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ABSTRACT

In modeling spatial processes, a second-order stationarity assumption is often made. However, for spatial
data observed on a vast domain, the covariance function often varies over space, leading to a hetero-
geneous spatial dependence structure, therefore requiring nonstationary modeling. Spatial deformation
is one of the main methods for modeling nonstationary processes, assuming the nonstationary process
has a stationary counterpart in the deformed space. The estimation of the deformation function poses
severe challenges. Here, we introduce a novel approach for nonstationary geostatistical modeling, using
space deformation, when a single realization of the spatial process is observed. Our method is based on
aligning regional variograms, where warping variability of the distance from each subregion explains the
spatial nonstationarity. We propose to use multi-dimensional scaling to map the warped distances to spatial
locations. We assess the performance of our new method using multiple simulation studies. Additionally,
we illustrate our methodology on precipitation data to estimate the heterogeneous spatial dependence
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and to perform spatial predictions.

1. Introduction

Spatial statistics methods are widely used in various disciplines
such as meteorology, hydrology and earth science, to model
environmental processes for a better understanding of the latent
dependence structure, and for making predictions at unob-
served locations. Statistical analysis of spatial processes gener-
ally involves a second-order stationarity assumption stating that,
for a random process {X(s) : s € R4, d > 1}, the mean is a
constant, that is, E(X (s)) = ¢ for some ¢ € R, and the covari-
ance between any two locations depends only on the lag vector
between those two locations, that is, cov(X(s),X(s + h)) =
C(h). Isotropic and anisotropic processes are two special cases
of a second-order stationary process. The former implies that
the covariance function depends only on the .2 norm of a lag
vector, that is, ||h||, whereas the latter is a small generalization
that incorporates both length and direction into the covariance
function through a linear transformation of the lag vector as

||A_%h||, where A isad X d positive definite matrix known
as the anisotropy matrix. Modeling spatial processes by assum-
ing a translation-invariant spatial dependence is a convenient,
but unrealistic approach, especially when the spatial domain
is large and statistical features of the process vary in space;
in this case, such an assumption is a misspecification of the
process.

In recent decades, considerable research has been directed
toward developing methods to model nonstationary processes.
Risser (2016) and Fouedjio (2017) extensively reviewed the
existing literature on this topic and published a comprehensive

summary of nonstationary modeling approaches for univari-
ate geostatistical data. Higdon (1998) proposed a process-
convolution approach with a spatially varying convolution ker-
nel to model the nonstationary dependence structure. Further
adaptation of this approach in Higdon, Swall, and Kern (1999),
Paciorek and Schervish (2006), and Calder (2008) resulted in
a covariance function with spatially varying parameters. Sub-
sequently, Fouedjio, Desassis, and Rivoirard (2016) general-
ized the idea of the process-convolution model by introduc-
ing a convolution with a spatially varying random weighting
function. The process-convolution model with spatially vary-
ing parameters is also explored for efficient model estima-
tion through local-polynomial fitting by Li and Sun (2019).
Recent work by Nychka et al. (2018) introduces a computa-
tionally efficient method to model convolution type nonsta-
tionarity for large spatial datasets. Fuentes (2002) constructed
a nonstationary process through convolution of locally station-
ary processes, which was later used by Reich et al. (2011) to
introduce a novel spatio-temporal covariance function, address-
ing nonstationarity by using covariate information. Sampson
and Guttorp (1992) published one of the first studies on
nonstationary spatial modeling by pioneering the method of
spatial deformation; their work served as the fundamental
idea for further studies by Damian, Sampson, and Guttorp
(2001), Schmidt and O’Hagan (2003), Iovleft and Perrin (2004),
Anderes and Stein (2008), Anderes and Chatterjee (2009),
Fouedjio, Desassis, and Romary (2015), and Kleiber (2016).
Some other popular nonstationary spatial modeling approaches
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include basis function methods (Nychka and Saltzman 1998;
Nychka, Wikle, and Royle 2002; Stephenson et al. 2005),
stochastic partial differential equations (SPDEs) approaches
(Lindgren, Rue, and Lindstrém (2011); Fuglstad et al. (2015)),
and moving window methods (Haas 1990a, 1990b; Lloyd and
Atkinson 2000, 2002).

A prominent approach to model nonstationarity, using the
method of spatial deformation introduced by Sampson and
Guttorp (1992), involves mapping locations in a geographic
space (G) to transformed locations in a deformed space (D),
where the process is expected to be stationary and isotropic. This
original concept provides an invaluable direction for modeling
nonstationarity, but it fundamentally requires multiple inde-
pendent realizations of the spatial process which, in practice,
are often not observed. In addition, a major drawback of their
method is the folding of space. This occurs if the estimated
deformation function that maps geographical locations to the
deformed space is not injective. In the presence of spatial data
replicates, Damian, Sampson, and Guttorp (2001) and Schmidt
and O’Hagan (2003) addressed the folding of space issue in
a Bayesian framework, whereas Bornn, Shaddick, and Zidek
(2012) addressed it in a frequentist framework by retaining
the original locations of the geographic space and adding extra
dimensions to embed a nonstationary field of lower dimensions
to a higher dimensional stationary field. The problem of estima-
tion of a spatial deformation by using only one realization of the
spatial process was first addressed by Anderes and Stein (2008)
and Anderes and Chatterjee (2009). However, their proposed
quasi-conformal mappings-based methodology requires very
dense spatial data and its application on a real dataset has not
yet been illustrated. Fouedjio, Desassis, and Romary (2015)
developed a method for estimating the deformation function,
using a single realization of the spatial field that avoids the
problem of folding of space, but their method relies heavily
on many tuning parameters and subjective selection of anchor
points.

Here, we propose a metric-based nonparametric method for
estimating a spatial deformation by applying the functional data
registration method, proposed by Srivastava et al. (2011), to
spatial variograms. Our method avoids the strong assumption of
replicates of spatial data and allows us to estimate the deformed
space in higher dimensions, consequently avoiding the problem
of folding of space. The key concept underlying the proposed
method is based on aligning regional variograms belonging to
different subregions of the entire spatial domain to estimate
the warping variability in inter-point distances. The principal
tools used in the proposed method are: (1) kernel smooth-
ing, (2) classical (metric) multi-dimensional scaling (CMDS)
(Torgerson 1958; Mardia, Kent, and Bibby 1979), and (3) a
functional data registration algorithm (Srivastava et al. 2011);
we use these tools to obtain a one-to-one mapping of loca-
tions in a geographic space (G) to transformed locations in a
deformed space (D). Our method does not require the use of
thin-plate splines (a key component in the methods of Samp-
son and Guttorp (1992), Bornn, Shaddick, and Zidek (2012),
and Fouedjio, Desassis, and Romary (2015)) to estimate the
deformed coordinates of unobserved locations. Both observed
and unobserved locations can be mapped to their corresponding

deformed coordinates in a single step, and hence can be used
directly to obtain kriging estimates. Besides the estimation of a
heterogeneous spatial dependence structure for spatial predic-
tions, the proposed method also serves as a useful exploratory
tool to visualize the degree of nonstationarity in spatial data. We
illustrate the proposed method with a simulated example. We
also apply it to precipitation data from the state of Colorado in
the United States.

Section 2 describes the proposed spatial deformation esti-
mation procedure, including a brief discussion of the func-
tional data registration algorithm used in the proposed method.
In Section 3, we illustrate our methodology on a simulated
example. Section 4 discusses an application to the precipitation
dataset, followed by a discussion in Section 5 highlighting the
main contributions of this work and some directions for the
future.

2. Methodology

According to Bornn, Shaddick, and Zidek (2012), “Environ-
mental systems might exhibit behavior that looks locally sta-
tionary, yet when considered over large and heterogeneous
domain they very often exhibit nonstationarity” Our method
is motivated by such locally stationary behavior of environ-
mental processes that can be well approximated by piecewise
or regionwise stationary models. It involves a partitioning of
the entire spatial domain into smaller subregions such that
the process shows homogeneous spatial dependence within
each subregion, but may exhibit heterogeneous spatial depen-
dence across subregions. Such a partitioning approach com-
monly appears in the nonstationary spatial modeling literature
(Fuentes and Smith 2001; Paciorek and Schervish 2006; Heaton,
Christensen, and Terres 2017). One common way to quantify
homogeneous spatial dependence is by using a stationary vari-
ogram that measures the variability in observations, depending
on the distance between them. Therefore, heterogeneous spatial
dependence across subregions implies that the regional vari-
ogram, as a function of distance, may vary across subregions.
We treat these regional variograms as functional data. How-
ever, unlike the traditional functional data registration problem
where functional data are directly observed, the regional vari-
ograms need to be estimated from spatial observations prior to
alignment.

In this section, we give a brief introduction to the functional
data registration algorithm (Section 2.1), followed by a detailed
discussion of the proposed method for estimating spatial defor-
mations. The estimation procedure can be broadly classified into
two steps: (1) an “alignment step,” and (2) a “construction step.”
The alignment step includes partitioning of the spatial domain
into smaller subregions from which we estimate regional var-
iograms and align them to estimate regional distance warping
functions. The estimated regional distance warping functions
are then used to warp the distance matrix of the entire spatial
domain. The warped distance matrix is then supplied to CMDS
in the construction step to estimate the deformed space. The
details of Steps (1) and (2) are described in Section 2.2.1 and
Section 2.2.2, respectively.



2.1. Functional Data Registration

We first introduce the functional data registration algorithm
developed by Srivastava et al. (2011), Kurtek, Srivastava, and
Wu (2011), and Srivastava and Klassen (2016) that we use in
our work for variogram alignment. In those works, they defined
the notion of “elastic functions,” that is, functions with warping
variability, and proposed a framework for separation of y-axis
(magnitude) and x-axis (timing) variabilities in these elastic
functions by warping the x-axis. They considered the following
representation:

fi=ci(g o ¢) +ep

where “o” denotes function composition operator, f; denote
the observed (absolutely continuous) functions, ¢; € R™ are
individual scalings, e; € R are vertical translations, and g is
an underlying template. Each function f; represents an obser-
vation of the template g under a random warping ¢;, and a
random scaling and translation, ¢; and e;, respectively. For a
given sample of functions {f;}, the main task is to obtain a
consistent estimator of the template g; this additionally results in
estimates of the optimal warping functions ¢} (x-axis variation),
and the set of optimally registered functions f* = f; o c/);k_l
(y-axis variation). Standard solutions to the warping problem
based on the 1> Hilbert space framework are known to have
theoretical and practical issues, such as the lack of isometry
of the IL? metric under the action of the warping group. This,
in turn, results in degenerate warping solutions and the so-
called pinching effect (Marron et al. 2015). To overcome these
problems, Srivastava et al. (2011) proposed an approach based
on the extended Fisher-Rao metric and the square-root velocity
function (SRVF) representation of observed functional data. The
SRVF allows for efficient computation of the optimal warping
functions via dynamic programming (Robinson 2012). Their
registration algorithm (available in the R-package fdasrvf
(Tucker 2020)) has been extensively studied to demonstrate the-
oretical guarantees for the consistent estimation of the unknown
template g (Kurtek, Srivastava, and Wu 2011; Lahiri, Robinson,
and Klassen 2015; Srivastava and Klassen 2016). Furthermore,
its practical efficiency has been explored in various applied con-
texts (Kurtek et al. 2013; Tucker, Wu, and Srivastava 2013; Samir
et al. 2016; Meng et al. 2017). The registration method has also
been adapted by Guan et al. (2019) to an applied spatial problem
of model calibration; however, its application in spatial statistics
is still nascent. For brevity, we skip the complete discussion
of the registration algorithm, and instead refer the interested
readers to Srivastava et al. (2011) and Srivastava and Klassen
(2016) for details. In this work, we adapt this algorithm to the
spatial setting for the registration of regional variograms.

i=1,2...,n (1)

2.2. Estimation of Spatial Deformation

Let {X(s) : s € G C R99} be a zero-mean nonstationary
random field defined on the geographic space G of dimension-
ality dg, and {Y(u) : u € D C R97} be the corresponding
zero-mean stationary random field defined on the deformed
space D of dimensionality dp. Here, dp is not necessarily equal
to dg, and in fact, {dp = dg + ¥, ¥ € {0,1,2,...}}, that
is, the domain of the stationary process Y can have a higher
dimensionality relative to the nonstationary process X. The
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primary objective is to estimate a deformation 6 : G — D such
that {X(s) = Y(0(s)), s € G} and {Y(u) = X(6~'(n)), u € D}.
This allows us to model the nonstationary covariance of X as

cov™S(s,s) = Cp([16(s) — OGHID, (s,8) €Gx G, (2)

where Cp(|| - ||) represents any valid stationary and isotropic
covariance function that depends only on the L? distance
between points in the deformed space. The corresponding non-
stationary semivariogram (simply called variogram hereafter) of
X isthen given by yNS(s,s") = yp(]|8(s)—0(s')|]), where yp (|-
[|) is a valid stationary and isotropic variogram model which is
related to Cp (|| - |1) via yp(I[h]]) = Cp(]|0]]) — Cp(/[hl].

Our method is based on a mild assumption of regional
stationarity of the process {X(s) : s € G C R4}, which
implies that G can be partitioned into k mutually exclusive
subregions G1,Gs, ..., 0k (G = Ulegi), such that for each
L,2,...,k {X(s) : s € G} is a stationary process with
spatial dependence described by the stationary and isotropic
variogram model y;(||h||). The variogram models may differ
from each other through various features such as smoothness,
autocorrelation range, variance (sill) and nugget, making the
process X(s) nonstationary over the domain G. For each subre-
gion Gj, we have a corresponding subregion D; in the deformed
space D such that D = ULID,-.

Considering the regional variograms y;(||h||) as elastic func-
tions results in the following representation (adaptation of
Equation (1)):

vi(llhl) = ci(y o ¢i)([[h]]) + e;,

1 =

i=12,...,k (3)

In the spatial context, Equation (3) leads to the following
interpretation: each regional variogram is an observation from
the global stationary variogram model y, under a regional
distance warping function ¢;, with a scaling c; € R" and a
vertical translation ¢; € Rt U {0} (note that e; is nonnegative
because variogram values are always nonnegative). For instance,
if we assume that the features of the global variogram model y
such as nugget and variance are 0 and 1, respectively, then ¢; and
e; can be interpreted as the variance and nugget for the regional
variogram y;. The application of functional data registration to
Equation (3) sets y to be the sample mean of y;, i = 1,...,k,
and allows us to estimate the k regional distance warping
functions that are of paramount importance in estimating the
deformation 6. Specifically, they inform us about the inter-
point distances in different subregions D;, i = 1,2,...,k, in the
deformed space. Consequently, 6 can be defined locally for the
ith subregion (i = 1,2, ...,k) as @ : G; — D;, and the following
condition drives its estimation.

Condition 1: For any two arbitrary locations s;,82 € G,
the distance between their corresponding locations in the
deformed space is given by warping the distance between them
in the geographic space with a warping function ¢;, that is,

[160(s1) — O(s2) Il = @i(lls1 — s2[]).

Following the interpretation of Equation (3) and imposing
Condition 1 in the estimation of 6 implies that the variogram
models describing the spatial dependence for the processes
(Yw = X@O '(w),u € D;, i = 1,2,...,k} share the
same features, such as smoothness and autocorrelation range;
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this indicates that the nonstationarity in smoothness and auto-
correlation range can be addressed by variogram registration.
However, the processes might have varying regional variances
and nuggets. The functional data registration algorithm used
in our method is invariant to scalings and vertical translations,
and therefore cannot deal with the nonstationarity in those
components. More specifically, the proposed method addresses
the nonstationarity only in the correlation function to introduce
nonstationarity in the covariance function.

For a complete specification of the deformation 0, we need
to define it globally, that is, 0 : G — D, and therefore, a global
distance warping function (GDWF) ¢, which governs the inter-
point distances in the deformed space D, is required: ||0(s) —
0(s)|| = ¢(s,s), forall(s,s’) € G x G; this GDWF should also
be consistent with Condition 1. We propose to define a GDWF
¢:GxG—RTU{0}asa weighted linear combination of the
regional distance warping functions as follows:

¢ =D WilssHillls =51, (s8) €G x G, (4)
GieL(s,s)

where L(s,s') is the set of subregions G; such that the line
segment joining the locations s and s" passes through all of the
subregions in this set, and Wj(s, s') are the location-dependent
weights for the ith regional distance warping function. We

define the weights as Wi(s,s) = ”I‘D‘S(i_,ss,/sl’l))
the length of the line segment joining s and s that lies in
the subregion G;. The defined ¢(s,s’) is a semimetric, that is,
¢(s,8) = 0 & s = ¢ and ¢(s,s') = ¢(s,s). This special
choice of weights used in Equation (4) imparts robustness to our
method under different subdivisions of the spatial domain (see
Supplementary Material Section S4), and are specifically chosen
to satisfy the following two properties that are crucial to our
approach; the proofs are included in Supplementary Material
Section S1.

where P(i,s,s') is

Property 1. The GDWF ¢ : G x G — R* U {0} is consistent
with Condition 1, that is, ¢ (s,s”) = ¢;(||s — §'||) for all (s,s’) €
gi X g,‘, i= 1,2,...,k.

Property 2. If the process {X(s) : s € G C R9} is second-
order stationary, then ¢(s,s’) = ||s — §'||, implying that the
geographic and deformed spaces are identical, up to a rotation
and/or translation.

Due to the GDWE, the deformed space D is now known
through the inter-point distances between different locations.
Therefore, we propose to map these warped distances to
deformed coordinates (9(s), s € G) using the CMDS algorithm
(Torgerson 1958; Mardia, Kent, and Bibby 1979) (see Supple-
mentary Material Section S5 for a sketch of the CMDS algo-
rithm). For a given distance matrix, the application of CMDS
seeks to find coordinates in a space of a specified dimensionality,
such that the associated distance matrix is as close as possible
to the given distance matrix (Ji and Zha 2004; Birchfield and
Subramanya 2005). The distance matrix for the deformed space
with # locations denoted by A (yx ) = {¢ (sis sj)}?,j=1 is supplied
to the CMDS algorithm for a given dimension dp = dg + ¢
to estimate the deformation 6. The estimation procedure is
described in more detail in Sections 2.2.1 and 2.2.2.

2.2.1. Variogram Estimation and Registration

As already outlined in Section 2.2, our method is based on the
regionwise stationary behavior of the spatial process on a vast
domain, and hence requires the identification of homogeneous
subregions. Informative covariates, or prior knowledge of the
underlying physical process, can be instrumental in making this
decision. In many real applications, fixed geographical factors
such as terrain, topography and landform of the spatial domain
of interest affect the spatial dependence of the process, and
nonstationarity comes into play if there exists consequential
heterogeneity in those factors. For example, if the spatial domain
consists of both land and ocean, the temperature field exhibits
nonstationarity with lower range of spatial dependence over the
land than on the ocean (Genton and Kleiber 2015). In such
cases, the division of the spatial domain into homogeneous
subregions is straightforward, and is driven by the heterogeneity
of the fixed geographical factors. Often, however, the nonsta-
tionary behavior of the process cannot be simply attributed to
fixed geographical factors and there are other unknown factors
causing the nonstationarity; in such cases, exploratory analysis
along with expert information is needed for a proper division of
the spatial domain into homogeneous subregions. To this end,
one possible exploratory analysis is to locally fit a stationary var-
iogram model to the entire spatial domain in a moving window
fashion (Haas 1990a, 1990b; Lloyd and Atkinson 2000, 2002).
Then, one can visualize the heat map of the locally estimated
variogram parameters over the entire spatial domain, where
the location of parameters corresponds to the center of their
respective windows. These heat maps can guide the choice of
the number and shape of the subregions on the basis of visual
inspection of heterogeneity of parameter estimates on the spatial
domain.

The variogram representation in Equation (3) requires the
true regional variogram models {y;(||h||), i = 1,2,...,k} that
are often unknown in practical situations. Therefore, we fit a
valid stationary and isotropic variogram model for each subre-
gion, and use the estimated variogram models {p;(||h]]), i =
1,2,...,k} to redefine Equation (3) as p;(||h|]) = ci(y o
¢1)(||h||) +e,i=12,.. k.

The choice of the number of subregions k is critical, as
it controls the trade-off between the flexibility of the model
and efficiency of our method. Higher values of k allow us to
introduce a higher degree of nonstationarity, but potentially
lead to inaccurate parameter estimates of the regional variogram
models, due to a reduced number of observations per subre-
gion. Similarly, lower values of k lead to better estimates of
the regional variograms, but render a lower degree of nonsta-
tionarity in the model. Depending on the size of the data, an
appropriate value of k should be chosen to maintain a balance
between flexibility and estimation accuracy.

Once we have determined the appropriate value of k, the
next step is to divide the geographic space G into k well-defined
subregions G, . . ., Gk, and to fit a valid stationary and isotropic
variogram model for each subregion. We use the Matérn vari-
ogram model (Matérn 1986; Guttorp and Gneiting 2006) which
is described by three parameters: variance (02 > 0), spatial
range (a > 0) and smoothness (v > 0). To represent the
regional variograms as functions for registration, we evaluate
the fitted variograms at a sequence of equally spaced points in



the interval [0, ||h¢||], where ||h;|| is the distance at which all
of the estimated variograms become numerically constant. We
then apply the functional data registration algorithm to estimate
the k regional distance warping functions dAJ{dr, i=12...,k
which are defined over the domain [0, ||h||]. To define the
regional distance warping functions over the domain [0, 00),
we augment identity warping to d}{dr, i =
distance ||h|| > ||h¢|| so that <13i, i=12,...,k is now given by

1,2,...,k, for any

~fdr
3.(I[h||) = d’,/ (IMRiD, [1h]] < [h]] 5
#iClIhib { [Ih]], [[h]] > [[h]]. ®)

Identity warping for large distances ensures that they remain
unchanged, as beyond those distances all subregions exhibit
spatial homogeneity (constant and identical variograms).

The regional distance warping functions serve as a valuable
exploratory tool to visualize the degree of nonstationarity in the
spatial data. Since the 45° line represents the identity warping,
a larger deviation of regional distance warping functions from
the identity warping indicates a higher degree of nonstationarity
across subregions. Additionally, the warping functions tell us
about the amount of stretching and compression required for
different subregions to achieve stationarity in the deformed
space. Note that the estimated regional distance warping func-
tions represent the warped predetermined distances when eval-
uating the regional variograms. Thus, to be able to warp any
distance in the interval [0, ||h¢||], we use kernel smoothing
on the warped distances using a Gaussian kernel with a fairly
low bandwidth. From the estimated regional distance warping
functions in Equation (5), we estimate GDWF using Equation
(@): (s,8) = Y6 cr(s.5) Wils:8)i(l|s — §'||). The GDWF is
used to obtain the distance matrix for the deformed space D and
to estimate 6.

2.2.2. Estimation of the Coordinates in Deformed Space
The GDWF is defined for any arbitrary pair of locations in the
geographic space G, that is, for any observed or unobserved pair
of locations. Therefore, we can compute their corresponding
pairwise distance in the deformed space. Let s1,83,...,8, € G
be n observed locations, and s,41,8,42,...,8,4m € G be m
unobserved locations. The aim is to estimate 6 such that the
approximation 116 (s;) — é(sj)|| ~ qAS(s,-, sj) is true for all ,j =
L2,...,n+m.

To achieve this goal, we compute the transformed distance

matrix A(psmyx(ntm) = {b(si, sj)}ZjJ;'f and apply CMDS to

A (nt-m)x (n+m) to estimate 6 fora space of dimensionality dp. As
we increase dp, the approximation improves, but an exact dis-
tance match is not guaranteed, even for a large dp. The optimal
choice of dp = dg +  is based on the accuracy of the CMDS
approximation. Therefore, we estimate the deformed space for
various values of ¥ € {0,1,..., %y}, ¥y € Z4, and choose
the one for which the difference between the transformed dis-
tance matrix A and the distance matrix of the corresponding
estimated deformed space is minimized based on some measure
of difference, for example, root mean squared error (RMSE)
or normalized mean squared error (NMSE). While one can
consider any measure of difference, in our implementation we
have used NMSE for which values close to one indicate small
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differences. The value of ¥/ can be increased to ¥ + 1 in the case
of co-located deformed coordinates to tackle the space-folding
problem.

The following is an algorithmic description that summarizes
the proposed approach:

Step 1: Divide the spatial domain G into k homogeneous subre-
gions and estimate k regional variogram models y;(|/h||), i =
1,...,k, corresponding to the k subregions (Section 2.2.1).
Step 2: Evaluate the estimated regional variograms ;(||h[|), i =
1,...,k, at a sequence of equally spaced points in the interval
[0, ||h¢]|] and register them to obtain regional distance warping
functions ¢A>,-(||h||), i=1,...,k, as defined in (5).

Step 3: Apply Gaussian kernel smoothing with a fairly low
bandwidth to each @;(||h||), such that <]3,-(| |h||) can be evaluated
at any arbitrary h.

Step 4: Using the smoothed é:(Ilh]]), i = 1,...,k, obtain the
GDWE ¢ (s, s) as defined in (4) (Section 2.2.1).

Step 5: Use the GDWF to compute the transformed distance
matrix A. Apply CMDS to A for some y € Z, U{0} to estimate
the deformation 6 (Section 2.2.2).

The execution of the proposed approach requires the user
to tune the following components: (1) k (Step 1), (2) parti-
tions {Gy, . . ., Gk} (Step 1), (3) equally spaced interval [0, ||h||]
(Step 2), (4) kernel bandwidth (Step 3), and (5) ¢ (Step
5). Among all of these components, k and the partitions
{G1, ..., G} are the most critical and some guidelines for their
specification are given in Section 2.2.1. The choice of the equally
spaced interval [0, ||h¢||] and kernel bandwidth are less critical,
because the estimated deformation function is much less sensi-
tive to their specification. The value of v is also important as it
determines the dimensionality of the estimated deformed space;
a discussion on choosing an optimal value of ¥ is provided in
Section 2.2.2.

3. Simulation Study

To explore the performance of the proposed method, we con-
duct a simulation study in which we apply our method to a two
dimensional Gaussian process, which has a locally stationary
spatial dependence. Specifically, we consider a zero-mean Gaus-
sian process X over a spatial domain G = [0, 2]%, with a spatial
dependence described by the following nonstationary Matérn
covariance function (Paciorek and Schervish 2006):

|Z(s) |42 ()| V4

CN(siy 551 ) = o (s1)o (s)) 21T () (6)
(si) + E(S]) -1/2 v
30 o) k o).

where 7) represents the vector of parameters, o (s) is a location-
dependent standard deviation, v is the smoothness parameter,
Qij = (si—s)T[{Z(si) + =(s)}/2]7 (s;—s;) is the Mahalanobis
distance between a pair of locations s; = (x;, yi)T and s; =
(%> yj)T, K, is a modified Bessel function of second order, and
3 (s) is a spatially varying kernel matrix that supervises the
range and direction of spatial dependence.

We simulate 100 realizations of X at a 70 x 70 regularly
spaced grid points on G, with constant smoothness v = 0.8
and standard deviation {o(s) = +/5,s € G}. However,
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Figure 1. (a) A realization of the zero-mean locally stationary Gaussian process, with a solid black line indicating the partitioning of the geographic space. (b) Estimated
standardized regional variograms. (c) Registered variograms. (d) Regional distance warping functions.

to introduce locally stationary spatial dependence, we specify
the kernel matrix to be a spatially varying diagonal matrix

_¢*||12
2(s) = a(9)2laxa, a(e)? = Yb, a2exp(— =0y /54

exp(—”s_:;kllz),where ar =a3 =01, a, = ag = 09, sf =
051585 = (1.5157%,sf = (05,057T,s; = (1.5,05)7,
and A = 0.1. Here, a(s) represents the spatial range parameter
at location s and A controls the degree of smoothness with
which a(s) varies away from locations s}, . . ., s;. The parameter
A leads to the departure from a locally stationary behavior to
continuously varying nonstationarity as we increase its value
within the interval (0,1]. Therefore, the specified a(s) with a
small value of A = 0.1, as shown in Figure 4(a), allows us to
simulate a locally stationary process with nonstationarity only
in the spatial range.

For each of the 100 simulated realizations, we randomly
split the simulated data into training and validation sets of
1200 and 3700 observations, respectively, and divide G into
two subregions G; = [0,1] x [0,2] and G, = (1,2] X
[0,2]. We then proceed to fit the isotropic Matérn variogram
model using the training set for both subregions via maxi-
mum likelihood estimation (MLE), and register the two esti-
mated regional variograms. Results of the registration step
for one realization are shown in Figure 1. Figure 1(a) shows
the simulated realization in the geographic space, with a
solid black line depicting the chosen partitioning. The esti-
mated regional variograms, standardized using their respec-
tive regional variances, shown in Figure 1(b), exhibit vary-
ing spatial range for the two subregions, and their registra-
tion eliminates this variability (Figure 1(c)). The estimated
regional distance warping functions are shown in Figure 1(d).
The extent of nonstationarity in the simulated data can be
assessed visually by looking at this figure, where the large
deviation of both warping functions from the identity corre-
sponds to a high degree of nonstationarity. It also suggests that
stretching in G; and compression in G, are required to achieve
stationarity.

We then estimate the deformation 6 for each of the 100
realizations with their corresponding optimal choice of ¥ as
discussed in Section 2.2.2. Figure 2 shows a comparison of
the geographic space and the estimated deformed space (in
the first three dimensions of maximum variation) for the same
realization as in Figure 1. The highly correlated observations

corresponding to G are placed at higher inter-point distances
in the deformed space, leading to a higher spatial range relative
to Gi. On the other hand, the spatial range is lowered in the
deformed space for the observations corresponding to G,, due to
compression. The compression and stretching bring the spatial
range of both subregions to nearly the same level, allowing the
spatial dependence structure to be adequately modeled with a
stationary variogram model in the deformed space. To evaluate
the performance of our method in capturing the true spatial
dependence, we use MLE to fit an isotropic Matérn covari-
ance function in the deformed space, that is, the nonstationary
covariance model in Equation (2) with Cp(-) specified to be
the isotropic Matérn covariance function, using the training sets
of each of the 100 simulation runs. For one simulation run,
the deformed space of which is shown in Figure 2, Figure 3
shows the true nonstationary correlations at three locations and
their comparison to the estimated nonstationary correlations at
the corresponding locations. Specifically, we show a heat map
of the estimated and true nonstationary correlation between
sf and s € G, where sy is fixed to (0.55, 1.78)T, (1.19,0.72) 7,
and (1.42,0.72)T. The similarities between the true correla-
tions and the estimated nonstationary correlations demonstrate
the effectiveness of our approach in capturing the nonsta-
tionary spatial dependence as the deformation-based model
satisfactorily recovers the varying spatial range for the two
subregions.

To evaluate the gains in prediction performance using the
proposed deformation-based nonstationary method over the
stationary method, we perform kriging (Cressie 1993) on 3700
validation locations for each of the 100 simulation runs. In addi-
tion to the estimated nonstationary deformation-based Matérn
covariance model, we also fit the stationary Matérn covari-
ance model in the geographic space via MLE on the training
set, and use the two models as candidate covariance models
for kriging. To quantify the prediction performance of both
models, we compute multiple prediction quality assessment
metrics on the validation set, which gauge the accuracy of the
prediction and its uncertainty. In particular, we compute: (1)
RMSE, (2) NMSE, (3) mean absolute error (MAE), (4) mean
logarithmic score (mLogS), and (5) mean continuous ranked
probability score (mCRPS) (Gneiting and Raftery 2007). While
RMSE, NMSE, and MAE only measure the accuracy of the
predicted value, mLogS and mCRPS take into account both
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Figure 2. A realization in the (a) geographic space, and (b) estimated deformed space (first three dimensions of maximum variation). Gray lines in (a) show the grid in the
geographic space, and their corresponding mapping in the estimated deformed space is in (b).

Estimated correlation Estimated correlation Estimated correlation
Location 1 Location 2 Location 3
. - 1.00
. True correlation True correlation True correlation
Location 1 Location 2 Location 3
2.0 00 0.5 . : 2.0 0.0 0.5 1.0 15 2.0
X

Figure 3. Estimated nonstationary correlations (top row) and true nonstationary correlations (bottom row) for three locations on the simulated grid, s € G. First, second
and third columns show the correlations between location 1 = (0.55,1.78)7, location 2 = (1.19,0.72)", and location 3 = (1.42,0.72)T, respectively, and every other
location s € G. The similarity of the top and bottom rows demonstrates effective recovery of the true nonstationary correlations using the proposed deformation-based
model.

the predicted value and prediction uncertainty. As a decision Kriging under the Gaussianity assumption provides us with a
rule, lower values of RMSE, MAE, mLogS, and mCRPS indicate  predictive distribution at unobserved locations, which is a con-
better predictions, whereas NMSE closer to one indicates better ~ ditional Gaussian distribution with the predicted (kriged) value
predictions. and the prediction (kriging) variance as its mean and variance,
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respectively. Let {X(sj)}-37°0 denote the validation set. Then,

j=1
the estimated conditional distribution for X(s;) is N(X (sj)» sz),
where X (sj) and sz are the kriged value and the kriging variance
for X(sj), respectively. The estimated predictive distribution
enables us to construct a p-prediction interval (p-PI) for X(s;)

as (Q a-p (), Quip (7)), where QPQ) represents the pth quan-
2 2

tile of A/ ()A((sj), ajz). By construction, the true value of X(s;)
falls in this interval with probability 0 < p < 1. We also
explore the accuracy of the p-PI provided by the stationary
and the nonstationary methods, through goodness statistic (G)
(Deutsch 1997; Goovaerts 2001; Moyeed and Papritz 2002), the
accuracy plot (¥ (p) vs. p) and the average width plot (W(p) vs.
p) (Fouedjio and Klump 2019). The value of k(p) is defined
k() = % jm=1 Kj(p), Kj(p) = 1X(Sj)ep—PI: where 1 is an
indicator function; the p-PI is accurate if ¥(p) > p for all
p € [0,1]. The closeness of ¥ (p) and p is quantified as G =
1— fol [3a(p) — 2][& (p) — pldp, a(p) = 1z (p)>p- The value of G
lies in the interval [0, 1]; for maximum goodness corresponding
to the case Kk (p) = p, forallp € [0,1], G = 1, whereas for the
opposite case K (p) = 0, forallp € [0,1],G = 0. In general,
G and the accuracy plot evaluate the coverage accuracy of the
p-PI, where higher values of G and points closer to the 45°
line in the accuracy plot are preferred. In addition to accurate
coverage of the p-PI, the width of the p-PI is desired to be con-
sistently narrow for p € [0, 1], and this width is quantified using
W) = sz i < (P)[Qusp () = Qu_p ()]. In principle, if
two methods provide qualitatively equivalent accuracy in terms
of G and the accuracy plot, then the one which has lower W(p)
in the average width plot is preferred.

Figures 4(b)-(i) report the prediction quality assessment
metrics for the nonstationary and stationary methods, across
100 simulation runs. Figures 4(b)-(g) show the boxplots of
the RMSE, NMSE, MAE, mCRPS, mLogS, and G, respectively.
Additionally, they also report the mean and the standard devia-
tion of those scores in their respective plots. Figures 4(h) and (i)
show the accuracy plot and the average width plot, respectively,
averaged over the same 100 simulation runs. In terms of RMSE,
NMSE, and MAE, which are based only on the predicted values,
the stationary method provides slightly lower scores than the
nonstationary method. However, the differences are very small,
and thus both approaches result in predicted values of quali-
tatively equivalent accuracy. On the other hand, on the basis
of mCRPS and mLogs, which take into account the predicted
value and prediction uncertainty, the nonstationary method
significantly outperforms the stationary method; the scores are
much lower for the nonstationary method. These results are
similar to the findings based on the case study of Fuglstad et
al. (2015) who stated that the use of nonstationary models over
stationary ones largely affects the prediction variance and not
the predicted values. Hence, the improvements in our study are
mainly reflected in mCRPS and mLogS. In terms of G, there is
a notable improvement in the accuracy of the p-PI computed
using the nonstationary method as compared to the stationary
method; the former produces significantly higher values of G.
This improvement is also reflected in the accuracy plot where
the points corresponding to the nonstationary method are much
closer to the 45° line than those corresponding to the stationary

method, especially at higher values of p. In addition, the nonsta-
tionary method also provides much narrower prediction inter-
vals than those provided by the stationary method as seen in the
average width plot.

Opverall, the simulation results suggest that there is a sig-
nificant improvement in prediction performance by the pro-
posed nonstationary method over the stationary method. The
improvement is mostly attributed to more accurate prediction
uncertainty and prediction intervals provided by the nonsta-
tionary method; both methods provide predicted values with
similar accuracy. This improvement is expected as the under-
lying true covariance function of the simulated process is non-
stationary in a locally stationary sense, which is well approx-
imated by the proposed nonstationary approach based on the
assumption of regional stationarity. The stationary method, on
the other hand, is theoretically incapable of modeling such
locally varying spatial dependence, and hence results in inferior
prediction performance. In Supplementary Material Section S2,
we also explore the performance of the proposed method when
the underlying true nonstationary covariance function shifts
from the locally stationary behavior to continuously varying
nonstationarity (i.e., for increasing values of 1). The aim is to
measure the extent to which the proposed model can capture
the continuously varying nonstationary process. Additionally,
in Supplementary Material Section S3, we conduct a simulation
study to explore how well the proposed method can recover the
true known deformation function.

4, Application to Precipitation Data

In this section, we illustrate the application of our method
to the total annual precipitation data for the state of Col-
orado in the United States. The data came from Col-
orados climate record provided by the Geophysical Statis-
tics Project (GSP) at the National Center for Atmospheric
Research (NCAR) (http://www.image.ucar.edu/GSP/Data/US.
monthly.met/CO.html). It contains monthly total precipitation
(in mm) recorded from a network of weather stations located
across the state of Colorado over the period of 1895-1997.
The spatial domain of interest has a varied topography with
noticeable distinction between the mountainous region in the
West and the flat plains in the East, as shown in Figure 5.
Furthermore, the topographical variability in Western Colorado
is much higher than in Eastern Colorado. The diverse topog-
raphy induces landform driven nonstationarity in the precip-
itation data, which has been studied previously by Paciorek
and Schervish (2006). For our analysis, we consider the log-
transformed total annual precipitation data for the year 1992
(shown in Figure 5), since the number of weather stations (254)
having nonmissing recordings for total annual precipitation
is highest for this year. The distribution of log-transformed
precipitation data is approximately Gaussian, which makes it
suitable for modeling as a Gaussian process. We apply the pro-
posed deformation-based approach to model the nonstationary
spatial dependence in the data by assuming regional stationarity
within the mountainous subregion in the West and flat plains
in the East. Based on the estimated nonstationary model, we
interpolate the sparsely observed data to a fine grid of resolution
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0.17° longitude x 0.10° latitude by kriging. Additionally, we
also interpolate the data to the fine grid by using the stationary
method. However, prior to the interpolation on the fine grid, we
want to evaluate the prediction performance of the two methods
on this dataset, which we perform via cross-validation.

We begin by standardizing the data and splitting the entire
region into Western and Eastern subregions demarcated by the

longitude 104.873° W. The chosen partitioning, which was also
considered by Paciorek and Schervish (2006) in their analysis,
is motivated by the fact that the resulting two subregions sig-
nificantly differ in their topographic features. Additionally, due
to the Eastern and Western subregions being mostly flat plains
and mountainous, respectively, the process can be reasonably
assumed to be regionally stationary. For our cross-validation



10 G. A. QADIR, Y. SUN, AND S. KURTEK

] ® e e
o & @ °
41 SE .’- X .... ....'
° [ 7 ® °
L] ko Coensg ° ®
= ® g0 ¢ 0 v ® o ® ‘
° i °
8 Yos e UnitedS
4 ‘. .- 5 ®
K= . ®
= 39 ® e © o
©
2 L e e
S 38- ... o090 ¢ ® o
[ ]
@
37- °
® ®
% s )
1075 ~105.0 ~102.5
Longitude (degrees)
Log (precipitation (mm))
000
55 6.0 6.5 7.0

Figure 5. Observed log-transformed total annual precipitation for the year 1992,
overlaid on the Google map (Kahle and Wickham 2013) of Colorado, with topogra-
phy showing a mountainous Western region and Eastern flat plains.

study, we randomly divide the 254 observed data points into
a training set of 224 points and a validation set of 30 points;
we repeat this division 100 times to produce 100 training
and validation sets for 100 cross-validation runs. Similar to
the simulation study in Section 3, we consider a stationary
Matérn model for the regional variograms, which we estimate
via MLE using the training sets. For each run, we estimate
the deformation 6 with the optimal choice of ¥ as discussed
in Section 2.2.2. Next, we use MLE to fit the nonstationary
covariance model in Equation (2) with Cp(-) specified to be
the isotropic Matérn covariance function. For the stationary
method, we fit the stationary Matérn model in the geographic
space via MLE using the training data for each of the 100
cross-validation runs. Based on the estimated nonstationary and
stationary models, we perform kriging on the corresponding
validation sets, and compute the prediction quality assessment
metrics RMSE, NMSE, MAE, mCRPS, mLogS, G, as well as
the accuracy and average width plots. The prediction perfor-
mance metrics and the two plots are shown in Figure 6. The
joint assessment of the prediction performance metrics from
this cross-validation study indicates that there is an appreciable
improvement in performance by the nonstationary method over
the stationary one. Overall, the nonstationary method produces
superior RMSE, NMSE, MAE, mCRPS, and mLogS (see Fig-
ures 6(a)-(e)); the improvement is largest in mLogS. This again
suggests that when both the predicted value and prediction
variance are considered, the proposed nonstationary method
significantly outperforms the stationary method. Both methods
provide comparable coverage accuracy of the p-PI in terms of
G and the accuracy plot (see Figures 6(f) and (g)). However,
the nonstationary method provides much narrower prediction
intervals as revealed by the average width plot (see Figure 6(h)).
Therefore, the proposed method is clearly preferred over the
stationary method for interpolation of data on a fine grid in this
application.

For the purpose of interpolation on a fine grid, we follow the
specifications of the cross-validation study, but instead of using
the training data, we use the entire dataset of 254 points to esti-
mate the nonstationary and stationary models. The alignment
results based on the entire data and the corresponding estimated
deformed space are explained in the Supplementary Material
Section S7. The deformation-based nonstationary correlation
function estimated using the entire dataset is shown in Figure 7,
where the heat maps visualize the correlation of ten randomly
selected locations with all other locations on the fine grid chosen
for interpolation. Our model perfectly captures the regionally
varying spatial dependence structure, with strong spatial cor-
relations in the Eastern subregion and relatively weaker spatial
correlations in the Western subregion.

Using the estimated nonstationary and stationary models,
we perform kriging on the fine grid locations chosen for inter-
poltion. Figures 8(a) and (c) show the kriged values for the sta-
tionary and nonstationary models, respectively. As the proposed
method assumes the process to be regionally stationary, it takes
into account the local features of each subregion, whereas the
stationary model overlooks these local features. This causes the
kriged values associated with the two models to look slightly
different. Kriged values in the Eastern subregion associated with
the nonstationary model exhibit wider patches of highly corre-
lated values as compared to those based on the stationary model.
There is a remarkable difference in the kriging standard devi-
ations; those estimated using the stationary model are shown
in Figure 8(b), while those estimated using the nonstationary
model are shown in Figure 8(d). Kriging standard deviations
from the stationary model are nearly homogeneous throughout
the entire domain, with more certain predictions in the Western
subregion due to the availability of more dense observations.
The stationary approach does not take into account the higher
prediction uncertainty that arises due to larger topographical
variability in the Western subregion as compared to the East-
ern subregion. On the other hand, kriging standard deviations
based on the nonstationary model are more realistic as they
exhibit lower prediction uncertainty in the Eastern subregion
and higher in the Western subregion; this can be attributed to
the strong and weak spatial dependencies in these two subre-
gions, respectively. Stronger spatial dependence provides more
information for prediction, which leads to more certain pre-
dictions while weaker spatial dependence leads to more uncer-
tainty in prediction. In the context of deformation, stronger
spatial dependence is equivalent to a compressed subregion,
where more observations are available in the neighborhood
of a prediction location, leading to a reduction in prediction
uncertainty.

5. Discussion

We introduced a method to estimate a spatial deformation
for modeling nonstationary spatial processes using functional
data alignment of estimated regional variograms. The proposed
approach allows for efficient estimation of the underlying non-
stationary dependence structure by taking into account the
stationary dependence structure in various subregions. It allows
for estimation of the deformation with a single realization of a
spatial process; it also avoids the problem of space folding, by
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the mean and standard deviations.

allowing the deformation to be estimated in higher dimensions.
Moreover, the estimated regional distance warping functions
provide a neat exploratory tool that visualizes the degree of
nonstationarity.

As pointed out in Section 2.2, variogram alignment cannot
account for the nonstationarity in sill and nugget. However,

such nonstationarity can be included trivially by allowing the
nugget and the square root of the sill (marginal standard devia-
tion) to vary spatially in the deformed space during covariance
estimation.

While in theory the proposed method exhibits some robust-
ness to different partitionings of the spatial domain (see
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Figure 8. Kriged values and kriging standard deviations for standardized log-transformed total annual precipitation data using the stationary approach (a, b) and the

nonstationary approach (c, d).

Supplementary Material Section S4), in practice, the partition-
ing plays a critical role and the estimated deformation can look
very different for different choices of partitioning. Indeed, the
proposed method might not provide any advantage over sta-
tionary modeling if the partitions are not selected appropriately.
Thus, developing a method for objective selection or an adaptive
scheme for selection of subregions is one potential direction
for future research. Additionally, as shown in Supplementary
Material Section S2, the proposed method is not very advan-
tageous if the true nonstationarity departs too much form the
locally stationary behavior toward continuously varying nonsta-
tionarity. The latter case requires a large number of subregions,
which results in overfitting due to lack of enough data in each
subregion (see Supplementary Material Section S4). To this
end, the proposed method is best suited for data that exhibits
nonstationarity with few regions with stationary dependence.
Another limitation of the proposed method is that it can only
partially exploit the parallel architecture of modern machines,
as only Steps 1, 3, and 4 in Section 2.2.2 can be parallelized,
whereas Steps 2 and 5 must be executed sequentially. Lastly, we
have introduced a stepwise modeling approach, with separate
steps for estimating the deformation and covariance function
in the deformed space. It is desirable to develop a scheme for

joint estimation of deformation and covariance function, which
is another direction for future research.

Supplementary Materials

Section S1 provides proofs of Properties 1 and 2. Section S2 provides
extended results from the simulation study presented in Section 3. Section
S3 presents an additional simulation study. Section S4 provides a discussion
on robustness of our method to different subdivisions of the spatial domain.
Section S5 gives a quantitative assessment of CMDS. Section S6 provides
the computational time for the estimation of the deformed space in the
considered simulation studies and the data application. Section S7 provides
some additional results from the data application. The code and data for
reproducing the results are available at https://github.com/ghulamabdul/
Nonstat_Cov.
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