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Gastrointestinal pathogens employ a variety of mechanisms to

damage host tissue, acquire nutrients, and evade treatment. To

supplement broad-spectrum antimicrobials, there has been

increasing interest in designing molecules that target specific

taxa and virulence processes. Excitingly, these antivirulence

therapies may be able to be synthesized by gut-resident

microbes, thereby enabling delivery of these drugs directly to

the spatial and temporal site of infection. In this review, we

highlight recent progress in our understanding of small

molecules that inhibit specific virulence mechanisms. We

additionally discuss emerging methods to discover pathogen-

specific and mechanism-specific peptides and small proteins.

Finally, we cover recent demonstrations of probiotics

engineered to produce antimicrobials in response to pathogen-

specific cues in the gut. Collectively, these advances point to

an emerging integrative approach to treatment of

gastrointestinal diseases, comprising microbiologists, peptide

chemists, and synthetic biologists.
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Introduction
Microbial pathogens cause significant suffering, mortal-

ity, and economic cost as a consequence of infection.

Antimicrobials that inhibit processes essential to broad

groups of bacteria have greatly improved quality of life,

life expectancy, and agricultural productivity. These

molecules have largely eliminated the threat of infection

that once loomed over everyday life and common proce-

dures, such as dental work, surgeries, and childbirth.
www.sciencedirect.com 
Unfortunately, extended antibiotic use has led pathogens

to evolve resistance [1,2], and many antibiotics cause

collateral damage to the commensal bacteria inhabiting

our body [3], the beneficial effects of which are only

beginning to be unraveled [4]. This poses a strong need

for new strategies to combat pathogens without affecting

beneficial microbes.

Decades of basic pathology research, coupled with more

recent techniques including genomics and proteomics,

has disclosed the molecular effectors of pathogenesis and

detailed how these ‘virulence factors’ operate. Elucida-

tion of these mechanisms has suggested approaches to

therapy based on targeted inhibition of virulence factors,

also known as ‘antivirulence’ therapies. By inhibiting

virulence factors, antivirulence therapies synergize with

traditional small-molecule antibiotics, or can be effective

at treating disease on their own. Antivirulence therapeu-

tics encompass a wide biochemical diversity, from small

molecules to peptides and large proteins. A significant

challenge with tackling GI infections, however, is achiev-

ing targeted delivery. This is because the gut is protected

by the highly acidic stomach and has the highest concen-

tration of proteases in the human body. Therefore, in situ
biosynthesis of antivirulence drugs in the gut by engi-

neered microbes is a promising strategy (Figure 1). In this

review, we survey recent developments in the discovery

of antivirulence small molecules, peptides, and small

proteins, and our ability to engineer commensal microbes

that secrete antivirulence therapeutics directly at the site

of gut infections.

Small molecule antivirulence therapies
Pathogenic bacteria and fungi employ a multitude of

strategies to infect their host. Common mechanisms of

pathogenesis include quorum sensing (QS), biofilm for-

mation, and toxin production (Figure 1). Targeting these

virulence factors allows for much greater precision when

fighting infections. Anti-virulence strategies in general

have been covered in several excellent reviews [5��]; here,

we provide examples of anti-virulence strategies that can

be deployed by engineered probiotics as a new paradigm

for treating infectious diseases in the gut.

QS systems are of particular interest, as they often regu-

late the other virulence pathways. The biology of QS

systems has recently been reviewed [6]. Pathogens sense

when they have attained a high abundance in their host
Current Opinion in Physiology 2021, 1:100453
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Figure 1

Engineered Therapeutic Microbe
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Mechanisms employed by gastrointestinal pathogens and engineered therapeutic microbes.

Pathogens utilize several virulence mechanisms including quorum sensing, biofilm formation, and toxin synthesis. Engineered microbes can target

these virulence factors and the pathogen itself by synthesizing therapeutic molecules. Synthesis and release of the therapeutics can be regulated

by environmental signals associated with infection (i.e. QS molecules derived from the pathogen, inflammatory and disease markers).
via chemical messengers known as autoinducers, which

activate virulence pathways at a sufficient concentration.

By interfering with these systems, it may be possible to

hinder virulence and render the pathogen harmless.

There are two primary methods that have been used to
Current Opinion in Physiology 2021, 1:100453 
inhibit QS. First, QS-disrupting small molecules, which

bind to the autoinducer receptors on the pathogen cell

surface are highly effective [7]. Recently, Ahmed et al.
showed that the plant-derived phenolics trans-cinnamal-

dehyde and salicylic acid disrupt quorum sensing in
www.sciencedirect.com
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Pseudomonas aeruginosa infection due to their structural

similarity to acyl homoserine lactones, whose primary

activity is to downregulate the expression of P. aer-
uginosa’s virulence factors [8]. As an alternative strategy,

autoinducer-degrading enzymes can be employed [9].

Although both strategies show promise, QS inhibition-

resistant organisms may arise through selective pressure,

as the pathogens that can communicate and organize

themselves have a greater chance of survival than the

lone pathogen [10]. In fact, some evidence suggests that

QS inhibitor resistance arises rapidly in P. aeruginosa,
where mutations in the mexR gene, encoding a repressor

of multidrug efflux pumps, led to substantially increased

efflux of the quorum quenching molecule brominated

furanone C-30 [11].

Some pathogens form biofilms to aid in colonization and

act as a barrier to the immune response of the host [12].

Biofilms provide another potential drug target, as their

disruption effectively reduces the colonization capacity of

pathogens. Sicard et al. showed that N-acetyl-glucos-
amine, a mucin sugar, inhibits biofilm formation in the

invasive LF82 strain of Escherichia coli by inactivating the

NagC transcriptional regulator [13]. Dwivedi et al. showed

that L-fucose, another sugar found in human mucin,

reduces Campylobacter jejuni biofilm formation by, perhaps

counterintuitively, reducing stress on the organism, as

environmental stress can trigger biofilm formation as a

protective mechanism [14�]. A reduction in biofilm for-

mation and virulence factor production by Candida albi-
cans was observed following exposure to morin, a small

molecule commonly found in medicinal plants [15].

Additional studies have shown similar results with a

variety of small molecules and bacterial pathogens [16].

Research on fungal biofilm disruption is less extensive,

but patents on small molecules with fungal anti-biofilm

activity have been reviewed by Serafini et al. [17].

Toxins are responsible for most of the observable signs of

illness during infection due to their ability to damage host

cells. Therefore, it is also possible to combat GI patho-

gens by inhibiting the toxins they produce. Komiazyk

et al. showed that a variety of plant-derived small mole-

cules strongly inhibit Vibrio cholerae enterotoxins and

growth without inhibiting growth of a beneficial organ-

ism, Lactobacillus rhamnosus, at high extract concentra-

tions [18]. Another example of toxin neutralization com-

prised an engineered l phage, which expressed repressor

genes that neutralized E. coli’s Shiga toxin at the genetic

level, allowing the potentially pathogenic bacteria to be

shed from the gastrointestinal tract before toxin produc-

tion could take place [19].

Together, the examples presented here build a compel-

ling case for the effective treatment of infectious diseases

of the gut using small molecules that inhibit virulence.

Since many of these molecules are naturally occurring,
www.sciencedirect.com 
there is potential for their biosynthetic pathways to be

placed in an engineered probiotic, enabling drug synthe-

sis and delivery directly at the site of infection.

Design of pathogen-targeting peptides and
small proteins
Treatment of gut pathogens has traditionally relied on

small molecules. As an alternative, polypeptides are

diverse in their mechanisms of action, structure, and

specificity. AMPs can target narrow or broad taxonomic

groups, and can also exhibit immunomodulatory or anti-

biofilm activities [20,21]. Additionally, AMPs often work

synergistically and are slower to drive resistance [22–24].

Traditionally, AMPs have been discovered from natural

sources, either from organisms that exhibit antimicrobial

activity, or from panning of natural AMP reservoirs such

as unculturable soil and marine bacteria. However, more

recently, screening of synthetic peptide libraries and

rational design have gained popularity. The potential

for AMPs as therapeutics was extensively reviewed by

Magana et al. [24], and their clinical efficacy was evaluated

by Koo and Seo [25]. Here, we focus on methods for AMP

discovery, with emphasis on targeting specific virulence

mechanisms. Advances in peptide design and synthesis

have created a variety of scaffolds and design motifs to

build upon, leading to the development of short linear

peptides, cyclic peptides, DARPins, affibodies, anticalins,

adnectins, and nanobodies that target gut pathogens [26]

(Figure 2). A comprehensive list of peptides and small

proteins targeting gut pathogens is presented in Table 1.

Linear peptides can be easily produced by synthetic

chemistry or biological machinery. Their large chemical

diversity facilitates the identification of peptides with

high affinity and specificity for a desired target. Among

the various de novo AMP development strategies, phage

display is the most utilized. AMPs have been identified

via phage display to target the virulence factors of Clos-
tridium difficile [27] and Helicobacter pylori [28], as well as

the cell wall biosynthesis enzymes of P. aeruginosa [29].

Using the same method, Pini et al. developed a non-

natural antimicrobial peptide, M33, that limits lipopoly-

saccharide (LPS)-mediated cytokine release associated

with P. aeruginosa, Klebsiella pneumoniae, and Acinetobacter
baumannii. As a tetra-branched peptide, M33 features

high resistance to proteolytic degradation, serum stability

over 24 hours, and an EC50 of 3.8 � 10�8 M for prevention

of TNF-alpha release by LPS-activated macrophages

[30��].

Cyclic AMPs feature a higher therapeutic efficacy com-

pared to their linear counterparts, for their constrained

structure enhances their biorecognition activity and pre-

vents degradation by peptidases [31]. A number of prom-

ising candidates have been designed via sterical

constraining of linear AMP precursors and by modifying

native cyclic defensins [25]; examples include
Current Opinion in Physiology 2021, 1:100453
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Figure 2

(a)

(b)

(g) (h) (i) (j)

(c) (d) (f)
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Peptide and small protein scaffolds utilized to target GI pathogens.

3D renderings (to scale) of (a) Fab fragment of the Clostridium difficile Toxin B-targeting monoclonal antibody bezlotoxumab (4NP4), (b) Anticalin

(Siderocalin) targeting Anthrax Bacillus’ Petrobactin (6GQZ), (c) Ankyrin repeat protein (DARPin) (2QYJ), (d) Adnectin (4OV6), (e) Llama nanobody

targeting Archaeoglobus fulgidus’ protease (5G5R), (f) Affibody targeting ZTaq (2B89), (g) Peptide TFLPQPRCSALLRYLSEDGVIVPS (inhibitor of

Helicobacter pylori urease holoenzyme), (h) Peptide TWIKKKKWKKAK, (i) Peptide CRVFLCGCGGG, and (j) Peptide EGWHAHTGGGC (inhibitor of

C. difficile Toxin A). Peptides (g)–(j) were obtained via atomistic molecular dynamics simulation in explicit solvent.
peptidomimetics based on antimicrobial peptide prote-

grin I against P. aeruginosa [32�], and a cyclic mini-beta-

defensin analog against P. aeruginosa, E. coli, and

Enterococcus faecalis [33]. A popular target of cyclic AMPs

is QS-mediated virulence. Auto-inducing peptides per-

form similar roles in quorum sensing as the small-mole-

cule autoinducers mentioned above. Cyclic auto-inducing

peptide (AIP) mimetics were therefore designed to

inhibit quorum sensing in Staphylococcus aureus [34,35].

Increasing in size and complexity from linear and cyclic

peptides are a variety of engineered protein scaffolds that

blend the high affinity and selectivity of antibodies with

the ease of production and stability of small peptides. The

most promising scaffolds are based on natural ligand-

binding proteins and include DARPins (‘designed

ankyrin repeat proteins’, 14�17 kDa), affibodies (based

on the Z domain of S. aureus protein A, 7 kDa), anticalins

(based on lipocalins, 18 kDa), and adnectins (based on the

fibronectin type III domain, 10 kDa) [26]. DARPins have

high affinity, stability, and low immunogenicity. Ultra-

potent DARPins against C. difficile virulence factor TcdB

were found via phage display and functional screening

[36]. Affibodies have excellent tissue penetration proper-

ties, high stability, and solubility, which makes them ideal

for diagnostic and purification applications [26]. There

have been recent advances in therapeutic affibodies,

though to our knowledge no affibodies targeting gut

pathogens have been described to date. It is interesting

to note that anti-TNF-alpha affibodies have been
Current Opinion in Physiology 2021, 1:100453 
secreted by engineered L. lactis in an ex vivo model for

IBD — bridging the gap between designer protein scaf-

folds and engineered probiotics [37]. Anticalins differ

from other protein scaffolds in that their parent structure,

lipocalin, is naturally found circulating in human plasma

[26]. Anticalins that inhibit P. aeruginosa and Bacillus
anthracis siderophore activity, which aids in obtaining

iron during infection, were discovered through combina-

torial protein design based on human siderocalin [38�]. A

number of adnectins have performed well in pre-clinical

and clinical trials, largely targeting extracellular or cell

surface displayed targets [26]. As with affibodies, adnec-

tins represent a potent class of peptide scaffolds that have

been underutilized in targeting gut pathogens. Yang et al.
[39] used yeast surface display to engineer a bispecific

neutralizing adnectin against perfringolysin O (PFO), a

bacterial pore-forming protein that is involved in the

delivery of exogenous proteins. While their primary

objective was to increase the therapeutic window of

PFO-mediated delivery of large therapeutic molecules,

their work has interesting implications for treatment of

Clostridium perfringens infections, where PFO is a key

virulence factor [40].

Intermediate between small peptides and large proteins

are nanobodies, which are single domain antigen-target-

ing proteins derived from camelid antibodies. Their

limited size (15 kDa) compared to traditional antibodies

(150 kDa) lends to easier production, higher solubility,

and enhanced tissue penetration. Nanobody libraries can
www.sciencedirect.com
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Table 1

Peptides, peptidomimetics, and small proteins developed as inhibitors of gut pathogen virulence factors

Type of peptide Discovery platform Pathogen targeted Molecular target Peptide structure Reference

Linear
Phage display Clostridioides difficile TcdA and TcdB

EGWHAHTGGGC
[27]HQSPWHHGGGC

Linear
Phage display Helicobacter pylori

Urease

Holoenzyme

TFLPQPRCSALLRYLSEDGVIVPS
[28]YDFYWW

Linear DIPPS (direct in-gel profiling of protease

specificity assay)

Helicobacter pylori HrtA 2-Abz-AQRVAF-Y(NO2) [45]

Linear Phage display, consensus Pseudomonas aeruginosa MurF TMGFTAPRFPHY [29]

Branched Phage display, rational modifications Pseudomonas aeruginosa, Klebsiella

pneumoniae, Acinetobacter baumannii

LPS KKIRVRLSA [30��]

Linear amphiphile,

nanotube self

assembly

Rational design of secondary structure Pseudomonas aeruginosa, Candida

albicans

Biofilms WGIRRILKYGKRSAAAAAAK

(C19)-CONH2

[46]

Cyclic

Rational design based on CagL exposed loop structure Helicobacter pylori
CagL binding to

human integrins

Cyclic-RGDL-dA

[47]Cyclic-RGD-dL-A

Cyclic-RGD-dF-A*

Cyclic peptidomimetic

Peptidomimetic library screening based on protegrin I Pseudomonas aeruginosa LptD

Cyclic-AS-dP-PTWIX-Orn-dX-

XWXX*
[32�]Cyclic-TWIXKXXWXXAX

Cyclic-TWLKKRRWKKAK

Cyclic Intracellular cyclic peptide library SICLOPPS (split intein-

mediated circular ligation of peptides and proteins) in vivo
Staphylococcus aureus

Replisome beta-

sliding clamp

Cyclic-CRVFLCGC
[48]Cyclic-CRSQGLFK

Cyclic Modifications of truncated native auto-inducing peptide Staphylococcus aureus ArgC AIP binding

site

Cyclic-CSSLF [35]

Cyclic peptidomimetic Modifications of simplified scaffold from Muir lab Staphylococcus aureus ArgC AIP binding

site

Cyclic-Phac-C-n7O-Cpa-3fF [34]

Cyclic Rational design based on beta-defensins Pseudomonas aeruginosa, Escherichia

coli

N/A Cyclic-CPIFTKIQGTC-GGRRKK [33]

DARPin Phage display Closridioides difficile TcdB CROP

domain

[36]

Anticalin Phagemid display Pseudomonas aeruginosa Pyoverdine types I-

III, and pyochelin

‘Tetra-calin’, 4 anticalins fused

together
[38�]Anticalin Phagemid display, combinatorial protein design

based on human siderocalin (Scn/Lcn2, NGAL)

Bacillus anthracis Petrobactin ‘Petrocalin’

Adnectin Yeast surface display Clostridium perfringens PFO [39]

Nanobody Immunized Camel phagemid library Acinetobacter baumannii Bap [49]

Nanobody Immunized Camel phagemid library Enterohemorrhagic Escherichia coli TirM [50]

Nanobody Immunized Llama phage display library Closridioides difficile SLP [42]

Nanobody Immunized Alpaca phage display libraries Closridioides difficile TcdA and TcdB Tetra-valent fusion of ABBA

nanobodies

[43,44��]

Nanobody Semi-synthetic Llama phage display library Staphylococcus aureus SEB [51]

Nanobody Naive Camel phage display library Vibrio cholerae LPS [52]

Nanobody Semi-synthetic Llama phage display library Vibrio cholerae Cholera toxin [51]

Cyclic-RGD-dF-A*, * = known affinity ligand for integrin alpha-V-beta-3.

Cyclic-AS-dP-PTWIX-Orn-dX-XWXX*, * = Murepavadin (POL7080) has FDA Qualified Infectious Diease Product designation for several indications, where X = L-2,4-diaminobutyric acid.
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6 Microbiome
be generated synthetically or sourced from immunized or

naive camelids. Phage and yeast display are the most

popular methods for de novo discovery of anti-microbial

nanobodies [41]. A number of nanobodies that neutralize

the virulence factors of C. difficile have been identified by

phage display [42,43,44��].

Taken together, the potency of antimicrobial peptides

and proteins motivate their use for the treatment of

gastrointestinal infections. Furthermore, the simplicity

with which they can be encoded in DNA (i.e. a single

open reading frame) make them ideal candidates for

production in engineered probiotic microbes.

Engineered probiotic delivery of precision
antimicrobials
Advances in synthetic biology have enabled the develop-

ment of next-generation probiotics (microbes that are

engineered to confer health benefits once administered)

as a new therapeutic modality against gastrointestinal

pathogens (see Figure 1 and Table 2) [53,54�]. These

microbes can be engineered to sense molecules associ-

ated with infection, and in response synthesize therapeu-

tics, such as the antivirulence compounds described

above, directly in the gut from unused dietary material.

Targeting virulence factors such as toxins, surface pro-

teins, and morphological structures (flagella, pilli,

hyphae) has proven to be a powerful antipathogen strat-

egy in engineering next-generation probiotics for treating

infections [55]. In this context, probiotics can be pro-

grammed to inhibit the transcription of the virulence

genes by interfering with quorum sensing. For example,

E. coli Nissle 1917 was engineered to interfere with V.
cholerae (Vc) QS and restrict the transcription of virulence

genes by synthesizing cholera autoinducer 1 (CAI-1) [56],

as high concentrations of CAI-1 inhibit the expression of

cholera toxin and pilus [57]. Furthermore, QS molecules

involved in inter-species interactions can be synthesized

to achieve the same effect. For example, commensal E.
coli NGF-1 was programmed to secrete the Burkholderia
cenocepacia QS molecule cis-2-dodecenoic acid (BDSF) to

block C. albicans’ (Ca) hyphae formation, as Ca uses

hyphae to adhere to and invade epithelial cells [58,59].

Probiotics can also be engineered to neutralize the toxins

secreted by GI pathogens. This strategy may be favored

over inhibition of quorum sensing, as the availability of

QS molecules can regulate processes other than patho-

genesis, and can be shared among different bacterial

species [60]. Initial examples of toxin neutralization have

recombinantly expressed host cell receptors for toxins on

the surface of engineered probiotics, thereby creating a

‘toxin sponge’ [61,62]. In addition to displaying toxin-

binding molecules, engineered probiotics can secrete

them. For instance, the probiotic yeast Saccharomyces
boulardii has been programmed to secrete a tetra-specific
Current Opinion in Physiology 2021, 1:100453 
nanobody that binds and inactivates both of the C. difficile
toxins TcdA and TcdB [44��].

Another promising strategy is blocking the pathogen’s

adhesion proteins, since these proteins facilitate the

pathogen’s attachment to host epithelial cells [63]. This

can be achieved by competitive binding of the engi-

neered probiotics to host cells, thus excluding the patho-

gen and mimicking a natural mechanism of anti-pathogen

activity performed by un-engineered probiotics [64,65].

To this end, display of the pathogen’s surface layer

proteins on the surface of engineered probiotics is a

successful strategy [66��,67]. However, care must be

taken as bacterial surface layer proteins also have impacts

on the immune system and cell proliferation [68,69].

By inhibiting biofilm formation, engineered probiotics

can improve the delivery of drugs to biofilm-forming

organisms. For instance, E. coli and Lactobacillus plan-
tarum were engineered to produce biofilm dispersal

agents, such as endonucleases (DNAse I) and glycoside

hydrolases (Dispersin B, PelAh), which degrade the

extracellular DNA and polysaccharides that comprise

P. aeruginosa biofilms [70,71�,72,73]. One of these systems

exploited P. aeruginosa’s QS mechanism to achieve path-

ogen-activated synthesis of the anti-biofilm components,

augmenting the efficacy and the specificity of the thera-

peutic activity through localization with the target [70].

Some E. coli designs were programmed to synthesize

multiple therapeutic compounds (i.e. an antibiofilm agent

and an antimicrobial peptide), thereby increasing efficacy

[70,71�].

Engineered probiotics may also inhibit the growth of

pathogens through production of antimicrobial peptides

(AMPs) and proteins. These agents have various modes of

action, including pore formation, or inhibition of DNA

replication, transcription, translation and cell wall synthe-

sis [74]. Using engineered probiotics as a delivery system

allows localized and sustained release of antimicrobial

agents, and are increasingly viewed as powerful weapons

to defeat gut pathogens. In this context, several E. coli
strains have been engineered to synthesize antimicrobial

peptides against several pathogens, including Salmonella
enterica, shiga-like toxin producing E. coli (STEC)

and vancomycin-resistant Enterococci spp. and V. cholerae
[75–78]. In addition to vegetative bacterial cells, bacterial

spores and yeast cells have been engineered to display

and synthesize antimicrobial peptides, respectively,

showing promising inhibitory activity [79,80]. Using bac-

terial spores or yeast cells could be beneficial, as it would

avoid potential self-toxicity of the AMP to a vegetative

bacterial producer. Furthermore, the simplicity of AMP

synthesis pathways enables simultaneous expression of

multiple antimicrobials from a single probiotic, thereby

targeting different mechanisms and/or pathogens at once,

which is particularly advantageous for polymicrobial
www.sciencedirect.com
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Table 2

Engineered microbial therapies developed against gastrointestinal pathogens

Engineered

therapeutic

microbe

Target pathogen Expression

mode

Therapeutic

molecule

System details Models

tested

Results Reference

Escherichia coli

R1

Escherichia coli

O157:H7

Surface

display

Gb3 receptor Lactose inducible promoter: pLac In vitro, in

vivo

Up to 99% toxin neutralization (in vitro). >14 days

survival (in vivo).

[62]

Escherichia coli

R1

Vibrio cholerae

(Vc)

Surface

display

GM1 receptor Lactose inducible promoter: pLac In vitro, in

vivo

Up to 99% toxin neutralization (in vitro). Increased

survival rate with multiple gavage (in vivo).

[63]

Escherichia coli

Nissle 1917

Vibrio cholerae

(Vc)

Production Cholera

autoinducer 1

(CAI-1)

Constitutive promoter: pfliC In vivo Upto 82% survival rate. Reduction in toxin and Vc

cell load.

[56]

Escherichia coli

NGF-1

Candida

albicans (Ca)

Sense-

respond

production

and secretion

cis-2-

dodecenoic acid

(BDSF)

QS (HPA) sensing: 4-HPA transporter (HpaX),

4-HPA transcription factor (HpaA) and pBC

promoter

In vitro

(Caco-2

cells co-

cultured

with Ca

cells)

�20% decrease in cytotoxicity,�80% decrease in

hypha formation when incubated with bacterial

supernatant (engineered E. coli NGF-1).

[58]

Sacchromyces

boulardii MYA-

796

Clostridioides

difficile (Cdiff)

Production

and secretion

Tetravelant

antibody

Constitutive promoter: pTEF1 secretion tag:

alpha mating factor signal

In vivo

(primary

CDI,

recurrent

CDI)

Prophylactic and therapeutic activity. Reduced

mortality (upto �100% survival in prevention

study), decreased inflammation and tissue

damage, reduced Cdiff load and toxin titers in

feces.

[44��]

Lactobacillus

casei

Listeria

monocytogenes

(Lm)

Surface

display

Listeria

adhesion

protein (LAP)

Constitutive promoter: pAmy secretion tag:

alpha-amylase signal

In vitro, in

vivo

Increased survival rate (�upto 90%), decreased

Lm adhesion, invasion and translocation (in vitro

and in vivo), improved intestinal barrier function

and immunomodulatory action.

[66��]

Escherichia coli

UU2685

Pseudomonas

aeruginosa (Pa)

Sense-

respond

production

and secretion

DNaseI,

Microsin S

QS (AHL) sensing: LasR transcription factor

and LasR-AHL induced promoter: pLasI

motility: CheZ. Degradation tag: YBaQ

secretion Tag: YebF

In vitro �60% reduction in Pa biofilm and�40% reduction

in biofilm viable cells.

[70]

Escherichia coli

Nissle 1917

Pseudomonas

aeruginosa (Pa)

Sense-

respond

production

and self-lysis

Dispersin B,

pyocin S5

QS (AHL) sensing: LasR transcription factor

and LasR-AHL induced promoter pLasI self-

lysis: E7 lysin alanine auxotrophy for plasmid

stability

In vitro, in

vivo (C.

elegans and

mice)

�80% reduction of mature biofilm mass, reduction

in biofilm viable cells (in vitro). Prophylactic and

therapeutic activity. Clearance of Pa cells in mice

model (�77% of the initial load), 98% inhibition of

Pa infection.

[71�]

Lactobacillus

plantarum,

Lactobacillus

rhamnosus

Pseudomonas

aeruginosa (Pa)

Production

and secretion

EngZ cellulase,

NucA nuclease,

PelAh glycoside

hydrolase

Pheromone inducuble promoter: pSppA

secretion tag: Lp_3050 signal

In vitro Reduction inPa biofilmmass by PelAh-secreting L.

plantarum.

[73]

Escherichia coli

Top10

Pseudomonas

aeruginosa (Pa)

Sense-

respond

production

and self-lysis

Pyocin S5 QS (AHL) sensing: LasR transcription factor

and LasR-AHL induced promoter: pLuxR

self-lysis: E7 lysis protein

In vitro Upto �90% Pa biofilm formation inhibition. �99%

Pa cell growth inhibition.

[72]

Escherichia coli

K-12 MG1655

Pseudomonas

aeruginosa (Pa)

Sense-

respond

production

and secretion

Chimeric

bacteriocin

(CoPy)

QS (AHL) sensing: LasR transcription factor

and LasR-AHL induced promoter: pLasI

secretion tag:FlgM signal

In vitro �10^5 Ec cells inhibited the growth of planktonic

Pa cells. Limitations in secretion levels were

observed (i.e. only 5%of the intracellular CoPywas

secreted).

[75]
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Table 2 (Continued )

Engineered

therapeutic

microbe

Target pathogen Expression

mode

Therapeutic

molecule

System details Models

tested

Results Reference

Escherichia coli

Nissle 1917

Salmonella

enterica (Se)

Production

and secretion

Microcin J25 Constitutive promoter: s70-like promoter

and inducible synthetic hybrid-promoter:

pON

In vivo �10-fold reduction in Se load in cecum. Higher

efficiency than enroflocaxin. No significant

alteration in the native microbiota by produced

microcin.

[76]

Escherichia coli

Nissle 1917

Salmonella

typhimurium (St)

Sense-

Respond

production

and self-lysis

Microcin H47 Tetrathionate sensing: TtrR-TtrS two-

component system and constitutive

promoter: pJ23119

In vitro Effective St killing on solid media assays.

Reduction in St fitness on competition assays in

liquid media.

[77]

Escherichia coli

Nissle 1917

Vancomycin

resistant

Enterococcus

spp.

Production

and secretion

Enterocin A,

enterocin B,

hiracin JM79

Inducible synthetic hybrid-promoter: pON

Secretion tag: Vsp tag

In vitro, in

vivo

Three-peptide system reduced Enterecocci

growth (in vitro). Decreased Enterecocci load in

feces.

[81]

Escherichia coli

Nissle 1917

Vibrio cholerae

(Vc)

Sense-

respond

production

and secretion

and self-lysis

Artilysin 85 QS (CAI-1) sensing: CqsS/LuxU-LuxO two

component system and CRISPRi system

arabinose inducible promoter: pBAD

secretion tag: YepF signal Self-lysis: Artilysin

85

In vitro Artilysin produced by �10^8 E. coli Nissle

1917 cells was sufficient for effective killing of

�10^8 Vc cells.

[82]

Bacillus subtilis Listeria

monocytogenes

(Lm)

Spore surface

display

Lactobacillus

rhamnosus p75

protein

(peptidoglycan

hydrolase)

Constitutive promoter: pCotG anchor

protein: CotG

In vitro �Upto 100% activity of displayed p75. Reduction

in viable Lm cells after incubation with CotG-p75.

Surface deformation on Lm cells.

[79]

Saccharomyces

boulardii

CNCM I-745

Listeria

monocytogenes

(Lm)

Production

and secretion

Leucocin C Constitutive promoter: pTEF1 secretion tag:

alpha mating factor signal

In vitro 93% killing of the Lm cells (initial load 6.8 � 10^8

CFU/mL).

[80]

Lactobacillus

lactis NZ9000

Enterococcus

faecalis (Ef)

Sense-

respond

production

and secretion

Enterocin A,

hiracin JM79,

enterocin P

QS (cCF-10) sensing: PrgZ :receptor, PrgX:

repressor, PrgX-cCF-10 regulated promoter:

pPgQ reporter: lacZ secretion tag: usp45

In vitro Decrease in Ef cell viability when cocultured with

three-peptide system.

[78]
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infections [78,81]. Similar to QS-activated antibiofilm

designs, sensors for QS molecules or inflammation bio-

markers can be integrated into AMP-producing probio-

tics, conserving the probiotic’s metabolic resources until

they are needed. In some cases, this sensory-based

approach was also utilized to trigger the release of intra-

cellularly accumulated therapeutic molecules through

self-lysis [82]. Using self-lysis in lieu of secretion facil-

itates biocontainment and can increase the dose of diffi-

cult-to-secrete molecules.

In addition to the proteins described above, clustered

regularly interspaced short palindromic repeat (CRISPR)

and CRISPR-associated genes (Cas) are a promising

alternative strategy for fighting pathogens [83]. As an

innate bacterial defense mechanism against bacterio-

phages and other mobile genetic elements, CRISPR-

Cas systems can be repurposed to target gastrointestinal

pathogens [84]. Guide RNAs can be designed to direct

Cas endonucleases to cleave virulence genes or other

essential genes, eliminating pathogenesis or pathogen

survival in the gut. These large RNA-protein complexes

can be delivered to pathogenic bacteria via engineered

phages. Recently, a CRISPR-Cas13 system targeting

antimicrobial resistance genes (blaIMP-1, metA) was deliv-

ered to carbapenem-resistant E. coli and methicilin-resis-

tant S. aureus in the M13 phage capsid [85�]. The target-

ing specificity and efficiency of this CRISPR-Cas13a

system was demonstrated on a mixed microbial popula-

tion [85�]. Furthermore, engineered probiotics can be

engineered to deliver CRISPR-Cas systems into patho-

gens via horizontal gene transfer. Various CRISPRi

[86,87] and CRISPR-Cas9 [88] systems targeted against

mobile integrins, virulence genes, and antimicrobial resis-

tance genes were implemented in conjugation-proficient

E. coli strains. Conjugation with pathogenic bacteria

enabled transfer of the therapeutic DNA cargo, reducing

antibiotic resistance, growth, and toxicity.

Outlook
The studies collected in this review highlight the need for

synergistic teams of microbiologists, immunologists, che-

mists, synthetic biologists, and clinicians in developing

next-generation ‘living’ therapies against GI infections.

To realize the promise of these therapies, there are

several obstacles that remain, including fundamental

unanswered questions regarding gut pathogenesis, anti-

virulence therapies, and features of engineered commen-

sal microbes. Regarding pathogenesis, mathematical

models of GI infections can provide mechanistic and

biological insights into infection progression, allowing

efficient design of therapeutics [89]. In addition, studying

the ecological dynamics between the gut pathogens and

probiotics through the use of culturomics and genomics

will reveal the molecular interactions between the path-

ogen and the probiotic, informing which probiotic chassis

is most suitable for delivering the therapeutic cargo to a
www.sciencedirect.com 
particular pathogen [90,91]. Regarding antivirulence ther-

apies, elucidating the roles of mixing, diffusion, and

degradation of drugs in the gut is critical to better define

the localization of therapeutic microbes and improve the

biomolecular design of antivirulence therapeutics. Fur-

thermore, the ability of microbes to resist antivirulence

therapies is severely understudied and warrants further

research into their safety profile and off-target effects.

Regarding the engineered microbe itself, additional

knowledge on the kinetics of infection biomarkers is

needed to tailor the sustained release of therapeutics

by microbes [71�,92] in terms of both volume and rate

of secretion [93]. Similarly, model-based approaches can

be harnessed in the design of engineered therapeutic

functions to maximize the synthesis of therapeutic cargo

meanwhile minimizing the metabolic burden introduced

by the engineered functions [94,95]. Functional and

combinatorial screening of transcriptional regulators in

the probiotic chassis will enable graded therapeutic pro-

duction by engineered microbe [96,97]. Furthermore,

probiotics can be engineered with both diagnostic and

therapeutic functions to facilitate ‘point-of-care’ drug

synthesis by the living therapy [98,99]. In addition,

genetic modifications can be introduced to the engi-

neered microbial cells to facilitate their perseverance in

the infection site, for example leading to their binding to

pathogen cells, mucus lining and/or inflamed tissue

[100,101]. Finally, high-throughput assays to measure

the inhibition of virulence activity in vitro and in vivo,
in tandem with rational design approaches, are needed to

accelerate the identification and characterization of ther-

apeutic leads. Responding to these exciting challenges

will demonstrate the effectiveness of scalable, easy-to-

administer probiotics against a broad host of pathogens

and establish them as next-generation therapeutics.
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