Integrity Protection for Research Artifacts using Open Science
Chain’s Command Line Utility

Manu Shantharam
San Diego Supercomputer Center
USA
mshantharam@sdsc.edu

Scott Sakai
San Diego Supercomputer Center
USA
ssakai@sdsc.edu

ABSTRACT

Scientific data, its analysis, accuracy, completeness and reproducibil-
ity play a vital role in advancing science and engineering. Open
Science Chain (OSC) is a cyberinfrastructure platform built using
the Hyperledger Fabric (HLF) blockchain technology to address
issues related to data reproducibility and accountability in scientific
research. OSC preserves integrity of research datasets and enables
different research groups to share datasets with the integrity in-
formation. Additionally, it enables quick verification of the exact
datasets that were used for a particular published research and
tracks its provenance.

In this paper, we describe OSC’s command line utility that will
preserve the integrity of research datasets from within the re-
searchers’ environment or from remote systems such as HPC re-
sources or campus clusters used for research. The python-based
command line utility can be seamlessly integrated within research
workflows and provides an easy way to preserve the integrity of
research data in OSC blockchain platform.

ACM Reference Format:

Manu Shantharam, Kai Lin, Scott Sakai, and Subhashini Sivagnanam. 2021.
Integrity Protection for Research Artifacts using Open Science Chain’s
Command Line Utility. In Practice and Experience in Advanced Research
Computing (PEARC °21), July 18-22, 2021, Boston, MA, USA. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3437359.3465587

1 INTRODUCTION

The quest for scientific advancement in the fields such as astron-
omy, medicine, and weather modeling has resulted in a sustained
growth of data collection, exploration and analysis. Factors such
as the availability of large, complex scientific instruments and sen-
sor networks, and the accessibility of increasingly powerful HPC
systems and campus clusters to process, run data-intensive prob-
lems, and generate petabytes of data are primary contributors for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PEARC °21, July 18-22, 2021, Boston, MA, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8292-2/21/07...$15.00
https://doi.org/10.1145/3437359.3465587

Kai Lin
San Diego Supercomputer Center
USA
klin@sdsc.edu

Subhashini Sivagnanam
San Diego Supercomputer Center
USA
sivagnan@sdsc.edu

such sustained growth. Through tests, experiments and hypothe-
ses, researchers generate multiple datasets as byproducts of their
own research, and those datasets are then used and cited in other
research works. During the research process multiple researchers
may work on the same dataset and produce data as part of their
research workflow. Investigators working with these evolving data
require techniques to check data integrity, track its provenance, as
well as provide mechanisms for independent verification for three
reasons: (1) to have confidence in the published data / research
when building upon prior research, (2) to ensure reproducibility
of results, and (3) to ensure uncompromised and accurate data
when dealing with a complex workflow with data being generated
and moved at various stages of the workflow or in a collaborative
environment.

Open Science Chain (OSC). The NSF-funded Open Science
Chain (OSC) [4, 9] provides a consortium blockchain platform to
store verification information about scientific dataset and provide a
unique identifier for the information stored on blockchain. OSC con-
sists of a portal (OSC portal) and a blockchain platform (built using
open-source Hyperledger Fabric platform HLF[6]). The OSC por-
tal, integrated with CILogon[7], facilitates metadata contribution
and dataset information search through a browser-based interface.
Researchers have the ability to contribute information about their
dataset including metadata information such as title, description,
keywords, DO, and funding agency, and cryptographic information
(SHA256) of their dataset that can be used to verify the authenticity
of the dataset by other researchers using the same dataset. OSC
does not store actual data but only the metadata and verification
information that gets stored as a transaction in the blockchain. The
“append” structure of the blockchain prevents altering or deleting
previously entered data, allowing the information regarding the
dataset to be verifiable and immutable that is essential for repro-
ducibility and audits. OSC’s HLF configuration [6] setup includes
three distributed peers and orderers, in a “raft” [2] configuration,
and a certificate authority to manage private keys and certificates
of the identities. Refer [8, 9] for a detailed description of the com-
ponents, the overall architecture and the workflow of the existing
OSC.

At present, the OSC portal is the only way to contribute (add
metadata information including cryptographic hash of their data
which gets stored as a transaction to blockchain), update (only the
user who contributes can update the transaction that gets stored in

https://doi.org/10.1145/3437359.3465587
https://doi.org/10.1145/3437359.3465587

PEARC 21, July 18-22, 2021, Boston, MA, USA

Manu Shantharam, Kai Lin, Scott Sakai, and Subhashini Sivagnanam

~

—)[Command Line Utility]

HPC Resource / Remote

Rest APIs

Py

Chaincode

P,

Chaincode

Server

generated data

Chaincode

Figure 1: OSC Overview with the Command Line Utility.

the blockchain) or query (search through the entries in blockchain)
metadata information. However, to use OSC in its current form:

o The dataset to be contributed should be present on the ma-
chine from which the portal is accessed. This requirement
is particularly restrictive to enable wide adoption of OSC
within HPC and cluster computing community as datasets
typically reside on remote systems.

e OSC operations (contribute, update, query) through the por-
tal cannot be automated or embedded within research work-
flows. Projects with complex data pipelines such as those
used in science gateways involve cross-institutional collab-
orations with a lot of data movement. It is necessary to
ensure data integrity and authenticity through an indepen-
dent, automatic mechanism that blends with the project’s
data pipeline.

e Large datasets cannot be contributed through the browser,
which is typically present in many scientific simulations and
data-driven research.

In order to accommodate using OSC from within the researchers’
work environment, we have designed and developed a command
line utility to perform operations similar to what is supported by
OSC portal and provide the ability for automatic data integrity
and authenticity verification from remote systems. The remaining
sections of the paper describe the Command Line Utility (CLU),
its interfaces, current functionalities, and usage with illustrative
examples.

2 COMMAND LINE UTILITY (CLU)

We envision the CLU to enable wider adoption of the OSC tech-
nology within the data-driven and scientific research communities
that work on remote systems such as HPC or campus computing
clusters. Typically, users from such communities perform compu-
tation, generate and store data within the remote systems. The
CLU provides seamless and easy way to contribute this data to
OSC without going through the web portal, which has certain lim-
itation as described in the previous section. We have developed

a Python based Command Line Utility that provides the following
functionalities:

e compatible with various operating systems such as Mac/Linux,
Windows.

e supports data contribution, updates for data modification as
well as query facilities, similar to the ones provided by the
web portal.

e provides data contribution with options to include or exclude

certain files or directories within a nested directory structure.

enables large data contributions (greater than 1 GB), which
is common within data-driven and scientific research.

Use cases: The following use cases would benefit from having OSC
as an independent verification platform to increase the credibility
of the research process:

o Integrity pipeline within HPC systems: A typical job workflow
in an HPC system involves copying and moving data be-
tween different storage devices such as local solid state drives
(SSDs), scratch and parallel file system during a scientific
simulation. Maintaining and monitoring data integrity infor-
mation manually during various stages of the job pipeline is
cumbersome and error prone.

o Continuous integrity and provenance tracking: Collaborative
data platforms such as SciCrunch [5] or science gateways
such as CitSci.org [1] continually update their datasets and
analyses. Keeping track of the provenance of datasets helps
visualize its evolution and monitoring its integrity informa-
tion increases trustworthiness of the analyses.

The CLU provides mechanisms to seamlessly integrate OSC with
these use cases. Figure 1 provides an overview of the OSC with CLU
and illustrates the interactions between the OSC components and
its users. The following is an example workflow for contributing or
updating metadata to the OSC blockchain using the CLU:

(1) user runs an experiment on a remote system.

(2) the experiment generates data on remote system as part of

the researchers’ scientific workflow.

Integrity Protection for Research Artifacts using Open Science Chain’s Command Line Utility

bash-3.2% ./esc_client.py —help
usage: osc_client.py [-h] [—template TEMPLATE] [-—oscid 0SCID] [—token TOKEN] operation

positional arguments:
operation

PEARC 21, July 18-22, 2021, Boston, MA, USA

'contribute', 'query' or 'update'. For update, first perform

a query and then modify the saved yaml file.

optional arguments:
-h, —help

show this help message and exit

—template TEMPFLATE template file is mandatory for the contribute and update

operations
—oseid OSCID
—token TOKEN

osc—id is mandatory for the guery operation
pass the authorization key obtained from the 0SC Portal.

Token is required for contribute and update operations

Figure 2: Command Line Utility options.

MANDATORY (One of Files or Directories)

List of files (start with '— ')
Files:

- fUsers/manul729/sdsc/publications/pearc2l/paper. tex

List of directories (start with '- ').

Note that all files and directories within the listed directories will be included

Directories:

- fUsers/manul729/sdsc/osc/osc-hfl/config/

— /Users/manul729/sdsc/osc/0SC-CLI/

A list of files and directories to exclude during contribution (start with '- '}

Excludelist:

— fUsers/manul729/sdsc/osc/0SC—CLI/README.txt

MANDATORY — Title of the contribution

Include the title after ": " in the same line

Title: testmarlB2621a

Descriptien of the contributionm
Include the descriptien after ": " in the same line
Description:

Keywords for identifying the dataset contribution
Include a comma separate list of keywords after ": " im the same line

Keywords: data

Figure 3: Template for contributing information related to a dataset.

(3) user logs-on to the OSC portal and obtains the authorization
token that is used for identification with the CLU. The portal
generates a unique per-user, session based token with a
preset expiration time.

(4) user provides the token, datasets, metadata information re-
lated to the datasets as input to the CLU.

(5) The CLU calls REST APIs to submit relevant information in-
cluding the per-file SHA256 checksum to the OSC blockchain
and provides an appropriate response to the user.

As part of the CLU, we provide a self explanatory template file
that can be modified and used for metadata contribution / modi-
fication [3]. Figure 2 shows various options available while using
the python-based CLU. The operation parameter can have one of
the values contribute, update, or query corresponding to contribute,
update and query OSC operations. The operations contribute and
update can only be performed by an authorized users, whereas a
query can be performed by anyone interested in browsing the OSC
datasets.

2.1 Contributing dataset information

The users of OSC can contribute datasets programmatically using
the CLU. Algorithm 1 provides the pseudocode of the contribute

operation. The algorithm takes as input the metadata information
of the research datasets as well as a list of files to be contributed
and the authorization token. The data is loaded from the yaml file,
the integrity information (hash) is computed for the list of files, and
all data including the file manifest is converted into the json format
acceptable by the OSC REST APIs. The converted data along with
the token is submitted over an SSL connection to the OSC Contribute
REST API and its response is stored as a json file within the current
working directory. The contributed information can also be viewed
on the OSC portal. Users can contribute metadata information of a
dataset using the CLU as: osc_client.py contribute --template file.yaml
[--token tok], where --template takes the name of the file having the
metadata information in yaml format and --token is the command
line parameter used to authorize the user (as in step 3 of Figure
1). Figure 3 provides a snapshot of an example contribute yaml
file. Unlike the OSC portal, the CLU provides options to contribute
metadata in terms of both files and directories. The ExcludeList is
a new feature of the CLU where a user can specify a list of files
and directories that have to be excluded from the current set of
contributions.

PEARC ’21, July 18-22, 2021, Boston, MA, USA

Algorithm 1 Contribute (token, file.yaml)

1: data = yaml.load(file.yaml)

2. files = getAllFiles(data)

3: jsonData = convertToJson(data)
4: manifestList = []

5. idx =0

6: for f € files do

7. manifestList[idx] = hash(f)

8 ddx++

9: end for

10: jsonData.append(mani festList)

—_
—_

. checkMandatoryFields(jsonData)

. contributeData = convertToRESTFormat(jsonData)

: responseData = submitData(contributeData, token) {submit
the data over SSL using requests.post python API}

14: saveAsOscld(responseData) {save the response as file with file-

name as <osc-id>}

-
[

2.2 Querying and updating dataset Information

The use of query and update operations programmatically enables
seamless integration of OSC as an independent data integrity and
provenance verification platform within scientific workflows that
require frequent data generation and monitoring provenance.
Query. The query operation provides users the ability to search
for detailed information such as the metadata and integrity infor-
mation related to a dataset stored within OSC. We can query a
contribution using: osc_client.py query --oscid osc-id, where --oscid
takes the oscid, the OSC specific unique identifier of the contri-
bution. Further, a query is used during the process of updating a
contribution. Once a user executes a query operation with a valid
osc-id, the corresponding contribution is stored as an easy-to-ready
yaml file which can be used to update the contribution. The query
will also be expanded to include email address as a search option.
Update. The datasets used in research evolve over time as new
experiments / algorithms use existing data and produce new data.
Users can update the metadata information of this data or modify
the list of files using the update operation. This can be achieved
using the CLU: 1) query the original contribution using the osc-id
that stores the response as an yaml file, and 2) modify the yaml
file appropriately and then use the following to perform an update
operation: osc_client.py update --template file.yaml [--token tok],
where --template takes the name of the generated yaml file. The
functionality of the update operation is very similar to the con-
tribute operation, except: it (1) updates an existing contribution
and (2) stores the diff of the original and the updated list of files in
the current working directory, i.e., records the list of new, updated,
deleted, and unmodified files compared to the previous contribution
in a changes.txt file. An update operation is appended to the OSC
blockchain while keeping a trail of all previous transactions cap-
turing provenance of changes related to the original contribution.

The described CLU process can be integrated into researchers’
workflow on remote systems and enable storing the integrity infor-
mation of the scientific artifacts used in the research in a blockchain
from within the researchers’ environment. Based on researchers’

Manu Shantharam, Kai Lin, Scott Sakai, and Subhashini Sivagnanam

feedback, we will further refine CLU and support other metadata
entities that might be of interest to the scientific community.

3 CONCLUSION

We describe the OSC Command Line Utility (CLU), a Python based
command line tool to enable researchers to contribute, modify or
query information about artifacts within OSC from the researchers’
work environment including remote systems such as HPC and
campus clusters. We envision the CLU to lower the complexity
barrier for the use of OSC as a platform for independent verification
of authenticity and integrity of scientific data, and to promote
adoption within the research community that use remote systems
for compute, storage and data analysis. Further, the CLU provides
the ability to perform automatic data integrity and authenticity
checks that could be seamlessly integrated with projects involving
workflows with complex data pipelines. As part of our ongoing
and future work, we will be working with a few science gateways
such as CitSci.org and end users of HPC resources (e.g. Expanse at
SDSC) to help incorporate CLU into their research workflows.

ACKNOWLEDGMENTS

Open Science Chain is supported by the National Science Founda-
tion under Award Number 1840218.

REFERENCES

[1] [n.d.]. CitSci.org. https://citsci.org

[2] [n.d.]. HLF raft Protocol. https://hyperledger-fabric.readthedocs.io/en/release-
1.4/orderer/ordering_service.html#raft?

[3] [n.d.]. Open Science Chain Git Repository. https://github.com/OpenScienceChain

[4] [n.d.]. OSC. https://www.opensciencechain.org

[5] [n.d.]. SciCrunch Infrastructure. https://scicrunch.org

[6] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos
Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Lavent-
man, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Man-
ish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou,
Marko Vukolic, Sharon Weed Cocco, and Jason Yellick. 2018. Hyperledger fabric:
a distributed operating system for permissioned blockchains. In EuroSys 2018.
Association for Computing Machinery, New York, NY, 1?15.

[7] J. Basney, H. Flanagan, T. Fleury, J. Gaynor, S. Koranda, and B. Oshrin. 2019.
CILogon: Enabling Federated Identity and Access Management for Scientific
Collaborations. In Proceedings of the International Symposium on Grids and Clouds
(ISGC), PoS(ISGC2019)031. https://doi.org/10.22323/1.351.0031

[8] Manu Shantharam, Scott Sakai, Kai Lin, and Subhashini Sivagnanam. 2020. To-
wards building a Fault Tolerant and Secure Open Science Chain. In Gateways 2020
Posters. Virtual.

[9] S.Sivagnanam, V. Nandigam, and K. Lin. 2019. Introducing the Open Science Chain
- Protecting Integrity and Provenance of Research Data. In PEARC19 Proceedings.
Chicago, IL.

https://citsci.org
https://hyperledger-fabric.readthedocs.io/en/release-1.4/orderer/ordering_service.html#raft?
https://hyperledger-fabric.readthedocs.io/en/release-1.4/orderer/ordering_service.html#raft?
https://github.com/OpenScienceChain
https://www.opensciencechain.org
https://scicrunch.org
https://doi.org/10.22323/1.351.0031

	Abstract
	1 Introduction
	2 Command Line Utility (CLU)
	2.1 Contributing dataset information
	2.2 Querying and updating dataset Information

	3 Conclusion
	Acknowledgments
	References

