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On Lipschitz Bounds of General
Convolutional Neural Networks

Dongmian Zou™, Radu Balan, and Maneesh Singh

Abstract— Many convolutional neural networks (CNN’s) have
a feed-forward structure. In this paper, we model a general
framework for analyzing the Lipschitz bounds of CNN’s and
propose a linear program that estimates these bounds. Several
CNN’s, including the scattering networks, the AlexNet and the
GoogleNet, are studied numerically. In these practical numerical
examples, estimations of local Lipschitz bounds are compared to
these theoretical bounds. Based on the Lipschitz bounds, we next
establish concentration inequalities for the output distribution
with respect to a stationary random input signal. The Lipschitz
bound is further used to perform nonlinear discriminant analysis
that measures the separation between features of different classes.

Index Terms— Lipschitz bounds, convolutional neural net-
works, scattering networks, linear programming, adversarial
perturbation.

I. INTRODUCTION

ONVOLUTIONAL neural networks (CNN’s) have
C proved to be an effective tool in various image processing
tasks. The convolutional layers at different levels are capable
of extracting different details from images. As a feature
extractor, a CNN is stable to small variations from the input
and therefore performs well in a variety of classification,
detection and segmentation problems.

The scattering transform [1], [2] is a special type of CNN
that can be represented with a multilayer structure (thus also
called a scattering network). Although the filters are designed
wavelets rather than learned, the scattering transform proves to
be an effective feature extractor. In the mathematical analysis
of scattering network, it is proved [1, Th. 2.10] that the
scattering transform is invariant to translation. However, this is
true only if we take the full representation where the limiting
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scale J — oo. In practice, we take a finite .J and therefore only
have stability with respect to translation. The mathematical
analysis for the stability properties of scattering networks is
not limited to wavelets: for instance, it is generalized by using
semi-discrete frames as filters in [3], [4], and time-frequency
atoms as filters in [5]. In all these cases, the scattering
transforms are Lipschitz continuous with Lipschitz constant
L =1, which is an important factor for the provable stability
properties.

A scattering network extracts features from every convolu-
tional layer. This is not the case for a general CNN. In [6]
a CNN is defined as a neural network which has at least
one convolution unit. Many widely-adapted CNN models have
either a sequential structure (e.g. the AlexNet [7]) or a more
complex feed-forward structure (e.g. the GoogleNet [8]). For
those models, stability is still an important issue. Intuitively,
keeping the same energy in the feature, we should train the
network so that the features are as stable as possible to small
perturbations before using dense layers to do the classification.
In [9], the authors use the large Lipschitz bound of each single
layer to illustrate that the AlexNet could be very unstable
with respect to small perturbation on the input image. In fact,
changing a small number of pixels could “fool” the network so
that it produces wrong classification results. In general, a small
Lipschitz bound of the entire transform implies the robustness
of a CNN to small perturbations.

“Fooling” networks is naturally connected to adversarial
networks. Indeed, Lipschitz bounds are already used in train-
ing adversarial networks other than just quantitatively showing
the robustness. In [10], the authors propose an objective
function for training generative adversarial networks where
they use (the distance between) the Lipschitz constant (and 1)
as a penalty term. However, there is no direct way to impose
it. Later in [11], the authors use a gradient penalty inspired by
the fact that a function is 1-Lipschitz if its gradient is bounded
by 1.

Although it plays an important role in deep learning,
the study of Lipschitz bounds is not completely addressed
by existing literature. The frameworks in [1]-[5] analyze the
1-Lipschitz transformations but are limited to the scattering
transforms and do not generalize automatically to general
CNN’s. Reference [9] provides a Lipschitz bound using the
product of Bessel bounds of each layer, but in general lacks
tightness for non-sequential models such as the scattering
network. Our paper fills in the gap between these approaches,
by providing a unified stability analysis that applies to both
the scattering networks (as in [1]-[5]) and to the more gen-
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eral convolutional networks. Our framework is flexible and
compatible with architectures that may or may not generate
outputs from hidden layers. The results presented in this paper
are optimal for scattering networks and in general tighter than
taking the product of Bessel bounds in each layer. Our focus is
on estimation of these Lipschitz bounds, and how they relate to
stochastic processes. We discuss how the Lipschitz bounds can
be used for classification, but we do not focus on extending
these results to generative adversarial networks. Instead we
study numerically a few examples, including the AlexNet and
the GoogleNet.

For practical CNN’s such as the AlexNet and the
GoogleNet, we discovered that the estimated bounds are
about three orders of magnitude more conservative than the
numerically estimated local Lipschitz bounds. We give a
detailed discussion on the source of looseness in the main
text. Surprisingly, even the local Lipschitz bounds are not
close to the empirical bounds evaluated over pairs of inputs.
Specifically, the empirical bounds are still three orders of mag-
nitude smaller: the largest local Lipschitz bound is obtained
numerically to be of order 1, whereas on an extensive study
using ImageNet [12] images, the ratio between the energy
of output variation to the energy of input variation is of the
order 1073, To bridge this gap, we observe the change of
the effect of ReLU units and max poolings, and propose a
simple model that estimate the “empirical” ReLU units and
max poolings. Interestingly, the resulting estimate based on the
local Lipschitz bound is much closer to the empirical bound.

Before discussing our framework in mathematical details,
we first overview the CNN architecture considered in this
paper (the details are given in the main text) and provide
some guidance to the notations. The framework is applicable
to the scattering network [1], [2], the AlexNet [7] and the
GoogleNet [8]. It can also be used to analyze models such
as Long-Short Term Memory [13]. We state the theory for
continuous signals, but explain how to adapt it for the discrete
case (which is the case for AlexNet and GoogleNet). We focus
on the feature extraction part of the network and do not discuss
the fully connected layers that are usually put on top of the
structure, though the fully connected layers can be regarded
as a special case of convolutional layers. The CNN that we
consider has a feed-forward structure and consists of different
layers (it is possible to use infinitely many layers to represent
a feedback structure). We define the layers according to the
convolutions. Specifically, each layer consists of input nodes,
convolutional filters, detection / merge operations, pooling
filters, output (feature) nodes and (hidden) output nodes.

The structure of a network layer. The network we consider consists of a number of layers, which makes the structure “deep”.

o The input nodes are signals passed to the current layer.
That could come from the hidden output nodes in the
previous layer, or the input signal to the network.

o The convolutional filters are the filters that perform
convolution with the signal from the input nodes. Suppose
y is the signal in an input node, and g is the convolutional
filter, the output is

2(t) = y#g(t) = / y(t—s)g(s)ds = / y()g(t — 5)ds .

o The pooling filters are low-pass convolutional filters that
lower the complexity before the feature is extracted as
output. Note that these are still linear translation-invariant
operations which are commonly used in scattering net-
works. The nonlinear operations such as max pooling and
average pooling are contained in the detection operations.

o The (feature) output nodes are outputs of the convolu-
tional neural network. As we specified earlier, these nodes
form a subset of the representation. Once the represen-
tation is extracted, the specific machine learning tasks,
such as classification and prediction, will be performed
on the representation.

o The dilation operations are “changes of scale” on the
space variables. A dilation operation on a signal f(x),
x € R?, can be represented using a d x d invertible matrix
D. The dilated signal is f(Dzx).

o The detection operations are nonlinear operations that
apply pointwise to the output of the convolutional fil-
ters. The nonlinearities have Lipschitz constant 1 (e.g.
ReLU functions). In addition to applying the nonlinearity,
the outputs can be aggregated by merge operations to
produce a single output for dimensionality reduction. The
max pooling and average pooling are modeled in this
manner.

o The (hidden) output nodes are signals that propagate
to the next layer. The signals at the output nodes are
identical to those at the input nodes of the next layer.

In this paper, unless otherwise specified, we use f to denote
the input and output signals of a CNN, h to denote the hidden
features, and ¢ to denote filters. The input signal on the d-
dimensional Euclidean space has finite energy, that is, f €
L?(R?). The Fourier transform of f, denoted by f , is defined
formally to be

fw) = [ fl@)e rds, weR®.
]Rd
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TABLE I
SUMMARY OF THE THREE NOTIONS OF LIPSCHITZ CONSTANTS

Lipschitz constant |

Method for computation

| Remarks

Analytical estimate types of Bessel bounds

Linear program involving several

Optimal for scattering networks
but conservative in other cases

Local linearization

Linearize activation functions and
pooling operations around an input

Accurate locally but very local
and expensive to compute

Stochastic estimate

and we refer the readers to [14] for rigorous definitions for f
when f € L?(RY) or when f is a generalized function. The
filters of CNN are taken from the Banach Algebra of tempered
distributions with an essentially bounded Fourier Transform,
that is,

B = {g € S/(Rd)v HgHoo

< oo} . (1)

We have a detailed discussion of this algebra in Appen-
dix C. We use |||, to denote the LP-norm corresponding
to the Lebesgue integral. For a matrix A, A’ denotes its
transpose, and A* denotes its conjugate transpose. We use

[All,, = max,,=1[|Az|[, to denote the operator norm of
A, ||A]|, = trace(vVA*A) to denote its nuclear norm, and
[|Allg = +/trace(A*A) to denote its Frobenius norm.

A. Contribution of the Work

In this paper, we analyze the Lipschitz bound of a general
CNN and its application in stationary processes and nonlinear
discriminant analysis. We first introduce a general framework
which is able to model CNN specific operations. According
to the framework, we derive a linear program of which the
optimal value is a Lipschitz bound of the CNN with respect
to the Bessel bounds of the layers.

For large classes of scattering networks the linear program
yields an optimal estimate of the Lipschitz bound. In other
feed-forward networks, the estimate is usually conservative.
To address this issue, two different local estimates are pro-
posed. The first estimate is based on local linearization
around the operating input. The second estimate takes into
account long-range interactions between activation maps for
two different inputs. Extensive experiments were performed to
compare the three Lipschitz constants with empirical divided
differences from CNN outputs corresponding to input samples.

For clarity, the three notions of Lipschitz constants are
summarized in Table I.

In this paper, Lipschitz constant is defined with respect to
changes in the input. Such Lipschitz constants are then used to
perform nonlinear discriminant analysis. In contrast, [11], [15],
[16] utilize the gradient with respect to the input instead of
the Lipschitz constant. It is worth noting also that many other
papers on neural networks discuss gradients with respect to
the network parameters, for instance, the neural tangent kernel
[17], [18] and the mean-field analysis [19]. This, however,
is different than the approach in the current paper.

The paper is organized as follows. Section II sets up the
mathematical problem by defining the layers of a CNN.
Section III states the results on estimating the Lipschitz
bounds. Section IV illustrates examples from the scattering

Consider stochastic model and
an average effect of nonlinearities

Agrees with empirical divided
differences but inaccurate locally

network to the AlexNet and the GoogleNet. Section V dis-
cusses how the Lipschitz bounds relate to concentration results
for stationary processes on CNN’s. Section VI discusses using
the Lipschitz bounds to construct a nonlinear discriminant.

II. DEFINING A CNN

The overall structure of an M-layer CNN is illustrated
in Figure 2. The picture shows how an input propagates
through the layers while generating outputs at each layer.
The details of the layers are described in the following two
subsections. If no merge operation is present at a certain layer,
the convolutional layer is modeled as a linear operation fol-
lowed by nonlinearity; if there are merge operations, different
types of merge operations are modeled separately.

A. A Layer Without Merge Operations

If a certain layer does not contain any merging, we can
model the filters as a linear transform from signals on all the
input nodes. In the m-th layer, the set of input nodes is denoted
by Z,, = {Nm,1, Nm;g, -, N, n} and the set of output
nodes by O,, = {N,, m,2s s NJy s} Further, the set
of output generating nodes is denoted by Vm = {Vm 1> Vin,2,

“s Vin,n., 1+ With this notation, let Ay, 1, Am2, <<+, Bmon,,
be the signals on the input nodes a linear operator 7" is a

n! -by-n,, array of filters T( ., in B such that
Nm

h‘ = ZT(m)

is received before downsampled by the d-by-d invertible
matrix D,, , and sent into a nonlinearity o, ,/ to output

/ /
1<n <n,,

m,n

h;n n’ ( ) = Om,n’ (hsz,n’ (Dm,n’37))
Moreover, let ¢, 1, -+ , @, n,, define the filters for the output
generating nodes. The signals at the feature output nodes are

fm,n = hm,n * (bm,n .

For the m-th layer, we define three types of Bessel bounds
as follows. For each w € RY, denote 7" (w) to be the n, x
Ny, matrix that contains the Fourier transform Tr(w o of Trgmn
at w, for 1 < n < ny, 1 < n' < nl,. Also for each w,
denote \Il(m)( ) to be the n,,, x n,, diagonal matrix that has
¢3m,n (w), the Fourier transform of the convolutional filter at w,

as its (n,n) entry. Let AU™ be the n/,, x n/, diagonal matrix
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The detail of an M-layer CNN. The signals at output nodes are identical as at input nodes in the next layer. There may or may not be output
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The detail of the m-th layer with no merge operations. N, » denote the input nodes, IV 7’n ., denote the hidden output nodes, Vin,n denote the

feature output nodes. ¢m,» denote the pooling filters, D,, ,,» denote the dilation factors, and o, ,, denote the 1-Lipschitz nonlinearities. The notations in
blue represent the signals at each node. h;,,» denote the input signals of the layer. h’m ,,» denote the hidden output signals that are passed to the next layers.

h?n’n/ denote the signals received after passing the linear operator 7(m), fm,n denote the signals at the feature output nodes.

with (detD,, ,»)~'/? as its (n’,n’) entry. The Ist type Bessel
bound for the m-th layer is defined to be

2

BY = sup : )

|:A(m)j1(m) (W):|
weRA

T ()

op
the 2nd type Bessel bound for the m-th layer is defined to be

2

B = sup ||ACITM) (y) 3)

weRd

op

and the 3rd type Bessel bound is defined to be

N 2
\I/(m)(w)

B = sup “)

weRd op

In general, the Bessel bound quantifies how the energy is
magnified by convolution. The bound is finite if the filters form
semi-discrete frames (see [4, Appendix A]). Our definition
acts in the spectral domain and it naturally yields estimates
of the the Lipschitz bounds: see (30) in Appendix A. The
need for three types of Bessel bounds is related to different
types of energy mixing: input-to-combined hidden and feature
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Here T, denotes translation by v: T, g(x) := g(xz — v).

output nodes, input-to-hidden output nodes, and input-to-
feature output nodes. Intuitively, Bg\? is the Bessel bound
for the frame composed of both T ™) and ¢y, BE&I) is

n’,n
for the frame of Té?:ﬁ and B](\j) is for the frame of ¢,, ,
only. For a layer with merge operations, the Bessel bounds
share the same intuition, but their estimates have different
mathematical representations. We describe that in the next

section.

B. A Layer With Merge Operations

There are three types of merging. Type I takes inputs
Y1, ,Yr from k channels, applies a nonlinearity function
01,--+,0% respectively, and then sums them up. That is,
the output is

k
2= 05(y;) - ©)
j=1

Type II takes inputs yi,---,yx from k channels, apply a
nonlinearity on each signal, and then aggregates them by a
pointwise p-norm. That is, the output is

5 1/p
2= o)l | L ifp<oo; (6)
j=1
and
z= max |o;(y;)|, if p=oc. @)
j=1,,k

Type III takes inputs yi,--- ,y, from k channels, apply a
nonlinearity on each signal, and then performs a pointwise
multiplication. The nonlinearity o; should satisfy [lo; <1
for each j. The output is

k
=[] o) - ®)
j=1

—{]

average &
pooling

(b) average pooling

In the continuous case, the max pooling is modeled as Type II aggregation for p = oo, and the average pooling is modeled as Type I aggregation.

We point out that the standard pooling operations in most
discrete CNN’s can be modeled in the continuous case by these
merge operations. Specifically, max pooling is the operation
of taking the maximal element among those in the same sub-
regions. We can use translations and dilations to separate ele-
ments in a sub-region to distinct channels, as illustrated in Fig-
ure 5a. Then the L°°-aggregation select the largest element and
performs the max pooling. Average pooling replaces “taking
the max” by “taking the average”. Similarly to max pooling,
it can be done by taking the sum as illustrated in Figure 5b.
A concrete example illustrates max pooling as implemented
by this framework. Similar implementation can realize average
pooling. Consider the finite signal (1, 3,4,2,1,5,6,7) in Fig-
ure 6 for which we want to apply max pooling with size =
2 and stride = 2. Then the max pooled signal is (3,4,5,7),
where each entry is the larger value within each pair. Consider
now the (circular) translation by 1 pixel of the first signal, that
is (3,4,2,1,5,6,7,1) together with the original signal (the
middle two signals in the figure). Apply the dilation operator
where we discard the second pixel in each consecutive pair of
pixels. Thus we obtain (1,4, 1,6) and (3,2, 5, 7) respectively.
Now a Type II aggregation with p = oo selects the larger value
between two pixels at the same position, and therefore results
in (3,4,5,7), which is the same as the max pooling operation
applied on the original signal.

Suppose there are n,, nodes in the m-th layer (this works
for m < M but m = M is a similar case in which there is no
hidden output node). The set of these input nodes is denoted
by Zp, = {Nm,1, Nm.2, -+ Nmn,,, - Within the layer, each
node is connected to several filters. The filter can be either a
pooling filter, or a convolutional filter. Associated with N, ,,
for 1 < k < n,y, the pooling filter is denoted to be ¢, », and
the convolutional filters to be G'n.n = {gm.n:1,** Im.nikm n }-
The set of filters in the m-th layer is thus

Gm =Uy™ Gy )

n=1
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Each filter g, n:k,, , is naturally classified into one of three
categories according to the three types of merging: if a filter is
merged using Type I operation, then it is classified as a Type
I filter; in the same manner we define Type II and Type III
filters. If a filter is not merged with other filters, we classify
it as Type I (with £ = 1 in the first picture in Figure 4).
We denote the sets of all Type-I, II, III filters by 71, 72, 73,
respectively.

Note that each filter is associated with one and only one out-
put node. Let Oy, = {N, 1, N}, 0, , N),. n,  denote the
set of output nodes of the m-th layer Note that nh, = Nm+1
and there is a one-one correspondence between O,,, and Lon+1-

The output nodes automatically divide G, into n/, disjoint
subsets G, = Uy GY, ./, where G, is the set of filters
merged into N, ., . Further, V,,, = {Vm 1, Vin2s s Vinonon +

denote the set of output generating nodes. The detail of one
layer is illustrated in Figure 7.

For each filter gy, n;x, we define the associated multiplier
Ui n:k in the following way: suppose g, n.kx € G, let K =

|G denote the cardinality of Gmm/. Then

m,n’?

m,n’

A gk € T U T3

. (10)
s if Im,n;k € T2

K
Zm,n;k = K max{0,2/p—1}

We define the 1st type Bessel bound for the node Ny, , to
be

km,n
9 )
Bﬁ)n = + Z Zm,n;kD;fn;k |gm,,n;k|2 ) (11)
k=1 -
the 2nd type Bessel bound to be
Em,n
Br(r%)n = Z lmm;k’D;fn;k |§m,n;k|2 ) (12)
k=1 -
and the 3rd type Bessel bound to be
(3) = H(bm n (13)

Further, we define the 1st type Bessel bound for the m-th layer
to be

O (1
the 2nd type Bessel bound to be
B = max B, (15)
and the 3rd type Bessel bound to be
B® = max BY), . (16)
B S

III. CALCULATING THE LIPSCHITZ BOUND

Suppose we are given a CNN within the framework given
in Section II. For any input signal f and f, let fx be the
output for f from the node N, and fn be the output for f
from the node N. Let V = UM_,V),, be the collection of all
output generating nodes. We say L is a Lipschitz bound for
the CNN if

~o2 12
> =il =2, am
Nev

The map @ : L?(R?) —

is defined by

[L2(R%)]VI induced by the CNN

®(f) = (f¥)nev - (18)
A norm ||| - ||| defined on [L?(R%)]IVI by
1/2
[ wev]|| = (Z ||fN|§>
Nev

is well defined and L. = /L is a Lipschitz constant in the
sense that

o) - ()] < L.

19)

We have the following theorem for calculating the Lipschitz
bound.
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The detail of one layer with merging. Ny, » denote the input nodes, NT/n n denote the output nodes, Vi, n denote the output generating nodes.

®m,n and gm, n denote the filters, D,, ..} denote the dilation factors. o, n:k denote the 1-Lipschitz nonlinearities (for illustration we put them outside the
merge box, but they belong to the merge operations where we defined the three types of merge). The notations in blue represent the signals at the nodes.
him,n denote the input signals of the layer. h;n v denote the output signals that are passed to the next layers. fm,n denote the signals at the feature output

nodes.

Theorem IIL.1. Consider a CNN in the framework of
Section II, with M layers and in the m-th layer it has Ist
type Bessel bound B% , 2nd type Bessel bound B,(,%) and 3rd
type Bessel bound Bﬁ,:f). Then the CNN induces a nonlinear
map P that is Lipschitz continuous, and its Lipschitz bound is
given by the optimal value of the following linear program:

M
max sz
m=1
st.  yo=1
Ym + Zm S Bf(r})ymfla 1 S m S M-1
Ym S Bg)ym—h 1 S m S M-1
Zm S Brgg)ym—h 1 S m S M

Ym, 2m > 0, for all m . (20)

The proof of Theorem III.1 is given in Appendix A.
We remark here that the linear program presented as (20)
is feasible, since one obvious feasible point is y,, = 0 for
1<m<M—-—1and z, = 0 for 1 < m < M. More-
over, the solution is bounded since all z,,’s are bounded by
B Hz,_:ll B,(j,) according to the third and fourth inequalities
in (20). In practice, either the simplex method or the interior
method (see, for instance [20, Ch. 13 and 14]) can be used
to solve this linear program, and they run in polynomial time
with respect to the number of layers. If we are in the discrete
case, say for pixel images, then we need to compute the Bessel
bounds, which relies on the Fast Fourier Transforms that grows
as O(Nlog N) with the dimensionality of filters. Although
the complexity is not high, a Lipschitz bound computed via

a linear program is still not intuitive. We give more explicit
estimates of the Lipschitz bound in the following corollaries.

Corollary IIL.2. Consider a CNN in the framework of
Section II, with M layers and in the m-th layer it has Ist
type Bessel bound By(i). Then the CNN induces a nonlinear
map that is Lipschitz continuous, and its Lipschitz bound is

given by

M

H max{l,B,(i)} . (21)
m=1

Corollary IIL.3. Consider a CNN in the framework of
Section II, with M layers and in the m-th layer it has 2nd
type Bessel bound Bﬁ,%) and generating bound BST). Then the
CNN induces a nonlinear map that is Lipschitz continuous,
and its Lipschitz bound is given by

M m—1
BP+ > B T[] BY .
1

m=2

(22)

m'=

The proof of Corollary II1.3 is an immediate consequence
of Theorem IIL.1, specifically from the third and fourth
inequalities of (20). The proof of Corollary III.2 is given
in Appendix B. We remark here that both corollaries give a
more conservative bound compared to the linear program (20)
because both results restrict the variables to a subset of the
feasible region. The idea of using Bessel bounds is also
addressed in [9] where the authors compute the Bessel bounds
of each layer of the AlexNet, and in [4] where the authors set
B,, <1 to make the CNN a 1-Lipschitz map. We return to
the AlexNet in the following section.
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Y2,2

Fig. 8.

Subject to the knowledge of the three types of Bessel bounds
in each layer, the estimate given by the linear program (20)
is tight. However three issues may prevent its tightness. First,
except for the scattering network when defined for continuous
inputs, most of CNN’s consider discrete time inputs only.
Second, even subject to the same Bessel bounds, different
filters may produce much smaller Lipschitz bounds. Sub-
optimality occurs in cases where the signal that achieves the
Bessel bound for Layer m + 1 is not in the range of Layer m.
Third, in some practical applications when signals are modeled
as samples drawn from certain distributions, then the emphasis
is on local stability around the operating distributions, whereas
the global Lipschitz bound may be irrelevant.

We address these issues by looking at three examples: the
scattering network, a toy network that includes all three types
of merge operations we consider in this paper, and the well-
known AlexNet and GoogleNet.

1V. EXAMPLES
A. Scattering Network

The scattering network in [1], [2] is a 1-Lipschitz map.
In each layer the filters are designed to form Parseval wavelet
frames using multi-resolution analysis. Such design leads to
Bﬁ,?n = B,(,%)n = B,(,‘Z’)n = 1, for all m, n. Then Corollary I11.2
simply yields a Lipschitz bound L = 1 which is tight. We refer
the readers to [21, Sec. 4.1] for a detailed discussion.

B. A Toy Example That Contains Merge Operations

The scattering network enjoys Bﬁi)n = BS,%)” = Bﬁ;f)n =1
for all m,n since it is tightly related to wavelet decompo-
sitions. In many CNN’s we don’t have feature output from
hidden layers and therefore Bﬁ)n = Bﬁ?n, whence the results
in Corollary III.2 coincide with the optimal value by the linear
program (20). However, Corollary III.2 can be suboptimal.

To see this, we take a toy example of CNN that contains merge
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The toy example that also appears in [21]. Note that we have different choices of filters in the numerical experiment.

operations. The same network structure appears also in [21]
with different filter weights. The parameter p is set to p = 2.
Figure 8 is an illustration of the CNN. According to Appen-
dix C, we can translate it into a CNN within our framework,
as illustrated in Figure 9.
Define the smooth “gate” function on the Fourier domain
supported on (—1,1) as

40? + 4w + 1
F(w) =exp (74w2 i
X(-1/2,1/2)(W)+
dw? —dw +1
P ( dw? — 4w

) X(=1,—1/2)(wW)+

) X(1/2,1) (W) - (23)

With this, we define the Fourier transforms of the filters to be
C™ gate functions

$1(w) = F(w)
g1 w) = Flw+2j—-1/2)+ Flw—2j+1/2),
j=1,2,3,4.
2
brw) = o (P ppers ) Xamya )+
X(—3/2,3/2) W)+
40 — 12w +9
exp (M) X(3/2,2) (W)
§2(w) = F(w+2j)+ F(w—2j),
j=1,2,3.
goa(w) = Flw+2)+ F(w—2)
g25(w) = F(w+5)+ F(w—5)
2

X(—5/2,5/2) W)+
4w? — 20w + 25
P\ 107 —20w £ 25 ) X2 W) -
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3 2.1 Y22 U3 Y4
f
1st layer 2nd layer 3rd layer 4th layer
Fig. 9. Equivalent representation of the CNN in Fig. 8. The four layers of the network are illustrated in blocks.
TABLE I N
THE BESSEL BOUNDS OF THE EXAMPLE IN FIGURE 8 5 1t 1
E sl 0,
H m [ 1 2 3 4 H LE : by
C 06+
BD [ 2¢-1/3 9,-1/3 2 1 g
2 L
B@ |1 1 2 0 504
BY | 1 1 1 502l
o
('
0 L 1 ] ] 1 1
-4 3 2 1 0 1 2 3 4 5
Table II lists the Bessel bounds for all the layers. The
optimal value of the linear program (20) gives a Lipschitz  Fig. 10. Illustration of the filters ¢1, ¢2 and ¢3 in the frequency domain.

bound of L 2.866; the Lipschitz bound as derived in
Corollary IIL.2 is L = 8[exp(—1/3)]? = 4.102; Corollary I11.3
gives an estimate of the Lipschitz bound of L = 5. We see
that the output of the linear program (20) is more optimal than
the product given in Corollary II1.2 and III.3.

C. AlexNet and GoogleNet

In this subsection, we analyze the Lipschitz properties of
AlexNet and GoogleNet. First, we apply the analytical results
derived in earlier sections to these networks and compare their
results to empirical estimates. To accomplish this, we need to
extend the theory hitherto developed to processing of discrete
signals. Second, we construct a local Lipschitz analysis theory
and explain the gap between the analytical and empirical
estimates. In this process, we obtain additional information
on local stability and robustness of the network, which we
exploit in the third part of this subsection where we apply
these results to adversarial perturbations.

1) Extending to Discrete Signal Processing: The AlexNet
and the GoogleNet have filters trained on specific datasets,
with no closed form parametric description of their weights
such as the wavelets. Therefore, instead of using approxi-
mations of the continuous signal theory to these networks,
we extend the theory to discrete signal processing. We do this
by computing the Bessel bounds using the Discrete Fourier
Transform along the lines in [9, Sec. 4.3] subsequent to
the computation of the operator norms of the discrete linear

Note that they are all C'>° smooth functions.

operators. Given the Bessel bound, the Lipschitz bound is
computed using the same estimates derived earlier to the case
of continuous signals.

First we compute the Bessel bounds. Note that both net-
works do not generate feature outputs in hidden layers.
Therefore, B,(,P = Bg), Bg’) = 0 foreach 1 < m <
M — 1. Now the fourth line of (20) forces z,, = 0 for
m = 1,---,M — 1, which makes the second and third
lines equivalent. Note that Corollary III.2 is derived from
the third and fourth lines of (20). Consequently, the linear
program (20) and Corollary III.2 provide the same Lipschitz
bounds L = B{Y [TV=! BY.

There are several versions of trained networks for
AlexNet and GoogleNet. We consider the MatConvNet [22]
pretrained networks that are trained using ImageNet
(ILSVRC2012) dataset [12] (the trained networks
for both AlexNet and GoogleNet are retrievable at
http://www.vlfeat.org/matconvnet/pretrained/). = For  both
pretrained models, there are no cross-channel response
normalizations (which appears in the original model [7]). The
features are extracted after the last convolution layer in each
network.

We present the Bessel bounds (B,(,%) forl<m<M-—-1
and Bg’) for m = M) for each layer of the AlexNet
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TABLE III

THE BESSEL CONSTANTS (= SQUARE ROOT OF
BESSEL BOUNDS) FOR EACH LAYER OF
THE ALEXNET

H Layer [ Lip const H

convl 0.2628
conv2 6.7761
conv3 6.5435
conv4 13.3898
convS 16.0937
TABLE IV

THE BESSEL CONSTANTS (= SQUARE ROOT OF BESSEL
BOUNDS) FOR EACH LAYER OF THE GOOGLENET

l ‘ Layer ‘ Lip const ‘ l Layer Lip const
convl 5.8608 icp3reduce 2.6642
reduce2 3.4147 icp3conv 6.0129
conv2 3.0309 icp4reduce 2.6403
icplreduce 3.6571 icpdconv 5.1029
icplconv 5.2917 icpSreduce 2.9825
icp2reduce 3.7994 icpSconv 5.5389
icp2conv 7.6367 icpbreduce 3.1758
Layer Lip const ‘ ‘

icpbconv 6.7737

icp7reduce 2.2093

icp7conv 6.5312

icp8reduce 2.2947

icp8conv 5.5561

icp9reduce 2.8567

icp9conv 7.0353

in Table III and the GoogleNet in Table IV. Since we are in the
discrete case (previous sections discuss signals f € L2?(R9)
and continuous convolutions), we need to adjust the way the
Bessel bounds in (3) and (4) are computed. The adjusted
computations for the AlexNet follows [9, Sec. 4.3], which
uses the Discrete Fourier Transform and takes striding into
account. For the GoogleNet, we treat the inception modules
(see [8, Fig. 2(b)]) as two layers: the first layer is the scatter-
ing with the dimension reductions (denoted as “icpxreduce”
in Table IV), and the second layer is the merging after taking
convolutions (denoted as “icpxconv” in Table IV).

Using the computed Bessel constants and Corollary III.2,
the estimated Lipschitz constant is 2.51 x 102 for the AlexNet
and 9.67 x 10'2 for the GoogleNet. Subject to the Bessel com-
puted computed above (which are tight), the CNN Lipschitz
bound estimates cannot be improved analytically. Instead we
perform an empirical study. Specifically, we randomly take
two images f1 and fo from ImageNet, and compute the ratio
N®(f1)—2(f2)Ill/ I f1 = f2ll5, where @ is the Lipschitz map
induced by the network. The empirical Lipschitz constant is
the largest ratio among all samples that we take. We sample
106 pairs for this experiment. The resulting empirical constant
is 7.32 x 1073 for the AlexNet, and 4.84 x 102 for the
GoogleNet.

The empirical constants are of significantly smaller order
than the analytical constants. In general, two factors explain
the gap between the analytical and empirical Lipschitz
constant estimates: first, the principal singular vector that
optimizes the operator norm in a given layer in not in the range

1747

of signals reachable by the previous layer; second, whenever
we have ReLU nonlinearity and max pooling, the distance
between two vectors tends to shrink.

The first factor can be partially addressed by considering the
norm of tensorial product of all layers instead of considering
the product of tensor norms in each layer individually (similar
to computing the operator norm of a product of matrices
directly instead of upper bounding it by the product of operator
norms of each matrix). Both this and the second factor can be
addressed by a framework that locally linearizes the network
for analysis. We demonstrate how to do this in the following
subsection.

2) Local Lipschitz Analysis: To begin with, we estimate the
Lipschitz constants without the ReLU functions to illustrate
the impact of the nonlinearity. We construct the AlexNet and
GoogleNet without the ReLLU units by replacing them with
the identity functions, and repeat the experiments of taking
ratios from pairwise random samples. Empirically, the ratio
estimated in this way is 9.08 x 10~2 for the AlexNet and
1.10 x 102 for the GoogleNet. Note that these constants are
larger than the empirical Lipschitz constants for the networks
with the ReLU units.

The nonlinearities also have a non-negligible impact on the
Lipschitz constant. To handle them in the analysis, we linearize
them locally and compute the local Lipschitz constants. The
local Lipschitz constant of ¢ at f € D for e-neighborhood is
defined by

e et o,
(fre)i= s T F 7, @4
[ £/ ,<e

Note that for the case of the AlexNet and the GoogleNet (and
similarly for all other discrete networks), the input signal is
from a compact domain D = J” where J is the interval for
the pixel values, and D is the dimensionality (the number of
pixels). Since D is convex, the Lipschitz constant of @ is the
maximum of the local Lipschitz constants on D. The rigorous
proof of this claim is given in Appendix E.

Using the linearization formulas, we estimate numerically
the local Lipschitz constants. The procedure is described as
follows. We vectorize ! the input image and the output feature
vector. Also, we use Toepliz matrices 17,75, ---,Th to
represent filters in each layer. For any input sample f, the CNN
generates the output feature vector ®(f) by propagating f
through T7,,,’s and the nonlinearities that activate only a subset
of the pixels for the hidden layer outputs. For the m-th layer,
we delete (remove) the rows that correspond to the pixels
not activated by the ReLU units and max pooling (if they
exist) in 7T}, and the corresponding columns in 77, . In this
way we obtain matrices 77, T4, - - - , T}, The product T'[f] =
Ty Ty _q Ty T represents the locally linearized operator
for the CNN acting at f. For a small ¢, the local Lipschitz
constant at f is estimated by L'(f,€) ~ omax(T"[f]),
the largest singular value of 7”. Specifically, when e is so small
that the effect of ReLU units and max pooling does not change

For a matrix A = [a1]az|---|ap] € RP*XP where a1, a2, -+ ,ap are
D-dimensional vectors, we vectorize A to be A = [af|ab]|---|a%)]?
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in the e-neighborhood of f, we have L°°(f, €) = oumax(T"[f]).
To see the reason, note that ®(f") = T'[f]f" for any f’
such that || f" — f||, < e. Consequently, |||®(f") — ®(f)||| =
T f15 = T < (L1 [ = Fly» in which the
equality is achieved when f’ — f is in the direction of the
principal singular vector. Therefore, omax(7”[f]) is indeed the
local Lipschitz constant.
As a result, the Lipschitz constant for ® is estimated by

L. = max L'(f, €) = max omax(T'[f]),
o = maxx L*(f,0) = mag o)

where the second equality follows if we take the maximum
over the entire compact convex set J” (see Appendix E).
However, for numerical reasons, we replace 30 with a finite
number of samples F thus obtaining an approximate (lower)
bound:

L.~ max(T'T]).
c r;lea])__io ax(T"[f])

Before discussing the numerical results based on this
method, we remark here that there are two limitations of
this local Lipschitz analysis. First, since the nonlinearities
have very different effects for different samples, it requires
a different computation of the equivalent Toepliz matrix on
each input sample and in practice it is slow if the size of
F is large. Second, it is based on local linearization and the
linearized region is small in practice, which causes a difference
between the local bounds and the empirical bounds since a pair
of images from the dataset are usually far from each other.

We follow the procedure described above to estimate the
Lipschitz constant for the AlexNet, with F having 500 random
samples drawn from the ImageNet (ILSVRC2012) dataset.
Figure 11 illustrates the histogram of these results. We see that
the local Lipschitz constants in our case are between 0.2 and
1.6, hence of order 1. Table V summarizes the results of the
analytical, empirical and numerical local Lipschitz constants
analysis for the AlexNet.

One would naturally ask if the 500 random samples we
chose for this analysis are sufficient to infer an accurate
estimate of the Lipschitz constant. To address this question we
performed two sets of experiments. First we test if the local
Lipschitz constant is narrowly distributed over samples in each
class and whether the distribution changes for random input
signals (i.e. artificial noise input images). Figure 12 depicts
the histogram of local Lipschitz constants for images from
class “tench” (left plot), and compares it with the histogram of
local Lipschitz constants for i.i.d. Gaussian noise images (right
plot). We note that the local Lipschitz constants for Gaussian
noise are much more concentrated around a significantly
smaller mean than for the class “tench”. This implies that the
AlexNet behaves differently for different ImageNet samples
from the same class. On the other hand the distribution of
local Lipschitz constants for images from same class reflects
the same range of values as the distribution over all 500 images
considered in Figure 11. This experiment gives us confidence
that the estimated Lipschitz constant over the 500 ImageNet
images is nearly tight.

On the other hand, as observed from Table V, the Lipschitz
constant computed by taking the maximum of the local
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Fig. 11. The histogram of the local Lipschitz constants for the AlexNet for
500 sample images taken from the ImageNet dataset.
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Fig. 12.  Two histograms of local Lipschitz constants for the AlexNet: the
left plot contains the results of 50 samples from the class “tench”; the right
plot contains the results from 50 samples from i.i.d. Gaussian distribution of
same size (224 x 224 x 3).

Lipschitz constant is about 3 orders of magnitude larger than
the empirically computed constant. This surprising observation
implies that the direction of maximum variation (the principal
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TABLE V
THE L1IPSCHITZ CONSTANT ESTIMATION USING THREE METHODS FOR THE ALEXNET

H Method Lip const H
Analytical estimate: compute Bessel bounds and follow Corollary II1.2 2.51 x 103
Empirical bound: take quotient from pairs of samples 7.32 x 1073
Numerical approximation: compute local Lipschitz constants and take the maximum 1.44

0.35
LY i
031

025F |\ .

lipschitz estimate

B ¥
102 107" 10
stepsize

Fig. 13.  The ratio |||®(f + h - v) — ®(f)|||/h for different h.

singular vector) varies significantly from one ImageNet sample
to another. This variation is caused by different effects of
ReLU and max pooling on different image samples. To bridge
the gap between the local Lipschitz bound and the empirical
bound, one could assume an ‘“average” effect of ReLU and
max pooling, and conclude with an estimated empirical bound
via a corresponding linear version of the CNN. We describe
this method in Appendix D and conclude with an estimated
bound of 1.78 x 1072,

Furthermore, the local Lipschitz constant is large only in a
small neighborhood around each sample. In order to estimate
the largest perturbation that achieves the local Lipschitz bound
we performed the following experiment. For input signal f, let
v denote the principal singular vector of norm |jv||, =1 that
corresponds to the largest singular value o,,x. By definition,
we have

th]OC(f’E) = lim |||q)(f+tv) — q’(f)|||

= 0. .
e—0 t—0 t max

Figure 13 shows how the quotient |||®(f + h-v) — ®(f)|||/h
changes with /. Note that the convergence as i approaches 0
is very slow. In particular, this experiment confirms that the
local Lipschitz constant is achievable, hance the numerical
estimates in Table V are not just numerical artifacts, but
actual achievable ratios. On the other hand, Figure 13 shows
that the largest relative variation of the output (i.e. the ratio
N®(f)=2(HNI/IIf—fll2) is achieved by small perturbations
only. In general, given a pair of different image samples from
ImageNet, their /2-distance is much larger than 10°, so they
cannot reflect the local oscillation of ®.

3) Adversarial Perturbation Induced by the Local Lipschitz
Constants: CNN’s such as the AlexNet and the GoogleNet
are shown to be vulnerable to small perturbations [9], [23],
[24]. This kind of instability of those deep networks not only
leads to difficulties in cross-model generalization, but also
causes serious security problems in practice [25], [26]. An
adversarial perturbation is a small perturbation of the input
signal that changes the classification decision of the CNN. The
perturbation can be constructed by solving an optimization
problem where the wrong classification is considered as a
loss in the objective function, as described in [9]. Various
optimization settings can be found in [23], [24] where specific
restriction on the perturbation is required.

The local Lipschitz analysis carried out in the previous
section characterizes the impact of varying the direction of
signals perturbations on the output of the CNN. It can be
seen that for the same amount of input perturbation, different
directions can be chosen to achieve a better adversarial impact
on the network performance. We use this observation to
create adversarial perturbations below. We show that a relative
change of the order of 1072 can lead the network to wrongly
characterize the input image.

Since a local Lipschitz constant is associated with a singular
vector vg With [lvg||, = 1 which is the direction that ® varies
the most at f, we expect this direction gives a perturbation that
“fools” the CNN more than other directions. The task is to find
the smallest i for which f and f' = f + h - vy are labeled
differently by the CNN. We use the AlexNet and empirically
search for h. For each sample, we find the smallest & that
fools the AlexNet. One such example is given in Figure 14.
We take 50 samples and find that the optimal hp’s have order
of magnitude 103, which is relatively small compared to || f|,
(we have 227 x 227 x 3 input with pixel values in [0, 255],
so the relative change is of the order 10~2). Note that this
order of h is also observed in [23], where the 2-norm of the
perturbation is chosen to be 2000. Further, for each sample,
we take 1000 random directions vy,q, and compare the labels
given by the AlexNet for f and f + (hopt + Ah) - Vgana for
a set of different values of Ah. We plot the percentage of
directions that fools the AlexNet on average for these samples
in Figure 15. Surprisingly, the direction informed by the
local Lipschitz constant performs better than most directions,
although at for h > 10? the quotient |||®(f+h-v)—®(f)|||/h
is much smaller than the Lipschitz constant at f. Empirically,
this implies that the local Lipschitz constant is still important
although it decreases fast outside a small region.

V. LIPSCHITZ BOUNDS IN STATIONARY PROCESSES
Signals (audio or image) are often modeled as random
processes. In our case, there are two ways to model the
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(a) The original image

Fig. 14.

(b) The perturbation (scaled for visibility)
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(c) The perturbed image

An example of the perturbation along the direction of the singular vector. The left is the original image, the middle is the perturbation which is

amplified 1000 times for clear illustration, and the right is the perturbed image. The AlexNet recognizes the original image as “king snake” but the perturbed

one as “loggerhead turtle”.
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Fig. 15. Average percentage of successful perturbations in 1000 random
directions. Ah = 0 is the smallest stepsize where the perturbation along
the direction informed by the local Lipschitz constants successfully fools the
AlexNet.

input signal of a CNN: one is to consider X (¢) as a ran-
dom process (field) with some underlying probability space
(Q,3,P) with finite second-order moments (see [1, Ch. 4]);
the other is to regard X as a random variable such that

X :(Q,5,P) — L*(RY) .

We first present the former model for our framework in
Section II. In the following, we use the notation X (t) to
emphasize the time (space) variable t € R? and X,(w) to
emphasize w € ). We are interested in studying stationary
signals. Fix a realization X (¢) = X, (¢) for some w € Q. X (¥)
is said to be strict-sense-stationary (SSS) (see, for instance,
[27], Chapter 16) if all of its finite-order moments are time-
invariant (its cumulative distribution does not change with
time). The output of a CNN is SSS provided that the input
X is SSS. This is stated as the following lemma.

Lemma V.1. Consider a CNN in the framework of Section II
in which there is no dilation operation. Let ® be the induced
Lipschitz continuous map as defined in (18). If X is an SSS
process, then so is ®(X).

— Y

Y— W, \’" CNN

He

Fig. 16. Illustration of the Lipschitz bounds L.. Suppose f is an image
filtered by W, (and a bias p.) from a white Gaussian noise v ~ N(0, I).
Then the Lipschitz bound L. for the class ¢ considers both processes of W,
and the CNN. This bound is not the same for different classes since it depends
not only on the CNN but also on We.

Remark 1. In general, if we apply dilations for random
processes, the signals are no longer stationary after the merge
operations. To see a concrete example, let 6 be a random
variable taking values uniformly in [0, 27). Consider X (t) =
cos(t + 0) which has i.i.d. distribution over time and is thus
SSS. Note that Y (t) := X (t)+ X (3t) = cos(t +6) +cos(3t+
0) = 2cos(2t + 0) cos(t) has different distributions at t = 0
and t = /2, and is thus not SSS. Therefore, throughout this
section, we assume that there is no dilation operation in our
CNN.

Now we state the result that connects the Lipschitz bound
derived in Section III with stationary processes.

Theorem V.2. Consider a CNN in the framework of Section Il
in which there is no dilation operation. Let X and Y be SSS
processes with finite second-order moments. Then

E(‘H@(X)—CD(Y)‘HQ) gL-E(|X—Y|2) . @5

In particular,

18(X)]]? SL-E(|X|2).

The proof for Theorem V.2 parallels that of Section III.
We present it in Appendix E.

As mentioned above, we can also follow the second way to
model the signal as a random variable X : Q — L2(R9).
In this case, we have a random variable with values in a
Banach space (see a detailed discussion of such random
processes in [28], [29]). In particular, let ® be the map
induced by the CNN, and L, = V'L be the Lipschitz constant.
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3 layers, randn generated weights
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3layers, randn generated weights

Errorrate /%
&

Error rate / %

[ 0.05 0.25 03

o. . 0.
(EED(x, )-ERD (<, D/(IIVar@(x, )+ Var@(x, )l

Fig. 17.

Denote Y = ® o X to be the received random variable. Then
by [29, Proposition 1.2], we have the concentration function
a(L2(RY),Py)(r) < a(L*(RY),Px)(r/L.). Suppose X is
Gaussian (see [28, Ch. 2] for the definition in this case)
and let 0 = 0(X) = sup(E|\X|\§)1/2. Then similar to the
concentration inequality in [29, Lemma 3.1], there exists a
median 99 > 0 for which we have both

Py (Y —EY)[, <) = 1/2
and
Py (Y —EY)[l, <) <1/2;

and we have

2
PAIY B0l -3 > 0 <o (~507 ) - 20

In signal classification tasks, if we view signals in each
class as realizations from a common distribution, then we
have the same E(Y") for all signals in this class. If the feature
Y generated by the CNN is concentrated around E(Y), and
E(Y')’s are separated for different classes, then features from
different classes will naturally form clusters. Although we
do not have exact concentration (M = 0), Inequality (26)
demonstrates that Y concentrates in a “thin” shell of radius 91
around E(Y') provided that we have a small Lipschitz bound
L. We further promotes making the Lipschitz bound small in
designing CNN’s in the next section.

VI. LiPSCHITZ BOUND IN CLASSIFICATION

In addition to analyzing stochastic processes, we present
here another application of the Lipschitz bounds which is
similar to the linear discriminant analysis (LDA) (see, e.g.
[30], [31]). In LDA, itis desired to maximize the “separation”,
or the “discriminant”, which is the variance between classes
divided by the variance within each class (see [31, eq. (1)]
and the discussion that follows). We use a similar notion
in our (nonlinear discriminant) analysis, albeit its nature of
nonlinearity. We define the discriminant of two classes C
and Cy to be

__ E[@()If € C1] —E[(f)|f € Co]llI”
[Cov(@(f)If € Co)ll, + [|Cov(R(f)]f € Ca)ll.

, (27)

02 025 03 035

] 0.05 01 0. .
(ELR(x,JERR (L +L )

Plots of error rate versus discriminant for a three-layer CNN with randomly (normal distributed) generated weights.

in which @ is the nonlinear map induced by the CNN,
as defined in (18), |||, denotes the nuclear norm, and Cov
denotes the covariance matrix.

To see how the Lipschitz bound is associated with the
separation S, we look at the nature of the variance of the
output feature ®(f). Suppose we have a Gaussian noise
v ~ N(0,I) and apply a linear transform A, then Av is
also Gaussian with covariance AA*. The nuclear norm of its
variance is given by

|Cov(Av)||, = traceAA" = || A|lf, |

where |||/ denotes the Frobenius norm. Since A is linear, its
Lipschitz constant is given by [|Al|,, and its Lipschitz bound
is given by ||A||§p. Note that the Frobenious norm and the
operator norm are equivalent norms, since [|A||,, < [[Allg <
Vi Al

Motivated by the linear case, we look into replacing
[[Cov(-)||, in (27) with the Lipschitz bound for general CNN’s.
We consider a CNN with a Gaussian white noise input
v ~ N(0,I). We assume two classes of signals, C; and
C5 where each class C. (¢ = 1,2) contains samples from
a colored Gaussian noise v, ~ N (., W.W!). We use L, to
denote the Lipschitz bound for the whole system, as illustrated
in Figure 16.

We define the Lipschitz discriminant to be

g _ B[S € Ci] ~E[R()If € Col||I?
L+ Ly ’

where L1 and Lo are the Lipschitz bounds for Class 1 and
Class 2, respectively.

In Figure 17 — 20, we report the experiments on the dis-
criminative behavior of randomly generated CNN’s. We take
two classes (number “3” and “8”) of test images from the
well-known MNIST database [32], and randomly build CNN’s
with three or four convolutional layers and record their dis-
criminant according to (27) (plotted on the left-hand-side in
each figure) and (28) (plotted on the right-hand-side in each
figure). We then train a linear SVM for each network and plot
the error rate of classification against the discriminants. The
purpose of this experiment is to show that larger discriminants
lead to better classification results. The reason we use SVM’s
is to examine the quality of the CNN (feature extractor)
given different discriminants, and therefore we choose to train

(28)
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Fig. 19. Plots of error rate versus discriminant for a four-layer CNN with randomly (normal distributed) generated weights.
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Fig. 20. Plots of error rate versus discriminant for a four-layer CNN with randomly (uniformly distributed) generated weights.

linear SVM’s (which works for two classes) with the same
regularization parameter. The numerical implementation is
done using MATLAB 2016b. We use MatConvNet [22] for
constructing the CNN, and the Machine Learning Toolbox in
MATLAB for training the SVM’s.

As seen from the results, the error rate tends to decrease
as the discriminant (27) and the Lipschitz discriminant (28)
increase. The trend is clearer when we have more layers.
Therefore, either the discriminant or the Lipschitz discrimi-
nant is a reasonable penalty term for the training objective
function of the CNN. Our analysis in previous chapters can
be effectively used to estimate the Lipschitz discriminant for
these optimization problems. However, it remains open how
to design a training algorithm using the discriminants since
the weights appear in both the numerators and denominators
in (27) and (28).

VII. CONCLUSION

In this paper we proposed a general framework for Lipschitz
analysis of CNN’s. We showed that after calculating the Bessel
bounds for each layer, the Lipschitz bound can be calculated
by solving a linear program. We also demonstrated that the
Lipschitz bounds play a significant role in the second order
statistical description of CNN’s. Further, we illustrated that the
Lipschitz bounds of CNN’s can be used to form a discriminant
that works effectively in classification systems.

In addition to the Lipschitz bounds derived from the Bessel
bounds, we discussed the Lipschitz bounds from local sin-
gular value and from empirical ratios by taking pairs of
samples. The Bessel bound method can be over conservative
due to looseness from cascading the upper bound and from
neglecting the effect of nonlinearities. However, the local
Lipschitz bound also has limitations due to the expensive
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Py S

Fig. 21. The dilation operation. y1 € RY is the input and yo is the output
given as yo(z) = y1(Dx).

local computations and the rapid variation of the effect of
nonlinearities. We believe the hope to overcome these limita-
tions may come from stochastic models. From the numerical
experiments in Section I'V, we found interesting results on gaps
between these bounds. We provided a simple stochastic model
that bridges the gap between the local bounds in the worst-
case sense and empirical bounds, but we believe the analysis
needed for completely understanding the behaviors of these
bounds are more complicated and requires further treatment.
Given the importance of Lipschitz bounds in understanding the
stability and adversarial perturbation, we believe this deserves
future work.

In future works, we will pursue more systematic analysis
based on the stochastic models for both the upper bound
cascading and the effect of nonlinearities. Specifically, this
requires modeling both the filters and nonlinearities. Note
that if we adopt the same model as given in the text for the
nonlinearites, then we can linearize a CNN by looking at the
product of the corresponding Toepliz matrices. It is likely that
an estimation of the principal singular value can be estimated
given some assumptions on the distribution of the entries of
the filters. Potentially, the distribution of Lipschitz constants
will be reached given these models. We will also seek for
the application of these analyses in training CNN’s robust to
adversarial perturbation.

APPENDIX A
PROOF OF THEOREM III.1

We are going to show that the optimal value for the linear
program (20) is a Lipschitz bound. In particular, we study

I _ 2
Sivey v = i, a8 Zoies Sovev, |13 = I -

For the m-th layer, we mark the signals at the input nodes
to be 1, -, Amon,, and the signals at the output nodes
to be hy, 1,7+, by, . . We estimate the Lipschitz bound by
comparing the outputmnodes and input nodes for each layer,
and then derive a relation between the outputs and the input at
the very first layer. Note that with our notation here, h; 1 = f
and ﬁl,l = f

We first look at the case of no merging. Before we study
the input-output relation, note that for the dilation operation
illustrated in Figure 21, for two outputs yp, 7o from inputs
y1, 71 € R? respectively, we have

/|y1(Dx) —§1(Da?)|2 dx

— (detD)™! ||y — Qng .

Now we look at the illustration in Figure 3. Since the
nonlinearity o, , is 1-Lipschitz, and also according to (29),
we have

/ 7!
’ hm,n’ - h’mm’

llyo — Qo”g =
(29)

e P

m,n’

2 -1 L)
< (detDmm/) h
2

m,n’/

2
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Therefore,

’
T,

>

2
n’=1 2

’hm,n/ - hm,n’

[ Fmn = Fonin

9  Mm
T2
n=1

’

n?n 2

3 (detDy ) Hh"‘ — i

m,n’ m,n’

IN

+

n’'=1 2

N
n=1
’

m ~ 2

= Z (detDy, /)™t HiL‘ h

2
2

‘fm,n - fm,n

)
m,n’ —h

m,n’

+

n'=1
Tom, R ~ 2
Z ‘fm,n - fm,n
n=1

’
n

- ] i)
2
(= )

Mm 2
§ ‘hm,n - hm,n 9

2

dw

n’

IN

Home)”]

n=1
MNm 2

- M L (30)

m

n=1

where in the last two steps, h(m) ig the column vector whose
n-th entry is fzmm (and similarly for A(™)), and {}n denotes
the n-th entry of a vector.

In the same manner, we have

n 7,
m B 2 @ m B 2
§ ’ hm,n’ - hm,n’ 5 S Bm § ‘hm,n - hm,n 9 )
n’/=1 n=1
and
Nom, 2 MNm
~ 3 ~
E fm,n - fm,n 9 S Bﬁn) g } hm,n - hm,n 9
n=1 n=1

We have completed the analysis of one layer without
merging. Now we focus on the merging case, in which the
definition of the corresponding Bessel bounds will be clear
immediately after we study the three types of merging. Now
we look at the relation between the output and input of the
merging blocks.

For Type I, as illustrated in Figure 22, we have

K
vo=>_or(y) , 31)
k=1
and
K
o= ow(r) (32)
k=1
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Y—s o Y1—s| 01
Yo—s| o9 Yo Y2 —>| 09 Yo
Yk—| ok Yk—>| OK

Fig. 22. Type I merging. yo is the sum of o1 (y1), -+, ok (YK)- Fig. 24. Type III merging. yo is the product of o1 (y1), - , 0k (yx ). Here
HO']Hooglfor]:l,,K
Yi—s o1 — 7
g
Yo—>| 09 a and if p > 2 we have
% —>yO - 2
5 o — Foll3
.+ . ()@F K 1/p K 1/p 2
vk—| ox S = <Z |0k(yk)|p> - <Z |0k(§k)|p>
k=1 k=1 2
Fig. 23. Type Il merging. yo is the aggregate of o1 (y1), - -+ , 0k (YK ) using K ~ 1/p 2
p-norm. < (Z |0'k (yr) — on (yk)lp)
k=1 2
Therefore e 12 2
o K P = (Z|0k(yk) — 0k (Yk |2)
lyo = doll; = ||D_ on(yr) — o (G) k=1 2
K o = 3 llowlon) — o)
< K low(yr) — oxin)ll3 k=1
k=1 K ,
K o < D llye — el -
< K k=l - (33) h=1
For Type III, as illustrated in Figure 24, we have y, =
. - K _ K _
For Type II, as illustrated in Figure 23, we have [Ty ok(yk) and go = [, o%(Yk). Therefore,
K 1/p || ~
yO - y0||2
Yo = <Z|ak(yk)|p> : (34) K
=t H ok (Yr) H o (Y
and -1
K 1/p
~ o K K-1 J K
do= |2 lew(@l"| 3%) I[ o )+ 3 [~ TLontwe) TT oxtim+
k=1 k=1 J=1 k=1 k:]+1
Therefore if p < 2 we have K K
90 — 3ol H””kII” |+ 11
K 1/p K 1/p 2 I =t K J2 .
- H <Z|J’“(y’“)|p> - <Z|Jk(g’“)|p> H o) - ok (yx) = oxc () + Y [ onlyw):
k=1 k=1 2 J=2 k=1

K 1/p °
< (Z|0k(yk)—0k(§k)|p) (0s(ys) —os(7)) H a5 (gr)+
k=1 2 k=J+1
o K 5\ 1/2 ’
< K ' (Z or(yr) — ok (Jr)| ) (@1(y1) — 01(y Hgk (9r)
k=1 2 2
K K—
— ~ 2 ~
= K7 1'2”%(%) —ak(r) 2 H lon(up)lloo - llox (yx) — ox (Gx) 1l +
k=1 k=1
K , K-1J- K
2/p—1 ~ 0]
< KPS gk =l ZID%% T ol
k=1 J=2 k=1 k=J+1
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los(ys) —os (@), +

K
T o)l
k=2

Nlor(y) = a1 (@),

K
< > llowlr) — ow (@)l
k=1
K
< >y =l
k=1
and thus

K
lyo — dolly < K> Nl — il - (36)

k=1

Therefore, when we compare the input nodes and output
nodes of the m-th layer for the merging case, using the above
relations and the definition of Bﬁi), we have (see Figure 7)

/
m

D

n’'=1

/ !
m,n’ m,n’/

m n m n
2

. 2
- hm,n
2

m,n

gBﬁ,P‘h

By the one-one correspondence of the output nodes in the
(m+1)-th layer and the input nodes in the m-th layer, we know
that

’

MNm 41 B 2 Mo B 2
- / /
>~ ronsrin = B[, = 3 [ = o, @
and therefore,
m.+1
‘hm+1n_hm+1n fmn
) P
< B Hhmn ol 38
< B ; =P (38)

for1<m< M —1.
If we do not consider the output generating, then the forward
propagation relation is

MNm,

D

n=1

m,n )

Nm
< B2 b~
n=1
(39)

for 1 < m < M — 1, and similarly, considering the output
generating nodes alone gives

5 2 Nm
a2

for1 <m < M.
Since we like to
M n N [ E
Zm,:l nzl fmfﬂ - fmfﬂHQ with uhl,l - hLIHQ’ by (38)'
(40), we see that the maximal value of the linear program (20)
gives a Lipschitz bound.

- 2
herl,n - herl,n 9

2
CO)

hm,n
2

m,n

would compare
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APPENDIX B
PROOF OF COROLLARY III.2
From the definitions of B4, B2, and BSY, (11)-(13) it
is obvious that

B\, < BYY, + B, 1)
and from (14)-(16), as well as (2)-(4), we have hence
B < B? 4 BB (42)
for each m. Then note that if {y,,}2 25 and {z,,}Z] are
the maximums of the linear program (20), then
Zm < B Ymo1 —ym,  1<m<M-1,  (43)
and 1)
2 < By ym—1 (44)
(note that BJ(\? B (3))
We take the sum over all m’s to get (denote yp;s = 0)
M M
Z Zm < Z By(ypym—l —Ym
m=1 m=1
M—1 M—1
= > Bl - 2 um
m=0
M—1
= By Z (BY Dy . @5)

Also, Ym S B Y1 implies v, < B Y1, 50 ym <
I, B and thus

M M—1
Z Zm < B(l) + Z ((max{l B(lzrl} - 1)
m=1 m=1
H max{l,Bfn,)})
m/=1
M—1
= B(l) Z H max{1, B(l)}—i—

m=1m/=1

M-1
Z (max{l B} H max{1, Bm})

=1 m/=1

M—-1 m
= B(l) z_: H max{1, B(l)

Z H max{1, B(l)

m2m’1

H max{1, B(l)} = H max{1, B{V} .

IN

APPENDIX C
THE BANACH ALGEBRA (1)

We first show that we indeed have a Banach algebra in (1).

Lemma C.1. B as defined in (1) is a Banach algebra, where
the + operation is pointwise addition, and the - operation is
the convolution defined by

frg= (fé)v :

where “V 7 denotes the inverse Fourier transform.

(46)
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Fig. 25.

Use 6 function to equivalently represent a CNN.

Proof: Note that B is closed under the convolution in the
sense of (46) because f§ € L>°(R%) and therefore is also
in S'(RY). Since the Fourier transform is an isomorphism
on S'(R%), the inverse Fourier transform of f§ also lies in
S'(RY).

After the closedness is clear, it is trivial to check that B is
indeed an algebra. The fact that 3 is a Banach algebra is due
to the norm inequality

(47)

o0 oo o0

|

The definition of the Banach Algebra becomes natural after
the Bessel bounds (11)-(13) are defined. Of course, in practice
we can consider only filters lie in the space L!(R?). The
Banach Algebra (1) is a larger space, and it also has some
practical consideration. Suppose we have a network where
there is aggregation of two layers, then we notice that this
does not fall in our general model. Nevertheless, we can add
several layers of d-function, to make it fall in our framework.
This is illustrated in Figure 25.

In the definition (1), the L°° norm is considered in the usual
sense, that is, we only consider f to be a well-defined ordinary
function in L>°(R?). Then the convolution operation should
be understood as f * g = (f - §)'. Then obviously the Banach
Algebra B is closed and well-defined under the convolution
operation.

Under this definition, if we don’t choose a smooth (in the
frequency domain) filter, then in the signal domain we do
not have good decay and it is possible to have infinite L'
norm. Even if we choose signals whose Fourier transform is
in C>°(IR?), we have a coarse approximation by using Young’s
inequality. Details can be seen in the example given in [21].

APPENDIX D
ESTIMATING EMPIRICAL LIPSCHITZ BOUNDS

In Section IV-C, Table V, we observe that the Lipschitz
constant computed by taking the maximum of the local Lip-
schitz constant is about 3 orders of magnitude larger than the
empirically computed constant. It is natural to ask whether
this gap can be bridged by looking at the empirical effects of
ReLU and max pooling operations.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 3, MARCH 2020

By the Lebesgue’s differentiation theorem, a CNN & with
ReLU activation map is differentiable almost everywhere.
At points of differentiability, its linearization is described by
the product

F = PyDyTyvrPy—1Dy—1Thvi—1--- PiDT . (48)

where T1,---,Ty are the Toeplitz matrices corresponding
to the filters; D;,---, Dy are diagonal matrices whose
diagonals consist of entries equal to 1 if activated by the
ReLU unit and 0 otherwise; P, --- , Pys are slanted diagonal
matrices whose each row is zero except for one value equal to
1 corresponding to the entry selected by the max pooling.
In general, T},’s do not change with the input signal, but
D,,’s and P,,’s are constant locally. Let fy, and f; be two
different inputs for which ® has different local linearizations.
Take a point f; on the line segment between fy and fi:
fr = ft) == (1 —t)fo +tf1, 0 <t <1, then F in (48)
is defined almost everywhere in ¢,

F(t) =Prn(t)Dar () Tar Prr—1(t) Dar—1(6) Thr—1 - - -

P (t)D:()Ty, 0<t<1. (49)

Consider the partition of [0, 1] where F' is piecewise constant:

let {to,t1,--- ,tg}fsuchthat 0 =ty <t; <--- <tg=1and
F(t)=F,:=F(tg+0) forty <t <tgs1,¢=0,1,---,Q—
1. Consequently, by continuity of &,
q)(f(tq+1)) - (I)(f(tq)) = (tq+1 - tq)Fq(fl —fo) . (50)
Summing over ¢ = 0,1,--- ,Q — 1,
Q-1
®(f1) — @(fo) = <Z(tq+1 - tq)Fq> (fr="/fo) . 5D
q=0
Denote F, := ZQQ;OI (tg+1 — tq)Fy. We rewrite (51) as
®(f1) — @(fo) = F(fr — fo) - (52)

When we compute the empirical Lipschitz constant
in Table V, we take the largest quotient of the norm of
D(f1)— P(fo) and the norm of fi — fy over pairs of samples.
For each pair of fy and f1, the quotient will be bounded by the
largest singular value of Fj. In contrast to the local singular
value, which corresponds to the variation between two inputs
arbitrary close to each other, o, (F}) corresponds to the
variation between two input images at order 1 distance apart.
For this reason we call F the effective Jacobian for the input
pair (fo, f1).

In the following we present a stochastic model designed to
compute the effective Jacobian on a specific dataset, and then
we compare our model prediction with the empirical Lipschitz
constant in Table V.

The first assumption is an ergodic hypothesis: the time
average in definition of F), can be replaced by an expectation
over realizations of P,,’s and D,,’s:

Q-1
Jo =Y Fyltgs1 —tq) =E[F]. (53)
q=0
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The second assumption is independence of Dy, P, Do, Ps,

, Dy, Pas. While this assumption is obviously not true
when conditioned to a specific input pair (fo, f1), the inde-
pendence between various channels and layers increases when
the random variables are analyzed over a large dataset. Con-
sequently, the effective Jacobian is estimated by

J* ~ (EP]\y)(EDM)T]w s (EPl)(EDl)Tl . (54)

Finally, the third assumption is specific to the two types of
matrices: (i) In each layer m, the Bernoulli random variables
in D,, have the same distribution dependent on the layer index
only. Thus E[D,,,] = p,,I; (ii) Each row in P, is a realization
of one of 9 possible row vectors (each corresponding to
selecting one of the 3 x 3 entries in the sliding window);
The assumption is that these realizations occur with equal
probability; The consequence of this is that E[P,,] can be
replaced by the average pooling operator.

Next we estimate empirically the five constants
D1, P2, P3, P4, p5 for the AlexNet. We compute the expected
terms in (54) based on 10k pairs of image samples. For
each pair, we take the line segment between them and
sample at t441 — ¢, = 1. We compute the empirical D,,’s as
Dy, = pm - I, where p is the percentage of entries being
activated in the m-th layer and I, is the identity matrix. The
estimation are based on the average of the samples along the
line segment and the pairs of images. Numerically, we obtain
p1 = 0.4115, po = 0.3184, p3 = 0.3587, py = 0.2733,
ps = 0.1943. For the five convolutional layers, we get only
the 1st, 2nd and 5th layers have max pooling operations.
Those max poolings consider 3 x 3 areas and on average we
expect the effect is an average pooling with a multiplier of
1/9 for each entry. Indeed, from Figure 26, the histogram of
average ratio of being activated by max poolings concentrates
around the mean of 0.1111. Replacing the expected terms by
the matrices described above, the modified effective Jacobian
has the largest singular value 1.78 x 1072, This value is
about twice the empirical Lipschitz constant estimated at
7.32 x 1073 in Table V.

APPENDIX E
L1ipScHITZ CONSTANTS AND LOCAL LIPSCHITZ
CONSTANTS

For CNN’s such as the AlexNet and the GoogleNet, the Lip-
schitz constant is the maximum among all the local Lipschitz
constants (see Section IV-C). In particular, we have the fol-
lowing result.

Proposition E.1. Let ® : D — R be a Lipschitz continuous
function on a compact convex domain D € RP with the
Lipschitz constant

O(f)—@
1 e 1200 =21
f9€D If—alla
79
where ||| - ||| is a well-defined norm on R. Suppose the local

Lipschitz constant at f € D for some € > 0 is L'(f ¢) as
defined in (24). Then

L. =max L'(f,¢) .

feD (35)
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Fig. 26. The histogram of activation ratios of max poolings. Each sample
corresponds to an entry of the input of max pooling, and the x-axis is the
percentage of time that entry is activated by max pooling among all the
samples we take in our experiment.

Proof: Assume on the contrary that (55) is not true.
Then L. > maxsep L'°(f,€). Suppose L. = 2§ +
maxep L°(f, €). Then there exists f, g € D for which

12(f) = 29Il
1f = all,

Let I={h|h=(1—-1t)f+1t9,0<t<1} CD be the line
segment that joins f and g. Take

5 Lloe . 56
> 0+ max (f,e) (56)

€ 3e €12
I'={h|h=(1-t ta. t=0 25 .0 12
{hlh=01A-1)f+tg, 1 =0,5.¢ 7, ’2M’}
Let N = |I’| denote the number of elements in I’. Let h,, =

(1 —ne/2)f + (ne/2)g forn =1,---
Then since ||, — hpt1l]l, < €,we have
118 (hn) = @(hns1)l[] < Ly €) - lhn = hnally,
n=1,2--,N—1.

,N—1and hy = g.

But L' (h,,
[ ®(hn)

,€) <maxysep L°(f,€), so we have

= @)l < max () - o = gl

n=1,2-,N—1.

Summing over n = 1,2,--- | N — 1 and applying the triangle
inequality for norms, we have

1@(f) |||<Z|||<I> @ (A1)l
< max (/. ¢ §jnh Pl
_ Lloc _
1’;168%( ( 9 )Hf gHQ 9

where the last equality come from the fact that h,,’s are all on
the same line. But this implies

O(f)—@
120) =PI _ e
1f = gll feD
which contradicts (56). Therefore the assumption cannot be
true and we conclude with (55). [ |

Authorized licensed use limited to: University of Maryland College Park. Downloaded on July 12,2020 at 15:18:17 UTC from IEEE Xplore. Restrictions apply.



1758

APPENDIX F
PROOF OF LEMMA V.1

The proof of Lemma V.1 lies on the following two facts.
1) If X is SSS, then (X (¢)), where o is a pointwise function,
is also SSS;

2) If X is SSS, then X « g(t) defined as

(X *9)w /X (t—s)g(s)ds , (57)
is also SSS. To see 1), we need to show

P{O’(th_H—) c Al, s ;U(th—i-T) (S An}

= P{o(Xi,) € Av, o 0(Xs,) € An ) (58)
for any ty,--- ,t,,7 € R? and any A;,---,A, € §. Let
Bj=0"YA;)={ceC:0(c) € Aj} for j=1,--- ,n. The
above equality reads
]P{thJr‘r S Blv T ;thJr‘r € Bn}
- ]P’{th €Bi,- Xy, € Bn} : (59)

which holds true due to the assumption that X is SSS.
To see 2, note that since X is SSS there exists a semigroup
of measure-preserving transformation
t,
{T Q- Q} teRd
associated with X such that
TSTt — TSth

for each s,¢ € R%; and a function f such that

f(T'w) = Xi(w) , (60)
for each w € 0, t € R?. Thus
X xg(t) = /f (T *w) g(s)ds (61)
For any t1,--- ,t, € R4 Ap,--- A, €3, let
Qr ={weQ: (X*g9)yir(w) €A,
(X *g)t,4r(w) € An} . (62)
For w € (2, note that 77w satisfies
(X xg)t, (W) € Ar, -+ (X #g)e, (w) € An
Since T is measure-preserving, we have P(2,) = P().

Thus X * g is SSS.

Given the two facts and that there is no dilation, Lemma V.1
is proved by tracking from the input to each output of the
CNN.
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APPENDIX G
PROOF OF THEOREM V.2

Since the input X and Y are SSS, so are the signals at all
input and output nodes of the CNN. Therefore we can apply
the Wiener-Khinchin Theorem to relate the auto-correlation
with the power spectrum.

Consider an SSS process Z that are filtered by some fixed
g € B. Denote W = Z % g. Then we have Ry (0) =

f SW )dw. Note that we have the transfer relation
Sw(w) = Sz(w) - |§(w)? (63)
That is to say,
B (W) = [ Rwlw) ) do (64)

More generally, due to linearity of E, if we have two inputs
Z and Z and a family of filters {g;};cs, we have

IN

o0

(65)

Il
&
R
N
A
N
™
$

With this, we can compare the correlation on the first input
nodes with the outputs of the CNN similar to what we
did in the proof of Theorem III.1. Note that for merging,
the inequalities still hold when ||H§ are replaced with E ||,
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