maximal element among those in the same sub-

regions. We can use translations and dilations to separate ele-

ments in a sub-region to distinct channels, as illustrated in Fig-

ure 5a. Then the L∞-aggregation select the largest element and

performs the max pooling. Average pooling replaces “taking

the max” by “taking the average”. Similarly to max pooling,

it can be done by taking the sum as illustrated in Figure 5b.

A concrete example illustrates max pooling as implemented

by this framework. Similar implementation can realize average

pooling. Consider the finite signal (1, 3, 4, 2, 1, 5, 6, 7) in Fig-

ure 6 for which we want to apply max pooling with size =
2 and stride = 2. Then the max pooled signal is (3, 4, 5, 7),
where each entry is the larger value within each pair. Consider

now the (circular) translation by 1 pixel of the first signal, that

is (3, 4, 2, 1, 5, 6, 7, 1) together with the original signal (the

middle two signals in the figure). Apply the dilation operator

where we discard the second pixel in each consecutive pair of

pixels. Thus we obtain (1, 4, 1, 6) and (3, 2, 5, 7) respectively.

Now a Type II aggregation with p = ∞ selects the larger value

between two pixels at the same position, and therefore results

in (3, 4, 5, 7), which is the same as the max pooling operation

applied on the original signal.

Suppose there are nm nodes in the m-th layer (this works

for m < M but m = M is a similar case in which there is no

hidden output node). The set of these input nodes is denoted

by Im = {Nm,1, Nm,2, · · · , Nm,nm
}. Within the layer, each

node is connected to several filters. The filter can be either a

pooling filter, or a convolutional filter. Associated with Nm,n

for 1 ≤ k ≤ nm, the pooling filter is denoted to be φm,n, and

the convolutional filters to be Gm,n = {gm,n;1, · · · gm,n;km,n
}.

The set of filters in the m-th layer is thus

Gm = ∪nm

n=1Gm,n . (9)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 12,2020 at 15:18:17 UTC from IEEE Xplore. Restrictions apply.

ZOU et al.: ON LIPSCHITZ BOUNDS OF GENERAL CNNs 1743

Fig. 6. A concrete example for the max pooling.

Each filter gm,n;km,n
is naturally classified into one of three

categories according to the three types of merging: if a filter is

merged using Type I operation, then it is classified as a Type

I filter; in the same manner we define Type II and Type III

filters. If a filter is not merged with other filters, we classify

it as Type I (with k = 1 in the first picture in Figure 4).

We denote the sets of all Type-I, II, III filters by τ1, τ2, τ3,

respectively.

Note that each filter is associated with one and only one out-

put node. Let Om = {N 0
m,1, N

0
m,2, · · · , N 0

m,n′

m
} denote the

set of output nodes of the m-th layer. Note that n0
m = nm+1

and there is a one-one correspondence between Om and Im+1.

The output nodes automatically divide Gm into n0
m disjoint

subsets Gm = ∪n′

m

n′=1G
0
m,n′ , where G0

m,n′ is the set of filters

merged into N 0
m,n′ . Further, Vm = {Vm,1, Vm,2, · · · , Vm,nm

}
denote the set of output generating nodes. The detail of one

layer is illustrated in Figure 7.

For each filter gm,n;k, we define the associated multiplier

lm,n;k in the following way: suppose gm,n;k ∈ G0
m,n′ , let K =

�

�G0
m,n′

�

� denote the cardinality of G0
m,n′ . Then

lm,n;k =

(

K , if gm,n;k ∈ τ1 ∪ τ3

Kmax{0,2/p−1} , if gm,n;k ∈ τ2

(10)

We define the 1st type Bessel bound for the node Nm,n to

be

B(1)
m,n =

	

	

	

	

	

	

�

�

�φ̂m,n

�

�

�

2

+

km,n
X

k=1

lm,n;kD−d
m,n;k |ĝm,n;k|2

	

	

	

	

	

	

∞

, (11)

the 2nd type Bessel bound to be

B(2)
m,n =

	

	

	

	

	

	

km,n
X

k=1

lm,n;kD−d
m,n;k |ĝm,n;k|2

	

	

	

	

	

	

∞

, (12)

and the 3rd type Bessel bound to be

B(3)
m,n =

	

	

	φ̂m,n

	

	

	

2

∞
. (13)

Further, we define the 1st type Bessel bound for the m-th layer

to be

B(1)
m = max

1≤n≤nm

B(1)
m,n , (14)

the 2nd type Bessel bound to be

B(2)
m = max

1≤n≤nm

B(2)
m,n , (15)

and the 3rd type Bessel bound to be

B(3)
m = max

1≤n≤nm

B(3)
m,n . (16)

III. CALCULATING THE LIPSCHITZ BOUND

Suppose we are given a CNN within the framework given

in Section II. For any input signal f and f̃ , let fN be the

output for f from the node N , and f̃N be the output for f̃
from the node N . Let V = ∪M

m=1Vm be the collection of all

output generating nodes. We say L is a Lipschitz bound for

the CNN if
X

N∈V

	

	

	fN − f̃N

	

	

	

2

2
≤ L

	

	

	f − f̃
	

	

	

2

2
. (17)

The map Φ : L2(Rd) → [L2(Rd)]|V| induced by the CNN

is defined by

Φ(f) = (fN)N∈V . (18)

A norm ||| · ||| defined on [L2(Rd)]|V| by

�

�

�

�

�

�

�

�

�(fN)N∈V

�

�

�

�

�

�

�

�

� =

�

X

N∈V

kfNk2
2

�1/2

is well defined and Lc =
√

L is a Lipschitz constant in the

sense that
�

�

�

�

�

�

�

�

�Φ(f) − Φ(f̃)
�

�

�

�

�

�

�

�

� ≤ Lc

	

	

	f − f̃
	

	

	

2
. (19)

We have the following theorem for calculating the Lipschitz

bound.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 12,2020 at 15:18:17 UTC from IEEE Xplore. Restrictions apply.

1744 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 3, MARCH 2020

Fig. 7. The detail of one layer with merging. Nm,n denote the input nodes, N 0
m,n′ denote the output nodes, Vm,n denote the output generating nodes.

φm,n and gm,n denote the filters, Dm,n;k denote the dilation factors. σm,n;k denote the 1-Lipschitz nonlinearities (for illustration we put them outside the
merge box, but they belong to the merge operations where we defined the three types of merge). The notations in blue represent the signals at the nodes.
hm,n denote the input signals of the layer. h0

m,n′
denote the output signals that are passed to the next layers. fm,n denote the signals at the feature output

nodes.

Theorem III.1. Consider a CNN in the framework of

Section II, with M layers and in the m-th layer it has 1st

type Bessel bound B
(1)
m , 2nd type Bessel bound B

(2)
m and 3rd

type Bessel bound B
(3)
m . Then the CNN induces a nonlinear

map Φ that is Lipschitz continuous, and its Lipschitz bound is

given by the optimal value of the following linear program:

max

M
X

m=1

zm

s.t. y0 = 1

ym + zm ≤ B(1)
m ym−1, 1 ≤ m ≤ M − 1

ym ≤ B(2)
m ym−1, 1 ≤ m ≤ M − 1

zm ≤ B(3)
m ym−1, 1 ≤ m ≤ M

ym, zm ≥ 0, for all m . (20)

The proof of Theorem III.1 is given in Appendix A.

We remark here that the linear program presented as (20)

is feasible, since one obvious feasible point is ym = 0 for

1 ≤ m ≤ M − 1 and zm = 0 for 1 ≤ m ≤ M . More-

over, the solution is bounded since all zm’s are bounded by

B
(3)
m
Qm−1

m′=1 B
(2)
m′ according to the third and fourth inequalities

in (20). In practice, either the simplex method or the interior

method (see, for instance [20, Ch. 13 and 14]) can be used

to solve this linear program, and they run in polynomial time

with respect to the number of layers. If we are in the discrete

case, say for pixel images, then we need to compute the Bessel

bounds, which relies on the Fast Fourier Transforms that grows

as O(N log N) with the dimensionality of filters. Although

the complexity is not high, a Lipschitz bound computed via

a linear program is still not intuitive. We give more explicit

estimates of the Lipschitz bound in the following corollaries.

Corollary III.2. Consider a CNN in the framework of

Section II, with M layers and in the m-th layer it has 1st

type Bessel bound B
(1)
m . Then the CNN induces a nonlinear

map that is Lipschitz continuous, and its Lipschitz bound is

given by
M
Y

m=1

max{1, B(1)
m } . (21)

Corollary III.3. Consider a CNN in the framework of

Section II, with M layers and in the m-th layer it has 2nd

type Bessel bound B
(2)
m and generating bound B

(3)
m . Then the

CNN induces a nonlinear map that is Lipschitz continuous,

and its Lipschitz bound is given by

B
(3)
1 +

M
X

m=2

B(3)
m

m−1
Y

m′=1

B
(2)
m′ . (22)

The proof of Corollary III.3 is an immediate consequence

of Theorem III.1, specifically from the third and fourth

inequalities of (20). The proof of Corollary III.2 is given

in Appendix B. We remark here that both corollaries give a

more conservative bound compared to the linear program (20)

because both results restrict the variables to a subset of the

feasible region. The idea of using Bessel bounds is also

addressed in [9] where the authors compute the Bessel bounds

of each layer of the AlexNet, and in [4] where the authors set

Bm ≤ 1 to make the CNN a 1-Lipschitz map. We return to

the AlexNet in the following section.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 12,2020 at 15:18:17 UTC from IEEE Xplore. Restrictions apply.

ZOU et al.: ON LIPSCHITZ BOUNDS OF GENERAL CNNs 1745

Fig. 8. The toy example that also appears in [21]. Note that we have different choices of filters in the numerical experiment.

Subject to the knowledge of the three types of Bessel bounds

in each layer, the estimate given by the linear program (20)

is tight. However three issues may prevent its tightness. First,

except for the scattering network when defined for continuous

inputs, most of CNN’s consider discrete time inputs only.

Second, even subject to the same Bessel bounds, different

filters may produce much smaller Lipschitz bounds. Sub-

optimality occurs in cases where the signal that achieves the

Bessel bound for Layer m+1 is not in the range of Layer m.

Third, in some practical applications when signals are modeled

as samples drawn from certain distributions, then the emphasis

is on local stability around the operating distributions, whereas

the global Lipschitz bound may be irrelevant.

We address these issues by looking at three examples: the

scattering network, a toy network that includes all three types

of merge operations we consider in this paper, and the well-

known AlexNet and GoogleNet.

IV. EXAMPLES

A. Scattering Network

The scattering network in [1], [2] is a 1-Lipschitz map.

In each layer the filters are designed to form Parseval wavelet

frames using multi-resolution analysis. Such design leads to

B
(1)
m,n = B

(2)
m,n = B

(3)
m,n = 1, for all m, n. Then Corollary III.2

simply yields a Lipschitz bound L = 1 which is tight. We refer

the readers to [21, Sec. 4.1] for a detailed discussion.

B. A Toy Example That Contains Merge Operations

The scattering network enjoys B
(1)
m,n = B

(2)
m,n = B

(3)
m,n = 1

for all m, n since it is tightly related to wavelet decompo-

sitions. In many CNN’s we don’t have feature output from

hidden layers and therefore B
(1)
m,n = B

(2)
m,n, whence the results

in Corollary III.2 coincide with the optimal value by the linear

program (20). However, Corollary III.2 can be suboptimal.

To see this, we take a toy example of CNN that contains merge

operations. The same network structure appears also in [21]

with different filter weights. The parameter p is set to p = 2.

Figure 8 is an illustration of the CNN. According to Appen-

dix C, we can translate it into a CNN within our framework,

as illustrated in Figure 9.

Define the smooth “gate” function on the Fourier domain

supported on (−1, 1) as

F (ω) =exp

�

4ω2 + 4ω + 1

4ω2 + 4ω

�

χ(−1,−1/2)(ω)+

χ(−1/2,1/2)(ω)+

exp

�

4ω2 − 4ω + 1

4ω2 − 4ω

�

χ(1/2,1)(ω) . (23)

With this, we define the Fourier transforms of the filters to be

C∞ gate functions

φ̂1(ω) = F (ω)

ĝ1,j(ω) = F (ω + 2j − 1/2) + F (ω − 2j + 1/2),

j = 1, 2, 3, 4.

φ̂2(ω) = exp

�

4ω2 + 12ω + 9

4ω2 + 12ω + 8

�

χ(−2,−3/2)(ω)+

χ(−3/2,3/2)(ω)+

exp

�

4ω2 − 12ω + 9

4ω2 − 12ω + 8

�

χ(3/2,2)(ω)

ĝ2,j(ω) = F (ω + 2j) + F (ω − 2j),

j = 1, 2, 3.

ĝ2,4(ω) = F (ω + 2) + F (ω − 2)

ĝ2,5(ω) = F (ω + 5) + F (ω − 5)

φ̂3(ω) = exp

�

4ω2 + 20ω + 25

4ω2 + 20ω + 24

�

χ(−3,−5/2)(ω)+

χ(−5/2,5/2)(ω)+

exp

�

4ω2 − 20ω + 25

4ω2 − 20ω + 25

�

χ(5/2,3)(ω) .

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 12,2020 at 15:18:17 UTC from IEEE Xplore. Restrictions apply.

1746 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 3, MARCH 2020

Fig. 9. Equivalent representation of the CNN in Fig. 8. The four layers of the network are illustrated in blocks.

TABLE II

THE BESSEL BOUNDS OF THE EXAMPLE IN FIGURE 8

Table II lists the Bessel bounds for all the layers. The

optimal value of the linear program (20) gives a Lipschitz

bound of L = 2.866; the Lipschitz bound as derived in

Corollary III.2 is L = 8[exp(−1/3)]2 = 4.102; Corollary III.3

gives an estimate of the Lipschitz bound of L = 5. We see

that the output of the linear program (20) is more optimal than

the product given in Corollary III.2 and III.3.

C. AlexNet and GoogleNet

In this subsection, we analyze the Lipschitz properties of

AlexNet and GoogleNet. First, we apply the analytical results

derived in earlier sections to these networks and compare their

results to empirical estimates. To accomplish this, we need to

extend the theory hitherto developed to processing of discrete

signals. Second, we construct a local Lipschitz analysis theory

and explain the gap between the analytical and empirical

estimates. In this process, we obtain additional information

on local stability and robustness of the network, which we

exploit in the third part of this subsection where we apply

these results to adversarial perturbations.

1) Extending to Discrete Signal Processing: The AlexNet

and the GoogleNet have filters trained on specific datasets,

with no closed form parametric description of their weights

such as the wavelets. Therefore, instead of using approxi-

mations of the continuous signal theory to these networks,

we extend the theory to discrete signal processing. We do this

by computing the Bessel bounds using the Discrete Fourier

Transform along the lines in [9, Sec. 4.3] subsequent to

the computation of the operator norms of the discrete linear

Fig. 10. Illustration of the filters φ1, φ2 and φ3 in the frequency domain.
Note that they are all C∞ smooth functions.

operators. Given the Bessel bound, the Lipschitz bound is

computed using the same estimates derived earlier to the case

of continuous signals.

First we compute the Bessel bounds. Note that both net-

works do not generate feature outputs in hidden layers.

Therefore, B
(1)
m = B

(2)
m , B

(3)
m = 0 for each 1 ≤ m ≤

M − 1. Now the fourth line of (20) forces zm = 0 for

m = 1, · · · , M − 1, which makes the second and third

lines equivalent. Note that Corollary III.2 is derived from

the third and fourth lines of (20). Consequently, the linear

program (20) and Corollary III.2 provide the same Lipschitz

bounds L = B
(3)
M

QM−1
m=1 B

(2)
m .

There are several versions of trained networks for

AlexNet and GoogleNet. We consider the MatConvNet [22]

pretrained networks that are trained using ImageNet

(ILSVRC2012) dataset [12] (the trained networks

for both AlexNet and GoogleNet are retrievable at

http://www.vlfeat.org/matconvnet/pretrained/). For both

pretrained models, there are no cross-channel response

normalizations (which appears in the original model [7]). The

features are extracted after the last convolution layer in each

network.

We present the Bessel bounds (B
(2)
m for 1 ≤ m ≤ M − 1

and B
(3)
m for m = M) for each layer of the AlexNet

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 12,2020 at 15:18:17 UTC from IEEE Xplore. Restrictions apply.

ZOU et al.: ON LIPSCHITZ BOUNDS OF GENERAL CNNs 1747

TABLE III

THE BESSEL CONSTANTS (= SQUARE ROOT OF

BESSEL BOUNDS) FOR EACH LAYER OF

THE ALEXNET

TABLE IV

THE BESSEL CONSTANTS (= SQUARE ROOT OF BESSEL

BOUNDS) FOR EACH LAYER OF THE GOOGLENET

in Table III and the GoogleNet in Table IV. Since we are in the

discrete case (previous sections discuss signals f ∈ L2(Rd)
and continuous convolutions), we need to adjust the way the

Bessel bounds in (3) and (4) are computed. The adjusted

computations for the AlexNet follows [9, Sec. 4.3], which

uses the Discrete Fourier Transform and takes striding into

account. For the GoogleNet, we treat the inception modules

(see [8, Fig. 2(b)]) as two layers: the first layer is the scatter-

ing with the dimension reductions (denoted as “icpxreduce”

in Table IV), and the second layer is the merging after taking

convolutions (denoted as “icpxconv” in Table IV).

Using the computed Bessel constants and Corollary III.2,

the estimated Lipschitz constant is 2.51×103 for the AlexNet

and 9.67×1012 for the GoogleNet. Subject to the Bessel com-

puted computed above (which are tight), the CNN Lipschitz

bound estimates cannot be improved analytically. Instead we

perform an empirical study. Specifically, we randomly take

two images f1 and f2 from ImageNet, and compute the ratio

|||Φ(f1)−Φ(f2)|||/ kf1 − f2k2, where Φ is the Lipschitz map

induced by the network. The empirical Lipschitz constant is

the largest ratio among all samples that we take. We sample

106 pairs for this experiment. The resulting empirical constant

is 7.32 × 10−3 for the AlexNet, and 4.84 × 10−2 for the

GoogleNet.

The empirical constants are of significantly smaller order

than the analytical constants. In general, two factors explain

the gap between the analytical and empirical Lipschitz

constant estimates: first, the principal singular vector that

optimizes the operator norm in a given layer in not in the range

of signals reachable by the previous layer; second, whenever

we have ReLU nonlinearity and max pooling, the distance

between two vectors tends to shrink.

The first factor can be partially addressed by considering the

norm of tensorial product of all layers instead of considering

the product of tensor norms in each layer individually (similar

to computing the operator norm of a product of matrices

directly instead of upper bounding it by the product of operator

norms of each matrix). Both this and the second factor can be

addressed by a framework that locally linearizes the network

for analysis. We demonstrate how to do this in the following

subsection.

2) Local Lipschitz Analysis: To begin with, we estimate the

Lipschitz constants without the ReLU functions to illustrate

the impact of the nonlinearity. We construct the AlexNet and

GoogleNet without the ReLU units by replacing them with

the identity functions, and repeat the experiments of taking

ratios from pairwise random samples. Empirically, the ratio

estimated in this way is 9.08 × 10−2 for the AlexNet and

1.10 × 103 for the GoogleNet. Note that these constants are

larger than the empirical Lipschitz constants for the networks

with the ReLU units.

The nonlinearities also have a non-negligible impact on the

Lipschitz constant. To handle them in the analysis, we linearize

them locally and compute the local Lipschitz constants. The

local Lipschitz constant of Φ at f ∈ D for �-neighborhood is

defined by

Lloc(f, �) := sup
f ′∈D

kf ′−fk
2
<�

|||Φ(f 0) − Φ(f)|||
kf 0 − fk2

. (24)

Note that for the case of the AlexNet and the GoogleNet (and

similarly for all other discrete networks), the input signal is

from a compact domain D = ID where I is the interval for

the pixel values, and D is the dimensionality (the number of

pixels). Since D is convex, the Lipschitz constant of Φ is the

maximum of the local Lipschitz constants on D. The rigorous

proof of this claim is given in Appendix E.

Using the linearization formulas, we estimate numerically

the local Lipschitz constants. The procedure is described as

follows. We vectorize 1 the input image and the output feature

vector. Also, we use Toepliz matrices T1, T2, · · · , TM to

represent filters in each layer. For any input sample f , the CNN

generates the output feature vector Φ(f) by propagating f
through Tm’s and the nonlinearities that activate only a subset

of the pixels for the hidden layer outputs. For the m-th layer,

we delete (remove) the rows that correspond to the pixels

not activated by the ReLU units and max pooling (if they

exist) in Tm, and the corresponding columns in Tm+1. In this

way we obtain matrices T 0
1, T

0
2, · · · , T 0

M . The product T 0[f] =
T 0

MT 0
M−1 · · ·T 0

2 T 0
1 represents the locally linearized operator

for the CNN acting at f . For a small �, the local Lipschitz

constant at f is estimated by Lloc(f, �) ≈ σmax(T 0[f]),
the largest singular value of T 0. Specifically, when � is so small

that the effect of ReLU units and max pooling does not change

1For a matrix A = [a1|a2| · · · |aD] ∈ R
D×D where a1, a2, · · · , aD are

D-dimensional vectors, we vectorize A to be Avec = [at
1|a

t
2| · · · |a

t
D]t

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 12,2020 at 15:18:17 UTC from IEEE Xplore. Restrictions apply.

1748 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 3, MARCH 2020

in the �-neighborhood of f , we have Lloc(f, �) = σmax(T
0[f]).

To see the reason, note that Φ(f 0) = T 0[f]f 0 for any f 0

such that kf 0 − fk2 ≤ �. Consequently, |||Φ(f 0) − Φ(f)||| =
|||T 0[f]f 0 − T 0[f]f ||| ≤ σmax(T 0[f]) kf 0 − fk2, in which the

equality is achieved when f 0 − f is in the direction of the

principal singular vector. Therefore, σmax(T
0[f]) is indeed the

local Lipschitz constant.

As a result, the Lipschitz constant for Φ is estimated by

Lc = max
f∈ID

Lloc(f, �) = max
f∈ID

σmax(T
0[f]),

where the second equality follows if we take the maximum

over the entire compact convex set ID (see Appendix E).

However, for numerical reasons, we replace ID with a finite

number of samples F thus obtaining an approximate (lower)

bound:

Lc ≈ max
f∈F

σmax(T
0[f]).

Before discussing the numerical results based on this

method, we remark here that there are two limitations of

this local Lipschitz analysis. First, since the nonlinearities

have very different effects for different samples, it requires

a different computation of the equivalent Toepliz matrix on

each input sample and in practice it is slow if the size of

F is large. Second, it is based on local linearization and the

linearized region is small in practice, which causes a difference

between the local bounds and the empirical bounds since a pair

of images from the dataset are usually far from each other.

We follow the procedure described above to estimate the

Lipschitz constant for the AlexNet, with F having 500 random

samples drawn from the ImageNet (ILSVRC2012) dataset.

Figure 11 illustrates the histogram of these results. We see that

the local Lipschitz constants in our case are between 0.2 and

1.6, hence of order 1. Table V summarizes the results of the

analytical, empirical and numerical local Lipschitz constants

analysis for the AlexNet.

One would naturally ask if the 500 random samples we

chose for this analysis are sufficient to infer an accurate

estimate of the Lipschitz constant. To address this question we

performed two sets of experiments. First we test if the local

Lipschitz constant is narrowly distributed over samples in each

class and whether the distribution changes for random input

signals (i.e. artificial noise input images). Figure 12 depicts

the histogram of local Lipschitz constants for images from

class “tench” (left plot), and compares it with the histogram of

local Lipschitz constants for i.i.d. Gaussian noise images (right

plot). We note that the local Lipschitz constants for Gaussian

noise are much more concentrated around a significantly

smaller mean than for the class “tench”. This implies that the

AlexNet behaves differently for different ImageNet samples

from the same class. On the other hand the distribution of

local Lipschitz constants for images from same class reflects

the same range of values as the distribution over all 500 images

considered in Figure 11. This experiment gives us confidence

that the estimated Lipschitz constant over the 500 ImageNet

images is nearly tight.

On the other hand, as observed from Table V, the Lipschitz

constant computed by taking the maximum of the local

Fig. 11. The histogram of the local Lipschitz constants for the AlexNet for
500 sample images taken from the ImageNet dataset.

Fig. 12. Two histograms of local Lipschitz constants for the AlexNet: the
left plot contains the results of 50 samples from the class “tench”; the right
plot contains the results from 50 samples from i.i.d. Gaussian distribution of
same size (224 × 224 × 3).

Lipschitz constant is about 3 orders of magnitude larger than

the empirically computed constant. This surprising observation

implies that the direction of maximum variation (the principal

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 12,2020 at 15:18:17 UTC from IEEE Xplore. Restrictions apply.

ZOU et al.: ON LIPSCHITZ BOUNDS OF GENERAL CNNs 1749

TABLE V

THE LIPSCHITZ CONSTANT ESTIMATION USING THREE METHODS FOR THE ALEXNET

Fig. 13. The ratio |||Φ(f + h · v) − Φ(f)|||/h for different h.

singular vector) varies significantly from one ImageNet sample

to another. This variation is caused by different effects of

ReLU and max pooling on different image samples. To bridge

the gap between the local Lipschitz bound and the empirical

bound, one could assume an “average” effect of ReLU and

max pooling, and conclude with an estimated empirical bound

via a corresponding linear version of the CNN. We describe

this method in Appendix D and conclude with an estimated

bound of 1.78 × 10−2.

Furthermore, the local Lipschitz constant is large only in a

small neighborhood around each sample. In order to estimate

the largest perturbation that achieves the local Lipschitz bound

we performed the following experiment. For input signal f , let

v denote the principal singular vector of norm kvk2 = 1 that

corresponds to the largest singular value σmax. By definition,

we have

lim
�→0

Lloc(f, �) = lim
t→0

|||Φ(f + t · v) − Φ(f)|||
t

= σmax.

Figure 13 shows how the quotient |||Φ(f + h · v)−Φ(f)|||/h
changes with h. Note that the convergence as h approaches 0
is very slow. In particular, this experiment confirms that the

local Lipschitz constant is achievable, hance the numerical

estimates in Table V are not just numerical artifacts, but

actual achievable ratios. On the other hand, Figure 13 shows

that the largest relative variation of the output (i.e. the ratio

|||Φ(f)−Φ(f̃)|||/||f−f̃ ||2) is achieved by small perturbations

only. In general, given a pair of different image samples from

ImageNet, their l2-distance is much larger than 10−5, so they

cannot reflect the local oscillation of Φ.

3) Adversarial Perturbation Induced by the Local Lipschitz

Constants: CNN’s such as the AlexNet and the GoogleNet

are shown to be vulnerable to small perturbations [9], [23],

[24]. This kind of instability of those deep networks not only

leads to difficulties in cross-model generalization, but also

causes serious security problems in practice [25], [26]. An

adversarial perturbation is a small perturbation of the input

signal that changes the classification decision of the CNN. The

perturbation can be constructed by solving an optimization

problem where the wrong classification is considered as a

loss in the objective function, as described in [9]. Various

optimization settings can be found in [23], [24] where specific

restriction on the perturbation is required.

The local Lipschitz analysis carried out in the previous

section characterizes the impact of varying the direction of

signals perturbations on the output of the CNN. It can be

seen that for the same amount of input perturbation, different

directions can be chosen to achieve a better adversarial impact

on the network performance. We use this observation to

create adversarial perturbations below. We show that a relative

change of the order of 10−2 can lead the network to wrongly

characterize the input image.

Since a local Lipschitz constant is associated with a singular

vector v0 with kv0k2 = 1 which is the direction that Φ varies

the most at f , we expect this direction gives a perturbation that

“fools” the CNN more than other directions. The task is to find

the smallest h for which f and f 0 = f + h · v0 are labeled

differently by the CNN. We use the AlexNet and empirically

search for h. For each sample, we find the smallest h that

fools the AlexNet. One such example is given in Figure 14.

We take 50 samples and find that the optimal hopt’s have order

of magnitude 103, which is relatively small compared to kfk2

(we have 227 × 227 × 3 input with pixel values in [0, 255],
so the relative change is of the order 10−2). Note that this

order of h is also observed in [23], where the 2-norm of the

perturbation is chosen to be 2000. Further, for each sample,

we take 1000 random directions vrand, and compare the labels

given by the AlexNet for f and f + (hopt + ∆h) · vrand for

a set of different values of ∆h. We plot the percentage of

directions that fools the AlexNet on average for these samples

in Figure 15. Surprisingly, the direction informed by the

local Lipschitz constant performs better than most directions,

although at for h > 103 the quotient |||Φ(f +h·v)−Φ(f)|||/h
is much smaller than the Lipschitz constant at f . Empirically,

this implies that the local Lipschitz constant is still important

although it decreases fast outside a small region.

V. LIPSCHITZ BOUNDS IN STATIONARY PROCESSES

Signals (audio or image) are often modeled as random

processes. In our case, there are two ways to model the

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 12,2020 at 15:18:17 UTC from IEEE Xplore. Restrictions apply.

1750 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 3, MARCH 2020

Fig. 14. An example of the perturbation along the direction of the singular vector. The left is the original image, the middle is the perturbation which is
amplified 1000 times for clear illustration, and the right is the perturbed image. The AlexNet recognizes the original image as “king snake” but the perturbed
one as “loggerhead turtle”.

Fig. 15. Average percentage of successful perturbations in 1000 random
directions. ∆h = 0 is the smallest stepsize where the perturbation along
the direction informed by the local Lipschitz constants successfully fools the
AlexNet.

input signal of a CNN: one is to consider X(t) as a ran-

dom process (field) with some underlying probability space

(Ω, F, P) with finite second-order moments (see [1, Ch. 4]);

the other is to regard X as a random variable such that

X : (Ω, F, P) → L2(Rd) .

We first present the former model for our framework in

Section II. In the following, we use the notation X(t) to

emphasize the time (space) variable t ∈ Rd and Xt(ω) to

emphasize ω ∈ Ω. We are interested in studying stationary

signals. Fix a realization X(t) = Xω(t) for some ω ∈ Ω. X(t)
is said to be strict-sense-stationary (SSS) (see, for instance,

[27], Chapter 16) if all of its finite-order moments are time-

invariant (its cumulative distribution does not change with

time). The output of a CNN is SSS provided that the input

X is SSS. This is stated as the following lemma.

Lemma V.1. Consider a CNN in the framework of Section II

in which there is no dilation operation. Let Φ be the induced

Lipschitz continuous map as defined in (18). If X is an SSS

process, then so is Φ(X).

Fig. 16. Illustration of the Lipschitz bounds Lc. Suppose f is an image
filtered by Wc (and a bias µc) from a white Gaussian noise ν ∼ N(0, I).
Then the Lipschitz bound Lc for the class c considers both processes of Wc

and the CNN. This bound is not the same for different classes since it depends
not only on the CNN but also on Wc.

Remark 1. In general, if we apply dilations for random

processes, the signals are no longer stationary after the merge

operations. To see a concrete example, let θ be a random

variable taking values uniformly in [0, 2π). Consider X(t) =
cos(t + θ) which has i.i.d. distribution over time and is thus

SSS. Note that Y (t) := X(t)+X(3t) = cos(t+θ)+cos(3t+
θ) = 2 cos(2t + θ) cos(t) has different distributions at t = 0
and t = π/2, and is thus not SSS. Therefore, throughout this

section, we assume that there is no dilation operation in our

CNN.

Now we state the result that connects the Lipschitz bound

derived in Section III with stationary processes.

Theorem V.2. Consider a CNN in the framework of Section II

in which there is no dilation operation. Let X and Y be SSS

processes with finite second-order moments. Then

E

�

�

�

�

�

�

�

�

�

�Φ(X) − Φ(Y)
�

�

�

�

�

�

�

�

�

2
�

≤ L · E
�

|X − Y |2
�

. (25)

In particular, |||Φ(X)|||2 ≤ L · E

�

|X |2
�

.

The proof for Theorem V.2 parallels that of Section III.

We present it in Appendix E.

As mentioned above, we can also follow the second way to

model the signal as a random variable X : Ω → L2(Rd).
In this case, we have a random variable with values in a

Banach space (see a detailed discussion of such random

processes in [28], [29]). In particular, let Φ be the map

induced by the CNN, and Lc =
√

L be the Lipschitz constant.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 12,2020 at 15:18:17 UTC from IEEE Xplore. Restrictions apply.

ZOU et al.: ON LIPSCHITZ BOUNDS OF GENERAL CNNs 1751

Fig. 17. Plots of error rate versus discriminant for a three-layer CNN with randomly (normal distributed) generated weights.

Denote Y = Φ ◦ X to be the received random variable. Then

by [29, Proposition 1.2], we have the concentration function

α(L2(Rd), PY)(r) ≤ α(L2(Rd), PX)(r/Lc). Suppose X is

Gaussian (see [28, Ch. 2] for the definition in this case)

and let σ = σ(X) = sup(E kXk2
2)

1/2. Then similar to the

concentration inequality in [29, Lemma 3.1], there exists a

median M > 0 for which we have both

PY (kY − E(Y)k2 ≤ M) ≥ 1/2

and

PY (kY − E(Y)k2 ≤ M) ≤ 1/2 ;

and we have

P {|kY − E(Y)k2 − M| > t} ≤ exp

�

− t2

2σ2L

�

. (26)

In signal classification tasks, if we view signals in each

class as realizations from a common distribution, then we

have the same E(Y) for all signals in this class. If the feature

Y generated by the CNN is concentrated around E(Y), and

E(Y)’s are separated for different classes, then features from

different classes will naturally form clusters. Although we

do not have exact concentration (M = 0), Inequality (26)

demonstrates that Y concentrates in a “thin” shell of radius M

around E(Y) provided that we have a small Lipschitz bound

L. We further promotes making the Lipschitz bound small in

designing CNN’s in the next section.

VI. LIPSCHITZ BOUND IN CLASSIFICATION

In addition to analyzing stochastic processes, we present

here another application of the Lipschitz bounds which is

similar to the linear discriminant analysis (LDA) (see, e.g.

[30], [31]). In LDA, it is desired to maximize the “separation”,

or the “discriminant”, which is the variance between classes

divided by the variance within each class (see [31, eq. (1)]

and the discussion that follows). We use a similar notion

in our (nonlinear discriminant) analysis, albeit its nature of

nonlinearity. We define the discriminant of two classes C1

and C2 to be

S =
|||E[Φ(f)|f ∈ C1] − E[Φ(f)|f ∈ C2]|||2

kCov(Φ(f)|f ∈ C1)k∗ + kCov(Φ(f)|f ∈ C2)k∗
, (27)

in which Φ is the nonlinear map induced by the CNN,

as defined in (18), k·k∗ denotes the nuclear norm, and Cov

denotes the covariance matrix.

To see how the Lipschitz bound is associated with the

separation S, we look at the nature of the variance of the

output feature Φ(f). Suppose we have a Gaussian noise

ν ∼ N(0, I) and apply a linear transform A, then Aν is

also Gaussian with covariance AAt. The nuclear norm of its

variance is given by

kCov(Aν)k∗ = traceAAt = kAk2
Fr ,

where k·kFr denotes the Frobenius norm. Since A is linear, its

Lipschitz constant is given by kAkop and its Lipschitz bound

is given by kAk2
op. Note that the Frobenious norm and the

operator norm are equivalent norms, since kAkop ≤ kAkFr ≤√
n kAkop.

Motivated by the linear case, we look into replacing

kCov(·)k∗ in (27) with the Lipschitz bound for general CNN’s.

We consider a CNN with a Gaussian white noise input

ν ∼ N(0, I). We assume two classes of signals, C1 and

C2 where each class Cc (c = 1, 2) contains samples from

a colored Gaussian noise νc ∼ N(µc, WcW
t
c). We use Lc to

denote the Lipschitz bound for the whole system, as illustrated

in Figure 16.

We define the Lipschitz discriminant to be

S̃ =
|||E[Φ(f)|f ∈ C1] − E[Φ(f)|f ∈ C2]|||2

L1 + L2
, (28)

where L1 and L2 are the Lipschitz bounds for Class 1 and

Class 2, respectively.

In Figure 17 – 20, we report the experiments on the dis-

criminative behavior of randomly generated CNN’s. We take

two classes (number “3” and “8”) of test images from the

well-known MNIST database [32], and randomly build CNN’s

with three or four convolutional layers and record their dis-

criminant according to (27) (plotted on the left-hand-side in

each figure) and (28) (plotted on the right-hand-side in each

figure). We then train a linear SVM for each network and plot

the error rate of classification against the discriminants. The

purpose of this experiment is to show that larger discriminants

lead to better classification results. The reason we use SVM’s

is to examine the quality of the CNN (feature extractor)

given different discriminants, and therefore we choose to train

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 12,2020 at 15:18:17 UTC from IEEE Xplore. Restrictions apply.

1752 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 3, MARCH 2020

Fig. 18. Plots of error rate versus discriminant for a three-layer CNN with randomly (uniformly distributed) generated weights.

Fig. 19. Plots of error rate versus discriminant for a four-layer CNN with randomly (normal distributed) generated weights.

Fig. 20. Plots of error rate versus discriminant for a four-layer CNN with randomly (uniformly distributed) generated weights.

linear SVM’s (which works for two classes) with the same

regularization parameter. The numerical implementation is

done using MATLAB 2016b. We use MatConvNet [22] for

constructing the CNN, and the Machine Learning Toolbox in

MATLAB for training the SVM’s.

As seen from the results, the error rate tends to decrease

as the discriminant (27) and the Lipschitz discriminant (28)

increase. The trend is clearer when we have more layers.

Therefore, either the discriminant or the Lipschitz discrimi-

nant is a reasonable penalty term for the training objective

function of the CNN. Our analysis in previous chapters can

be effectively used to estimate the Lipschitz discriminant for

these optimization problems. However, it remains open how

to design a training algorithm using the discriminants since

the weights appear in both the numerators and denominators

in (27) and (28).

VII. CONCLUSION

In this paper we proposed a general framework for Lipschitz

analysis of CNN’s. We showed that after calculating the Bessel

bounds for each layer, the Lipschitz bound can be calculated

by solving a linear program. We also demonstrated that the

Lipschitz bounds play a significant role in the second order

statistical description of CNN’s. Further, we illustrated that the

Lipschitz bounds of CNN’s can be used to form a discriminant

that works effectively in classification systems.

In addition to the Lipschitz bounds derived from the Bessel

bounds, we discussed the Lipschitz bounds from local sin-

gular value and from empirical ratios by taking pairs of

samples. The Bessel bound method can be over conservative

due to looseness from cascading the upper bound and from

neglecting the effect of nonlinearities. However, the local

Lipschitz bound also has limitations due to the expensive

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 12,2020 at 15:18:17 UTC from IEEE Xplore. Restrictions apply.

ZOU et al.: ON LIPSCHITZ BOUNDS OF GENERAL CNNs 1753

Fig. 21. The dilation operation. y1 ∈ R
d is the input and y0 is the output

given as y0(x) = y1(Dx).

local computations and the rapid variation of the effect of

nonlinearities. We believe the hope to overcome these limita-

tions may come from stochastic models. From the numerical

experiments in Section IV, we found interesting results on gaps

between these bounds. We provided a simple stochastic model

that bridges the gap between the local bounds in the worst-

case sense and empirical bounds, but we believe the analysis

needed for completely understanding the behaviors of these

bounds are more complicated and requires further treatment.

Given the importance of Lipschitz bounds in understanding the

stability and adversarial perturbation, we believe this deserves

future work.

In future works, we will pursue more systematic analysis

based on the stochastic models for both the upper bound

cascading and the effect of nonlinearities. Specifically, this

requires modeling both the filters and nonlinearities. Note

that if we adopt the same model as given in the text for the

nonlinearites, then we can linearize a CNN by looking at the

product of the corresponding Toepliz matrices. It is likely that

an estimation of the principal singular value can be estimated

given some assumptions on the distribution of the entries of

the filters. Potentially, the distribution of Lipschitz constants

will be reached given these models. We will also seek for

the application of these analyses in training CNN’s robust to

adversarial perturbation.

APPENDIX A

PROOF OF THEOREM III.1

We are going to show that the optimal value for the linear

program (20) is a Lipschitz bound. In particular, we study
P

N∈V

	

	

	fN − f̃N

	

	

	

2

2
as
PM

m=1

P

N∈Vm

	

	

	fN − f̃N

	

	

	

2

2
.

For the m-th layer, we mark the signals at the input nodes

to be hm,1, · · · , hm,nm
and the signals at the output nodes

to be h0
m,1, · · · , h0

m,n′

m
. We estimate the Lipschitz bound by

comparing the output nodes and input nodes for each layer,

and then derive a relation between the outputs and the input at

the very first layer. Note that with our notation here, h1,1 = f
and h̃1,1 = f̃ .

We first look at the case of no merging. Before we study

the input-output relation, note that for the dilation operation

illustrated in Figure 21, for two outputs y0, ỹ0 from inputs

y1, ỹ1 ∈ Rd respectively, we have

ky0 − ỹ0k2
2 =

Z

|y1(Dx) − ỹ1(Dx)|2 dx

= (detD)−1 ky1 − ỹ1k2
2 . (29)

Now we look at the illustration in Figure 3. Since the

nonlinearity σm,n′ is 1-Lipschitz, and also according to (29),

we have
	

	

	h0
m,n′ − h̃0

m,n′

	

	

	

2

2
≤ (detDm,n′)−1

	

	

	h♠
m,n′ − h̃♠

m,n′

	

	

	

2

2
.

Therefore,

n′

m
X

n′=1

	

	

	hm,n′ − h̃m,n′

	

	

	

2

2
+

nm
X

n=1

	

	

	fm,n − f̃m,n

	

	

	

2

2

≤
n′

m
X

n′=1

(detDm,n′)−1
	

	

	h♠
m,n′ − h̃♠

m,n′

	

	

	

2

2
+

nm
X

n=1

	

	

	
fm,n − f̃m,n

	

	

	

2

2

=

n′

m
X

n′=1

(detDm,n′)−1
	

	

	ĥ♠
m,n′ −˜̂

h♠
m,n′

	

	

	

2

2
+

nm
X

n=1

	

	

	
f̂m,n − ˜̂

fm,n

	

	

	

2

2

=

n′

m
X

n′=1

Z

�

�

�

�

�

�

∆(m)T̂ (m)(ω)

Ψ̂(m)(ω)

�

�

ĥ(m)(ω)−˜̂
h(m)(ω)

�

�

n′

�

�

�

�

�

2

dω

≤
�

sup
ω∈Rd

	

	

	

	

∆(m)T̂ (m)(ω)

Ψ̂(m)(ω)

�	

	

	

	

2

op

�

·
�

nm
X

n=1

	

	

	hm,n − h̃m,n

	

	

	

2

2

�

= B(1)
m

nm
X

n=1

	

	

	hm,n − h̃m,n

	

	

	

2

2
, (30)

where in the last two steps, ĥ(m) is the column vector whose

n-th entry is ĥm,n (and similarly for
˜̂
h(m)), and {·}n denotes

the n-th entry of a vector.

In the same manner, we have

n′

m
X

n′=1

	

	

	hm,n′ − h̃m,n′

	

	

	

2

2
≤ B(2)

m

nm
X

n=1

	

	

	hm,n − h̃m,n

	

	

	

2

2
,

and

nm
X

n=1

	

	

	fm,n − f̃m,n

	

	

	

2

2
≤ B(3)

m

nm
X

n=1

	

	

	hm,n − h̃m,n

	

	

	

2

2
.

We have completed the analysis of one layer without

merging. Now we focus on the merging case, in which the

definition of the corresponding Bessel bounds will be clear

immediately after we study the three types of merging. Now

we look at the relation between the output and input of the

merging blocks.

For Type I, as illustrated in Figure 22, we have

y0 =

K
X

k=1

σk(yk) , (31)

and

ỹ0 =

K
X

k=1

σk(ỹk) . (32)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 12,2020 at 15:18:17 UTC from IEEE Xplore. Restrictions apply.

1754 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 3, MARCH 2020

Fig. 22. Type I merging. y0 is the sum of σ1(y1), · · · , σK(yK).

Fig. 23. Type II merging. y0 is the aggregate of σ1(y1), · · · , σK(yK) using
p-norm.

Therefore

ky0 − ỹ0k2
2 =

	

	

	

	

	

K
X

k=1

σk(yk) − σk(ỹk)

	

	

	

	

	

2

2

≤ K

K
X

k=1

kσk(yk) − σk(ỹk)k2
2

≤ K

K
X

k=1

kyk − ỹkk2
2 . (33)

For Type II, as illustrated in Figure 23, we have

y0 =

�

K
X

k=1

|σk(yk)|p
�1/p

, (34)

and

ỹ0 =

�

K
X

k=1

|σk(ỹk)|p
�1/p

, (35)

Therefore if p ≤ 2 we have

ky0 − ỹ0k2
2

=

	

	

	

	

	

�

K
X

k=1

|σk(yk)|p
�1/p

−
�

K
X

k=1

|σk(ỹk)|p
�1/p 	

	

	

	

	

2

2

≤
	

	

	

	

	

�

K
X

k=1

|σk(yk) − σk(ỹk)|p
�1/p

	

	

	

	

	

2

2

≤ K2/p−1 ·
	

	

	

	

	

�

K
X

k=1

|σk(yk) − σk(ỹk)|2
�1/2

	

	

	

	

	

2

2

= K2/p−1 ·
K
X

k=1

kσk(yk) − σk(ỹk)k2
2

≤ K2/p−1 ·
K
X

k=1

kyk − ỹkk2
2 ;

Fig. 24. Type III merging. y0 is the product of σ1(y1), · · · , σK(yK). Here
kσjk∞ ≤ 1 for j = 1, · · · , K .

and if p > 2 we have

ky0 − ỹ0k2
2

=

	

	

	

	

	

�

K
X

k=1

|σk(yk)|p
�1/p

−
�

K
X

k=1

|σk(ỹk)|p
�1/p 	

	

	

	

	

2

2

≤
	

	

	

	

	

�

K
X

k=1

|σk(yk) − σk(ỹk)|p
�1/p

	

	

	

	

	

2

2

≤
	

	

	

	

	

�

K
X

k=1

|σk(yk) − σk(ỹk)|2
�1/2

	

	

	

	

	

2

2

=

K
X

k=1

kσk(yk) − σk(ỹk)k2
2

≤
K
X

k=1

kyk − ỹkk2
2 .

For Type III, as illustrated in Figure 24, we have y0 =
QK

k=1 σk(yk) and ỹ0 =
QK

k=1 σk(ỹk). Therefore,

ky0 − ỹ0k2

=

	

	

	

	

	

K
Y

k=1

σk(yk) −
K
Y

k=1

σk(ỹk)

	

	

	

	

	

2

=

	

	

	

	

	

K
Y

k=1

σk(yk) +

K−1
X

J=1

h

−
J
Y

k=1

σk(yk)

K
Y

k=J+1

σk(ỹk)+

J
Y

k=1

σk(yk)

K
Y

k=J+1

σk(ỹk)
i

+

K
Y

k=1

σk(ỹk)

	

	

	

	

	

2

=

	

	

	

	

	

K−1
Y

k=1

σk(yk) · (σK(yK) − σK(ỹK)) +

K−1
X

J=2

J−1
Y

k=1

σk(yk)·

(σJ (yJ) − σJ (ỹJ)) ·
K
Y

k=J+1

σk(ỹk)+

(σ1(y1) − σ1(ỹ1)) ·
K
Y

k=2

σk(ỹk)

	

	

	

	

	

2

≤
K−1
Y

k=1

kσk(yk)k∞ · kσK(yK) − σK(ỹK)k2 +

K−1
X

J=2

J−1
Y

k=1

kσk(yk)k∞ ·
K
Y

k=J+1

kσk(ỹk)k∞ ·

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 12,2020 at 15:18:17 UTC from IEEE Xplore. Restrictions apply.

ZOU et al.: ON LIPSCHITZ BOUNDS OF GENERAL CNNs 1755

kσJ(yJ) − σJ (ỹJ)k2 +
K
Y

k=2

kσk(ỹk)k∞ · kσ1(y1) − σ1(ỹ1)k2

≤
K
X

k=1

kσk(yk) − σk(ỹk)k2

≤
K
X

k=1

kyk − ỹkk2 ,

and thus

ky0 − ỹ0k2
2 ≤ K

K
X

k=1

kyk − ỹkk2
2 . (36)

Therefore, when we compare the input nodes and output

nodes of the m-th layer for the merging case, using the above

relations and the definition of B
(1)
m , we have (see Figure 7)

n′

m
X

n′=1

	

	

	h0
m,n′ − h̃0

m,n′

	

	

	

2

2
+

nm
X

n=1

	

	

	fm,n − f̃m,n

	

	

	

2

2

≤ B(1)
m

	

	

	
hm,n − h̃m,n

	

	

	

2

2
.

By the one-one correspondence of the output nodes in the

(m+1)-th layer and the input nodes in the m-th layer, we know

that

nm+1
X

n=1

	

	

	hm+1,n − h̃m+1,n

	

	

	

2

2
=

n′

m
X

n=1

	

	

	h0
m,n − h̃0

m,n

	

	

	

2

2
, (37)

and therefore,

nm+1
X

n=1

	

	

	
hm+1,n − h̃m+1,n

	

	

	

2

2
+

nm
X

n=1

	

	

	
fm,n − f̃m,n

	

	

	

2

2

≤ B(1)
m

nm
X

n=1

	

	

	hm,n − h̃m,n

	

	

	

2

2
, (38)

for 1 ≤ m ≤ M − 1.

If we do not consider the output generating, then the forward

propagation relation is

nm
X

n=1

	

	

	hm+1,n − h̃m+1,n

	

	

	

2

2
≤ B(2)

m

nm
X

n=1

	

	

	hm,n − h̃m,n

	

	

	

2

2
,

(39)

for 1 ≤ m ≤ M − 1, and similarly, considering the output

generating nodes alone gives

nm
X

n=1

	

	

	
fm,n − f̃m,n

	

	

	

2

2
≤ B(3)

m

nm
X

n=1

	

	

	
hm,n − h̃m,n

	

	

	

2

2
, (40)

for 1 ≤ m ≤ M .

Since we would like to compare
PM

m=1

Pnm

n=1

	

	

	fm,n − f̃m,n

	

	

	

2

2
with

	

	

	h1,1 − h̃1,1

	

	

	

2

2
, by (38)-

(40), we see that the maximal value of the linear program (20)

gives a Lipschitz bound.

APPENDIX B

PROOF OF COROLLARY III.2

From the definitions of B
(1)
m,n, B

(2)
m,n and B

(3)
m,n (11)-(13) it

is obvious that
B(1)

m,n ≤ B(2)
m,n + B(3)

m,n (41)

and from (14)-(16), as well as (2)-(4), we have hence

B(1)
m ≤ B(2)

m + B(3)
m (42)

for each m. Then note that if {ym}M−1
m=0 and {zm}M−1

m=0 are

the maximums of the linear program (20), then

zm ≤ B(1)
m ym−1 − ym, 1 ≤ m ≤ M − 1, (43)

and
zM ≤ B

(1)
M yM−1 (44)

(note that B
(1)
M = B

(3)
M).

We take the sum over all m’s to get (denote yM = 0)
M
X

m=1

zm ≤
M
X

m=1

B(1)
m ym−1 − ym

=
M−1
X

m=0

B
(1)
m+1ym −

M−1
X

m=1

ym

= B
(1)
1 +

M−1
X

m=1

(B
(1)
m+1 − 1)ym . (45)

Also, ym ≤ B
(2)
m ym−1 implies ym ≤ B

(1)
m ym−1, so ym ≤

Qm
m′=1 B

(1)
m′ and thus

M
X

m=1

zm ≤ B
(1)
1 +

M−1
X

m=1

��

max{1, B
(1)
m+1} − 1

�

·

m
Y

m′=1

max{1, B
(1)
m′ }

�

= B
(1)
1 −

M−1
X

m=1

m
Y

m′=1

max{1, B
(1)
m′ }+

M−1
X

m=1

�

max{1, B
(1)
m+1}

m
Y

m′=1

max{1, B
(1)
m′ }

�

= B
(1)
1 −

M−1
X

m=1

m
Y

m′=1

max{1, B
(1)
m′ }+

M
X

m=2

m
Y

m′=1

max{1, B
(1)
m′ }

≤
M
Y

m′=1

max{1, B
(1)
m′ } =

M
Y

m=1

max{1, B(1)
m } .

APPENDIX C

THE BANACH ALGEBRA (1)

We first show that we indeed have a Banach algebra in (1).

Lemma C.1. B as defined in (1) is a Banach algebra, where

the + operation is pointwise addition, and the · operation is

the convolution defined by

f ∗ g =
�

f̂ ĝ
�

v

, (46)

where “ v ” denotes the inverse Fourier transform.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 12,2020 at 15:18:17 UTC from IEEE Xplore. Restrictions apply.

1756 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 3, MARCH 2020

Fig. 25. Use δ function to equivalently represent a CNN.

Proof: Note that B is closed under the convolution in the

sense of (46) because f̂ ĝ ∈ L∞(Rd) and therefore is also

in S0(Rd). Since the Fourier transform is an isomorphism

on S0(Rd), the inverse Fourier transform of f̂ ĝ also lies in

S0(Rd).
After the closedness is clear, it is trivial to check that B is

indeed an algebra. The fact that B is a Banach algebra is due

to the norm inequality
	

	

	f̂ ĝ
	

	

	

∞
≤
	

	

	f̂
	

	

	

∞

	

	

	ĝ
	

	

	

∞
. (47)

The definition of the Banach Algebra becomes natural after

the Bessel bounds (11)-(13) are defined. Of course, in practice

we can consider only filters lie in the space L1(Rd). The

Banach Algebra (1) is a larger space, and it also has some

practical consideration. Suppose we have a network where

there is aggregation of two layers, then we notice that this

does not fall in our general model. Nevertheless, we can add

several layers of δ-function, to make it fall in our framework.

This is illustrated in Figure 25.

In the definition (1), the L∞ norm is considered in the usual

sense, that is, we only consider f̂ to be a well-defined ordinary

function in L∞(Rd). Then the convolution operation should

be understood as f ∗ g = (f̂ · ĝ)v. Then obviously the Banach

Algebra B is closed and well-defined under the convolution

operation.

Under this definition, if we don’t choose a smooth (in the

frequency domain) filter, then in the signal domain we do

not have good decay and it is possible to have infinite L1

norm. Even if we choose signals whose Fourier transform is

in C∞
c (Rd), we have a coarse approximation by using Young’s

inequality. Details can be seen in the example given in [21].

APPENDIX D

ESTIMATING EMPIRICAL LIPSCHITZ BOUNDS

In Section IV-C, Table V, we observe that the Lipschitz

constant computed by taking the maximum of the local Lip-

schitz constant is about 3 orders of magnitude larger than the

empirically computed constant. It is natural to ask whether

this gap can be bridged by looking at the empirical effects of

ReLU and max pooling operations.

By the Lebesgue’s differentiation theorem, a CNN Φ with

ReLU activation map is differentiable almost everywhere.

At points of differentiability, its linearization is described by

the product

F = PMDMTMPM−1DM−1TM−1 · · ·P1D1T1 , (48)

where T1, · · · , TM are the Toeplitz matrices corresponding

to the filters; D1, · · · , DM are diagonal matrices whose

diagonals consist of entries equal to 1 if activated by the

ReLU unit and 0 otherwise; P1, · · · , PM are slanted diagonal

matrices whose each row is zero except for one value equal to

1 corresponding to the entry selected by the max pooling.

In general, Tm’s do not change with the input signal, but

Dm’s and Pm’s are constant locally. Let f0 and f1 be two

different inputs for which Φ has different local linearizations.

Take a point ft on the line segment between f0 and f1:

ft = f(t) := (1 − t)f0 + tf1, 0 ≤ t ≤ 1, then F in (48)

is defined almost everywhere in t,

F (t) =PM (t)DM (t)TMPM−1(t)DM−1(t)TM−1 · · ·
P1(t)D1(t)T1, 0 ≤ t ≤ 1 . (49)

Consider the partition of [0, 1] where F is piecewise constant:

let {t0, t1, · · · , tQ} such that 0 = t0 < t1 < · · · < tQ = 1 and

F (t) = Fq := F (tq +0) for tq < t < tq+1, q = 0, 1, · · · , Q−
1. Consequently, by continuity of Φ,

Φ(f(tq+1)) − Φ(f(tq)) = (tq+1 − tq)Fq(f1 − f0) . (50)

Summing over q = 0, 1, · · · , Q − 1,

Φ(f1) − Φ(f0) =

�

Q−1
X

q=0

(tq+1 − tq)Fq

�

(f1 − f0) . (51)

Denote F? :=
PQ−1

q=0 (tq+1 − tq)Fq . We rewrite (51) as

Φ(f1) − Φ(f0) = F?(f1 − f0) . (52)

When we compute the empirical Lipschitz constant

in Table V, we take the largest quotient of the norm of

Φ(f1)−Φ(f0) and the norm of f1−f0 over pairs of samples.

For each pair of f0 and f1, the quotient will be bounded by the

largest singular value of F?. In contrast to the local singular

value, which corresponds to the variation between two inputs

arbitrary close to each other, σmax(F?) corresponds to the

variation between two input images at order 1 distance apart.

For this reason we call F? the effective Jacobian for the input

pair (f0, f1).
In the following we present a stochastic model designed to

compute the effective Jacobian on a specific dataset, and then

we compare our model prediction with the empirical Lipschitz

constant in Table V.

The first assumption is an ergodic hypothesis: the time

average in definition of F? can be replaced by an expectation

over realizations of Pm’s and Dm’s:

J? =

Q−1
X

q=0

Fq(tq+1 − tq) = E[F]. (53)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 12,2020 at 15:18:17 UTC from IEEE Xplore. Restrictions apply.

ZOU et al.: ON LIPSCHITZ BOUNDS OF GENERAL CNNs 1757

The second assumption is independence of D1, P1, D2, P2,

· · · , DM , PM . While this assumption is obviously not true

when conditioned to a specific input pair (f0, f1), the inde-

pendence between various channels and layers increases when

the random variables are analyzed over a large dataset. Con-

sequently, the effective Jacobian is estimated by

J? ≈ (EPM)(EDM)TM · · · (EP1)(ED1)T1 . (54)

Finally, the third assumption is specific to the two types of

matrices: (i) In each layer m, the Bernoulli random variables

in Dm have the same distribution dependent on the layer index

only. Thus E[Dm] = pmI; (ii) Each row in Pm is a realization

of one of 9 possible row vectors (each corresponding to

selecting one of the 3 × 3 entries in the sliding window);

The assumption is that these realizations occur with equal

probability; The consequence of this is that E[Pm] can be

replaced by the average pooling operator.

Next we estimate empirically the five constants

p1, p2, p3, p4, p5 for the AlexNet. We compute the expected

terms in (54) based on 10k pairs of image samples. For

each pair, we take the line segment between them and

sample at tq+1 − tq = 1. We compute the empirical Dm’s as

Dm = pm · Im where p is the percentage of entries being

activated in the m-th layer and Im is the identity matrix. The

estimation are based on the average of the samples along the

line segment and the pairs of images. Numerically, we obtain

p1 = 0.4115, p2 = 0.3184, p3 = 0.3587, p4 = 0.2733,

p5 = 0.1943. For the five convolutional layers, we get only

the 1st, 2nd and 5th layers have max pooling operations.

Those max poolings consider 3 × 3 areas and on average we

expect the effect is an average pooling with a multiplier of

1/9 for each entry. Indeed, from Figure 26, the histogram of

average ratio of being activated by max poolings concentrates

around the mean of 0.1111. Replacing the expected terms by

the matrices described above, the modified effective Jacobian

has the largest singular value 1.78 × 10−2. This value is

about twice the empirical Lipschitz constant estimated at

7.32 × 10−3 in Table V.

APPENDIX E

LIPSCHITZ CONSTANTS AND LOCAL LIPSCHITZ

CONSTANTS

For CNN’s such as the AlexNet and the GoogleNet, the Lip-

schitz constant is the maximum among all the local Lipschitz

constants (see Section IV-C). In particular, we have the fol-

lowing result.

Proposition E.1. Let Φ : D → R be a Lipschitz continuous

function on a compact convex domain D ∈ RD with the

Lipschitz constant

Lc := max
f,g∈D
f 6=g

|||Φ(f) − Φ(g)|||
kf − gk2

,

where ||| · ||| is a well-defined norm on R. Suppose the local

Lipschitz constant at f ∈ D for some � > 0 is Lloc(f, �) as

defined in (24). Then

Lc = max
f∈D

Lloc(f, �) . (55)

Fig. 26. The histogram of activation ratios of max poolings. Each sample
corresponds to an entry of the input of max pooling, and the x-axis is the
percentage of time that entry is activated by max pooling among all the
samples we take in our experiment.

Proof: Assume on the contrary that (55) is not true.

Then Lc > maxf∈D Lloc(f, �). Suppose Lc = 2δ +
maxf∈D Lloc(f, �). Then there exists f, g ∈ D for which

|||Φ(f) − Φ(g)|||
kf − gk2

> δ + max
f∈D

Lloc(f, �) . (56)

Let I = {h | h = (1 − t)f + tg, 0 ≤ t ≤ 1} ⊂ D be the line

segment that joins f and g. Take

I 0 = {h | h = (1− t)f + tg, t = 0,
�

2
, �,

3�

2
, · · · ,

�

2

�

2

�

�

, 1} .

Let N = |I 0| denote the number of elements in I 0. Let hn =
(1 − n�/2)f + (n�/2)g for n = 1, · · · , N − 1 and hN = g.

Then since khn − hn+1k2 ≤ �,we have

|||Φ(hn) − Φ(hn+1)||| ≤ Lloc(hn, �) · khn − hn+1k2 ,

n = 1, 2, · · · , N − 1 .

But Lloc(hn, �) ≤ maxf∈D Lloc(f, �), so we have

|||Φ(hn) − Φ(hn+1)||| ≤ max
f∈D

Lloc(f, �) · khn − hn+1k2 ,

n = 1, 2, · · · , N − 1 .

Summing over n = 1, 2, · · · , N − 1 and applying the triangle

inequality for norms, we have

|||Φ(f) − Φ(g)||| ≤
N−1
X

n=1

|||Φ(hn) − Φ(hn+1)|||

≤max
f∈D

Lloc(f, �) ·
N−1
X

n=1

khn − hn+1k2

=max
f∈D

Lloc(f, �) kf − gk2 ,

where the last equality come from the fact that hn’s are all on

the same line. But this implies

|||Φ(f) − Φ(g)|||
kf − gk2

≤ max
f∈D

Lloc(f, �) ,

which contradicts (56). Therefore the assumption cannot be

true and we conclude with (55).

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 12,2020 at 15:18:17 UTC from IEEE Xplore. Restrictions apply.

1758 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 3, MARCH 2020

APPENDIX F

PROOF OF LEMMA V.1

The proof of Lemma V.1 lies on the following two facts.

1) If X is SSS, then σ(X(t)), where σ is a pointwise function,

is also SSS;

2) If X is SSS, then X ∗ g(t) defined as

(X ∗ g)ω(t) =

Z

Xω(t − s)g(s)ds , (57)

is also SSS. To see 1), we need to show

P

n

σ(Xt1+τ) ∈ A1, · · · , σ(Xtn+τ) ∈ An

o

= P

n

σ(Xt1) ∈ A1, · · · , σ(Xtn
) ∈ An

o

(58)

for any t1, · · · , tn, τ ∈ Rd and any A1, · · · , An ∈ F. Let

Bj = σ−1(Aj) = {c ∈ C : σ(c) ∈ Aj} for j = 1, · · · , n. The

above equality reads

P

n

Xt1+τ ∈ B1, · · · , Xtn+τ ∈ Bn

o

= P

n

Xt1 ∈ B1, · · · , Xtn
∈ Bn

o

, (59)

which holds true due to the assumption that X is SSS.

To see 2, note that since X is SSS there exists a semigroup

of measure-preserving transformation

�

T t : Ω → Ω
�

t∈Rd

associated with X such that

T sT t = T s+t

for each s, t ∈ Rd; and a function f such that

f(T tω) = Xt(ω) , (60)

for each ω ∈ Ω, t ∈ Rd. Thus

X ∗ g(t) =

Z

f
(

T t−sω
)

g(s)ds . (61)

For any t1, · · · , tn ∈ Rd, A1, · · · , An ∈ F, let

Ω̃τ ={ω ∈ Ω : (X ∗ g)t1+τ (ω) ∈ A1, · · · ,

(X ∗ g)tn+τ (ω) ∈ An} . (62)

For ω ∈ Ω̃τ , note that T τω satisfies

(X ∗ g)t1(ω) ∈ A1, · · · , (X ∗ g)tn
(ω) ∈ An .

Since T τ is measure-preserving, we have P(Ω̃τ) = P(Ω̃0).
Thus X ∗ g is SSS.

Given the two facts and that there is no dilation, Lemma V.1

is proved by tracking from the input to each output of the

CNN.

APPENDIX G

PROOF OF THEOREM V.2

Since the input X and Y are SSS, so are the signals at all

input and output nodes of the CNN. Therefore we can apply

the Wiener-Khinchin Theorem to relate the auto-correlation

with the power spectrum.

Consider an SSS process Z that are filtered by some fixed

g ∈ B. Denote W = Z ∗ g. Then we have RW (0) =
R

ŜW (ω)dω. Note that we have the transfer relation

ŜW (ω) = ŜZ(ω) · |ĝ(ω)|2 . (63)

That is to say,

E

�

|W |2
�

=

Z

R̂W (ω) |ĝ(ω)|2 dω . (64)

More generally, due to linearity of E, if we have two inputs

Z and Z̃ and a family of filters {gj}j∈J , we have

E





X

j

�

�

�Z ∗ gj − Z̃ ∗ gj

�

�

�

2





=
X

j

Z

ŜZ−Z̃(ω) |ĝj(ω)|2 dω

=

Z

ŜZ−Z̃(ω)
X

j

|ĝj |2 (ω)dω

≤
Z

ŜZ−Z̃(ω)dω ·

	

	

	

	

	

	

X

j

|ĝj |2
	

	

	

	

	

	

∞

= E

�

�

�

�Z − Z̃
�

�

�

2
�

·

	

	

	

	

	

	

X

j

|ĝj |2
	

	

	

	

	

	

∞

. (65)

With this, we can compare the correlation on the first input

nodes with the outputs of the CNN similar to what we

did in the proof of Theorem III.1. Note that for merging,

the inequalities still hold when k·k2
2 are replaced with E |·|2.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers

for their careful reading of the manuscript and constructive

suggestions.

REFERENCES

[1] S. Mallat, “Group invariant scattering,” Commun. Pure Appl. Math.,
vol. 65, no. 10, pp. 1331–1398, 2012, doi: 10.1002/cpa.21413.

[2] J. Bruna and S. Mallat, “Invariant scattering convolution networks,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1872–1886,
Aug. 2013.

[3] T. Wiatowski and H. Bölcskei, “Deep convolutional neural networks
based on semi-discrete frames,” in Proc. IEEE Int. Symp. Inf. The-

ory (ISIT), Jun. 2015, pp. 1212–1216. [Online]. Available: http://www.
nari.ee.ethz.ch/commth//pubs/p/ISIT2015

[4] T. Wiatowski and H. Bölcskei, “A mathematical theory of deep con-
volutional neural networks for feature extraction,” IEEE Trans. Inf.

Theory, vol. 64, no. 3, pp. 1845–1866, Mar. 2018. [Online]. Available:
http://www.nari.ee.ethz.ch/commth//pubs/p/deep-2015

[5] W. Czaja and W. Li, “Analysis of time-frequency scattering transforms,”
Appl. Comput. Harmon. Anal., vol. 47, no. 1, pp. 149–171, 2019.

[6] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.

Process. Syst., 2012, pp. 1097–1105.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 12,2020 at 15:18:17 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1002/cpa.21413

ZOU et al.: ON LIPSCHITZ BOUNDS OF GENERAL CNNs 1759

[8] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE

Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1–9.
[9] C. Szegedy et al., “Intriguing properties of neural networks,”

2013, arXiv:1312.6199. [Online]. Available: http://arxiv.org/abs/1312.
6199

[10] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein genera-
tive adversarial networks,” in Proc. 34th Int. Conf. Mach. Learn.,
vol. 70. D. Precup and Y. W. Teh, Eds., Sydney, NSW, Australia:
PMLR, Aug. 2017, pp. 214–223. [Online]. Available: http://proceedings.
mlr.press/v70/arjovsky17a.html

[11] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein GANs,” 2017, arXiv:1704.00028.
[Online]. Available: http://arxiv.org/abs/1704.00028

[12] O. Russakovsky et al., “ImageNet large scale visual recognition
challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252,
Dec. 2015.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Comput., vol. 9, no. 8, pp. 1735–1780, 1997, doi: 10.1162/neco.1997.9.
8.1735.

[14] J. J. Benedetto, Harmonic Analysis and Applications, vol. 23.
Boca Raton, FL, USA: CRC Press, 1996.

[15] C. Finlay, J. Calder, B. Abbasi, and A. Oberman, “Lipschitz regularized
deep neural networks generalize and are adversarially robust,” 2018,
arXiv:1808.09540. [Online]. Available: https://arxiv.org/abs/1808.09540

[16] A. Virmaux and K. Scaman, “Lipschitz regularity of deep neural
networks: Analysis and efficient estimation,” in Proc. Adv. Neural Inf.

Process. Syst., vol. 31. Red Hook, NY, USA: Curran Associates, 2018,
pp. 3835–3844.

[17] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel: Conver-
gence and generalization in neural networks,” in Proc. Adv. Neural Inf.

Process. Syst., 2018, pp. 8571–8580.
[18] A. Jacot, F. Gabriel, and C. Hongler, “Freeze and chaos for DNNs:

An NTK view of batch normalization, checkerboard and boundary
effects,” 2019, arXiv:1907.05715. [Online]. Available: http://arxiv.org/
abs/1907.05715

[19] S. Mei, A. Montanari, and P.-M. Nguyen, “A mean field view of
the landscape of two-layer neural networks,” Proc. Nat. Acad. Sci.

USA, vol. 115, no. 33, pp. E7665–E7671, 2018. [Online]. Available:
https://www.pnas.org/content/115/33/E7665

[20] S. Wright and J. Nocedal, “Numerical optimization,” Springer Sci.,
vol. 35, nos. 67–68, p. 7, 1999.

[21] R. Balan, M. Singh, and D. Zou, “Lipschitz properties for deep convo-
lutional networks,” Contemp. Math., vol. 706, pp. 129–151, Jan. 2018.

[22] A. Vedaldi and K. Lenc, “Matconvnet—Convolutional neural networks
for MATLAB,” in Proc. ACM Int. Conf. Multimedia, 2015.

[23] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Univer-
sal adversarial perturbations,” in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit., Honolulu, HI, USA, 2017, pp. 1765–1773.
[24] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling

deep neural networks,” IEEE Trans. Evol. Comput., vol. 23, no. 5,
pp. 828–841, Oct. 2019.

[25] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in Proc. IEEE Symp. Secur. Privacy (SP), May 2016, pp. 582–597.

[26] F. Zhang, P. P. K. Chan, B. Biggio, D. S. Yeung, and F. Roli, “Adversarial
feature selection against evasion attacks,” IEEE Trans. Cybern., vol. 46,
no. 3, pp. 766–777, Mar. 2016.

[27] L. Koralov and Y. G. Sinai, Theory of Probability and Random

Processes. Berlin, Germany: Springer, 2007.
[28] M. Ledoux and M. Talagrand, Probability in Banach Spaces. Berlin,

Germany: Springer-Verlag, 1991.
[29] M. Ledoux, The Concentration of Measure Phenomenon, no. 89. Prov-

idence, RI, USA: American Mathematical Society, 2005.
[30] P. Xanthopoulos, P. M. Pardalos, and T. B. Trafalis, Linear Discriminant

Analysis. New York, NY, USA: Springer, 2013, pp. 27–33.
[31] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.-R. Mullers,

“Fisher discriminant analysis with kernels,” in Proc. Neural Netw. Signal

Process. IX, IEEE Signal Process. Soc. Workshop, Aug. 1999, pp. 41–48.
[32] Y. LeCun and C. Cortes. (2010). MNIST Handwritten Digit Database.

[Online]. Available: http://yann.lecun.com/exdb/mnist/

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 12,2020 at 15:18:17 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735

