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ABSTRACT 
 
Recent hurricane experiences have created concerns for transportation agencies and policymakers 
to find better evacuation strategies, especially after Hurricane Irma—which forced about 6.5 
million Floridians to evacuate and caused a significant amount of delay due to heavy congestion. 
A major concern for issuing an evacuation order is that it may involve a high number of crashes 
in highways. In this study, we present a matched case-control based approach to understand the 
factors contributing to the increase in the number of crashes during evacuation. We use traffic data 
for a period of 5 to 10 min just before the crash occurred. For each crash observation, traffic data 
are collected from two upstream and two downstream detectors of the crash location. We estimate 
models for three different conditions: regular period, evacuation period, and combining both 
evacuation and regular period data. Model results show that, if there exist a high volume of traffic 
at an upstream station and a high variation of speed at a downstream station, the likelihood of crash 
occurrence increases. Using a panel mixed binary logit model, we also estimate the effect of 
evacuation itself on crash risk and find that, after controlling for traffic characteristics, during 
evacuation the chance of a crash is higher than in a regular period. Our findings have implications 
for evacuation declarations and highlight the need for better traffic management strategies during 
evacuation. Future studies may develop advanced real-time crash prediction models which would 
allow us to deploy proactive countermeasures to reduce crash occurrences during evacuation.  

Keywords: Evacuation, crash, case-control, variation of speed, crash prediction.   

INTRODUCTION 

Evacuation has become a major issue for coastal residents, particularly after recent hurricanes in 
the United States. During Hurricane Irma, about 6.5 million residents of Florida evacuated from 
major cities including Key West, Miami, and Tampa. With only two major interstate highways (I-
75 and I-95) available for leaving Florida, evacuation caused a significant amount of traffic 
congestion and crashes affecting the physical and mental health of evacuees. To deal with this 
condition, advanced traffic management strategies are needed to ensure safety and better mobility 
for the evacuees. Thus, evacuation traffic management has been a major concern for transportation 
agencies and policymakers (House of Representatives Florida, 2018) and several strategies have 
been deployed (Murray-Tuite et al., 2017; Murray-Tuite and Wolshon, 2013). However, these 
strategies seem to be less effective to reduce the number of crashes during an evacuation. For 
instance, during Hurricane Irma’s evacuation, about 221 crashes occurred on I-75 between 
September 7 and September 9, 2017 (close to Irma’s landfall day)—which also caused significant 
delay for the evacuees to reach a safe destination. As such, to ensure a safe and efficient evacuation 
of a large number of people, we need to assess the contributing factors causing an increase in the 
number of crashes during evacuation. 
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Researchers have proposed several state-of-the-art methods to assess crash risks with 
applications of proactive traffic management strategies (e.g., variable speed limit, ramp metering, 
etc.)—to reduce the number of crashes (Hossain et al., 2019b). However, these studies investigated 
only regular traffic conditions where traffic flows show predictable patterns. Although a significant 
number of studies has been made for crash risk analysis and prevention, studies recognizing and 
investigating safety issues associated with evacuations hardly exist. No study has investigated the 
factors which cause an increase in the number of crashes during a hurricane evacuation. In this 
study, we seek to fill this gap by assessing evacuation crash risks based on real-world hurricane 
evacuation data.  

During an evacuation period, traffic flow does not show any regular time-dependent 
variations such as heavy traffic during morning and evening peak hours and weekdays. Instead, it 
shows unpredictable patterns, and most of the time major evacuation routes sustain a heavy 
demand all day, causing drastic change in speed and unstable traffic stream. Previous studies have 
found that unstable traffic flow and large variation of traffic speed are two key factors contributing 
to highway crashes (Golob et al., 2004; Tanishita and van Wee, 2017). However, these studies are 
limited to the peak hour traffic analysis where traffic congestion is predictable and sustains over a 
short period of time. Moreover, during hurricane evacuation, a large number of people are forced 
to reach a safe destination as early as possible causing long-term congestion, in such conditions 
drivers are more likely to make perception-related errors. In this study, we are conducting a macro-
level analysis to understand the influence of different factors on crash risk rather than individual 
driver-level behavior.     

This study seeks to understand the impact of hurricane evacuation on crash risks. We 
analyze the relationship between traffic state (speed, occupancy, and volume) variations with the 
likelihood of crash occurrence during hurricane evacuation. We also estimate the impact of these 
variables on crash risk in a non-evacuation period and compare the result with an evacuation 
period. To conduct the study, we have collected traffic and crash data for Interstate 75 (I-75) 
between September 3 and September 16, 2017, including the evacuation period of Hurricane Irma, 
from the Regional Integrated Transportation Information System (RITIS) database. We have also 
collected the data for the non-evacuation period from August 1 to August 31, 2017. 

First, we analyze evacuation traffic data, to understand the relationship between traffic state 
variables and crash occurrence at a macroscopic level. Next, we design two case-control studies 
for non-evacuation period and evacuation period data, and for each case, we estimate the impact 
of different contributing factors on crash risk. Case-control analysis using conditional logistic 
regression accounts for the confounding variables. However, if we control all the confounding 
variables, we are unable to estimate the impact of evacuation on crash risks. Therefore, we also 
apply a panel mixed binary logistic regression model on the combined dataset (includes both 
evacuation and non-evacuation period data) to estimate the impact of evacuation on crash risk.  

This study helps us understand the factors contributing to highway crashes during 
evacuation. This study makes two major contributions to the literature. First, it combines data from 
multiple sources to create a database that helps us gain insights on crash risk of evacuation, using 
real-world hurricane evacuation data. Second, it reports the influence of evacuation on crash and 
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finds the relationship between traffic state variables and crash risks. As such, we expect that this 
study will significantly contribute to the literature and practice by guiding us towards a proactive 
evacuation management system that will reduce traffic-related incidents during evacuation. 

LITERATURE REVIEW 

Ensuring safer mobility during hurricane evacuation has become a major concern for emergency 
managers, especially due to high number of crashes on evacuation routes. Proactive evacuation 
traffic management can overcome this challenge using real-time traffic monitoring and crash risk 
assessment tools. Proactive traffic management largely depends on prior detection of the crash risk 
from real-time data and application of smart strategies (such as variable speed limit and ramp 
metering) to reduce cash occurrences (Abdel-Aty et al., 2010; Hossain et al., 2019a). However, 
recent practices in evacuation traffic management mostly focus on evacuation behavior analysis 
to understand different dimensions of evacuation decisions (Fu and Wilmot, 2004; Moynihan and 
Fonseca, 2016; Murray-Tuite and Wolshon, 2013; Pel et al., 2012; Sadri et al., 2013; Wong et al., 
2018). Although a few studies have explored evacuation traffic behavior, these are limited to 
understanding operational capacity loss of highways during a hurricane evacuation (Dixit and 
Wolshon, 2014; Litman, 2006). Understanding the contributing factors of crashes during 
evacuation is the key to develop crash prediction model for real-time applications. However, there 
is hardly any study that explores such factors for evacuation period; hence we investigate some of 
the existing literature to highlight the concept and challenges in crash risk assessment during non-
evacuation period.  

In traffic safety research, a vast amount of studies have been conducted to understand the 
key factors contributing towards highway crashes such as driver errors, ambient traffic and 
environmental condition, and geometric characteristics of the highway segment (Abdel-aty et al., 
2004). Among them, most of the early studies focus on post-mortem analysis based on historical 
accident data and combine them with driver behavior, traffic characteristics, vehicle, and 
environmental conditions (Chu and Zhang, 2018). These studies provide valuable insights 
regarding the contributing factors for real-time crash risk prediction. Earlier studies did not 
consider high-resolution traffic data for real-time crash risk modeling due to lack of such data.  

In another direction, researchers have been developing real-time crash prediction models 
that estimate crash probability on specific road segments using real-time traffic data (Abdel-aty et 
al., 2004; Abdel-aty and Pande, 2005; Lee et al., 2003; Yu et al., 2014). In recent years, real-time 
crash prediction methods (19, 23–29) have gained attention due to the widespread deployment of 
intelligent transportation systems (ITS) technologies and traffic sensors that allow us to obtain 
large-scale multi-resolution traffic data in real-time (Shi and Abdel-Aty, 2015). Availability of 
these data sources has encouraged researchers to develop real-time crash prediction models for 
proactive traffic management applications. One of the challenges for developing such models 
involves reducing the biases in model results due to the lower number of crash samples 
(imbalanced sample) compared to the total number of available data samples (Basso et al., 2018; 
You et al., 2017). To overcome the issue of imbalanced sampling, researchers have adopted a 
matched case-control logistic regression approach (Abdel-aty et al., 2004).  
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For instance, using data from multiple loop detectors and a case-control approach, Abdel-
Aty et al. (Abdel-aty et al., 2004) found that traffic crashes at a particular location can be predicted 
based on variations in occupancy and speed at the upstream and downstream of that location. 
Zheng et al (Zheng et al., 2010) adopted a similar approach to evaluate the impact of traffic 
oscillations on crash risk. Considering only peak hour traffic data to represent the oscillatory traffic 
condition (higher traffic demand), they found that in stop-and-go traffic conditions, traffic speed 
variations significantly increase crash risks. Recent studies have applied synthetic data generation 
techniques such as Adaptive Boosting (AdaBoost)(Ariannezhad et al., 2021), adaptive synthetic 
sampling (ADASYN) (You et al., 2017), synthetic minority over-sampling (SMOTE) (Elamrani 
Abou Elassad et al., 2020) to balance data samples. However, these approaches may not work well 
when modeling for a special condition such as hurricane evacuation where the number of crashes 
are significantly lower (<1%) compared to the available data and we need to control the samples’ 
distribution to create a representative dataset. In such condition, matched case-control sampling 
approach can overcome sampling bias by ensuring specific sampling ratio (crash and non-crash 
samples).  

Although previous studies investigated the relationships between crash occurrence 
probability and real-time traffic conditions immediately preceding a crash, weather condition, and 
roadway geometry, these studies considered only regular traffic conditions with predictable traffic 
patterns (e.g., heavy flow during morning and evening peak hours). On the contrary, during 
evacuation, traffic demand is significantly higher than regular peak hour traffic and the demand 
remains higher for all the days starting from the declaration of evacuation orders until the landfall 
day. Thus, stop-and-go traffic conditions and speed variations are some of the common features of 
evacuation traffic and may significantly impact crash risks during evacuation. Moreover, 
evacuation itself could induce some impact on crash occurrences, since during evacuation people 
are forced to travel to a safe destination as early as possible and are frustrated to drive long hours 
through heavily congested highways. In such a condition, drivers are more likely to make 
perception related errors. However, to the best of our knowledge, no studies have investigated 
crash risk during evacuation period. Consequently, previous studies did not address the challenges 
of modeling crash likelihood in a rare event such as hurricane evacuation utilizing real-world data. 
Moreover, existing crash prediction models do not test the impact of any change in a variable on 
crash risk across two different traffic conditions such as regular condition and evacuation 
condition. 

This study seeks to fill this significant research gap by assessing the crash risk of 
evacuation traffic based on real-world hurricane evacuation data. We aim to run a macro-level 
analysis to understand the aggregated influence of all the latent factors related to evacuation on 
crash risk. Here, we are dealing with a special condition where the number of crash cases are very 
low (< 1%) compared to total data sample over the study period. Hence, we adopt a similar 
approach as (Abdel-aty et al., 2004; Zheng et al., 2010) and developed a matched case-control 
study to assess the safety impact of different traffic state variables during the evacuation period of 
Hurricane Irma. We run a panel mixed binary logit model to estimate the impact of different 
variables on crash risk across evacuation and non-evacuation conditions thereby allowing us to 
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estimate the impact of evacuation on cash risk. We also address the impact of common unobserved 
factors that affect crash occurrence. 

DATA COLLECTION AND ANALYSIS 

Data Description and Preprocessing 
We have collected traffic data from RITIS, for I-75 northbound direction from September 3, 2017 
to September 17, 2017, which includes the evacuation period of Hurricane Irma. To select the 
study location, we have identified major evacuation routes in Florida and observed that a large 
portion of residents living in Florida evacuates to Georgia or adjacent states (Roy and Hasan, 
2021). Hence, we have chosen the segment between Wildwood and Gainesville (about 50 miles 
long), which served a major portion of the evacuation traffic during Hurricane Irma. In addition, 
this segment was highly equipped with MVDS detectors, spaced approximately every 0.5-mile 
interval. Each detector provides speed, volume, and occupancy data at a very high resolution 
(every 20 to 30-sec).  

We have also collected incident data for the study area from the RITIS incident database. 
The incident data cover four types of incidents: crash, weather-related incident, congestion, and 
other regular events (disabled vehicle, road construction related delay, etc.). We map each crash 
event into its exact location and identify two nearest upstream and downstream MVDS detectors 
(Figure 1 and Figure 2). From these detectors, we extract traffic speed, volume, and occupancy 
data for a period of 30 min just before the crash occurred. For example, if a crash occurred on 2 
pm, we extract the data from 1:30 to 2:00 pm. Since a few detectors were not functioning during 
our study period, we could not obtain traffic data from those detectors. Therefore, we discard the 
crashes corresponding to these detectors. Finally, we create a dataset of 63 crashes during 
evacuation and extract the traffic data from their corresponding upstream and downstream 
detectors from September 4 to September 9, 2017. In figure 3, we demonstrate the workflow 
diagram for data preparation. To compare the traffic characteristics leading to a crash with non-
crash traffic characteristics during the evacuation period, we also extract the traffic data which 
corresponds to a non-crash condition for the same location on the same day. Here, since we are 
interested to understand the influence of evacuation traffic on crashes, we do not have much 
flexibility to collect the data for a non-crash condition on different dates/times during the 
evacuation period. However, during an evacuation period, there is no peaking pattern in traffic 
flow, that means the time of the day or day of the week will not have any significant impact on 
traffic flow characteristics. 
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Figure 1: Crash locations aggregated in an Open Street Map based on the actual coordinates of 

the crashes 

 

 
Figure 2: Layout of the segments and MVDS detectors 
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Figure 3: Workflow diagram for data processing 

When matching non-crash data sample corresponding to each crash, we discard the traffic 
data which belongs to the 30 min period just before the crash occurrence and extract the data before 
that period (see Figure 3). For example, if a crash occurred on 2:00 pm on August 5, 2017, we 
discard the data from 1:30 to 2:00 pm, and collect the data before 1:30 pm. We have also ensured 
that there is no overlapping between two consecutive crash conditions in case of multiple crashes. 
We assume that when a crash occurs it takes at least one hour for the traffic to reach its normal 
operating condition (Ji et al., 2014; Tirtha et al., 2020; Xie et al., 2015), based on this assumption, 
we discard the data points which fell within this time period. For example, if two crashes occurred 
at the same location on 2:00 pm and 5:00 pm on the same day, we just extract the data from 3:00 
pm to 4:30 pm as a non-crash condition. The 1hr time period between 2:00 to 3:00 pm is considered 
as the time required for the traffic to reach normal operating condition; we do not collect any data 
from this time period. We prepare the dataset in such a way that each matched set (i.e., crash (1): 
non-crash (k)) belongs to the evacuation period within the same day. For each matched set, we are 
controlling for the day and location when matching non-crash traffic observations with a crash 
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observation. In our final dataset, we have in total 63 crashes, as well as 63 matched non-crash data 
corresponding to each crash for the evacuation period.  

We have also collected crash data for non-evacuation periods at the same locations. In total, 
we obtain 74 crashes from August 1 to August 31, 2017, and for each of these crashes, we collect 
traffic data for 30 min periods just before the crash occurrence. In this case, it is likely to have 
regular patterns in traffic flow variations (morning and evening peak, weekday, weekend, etc.). 
For matching the traffic data related to a non-crash period with a crash data sample, we have 
accounted for the time-dependent variations of traffic characteristics. While preparing the data 
sample for non-crash case corresponding to each crash, we control the location, time of the day 
(e.g., 3:00 pm to 4:00 pm, 4:00 pm to 5:00 pm, etc.) and day of the week (e.g., Sunday, Monday, 
etc.) (Figure 3). For example, if a crash occurred on 3:50 pm on August 5, 2017 (Monday) at a 
particular location then we search all the non-crash data for that location and select the data which 
correspond to any Monday of that month and within 3:00 to 4:00 pm. Similar to the previous case, 
we consider pre-crash condition as the 30-min period from the crash occurrence as well as control 
overlapping of multiple pre-crash conditions (i.e., 1 hr. time period after the crash). 

To extract the variables, we divide the sampled traffic data (20 to 30-sec resolution) into 5 
min time interval and aggregated them to estimate average speed (𝑠), standard deviation of speed 
(𝑠𝑠), coefficient of variation of speed (𝑐𝑣𝑠 = (𝑠/𝑠𝑠)), average volume (𝑣) and average 
occupancy (𝑜𝑐) within that 5-min period. For each of the crashes, we have six-time slices 
(1, 2, 3, 4, 5, 6), and each having 5 variables defining traffic states from four detectors (two 
upstream detectors and two downstream detectors). Though we have stated 30-min period before 
the crash occurrence as the pre-crash condition, previous studies have shown that the traffic 
characteristics just 5 min before the crash occurred and extending up to 10 min is the most 
significant period for predicting real-time crash risk (Abdel-Aty et al., 2009; Hossain and 
Muromachi, 2012). Based on these findings from previous studies, we use pre-crash condition as 
a 5 min time period ending at least 4 min before the recorded time of the crash. The time of the 
crash has been reported in the nearest 1 min and the detector data have been aggregated for 5 min. 
Thus, if a crash had occurred on September 6, 2017, at 4:39 pm then the corresponding pre-crash 
condition will be traffic data from 4:30 pm to 4:35 pm on that day.  
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Figure 4: Traffic state variation during evacuation (a) traffic flow (b) speed 
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Figure 5: Number of Crashes on Interstate-75 during Hurricane Irma Evacuation (Data Source: 

RITIS) 

Finally, to prepare the dataset for evacuation and non-evacuation period, we form strata of 
𝑁 crashes (i.e., 𝑁 stratum), where each stratum has one crash as a case and corresponding k (i.e., 
k=1, 2, 3, 4, 5, etc.) non-crash samples as control.  For each crash sample, we randomly choose 𝑘 
non-crash samples (including the traffic variables) corresponding to that crash sample. We control 
different confounding factors such as location, day of week, hour while matching the crash and 
non-crash samples.  

Descriptive Analysis 
In a normal operating condition, traffic flow shows predictable patterns such as heavy 

demand during peak hours resulting into high traffic flows. However, during an emergency event 
such as a hurricane evacuation, overall traffic condition has to bear severe disruption due to a 
drastic increase in traffic demand. Drastic oscillation and sudden flow breakdown are the common 
characteristics of evacuation traffic. Figure 4(a) shows the distribution of evacuation traffic from 
September 5, 2017 to September 9, 2017, which demonstrates traffic flow variation during the 
evacuation period of Hurricane Irma. We observe that during Hurricane Irma’s evacuation, overall 
traffic flow is higher than a regular period and it shows irregular variations which means no 
distinctive morning or evening peak (see appendix A Figure A.1). Consequently, traffic speed 
variation is also irregular and significantly lower than normal operating speed (Figure 4(b)). To 
provide statistical evidence on the difference between evacuation and non- evacuation traffic flow 
pattern, we perform a two tail T test. From the estimation result, we find the T-Stat value as 22.393 
(P-value <0.001) which means that during an evacuation period, traffic flow pattern is significantly 
different compared to a non-evacuation period. 

Moreover, we find that traffic condition starts to deteriorate just after the declaration of 
evacuation order on September 6, 2017 and remain same till September 9, 2017. Since, we could 
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not extract any traffic data after September 9, 2017, we are unable to show the traffic flow variation 
after that time period. Hurricane Irma made its landfall at Florida Keys on September 10, 2017, as 
a category 4 storm. Then it passed over several regions of Florida from September 10, 2017 to 
September 12, 2017. It caused significant power outages, in its path, at several regions in Florida. 
It took about a week to restore the overall system. It is likely that the detectors were 
malfunctioning, or the data collection server could not retrieve any information during that period.   

Figure 5 shows the distribution of crashes for Interstate-75 on different dates during 
evacuation period. There is a significant increase in the number of crashes on September 6, 7 and 
8 which include the evacuation period after the declaration of the state of emergency. From the 
figures, we can intuitively state that crash occurrence may be associated with traffic flow and speed 
variation, and the chances of crashes increase if there is a large variation in traffic flow and speed.   

METHODOLOGY 

Conditional Logistic Regression 
We design a matched control study for two separate conditions: evacuation period and regular 
period to explore the effects of traffic flow variables on crash risk while controlling for the effects 
of other confounding variables. The differences between crash and non-crash traffic flow 
characteristics within a stratum are used in the model. This is done under the conditional likelihood 
principle of statistical theory. For this part, we adopt the methodological approach followed in Aty 
et al. (Abdel-aty et al., 2004).   

In this study, we have N strata where each stratum (𝑖 = 1 ,2, … … … . . , 𝑁) has one crash 
and k non-crash samples(𝑗 = 1,2, … … … . . , 𝑘). The conditional likelihood for the 𝑖𝑡ℎ stratum is 
the probability of the observed data given the total number of observations and the number of 
crashes observed in the stratum. Let, 𝑃𝑟𝑖(𝑥𝑗𝑖) be the probability that the 𝑗𝑡ℎ observation in the 𝑖𝑡ℎ 
stratum is a crash where 𝑥𝑗𝑖 = (𝑥1𝑗𝑖 , 𝑥2𝑗𝑖 , . . . , . . . 𝑥𝑝𝑗𝑖) is the vector of 𝑝 traffic flow 
variables (𝑥1, 𝑥2, . . . , . . . 𝑥𝑝). The probability of a crash can be estimated using a linear in parameter 
logistic regression model, as follows (Abdel-aty et al., 2004): 

𝑙𝑜𝑔𝑖𝑡[𝑃𝑟𝑖(𝑋𝑗𝑖)] = α𝑖 + β1𝑥1𝑗𝑖 + β1𝑥1𝑗𝑖+. . . . . . +β𝑘𝑥𝑝𝑗𝑖                                                          (1) 

The intercept term α captures the effect of controlled variables, which are used to form the 
strata. To consider the stratification impact into the analysis, conditional log-likelihood can be 
constructed. The conditional log-likelihood function is the product of 𝑁 terms, where each term 
defines the conditional probability of a crash occurrence for a given stratum. The conditional 
likelihood function can be expressed as follows (Abdel-aty et al., 2004):  

ℒ(𝛽) = ∏ [1 + ∑ 𝑒𝑥𝑝 {∑ βu

𝑝

𝑢=1

(𝑥𝑢𝑗𝑖 − 𝑥𝑢0𝑖)}

𝑘

𝑗=1

]

−1
𝑁

𝑖=1

                                                                       (2) 

The likelihood function 𝐿(𝛽) in Equation (2) does not contain the intercept terms 
𝛼1, 𝛼2, … … 𝛼𝑁. Thus, the effects of matching variables cannot be estimated, and hence Equation 1 
cannot be used to estimate crash probabilities. However, the values of the 𝛽 parameters that 
maximize the likelihood function (given by Equation 2) are the same as the estimates of 𝛽 
coefficients in Equation 1. These estimates are log–odds ratios and can be used to approximate the 
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relative risk of a crash. They are also known as hazard ratio (ratio of odds for crash occurrence 
versus not, i.e., odds ratio). The hazard ratio is defined as 𝑒 raised to the power of the value of a 
coefficient (𝛽𝑢). In this study, we use the survival package in R programming (Therneau, 2020) to 
estimate the model parameters.  

Panel Mixed Binary Logit Model 

In this section, we provide the econometric formulation of the proposed panel mixed binary logit 
model. Let 𝑞(𝑞 = 1,2,3, … … … . . 𝑚; 𝑚 = 6) represents the index for different samples for each 
stratum.  With this notation, the formulation takes the following familiar form: 

𝑣𝑖𝑞
∗ = {(𝛼 + 𝛾𝑖𝑞)𝓏𝑖𝑞 + 𝜀𝑖𝑞 + 𝜚𝑖} , 𝑣𝑖𝑞 = 1, 𝑖𝑓 𝑣𝑖𝑞

∗  > 0; 𝑣𝑖𝑞 = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                              (3) 

where, 𝑣𝑖𝑞
∗  represents the propensity for crash occurrence for sample 𝑞  in stratum 𝑖;  𝑣𝑖𝑞

∗  𝑖𝑠 1 if 
sample specific to a given stratum indicate crash and 0 other wise. 𝓏𝑖𝑞 is a vector attributes 
associated with sample 𝑞 in stratum 𝑖 and 𝛼 is the vector of corresponding mean effects. 𝛾𝑖𝑞  is a 
vector of unobserved factors affecting probability of crash occurrence. 𝜀𝑖𝑞 is an idiosyncratic error 
term assumed to be identically and independently standard logistic distributed. 𝜚𝑖 is a vector of 
unobserved effects specific to stratum 𝑖. In estimating the model, it is necessary to specify the 
structure for the unobserved vectors 𝛾 𝑎𝑛𝑑  𝜚 represented by Ω. In this paper, it is assumed that 
these elements are drawn from independent normal distribution: Ω~𝑁(0, (𝜋′2

, 𝛷2  )). Thus, the 
equation system for modeling the probability of crash takes the following form (conditional on Ω): 

𝑃𝑖𝑞 = 𝑝((𝑣𝑖𝑞
∗ )|(Ω)) =  

𝑒𝑥𝑝{(𝛼 + 𝛾𝑖𝑞)𝓏𝑖𝑞 + 𝜀𝑖𝑞 + 𝜚𝑖}

1 + 𝑒𝑥𝑝{(𝛼 + 𝛾𝑖𝑞)𝓏𝑖𝑞 + 𝜀𝑖𝑞 + 𝜚𝑖}
                                                               (4) 

The corresponding probability for non-crash is computed as  

𝑄𝑖𝑞 = 1 − 𝑃𝑖𝑞                                                                                                                                                 (5) 

Further, conditional on Ω, the joint probability (for each stratum 𝑖) can be expressed as: 

𝐽𝑃𝑖 = [∏{(𝑃𝑖𝑞)
𝑣𝑖𝑞

𝑁

𝑖=1

∗ (𝑄𝑖𝑞)
(1−𝑣𝑖𝑞)

}] 

The unconditional probability will be generated by assuming that the parameters in Ω follow a 
normal distribution (f(.)) and is provided as follows: 

 

𝐽𝑃𝑖 = ∫ [∏{(𝑃𝑖𝑞)
𝑣𝑖𝑞

𝑁

𝑖=1

∗ (𝑄𝑖𝑞)
(1−𝑣𝑖𝑞)

}] 𝑓(Ω)𝑑Ω                                                                                   (7) 

 

As the integral defined in Equation (7) cannot be analytically estimated, we employ the maximum 
simulated estimation approach.  The simulated log-likelihood function is evaluated by replacing 
the integral in Equation (7) with a summation of the function for each realization r (r = 1, 2 … R) 
as defined below:       
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𝐿𝐿 = ∑ 𝐿𝑛(
∑ 𝐽𝑃𝑖

𝑅
𝑟=1

𝑅
)𝑖                                                                    (8) 

The parameters to be estimated in the model are: 𝛼, 𝛾, 𝜚, 𝜋 𝑎𝑛𝑑 𝛷 . To estimate the proposed 
model, we apply Quasi-Monte Carlo simulation techniques based on the scrambled Halton 
sequence with R set to 150  (see (Bhat, 2001; Eluru et al., 2008) for examples of Quasi-Monte 
Carlo approaches in literature). We tested the model with higher R values and found that the model 
estimation was stable.  

We estimate this model using GAUSS matrix programming language. We code and optimize the 
log-likelihood function using the non-linear optimization routes within GAUSS. The code we 
employ in this paper has been tested over multiple other research contexts. 

MODEL RESULTS 

In our dataset, for each of the two upstream and two downstream detectors, we have 4 explanatory 
variables: 5-min aggregated mean values of occupancy (𝑜𝑐), volume (𝑣), speed (𝑠), and standard 
deviation of speed (𝑠𝑠). So, in total, each dataset contains 16 variables. Previous studies (Abdel-
aty et al., 2004; Lee et al., 2003) found that the coefficient of variation of speed (𝑐𝑣𝑠) better 
captures the effects of speed and speed variation on crash risk. We combine the standard deviation 
of speed and mean speed to obtain 𝑐𝑣𝑠, which reduces the number of explanatory variables into 3. 
Now, we have 12 variables associated with four detectors for each data set. In table 1, we include 
descriptive statistics for all the variables. 

We estimate the Pearson correlation coefficients between different pairs of variables which 
show that volume is highly correlated with occupancy. Therefore, in our final model, we use either 
occupancy or volume. Moreover, it appears that in some cases, the same variable (e.g., occupancy) 
over different detectors are also correlated with each other (Figure 6). To avoid using highly 
correlated exogenous variable (i.e., speed, volume, etc.) from multiple detectors, we have decided 
to use its value observed in one detector (instead of multiple detectors). We select these variables 
based on the hazard ratio and corresponding t statistics (T-Stat).  
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Figure 6: Pearson correlation values for different pairs of variables  
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TABLE 1:  Descriptive statistics of all variables used in the models.  

Description Min Max Mean Std. Deviation 
Dependent variable 

Crash (1 if crash occurred, 0 otherwise) 0 

 

1 0.167 0.373 

Independent variables 

Upstream detector D1 

Coefficient of variation of speed 
(mph/mph) 

0.012 1.409 0.113 0.134 

Occupancy (sec/sec) 0.222 44.2 8.657 8.664 

Volume (veh/5 min) 11 412 181.183 92.823 

Upstream detector D2 
Coefficient of variation of speed 
(mph/mph) 

0.005 0.971 0.108 0.139 

Occupancy (sec/sec) 0.333 45.967 8.948 8.311 

Volume (veh/5 min) 15 409 189.158 92.912 

Downstream detector D3 

Coefficient of variation of speed 
(mph/mph) 

0.011 0.973 0.107 .119 

Occupancy (sec/sec)  0.178 41.756 9.055 8.139 
Volume (veh/5 min) 15 388 187.854 93.583 
Downstream detector D4 

Coefficient of variation of speed 
(mph/mph) 

0.015 2.071 0.134 0.218 

Occupancy (sec/sec) 0.133 47.222 8.324 7.943 
Volume (veh/5 min) 3 423 184.645 95.268 
Evacuation (1 for evacuation period 
data sample, 0 otherwise) 

0 1 0.459 0.499 

 

In our matched case-control sample, we have N strata (depends on the number of crashes. 
e.g., 74 for non-evacuation period) and each stratum has one crash and corresponding k non-
crashes. The number of non-crash samples varies from 1 to k. To fix the number of controls (𝑘) in 
a stratum we run the conditional logistic regression model with different number of control 
samples and check the estimates from each model. We find no significant changes in model 
estimates after k=5, hence, we use 5 control samples in our final matched case-control sample (see 
Appendix B for details). We apply this approach for both evacuation and non-evacuation periods 
and obtain similar results.  
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First, we run the conditional logistic regression model for evacuation and non-evacuation 
condition to understand the influence of the exogenous variables on crash risk for different traffic 
demand condition. Table 2 presents the final results for each model. Under regular condition, the 
final models include two variables:  mean occupancy and coefficient of variation of speed at D1. 
Both variables have positive coefficient with hazard ratio greater than 1 (positive coefficient), 
indicating that the odds of a crash increase with the increase of these variables. Moreover, the 
mean occupancy variable associated with the upstream detector D1 is significant at 95% 
confidence interval while the other variable is significant at a 90% confidence interval. These 
estimates indicate if there is high occupancy of vehicles and large variation of speed at the 
upstream 5 to 10 min before the crash, the chance of a crash occurrence increases. Since the 
coefficient of variation of speed includes the average speed as the denominator, this also indicates 
that the average speed is lower in crash cases.  

Similarly, under an evacuation condition, the final models have two significant variables 
coefficient of variation of speed for the downstream detector D3 and mean volume for the upstream 
detector D1. The value of hazard ratio for both of these variables is greater than 1 (positive 
coefficient), which means if there is a high volume of traffic at upstream and high variation of 
speed at downstream then the chances of crash occurrence is higher. Moreover, we can interpret 
the combined effects of these variables that higher volume of traffic at the upstream location 
coupled with high variation in the speed at the downstream location, increase the likelihood of 
crash occurrence, at a location in between these two zones. The detectors D1 at the upstream zone 
and D3 at the downstream zone are spaced 1 mile (approximately), that means during evacuation 
period this 1-mile segment experience high-speed variation, the high volume of traffic, and lower 
average speed, which indicates potential queue formation under oscillatory speed conditions. 
Consequently, this would have caused a significant increase in the number of crashes within this 
segment.  

TABLE 2: Estimates for the final models for evacuation and regular period (sampling ratio for 
crash and non-crash is 1:5)    

Tr
af

fic
 

C
on

di
tio

n 

Variables 
Conditional Logistic Regression 

Coeff. (Hazard Ratio) T-Stat P value 

N
on

-
Ev

ac
ua

tio
n 

Pe
rio

d 
 

cvs_D1 2.69 (14.74) 2.76 0.0059 

Occupancy_D1 0.0628 (1.0648) 1.72 0.0858 

Ev
ac

ua
tio

n 
Pe

rio
d 

 

cvs_D3 1.251 (3.494) 1.96 0.0503 

Volume_D1 0.0052 (1.004) 2.06 0.0397 
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In our analysis, we combine data from both evacuation and non-evacuation periods. We 
add a dummy indicator variable “𝐸𝑣𝑐” (0 or 1) to separate the evacuation period data from the non-
evacuation period data. This variable would indicate the impact of several latent factors associated 
with evacuation on crash risk. We have collected the non-evacuation period crash data from a 30-
day data sample while for evacuation period we only have 6 days data sample. Therefore, before 
combining the data from two different groups, we need to address this imbalanced sampling. To 
account for the imbalance in the sampling process, we assign frequency basis weight (Johnson, 
2008; Wicklin, 2017) on each crash case. We put a weight of (74/30) 𝑜𝑟 2.5 with non-evacuation 
related crash and a weight of  (63/6) 𝑜𝑟 10.5 with evacuation related crash. Which means each 
evacuation related crash has a weight of 10.5/2.5 ≅ 4 while each of the non-evacuation related 
crash has a weight of 1. Since we are controlling all the confounding variables, we are unable to 
estimate 𝐸𝑣𝑐  as well as other unobserved factors that affect crash occurrence during evacuation. 

Hence, we apply a Panel Mixed Binary Logit model mainly for two reasons. First, the 
model allows us to pool the evacuation and non-evacuation cases in a single model allowing us to 
test if the impact of any variables changes across the two cases. Second, we estimate a panel mixed 
model to recognize the repeated observations of records at the same location. These repeated 
observations are likely to have common unobserved factors that affect crash occurrence. Ignoring 
the presence of such factors when present can result in incorrect or biased estimates. However, we 
implement the model just to understand the impact of evacuation on crash risk. Since matched case 
control sample does not provide true estimate of the constant term, we cannot use such a model 
for crash prediction. We apply similar approach as the conditional logistic regression model to fix 
the number of control samples (k) within each stratum, and employ the same value for k=5, there 
is no significant variations in the model estimates increasing the k value over 5 (see Appendix B). 

Table 3 presents the estimates for Panel Mixed Binary Logit model. From the model 
estimate, we find that the coefficient for the variable coefficient of variation of speed for detector 
D3 (cvs_D3) is positive and significant at 95% confidence interval, that means the chances of crash 
occurrence increases with the increase in speed variations at the downstream location of a roadway 
segment. The coefficient for mean volume (volume_D1) variable is also positive which means 
with increase in traffic volume at the upstream location D1 increases the chances of crash 
occurrence. We also find that the variable 𝐸𝑣𝑐 is highly significant and the coefficient associated 
with this variable is positive indicating that during evacuation the chances of crash occurrence is 
higher than in the non-evacuation period.  

TABLE 3: Model estimates for the combined datasets including both evacuation and non-
evacuation periods (sampling ratio for crash to non-crash events is 1:5) 

Variables Independent LR Mixed LR 

 Coeff. T-Stat P value Coeff. T-Stat P value 

Constant -2.019 -9.500 < 0.001 -2.078 -9.500 < 0.001 

Volume_D1 0.002 2.281 0.0228 0.003 2.281 0.0228 
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cvs_D3 1.132 2.233 0.0258 1.271 2.233 0.0258 

Evacuation 1.029 3.395 0.0007  0.909 3.395 0.0007 

      Standard deviation -- -- -- 0.412 1.760 0.078 

Log-likelihood  -585.141  -581.971  

 

Several unobserved factors can potentially influence crash occurrence process. We tested for the 
influence of roadway specific unobserved factors, temporal unobserved factors, and presence of 
variation among estimated parameters (i.e., random parameters). In our estimation, only one 
random parameter offered statistically significant effect for the Evacuation variable. 

The results highlight how crash propensity varies under evacuation conditions. The mean 
parameter is positive highlighting how the crash risk is higher during evacuation relative to non-
evacuation time periods. However, it is also important to recognize that the increase in crash risk 
is not fixed and exhibits significant heterogeneity. The crash risk based on unobserved factors can 
actually be much higher or lower than the mean effect estimated. The actual probability of the 
crash risk will depend on the specific factors affecting the process. The result indicates that the 
probability of crash risk in an evacuation period is substantially higher than that of in non-
evacuation periods (0.9863). Furthermore, based on the normal distribution, the 90th percentile, 
75th percentile, 25th percentile, and 10th percentile values for the parameter are: 1.437, 1.187, 
0.631, and 0.381. The distributional values further reinforce how the crash risk during evacuation 
is higher than the corresponding crash risk for non-evacuation periods. However, it is important to 
note that the results presented here are arrived at using one dataset only. Further investigation of 
data from multiple evacuation scenarios is necessary to generalize this finding and to determine 
how much higher of a crash risk an evacuation period is relative to a non-evacuation period. 

DISCUSSION AND CONCLUSION  

This study reveals traffic flow characteristics during hurricane evacuation using real-world data 
from Hurricane Irma’s evacuation period. As expected, it shows that during evacuation overall 
traffic demand is higher than the regular traffic condition which causes irregular variation of traffic 
flow. Consequently, it leads to significant variations in traffic speed, resulting into a stop-and-go 
traffic situation.  

Adopting a case-control analysis, we find that during evacuation the coefficient of variation 
of speed at the downstream station and average occupancy at the upstream station of a crash 
location significantly affect crash likelihood. This implies that higher occupancy rates at upstream 
coupled with high variation in speed at downstream locations, increase the likelihood of crash 
occurrence. Moreover, a panel mixed binary logit model applied over combined (including both 
evacuation and non-evacuation period) data showed that evacuation itself increases the chance of 
a crash occurrence, even after we account for traffic characteristics. This indicates that during 
evacuation the likelihood of crash occurrence increases compared to the regular period.  
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Although the implemented model cannot be directly used for crash prediction, the insights 
from this model will help us develop a crash prediction model which will work for evacuation 
traffic, and consequently, proactive measures can be developed to reduce crash risks during an 
emergency situation. Particularly, this method will help identify potential crash locations created 
by prevailing traffic conditions during an evacuation. This can be used to warn evacuee drivers 
about the impending crash risk and enforce them to reduce travel speed to a certain limit.  

The study has further implications for evacuation declarations. Our result shows that high 
volume and occupancy of traffic during evacuation are key contributing factors for crashes. If the 
volume of traffic on the evacuation routes can be reduced, the chances of crash occurrence will 
significantly decrease. However, during evacuation, the traffic demand surge occurs just after the 
declaration of evacuation order due to evacuation of a large number of people at the same time 
from different zones. Therefore, one potential strategy should be to adopt a phased declaration of 
evacuation orders, which require identification of primary risk zones based on spatial and temporal 
information on hurricane landfall. Evacuation orders should be declared in a phased manner 
starting with the primary risk zone and then other zones based on potential hurricane threat.   

The study also show that traffic speed variation causes a significant increase in the number 
of crashes during evacuation, which means we need adequate strategies to reduce the abrupt speed 
variation. Apart from infrastructure-based strategies such as variable speed limit and emergency 
shoulder use, in-vehicle controls using adaptive cruise control and cooperative cruise control, 
connected vehicles and vehicle platooning can play a vital role as well (Rahman et al., 2021). 
These are more proactive technologies which can assist drivers to maintain a constant cruising 
speed and gap, reducing overall speed variation. These technologies need to be field-tested for 
evacuation traffic to understand their impact on crash risk. In near future, however, microscopic 
simulation experiments can be conducted to understand the impact of different in-vehicle control 
systems on overall crash reduction during evacuation.  

Although this study provides some key insights on crash risk during Hurricane Irma 
evacuation, it has several limitations. First, we have analyzed the data from one evacuation period 
only; thus, the conclusions drawn from this study cannot be generalized. We need crash data from 
multiple hurricanes to generalize these findings. Also, the transferability of this model in future 
hurricane evacuation scenarios needs to be tested. Another limitation is that we do not have enough 
data sample from off-peak hours of non-evacuation period (See Appendix A Figure A.2), thereby 
we are unable to compare crash risks in evacuation period with that of peak and off-peak hours 
during non-evacuation period.  Future research may address these limitations. 
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APPENDIX A. Comparison between evacuation and non-evacuation period traffic flow. 

To compare the traffic flow variation in a spatiotemporal resolution, we calculate the average 
hourly traffic volume of all the detector for regular period over different hours (1 to 24 hr.) and 
days (weekdays and weekends). Finally, we calculate the difference between hourly traffic volume 
during evacuation period and non-evacuation period. Figure A.1 shows the difference between 
evacuation traffic and regular traffic for the study location. From the figure, we find that during 
Hurricane Irma’s evacuation from September 6 to September 8, 2017, overall traffic flow is higher 
all the time regardless of whether it is a peak hour or not; there is a significant amount of traffic 
congestion on the major interstates even after peak hours. 

 

(a) Spatiotemporal evacuation traffic flow variation compared to average  
non-evacuation traffic flow   



Rahman, Bhowmik, Eluru, and Hasan  

 
 

21 

 

 

(b) Traffic flow variation evacuation and non-evacuation period for individual detector 

Figure A.1: Comparison between evacuation and non-evacuation period traffic flow variations 

Figure A.2 demonstrates the hourly variation of traffic crashes for evacuation period and non-
evacuation period. In the figure, we also include the hourly variation of average traffic combining 
all the detectors, which guides us to differentiate between peak hour and off-peak hour traffic. 

Evacuation order 

issued from Sept. 

6, 2017. 
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From the figure, we find that in regular period, the majority (60%) of the crashes occur during 
peak hours (i.e., 12 pm to 7 pm).   

 

Figure A.2: Comparison between evacuation and non-evacuation period traffic volume and 
crashes at different time (hours of the day) 

Appendix B. Selection procedure for optimal number of controls (k) for MBL 

The idea is to start with crash sample and corresponding non-crash samples ratio as 1:1 and 
increase the ratio gradually (1:3, 1:5, 1:7, 1:9….) until the difference between the coefficients 
across the two successive models does not change significantly. As indicated by the figure, we can 
clearly see the model with samples ratio 1:5 and 1:6 do not depict any significant differences and 
hence, we select the 1:5 ratio for our analysis. We also look at the log-likelihood improvement 
across the models and the results further reinforces our hypothesis of selecting crash sample and 
non-crash samples ratio as the 1:5. The differences across the model coefficients for each variable 
is calculated following the formula stated in (Clogg, 1995).  
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Figure B.1: Selection of optimal number of controls (𝑘) 
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