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Abstract— Soft active materials can generate flexible loco-
motion and change configurations through large deformations
when subjected to an external environmental stimulus. They
can be engineered to design ’soft machines’ such as soft
robots, compliant actuators, flexible electronics, or bionic med-
ical devices. By embedding ferromagnetic particles into soft
elastomer matrix, the ferromagnetic soft matter can generate
flexible movement and shift morphology in response to the
external magnetic field. By taking advantage of this physical
property, soft active structures undergoing desired motions can
be generated by tailoring the layouts of the ferromagnetic soft
elastomers. Structural topology optimization has emerged as an
attractive tool to achieve innovative structures by optimizing
the material layout within a design domain, and it can be
utilized to architect ferromagnetic soft active structures. In
this paper, the level-set-based topology optimization method
is employed to design ferromagnetic soft robots (FerroSoRo).
The objective function comprises a sub-objective function for
the kinematics requirement and a sub-objective function for
minimum compliance. Shape sensitivity analysis is derived
using the material time derivative and adjoint variable method.
Three examples, including a gripper, an actuator, and a flytrap
structure, are studied to demonstrate the effectiveness of the
proposed framework.

I. INTRODUCTION

In response to an external environmental stimulus, soft
active materials (SAM) can be programmed to generate
adaptive and flexible movements through shape shifting,
ranging from simple bending, folding, and torsion to com-
plex transformations. In view of this, they have received
increasingly significant attention in a wide range of tanta-
lizing engineering applications such as soft robotics [1], [2],
compliant electronics [3], [4] and bionic medical devices
[5], [6] in recent years (Fig. 1). Differing from rigid-body
machinery, where motions are generated by the change in the
relative positions of rigid components, those soft machines
can generate flexible motions and change various shapes
through large deformation of the soft material [7].

To date, varieties of external fields, including magnetic
field [13], electric field [14], acoustic field [15] and optical
field [16], have been employed to manipulate soft active
materials. Among these manipulation strategies, magnetic
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Fig. 1: Applications of soft materials. (a) Untethered fast-
transforming magnetic soft materials [8]. (b) Image of 3D printed
selfexpandable vascular stents [9]. (c) Hydrogel skins on inner
and outer surface of medical tubing [10]. (d) Image of bionic
flower petal and mask elastic bilayers [11]. (e) Conformal flexible
electronics attached on human body [12].

stimulation holds numerous remarkable advantages, includ-
ing remote and non-contact control, safe, biological-friendly,
and promptly responsive to input signal [17]. Besides, the
magnetic field can generate relatively higher forces and
torques, which makes it possible to control both macroscopic
scale objects as well as microcosmic particles [18], [19],
[20].

Under the actuation of an external magnetic field, ferro-
magnetic soft elastomers can undergo large deformation by
embedding ferromagnetic particles into the soft elastomer
matrix. There exists a magnetic torque acting on the magne-
tized soft matter and forcing it twist to a new configuration,
so the direction of the internal magnetization vector within
the soft material is parallel to the direction of exterior mag-
netic flux density, as illustrated in Fig.2. By taking advantage
of this physical property, many scientists have constructed
this kind of magnetic soft materials to achieve desired
movement and behaves. Most recently, Diller et al. [17]
fabricated flexible magnetic planar structures by patterning
hard magnetic particles in an ultraviolet lithography curable
elastomer matrix. Kim et al. [8], [13] proposed a novel fab-
rication technique by applying an external magnetic field at
the dispensing nozzle to reorient the hard magnetic particles
during the printing process, with which the resultant designs
can produce transitions from planar structures to complex
3D morphologies. Lum [21] investigated this subject and
proposed a programming method that can automatically
calculate the required magnetization and applied magnetic
field for magnetic soft materials to achieve desired shapes.
It is worth noting that all these existing works focused on
the hard-magnetic soft materials, which have the ability to
retain remnant magnetization even if the applied magnetic
field is removed [8]. Indeed, it is the remnant magnetization



Fig. 2: Schematic representation of magnetic torque.

of the hard magnetic particles that enable the complex and
convoluted shape shifting [17]. Although these magnetic
soft robots are well fabricated and can achieve desired
movements and functions, there are several limitations. First,
all the shapes of soft elastomer matrix where the magnetic
particles are patterned are 2D planar. There is no shape
of matrix based on free-form surface, which is common
in industrial applications [22], including flexible electronics
[23], [24] and aircraft and aerospace structures [25], [26],
[27]. In addition, the stiffness of these designed structures
was not taken into consideration, which makes the design
unattainable since soft robots need to sustain the reaction
force when touching objects. More importantly, all these
designs, to a large extent, relied on the designers’ intuition
or analogy to the existing designs, and a systematic design
method for soft robots is yet absent.

Topology optimization (TO) can find an optimal layout
of material in a design domain to attain desired perfor-
mance of the structure, which has turned into an increas-
ingly powerful and attractive tool in the engineering design
field. TO was initially proposed to optimize light-weight
load-carrying structures, but was later extended to diverse
problems with multiphysics coupling characteristics, such as
electromagnetics, thermomechanics, fluidics, acoustics [28],
[29], [30]. Some investigations have been carried out to
study designing soft robots using topology optimization.
Most recently, Maute et al. designed a 4D printed heat-
activating structure to produce large displacement using level
set method and density-based method [31]. Chen et al. [32]
designed a soft gripper actuated by cables in the form of a
concentrated loading based on the level set method. Zhang et
al. [33] proposed a framework to design multimaterial pneu-
matic soft fingers with maximal bending deflection through
density-based topology optimization approach. In an earlier
contribution, Wang and Chen et al. [34] proposed a level-set-
based framework to design compliant mechanisms capable of
transmitting motion from the input port to the output port. In
these works, most of the designs were actuated by traditional
contact force or pressure, and few studies investigated the
non-contact actuation like magnetic stimulation over the
volume of the geometry. Topology optimization of magnetic
actuators has also been examined over the last decade [35],
[36]; however, these investigations were mainly focused on
magnetic energy instead of the kinematic performance.

In this study, the level-set-based topology optimization is
employed to design ferromagnetic soft structures. It is worth
noting that the structure is stimulated by a magnetic field
which results in a magnetic body force (see Section.II in

detail). It turns this optimization problem into a design-
dependent problem since the magnetic load varies as the
design evolves during the optimization process [37]. More-
over, the newly proposed extended level set method (X-LSM)
[22] and conformal mapping theory [38], [39] are employed
to carry out topology optimization of a FerroSoRo on a
manifold.

The rest of the paper is organized as follows: Section.II
introduces the ferromagnetic soft material (FSM) based actu-
ation mechanism. Section.III presents details on the topology
optimization for FerroSoRo, including the conventional level
set method, X-LSM with conformal mapping theory, problem
formulation, and shape sensitivity analysis, followed by
three numerical examples given in Section.IV. Section.V
concludes the paper and outlines future work.

II. ACTUATION MECHANISM OF
FERROMAGNETIC SOFT MATERIAL

In this section, we briefly illustrate the actuation mech-
anism of ferromagnetic soft material (FSM) and recapitu-
late the basic governing equations of magnetism. For more
details, the readers are referred to [40]. As discussed in
Section.I, once placed in a uniform magnetic field, the
ferromagnetic soft material will generate a torque τ , which
can be calculated as

τ = M × B. (1)

In equation (1), B is the external magnetic flux density
vector, and M is the magnetization of magnetic material.

In this paper, the torque caused by a uniform magnetic
field is equivalently replaced with a magnetic body force to
stimulate the ferromagnetic soft material.

Firstly, let’s consider an external magnetic field generated
by a pair of electromagnetic coils in air, as shown in
Fig. 3. The symbols

⊗
and

⊙
represent the directions the

current flows in and out respectively. In a current-free space,
the Maxwell equations governing a static magnetic field is
defined as

∇ · B = 0, (2a)
curl(H) = 0. (2b)

In the above equations, B and H denote the magnetic
flux density vector and the magnetic field intensity vector
respectively, which are related by

B = µ0 (H+M) , (3)

with µ0 denoting the air permeability.
When a ferromagnetic soft material is placed in a magnetic

filed, as shown in Fig.3, it will deform under the magnetic
force caused by the applied magnetic field. The magnetic
force Fm is calculated as [18], [21]

Fm = (M · ∇) B = µ0 (M · ∇) H. (4)

Rewriting the magnetic force with index notation results in
the following scalar-valued function of the magnetic force:

Fmi = µ0

(
Mx

∂Hi

∂x
+ My

∂Hi

∂y
+ Mz

∂Hi

∂z

)
, (5)



Fig. 3: Schematic representation of a ferromagnetic soft
material placed in a magnetic filed.

where Hi is the component of magnetic field intensity in
the ith direction; Mx, My and Mz are the components of
magnetization in x, y, and z direction respectively.

From Eq. (3) and Eq. (4), it is noted that the magnetic field
and the mechanics field are coupled bilaterally. Specifically,
the emergence of the ferromagnetic soft material will perturb
the external magnetic field, which in turn influences the
applied force on the ferromagnetic soft material. To simplify
the problem, we assume that the magnetic permeability
of elastic continuum is the same as that of the ambient
media (air), and the existence of ferromagnetic soft structure
does not significantly alter the strong external magnetic
field[8], [13]. Correspondingly, a mutual-coupling model is
transformed into a one-way coupling model.

III. TOPOLOGY OPTIMIZATION OF FERROSOROS

A. Conventional Level-Set-Based Topology Optimization

Fig. 4: A schematic of level set representation.

Conventionally, the level set function Φ is a Lipschitz
continuous real-valued function defined in R2 or R3 [41].
The boundary of the design ∂Ω is implicitly represented as
the zero level set of the function Φ, as illustrated in Fig. 4.
According to the sign of the level set function, the design
domain can be divided into three parts, denoting the material,
the interface and the void respectively. The properties of the
level set function can be formulated as equation (6):{ Φ(x,t) > 0, x ∈ Ω, material

Φ(x,t) = 0, x ∈ Ω̄, boundary
Φ(x,t) < 0, x ∈ D/Ω, void

(6)

where D represents the design domain. The dynamics of
the boundary evolution is governed by the Hamilton-Jacobi
equation:

∂Φ(x, t)

∂t
− Vn|∇Φ(x, t)| = 0, (7)

where Vn is the normal velocity field.

B. Conformal Topology Optimization on Manifolds using
Extended Level Set Method (X-LSM)

Fig. 5: Conformal mapping from the 3D surface to the 2D
disk preserves infinitesimal circles. (a) infinitesimal circles
on a 3D surface. (b) infinitesimal circles on a 2D disk.

Many bionic FerroSoRos exist in the form of curved
thin-shell structures, or manifolds in a mathematical term.
Conventional level set method only works in Euclidean space
where the design domain is flat. How to implement level-
set-based conformal topology optimization on a manifold is
an important but challenging issue. The issue of conformal
topology optimization has recently been addressed by Chen
and Gu et al. [22], [42] by proposing an extended level set
method (X-LSM) using the conformal mapping theory [38],
[39].

The distinguishing feature of conformal mapping is that
it conserves orientation and angles locally. As illustrated in
Fig. 5, the shape of infinitesimal circles on the surface is
well preserved on a 2D disk after mapping. The conformal
mapping provides the point-to-point relation between the
manifold and the 2D plane in the Euclidean space [43].

By employing the conformal mapping theory, we can
conformally parameterize the manifold onto a 2D rectangular
domain and evolve the design on the plane using the modified
Hamilton-Jacobi equation as follows [22]:

∂Φ(x, t)

∂t
− e−λVn|∇Φ(x, t)| = 0, (8)

where the λ is the conformal factor quantifying the scal-
ing effect of the conformal mapping. In this way, X-LSM
can transform a conformal topology optimization problem
on Riemannian manifolds in 3D space to a 2D topology
optimization problem in Euclidean space. It is worth noting
that only with the conformal mapping we can attain such a
concise Euclidean representation of the level set equation on
the manifold, which otherwise would be extremely complex
and computationally formidable.

C. Problem Formulation for FerroSoRo Design

The design problem for a FerroSoRo with desired kine-
matic performance and stiffness can be formulated as fol-



lows:

Minimize: J =ω1

(∫
Ω

g · udΩ +

∫
ΓN

f · uds

)
+ ω2

(∫
Ω

k| u− u0|2dΩ

) 1
2

,

Subject to: a(u, v) = l(v), ∀v ∈ U

V(Ω) = V*,

(9)

where U stands for the space of kinematically admissible
displacement fields [44]; u0 denotes the target displacement
field; u denotes the actual displacement field; Ω indicates
the material region in the design domain D. The boundary
of the design is denoted by Γ, which comprises segments
with Neumann boundary condition ΓN , Dirichlet boundary
condition ΓD, and free boundary ∂Ω. g and f denote the
magnetic body force acting on the soft body and the traction
force acting on the Neumann boundary ΓN respectively.
V(Ω) is the volume of the soft body, and V* is the target
volume. Localizing factor k is used to select the area of
concern for kinematic performance. ω1 and ω2 are weighting
factors for end compliance and kinematic target respectively.
Here, a(u, v) = l(v) is the weak form of governing equation.
The energy form a(u, v) and the load form l(v) as well as
the volume V(Ω) are defined as

a(u, v) =

∫
Ω

εTij(u)Cijklεkl(v)dΩ, (10a)

l(v) =

∫
Ω

g · vdΩ +

∫
ΓN

f · vds, (10b)

V(Ω) =

∫
D

H(Φ)dΩ, (10c)

where ε is the second-order linear strain tensor; Cijkl is
a fourth-order elastic stiffness tensor; H(Φ) represents the
Heaviside function.

D. Shape Sensitivity Analysis
Topology optimization of FerroSoRo is a typical PDE-

constrained optimization problem. To carry out the shape
sensitivity analysis, Lagrangian method is employed to refor-
mulate the PDE-constrained problem into an unconstrained
optimization problem by coupling the objective function and
governing equation as follows:

L(u, v) = J + λ (a(u, v)− l(v)) , (11)

where the λ is a Lagrange multiplier, and v is the adjoint
displacement. Material time derivative is conducted to derive
the shape sensitivity [41], [45], [44]:

DL(u, v)

Dt
=

DJ
Dt

+
Da(u, v)

Dt
− Dl(v)

Dt
. (12)

For conciseness, the derivative of the Lagrangian is di-
rectly presented as follows:

DL(u, v)

Dt
=ω1

∫
Γ

g · uVnds+
1

2
ω2D0

∫
Γ

k| u− u0|2Vnds

+

∫
Γ

εij(u)Cijklεkl(v)Vnds−
∫

Γ

g · vVnds,

(13)

where D0 is a constant given by

D0 =

(∫
Ω

k| u− u0|2dΩ

)−1
2

. (14)

The adjoint displacement field v in Eq.13 can be obtained
by solving the following equation with corresponding bound-
ary condition.∫

Ω

(ω1g + ω2D0k(u− u0)) · u′dΩ

+ ω1

∫
ΓN

f · u′ds+

∫
Ω

εTij(v)Cijklεkl(u′)dΩ = 0.
(15)

With the steepest descent method, the normal design
velocity with mean curvature κ and volume constraint can
be constructed as

Vn =g · v− ω1g · u− ω2D0

2
k| u− u0|2 − εij(u)Cijklεkl(v)

+ λ (V− V∗) + ικ,
(16)

where λ and ι are lagrangian multiplier for volume and
perimeter constraint; κ is the curvature of the boundary.

IV. NUMERICAL EXAMPLES

A. Topology Optimization of a Magnetic Driven FerroSoRo
Gripper

Fig. 6: The boundary conditions of the FerroSoRo gripper
structure.

The first example is to achieve the optimal design of
a 2-finger FerroSoRo gripper. Only one of the fingers is
studied due to the symmetry. The dimension of the design
domain is 2m × 1m. The properties of ferromagnetic soft
material are set to be: Young’s modulus E = 1000Pa,
Poisson’s ratio µ = 0.3 and magnetization M = 104A/m.
The dummy material with Young’s modulus E = 0.1Pa
and magnetization M = 1A/m are set for void. The target
volume ratio is set to be 0.3. The boundary condition is
shown in Fig.6, where the left side of design domain is
fixed and a upward interaction force F with a magnitude
of 1 N is applied at the endpoint of the bottom edge to
model the interaction between gripper and objects. The
external magnetic field is 0.03T , pointing downward, which
is perpendicular to the direction of magnetization within
ferromagnetic soft material. In this example, the localization
factor k is chosen to be 1 on the blue zone (see Fig.6),
and 0 elsewhere. The target displacement uy0 is set to be



−0.2 m. The weighting factors for the end compliance and
the kinematic target are set as ω1 = 0.2 and ω2 = 0.8
respectively.

Fig. 7: Optimization history curve of the FerroSoRo gripper
(upper finger).

Fig. 8: Deformed configuration of the FerroSoRo gripper
(upper finger).

The design evolution and iteration history curve of the op-
timization process are plotted in Fig.7. A downward bending
configuration of final design under the actuation of magnetic
field is shown in Fig.8, where the undeformed and deformed
configurations are represented with shape in black and green
respectively. Next, we extrude the 2D design into a 2.5D
design to illustrate the process of grasping object in Fig.9,
where two grippers with opposite magnetization direction
are positioned as mirror symmetric distribution and mounted
on a platform. With the stimulation of magnetic field, two
grippers bend towards the center to grasp the object.

It i
Fig. 9: A schematic of grasping process.

B. Topology Optimization of a Magnetic Driven Actuator

The second example is to solve the optimal design of an
actuator structure. The dimension of design domain is 2m×
1m. The properties of ferromagnetic soft elastomer and the
dummy material are set as same as that in the first numerical
example. The target volume ratio of actuator structure is 0.4.

Fig. 10: Boundary condition of actuator structure.

The boundary condition is shown in Fig.10, where two end
points of the bottom are fixed and downward interaction force
F with magnitude of 1 N is applied at the middle point of the
top edge in order to model the reaction force given by object.
The external magnetic field B, rough 0.03T is applied with
a direction same as the that of magnetization M so that the
ferromagnetic soft structure has a tendency to expand. The
blue area is selected as the area of concern for kinematic
performance (see Fig.10) and the target displacement uy0 is
set to be 0.2 m. The weighting factor ω1 and ω2 are still kept
as 0.2 and 0.8.

Fig.11 is plotted to show the design evolution and iteration
history curve of topology optimization. With the optimal
design, an expanding and a contracting configuration can be
achieved by changing the direction of applied magnetic field
and the corresponding 2D and 2.5D deformed configurations
are given in Fig.12.

Fig. 11: Design evolution and iteration history curve of the
actuator structure.

Fig. 12: Deformed configurations of the actuator structure.



Fig. 13: Boundary condition of flytrap shell structure (only
one finger).

Fig. 14: Design evolution of the flytrap FerroSoRo structure.
(a) Design evolution in 2D. (b) Design evolution on a petal surface.

C. Topology Optimization of a Magnetic Driven 5-Finger
Flytrap Shell FerroSoRo

In this section, X-LSM is applied to design a flytrap shell
structure, which mimics the flytrap plant in nature. The span
of a single petal is approximately 2.5 m × 1.6 m and the
thickness is 0.05 m. The target volume ratio is 0.45. The
material properties are assumed with a Young’s modulus E =
0.1MPa, Poisson’s ratio µ = 0.3, and magnetization M =
5 × 104A/m with the direction of the positive axis x. To
avoid singularity, a dummy material with Young’s modulus
E = 10Pa and magnetization M = 5A/m are set for void.
The boundary condition for petal shell is shown in Fig.13,
where the bottom edge is fixed and a interaction force F =
(1, 0,−1) N is applied on the top edge. The blue area is
chosen as the area of concern for kinematic performance and
the target displacement are set as ux0=−0.5 m and uz0=0.25
m, respectively. In addition, the weighting factor ω1 and ω2

are still kept as 0.2 and 0.8.
The elastic shell equilibrium equation is solved in 3D. In

the optimization process, the petal surface is meshed with
63422 triangular elements before conformally mapped onto
a 0.3923 m × 1 m 2D rectangular domain where the level
set function is defined and discretized with a 197 × 501
grid. During the implementation, the top layer of the petal
is retained by setting design velocity is zero. The 2D design

Fig. 15: The optimization history of flytrap shell structure.

Fig. 16: Simulation of the grasping process of the flytrap
FerroSoRo.

evolution and corresponding evolution on surfaces are shown
in Fig.14. The optimization curves for compliance and target
displacement are plotted in Fig.15. A flytrap structure can be
achieved by making a circular pattern of this optimal petal
shell structure. The simulation of the behavior of the design
is presented in Fig.16.

V. CONCLUSIONS

In this paper, we have developed an effective level-
set-based multiphysics topology optimization method for
FerroSoRo design. Magnetic body force is adopted as the
stimulation strategy to control ferromagnetic soft structures.
At current stage, we simply the problem by assuming it
is a linear elastic problem although we know that the
soft material presents hyperelasticity. The ferromagnetic soft
structures design problem is formulated as a balance of
kinematic performance and minimum compliance. The three
numerical examples have demonstrated the effectiveness of
the proposed method for FerroSoRo design.

One of our future effort will concentrate on the design
of multi-material nonlinear FerroSoRos. In virtue of additive
manufacturing technology, the optimized FerroSoRos will be
fabricated and corresponding experiments will be carried out
to further validate their performances.
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