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The classification of shapes is of great interest in diverse areas ranging
from medical imaging to computer vision and beyond. While many statisti-
cal frameworks have been developed for the classification problem, most are
strongly tied to early formulations of the problem with an object to be clas-
sified described as a vector in a relatively low-dimensional Euclidean space.
Statistical shape data have two main properties that suggest a need for a novel
approach: (i) shapes are inherently infinite-dimensional with strong depen-
dence among the positions of nearby points, and (ii) shape space is not Eu-
clidean but is fundamentally curved. To accommodate these features of the
data, we work with the square-root velocity function of the curves to pro-
vide a useful formal description of the shape, pass to tangent spaces of the
manifold of shapes at projection points (which effectively separate shapes
for pairwise classification in the training data) and use principal components
within these tangent spaces to reduce dimensionality. We illustrate the im-
pact of the projection point and choice of subspace on the misclassification
rate with a novel method of combining pairwise classifiers.

1. Introduction. Classification of shapes is a fundamental task in many application ar-
eas where the primary data object is an image. For example, in medical imaging radiologists
and doctors are often interested in classifying patients to disease types based on shapes of
anatomical structures. Consequently, the statistical analysis of shape data, and, in particular,
the shape classification task is of great interest to the research community. Our focus in this
paper is on the multiclass shape classification problem, which presents some unique chal-
lenges. To elucidate the main difficulties, we begin by explaining what we mean by “shape
data.”

The literature on shape analysis has considered many mathematical representations of
shape, including finite point sets or landmarks (Dryden and Mardia (1992, 2016), Cootes et al.
(1995)), level sets (Malladi, Sethian and Vemuri (1996)), skeletal models (Pizer et al. (2013),
Siddiqi and Pizer (2008)) and diffeomorphic transforms or deformable templates (Grenander
and Miller (1998), Glaunès et al. (2008)), among others. Stretching the definition of a land-
mark, consider a set of 2D images of leaves, each marked with a dense set of landmarks.
The landmarks provide the outline of a leaf and with them its shape. If the image is shifted,
rescaled or rotated, the shape remains unchanged; other transformations change the shape.
Kendall (1984) recognized these invariances and defined shape as the geometric information
in the set of landmarks that remains when translation, scaling and rotation have been filtered
out.

In many applications, such as the leaf example that we return to in Section 4, it seems most
natural to study the shape of an object via its entire outline rather than through a finite set
of landmarks. In the 2D setting on which we focus, the shape is a planar, closed curve. The
functional representation of such a curve replaces the set of landmarks with an alternative
description. The curve is parameterized by a starting point on the shape and a mapping from
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the unit interval that describes the traversal of the shape, ending the journey at the starting
point. Early versions of the functional representation relied on an arc-length parameteriza-
tion for the traversal (Zahn and Roskies (1972), Klassen et al. (2004)). However, later papers
showed that the arc-length parameterization was too rigid (Srivastava et al. (2011), Kurtek
et al. (2012), Srivastava and Klassen (2016)) and that statistical analysis of shapes benefits
from the more flexible elastic deformations. These elastic parameterizations rely on registra-
tion to determine the optimal point-to-point correspondences across objects (we describe this
process formally later).

In this work we adopt the popular square-root velocity function (SRVF) representation for
elastic shape analysis of planar, closed curves (Joshi et al. (2007), Srivastava et al. (2011)).
There are two main advantages associated with this framework: (1) the SRVF simplifies a
specific instance of an elastic metric (Mio, Srivastava and Joshi (2007), Younes (1998)) to
the simple L

2 metric, facilitating efficient computation, and (2) the SRVF shape space is a
quotient space of the unit Hilbert sphere for which many geometric quantities of interest have
analytic expressions. These two ingredients allow parameterization-invariant (in addition to
the other standard shape preserving transformations) comparisons and statistical models of
shape. We exploit this representation for the model-based shape classification task. We pro-
vide more mathematical details on the SRVF and the formal definition of the associated shape
space in Section 2.1.

1.1. Motivation. The complex geometric nature (quotient space of a Hilbert sphere) of
the elastic shape space prevents us from directly using standard techniques for classification
that are strongly tied to Euclidean geometry. The normal distribution, for example, is de-
fined in R

d , with extension to spaces of infinite dimension provided by the Gaussian process.
Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA), two pop-
ular model-based classification techniques which we consider in this work, are described in
various fashions but are intrinsically tied to the normal distribution and hence to Euclidean
spaces. While alternative classification approaches exist, usually based on shape distances
and nearest neighbor-type classification rules (Kurtek et al. (2012), Laga et al. (2012)), we
argue that a model-based approach provides more flexibility in the definition of multiclass
classification procedures. In particular, the ability to compute likelihoods for shape classes
allows us to aggregate multiple pairwise classifiers in a principled manner. Furthermore, mul-
ticlass k-nearest neighbors classification often results in many class ties which have to be
resolved to reach a final decision. Many tie-breaking rules exist, providing different classifi-
cation performance, and the choice of the particular tie-breaking rules is often arbitrary.

One standard approach to classification of shapes is based on “linearization” of the shape
space (Pal et al. (2017), Srivastava et al. (2011)). This is done by choosing a particular point
in the shape space, usually given by the overall sample mean, identifying the (linear) tangent
space at this point and projecting the shapes into the tangent space via the inverse-exponential
map. Due to the required invariances to rotation and re-parameterization (translation and
scale can be removed from the representation space simply by normalization), the inverse-
exponential map involves a registration step that solves for an optimal rotation and reparam-
eterization of a shape with respect to the projection point. This makes the choice of this point
extremely important for subsequent statistical analysis. Once the shapes are projected into the
tangent space, one can apply standard classification techniques. A major drawback of such
an approach is that a single tangent space is generally chosen for the pairwise and multiclass
problems. In the multiclass case, if one or more populations are very far from the others,
projecting all shapes into a single tangent space at the overall mean introduces significant
distortion into the tangent space shape coordinates, due to both the nonlinearity of the repre-
sentation space as well as the misregistration of shapes with respect to the projection point.
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FIG. 1. A general outline of the multiclass shape classification problem. The shape extraction step requires
registration over rotations and reparameterizations, which has a significant effect on classification performance.

In turn, as seen in later sections, this can have a negative effect on any subsequent statistical
task, for example, classification.

A second major challenge in shape classification is the high dimensionality of the
shape space. Theoretically, the shape space and corresponding tangent space are infinite-
dimensional since we use a functional representation of shape. In practice, the outlines are
represented using a fine discretization, typically on the order of hundreds to thousands of
points for an individual shape. This discretization leads to a tangent space of large, but fi-
nite dimension. The large dimension necessitates modification of LDA and QDA through
dimension reduction or regularization. We pursue dimension reduction via a standard form of
tangent Principal Component Analysis (tPCA), and modify the LDA and QDA classification
procedures accordingly.

Figure 1 summarizes the multiclass shape classification problem. We are given labeled
training data in the form of curves. The first task is to extract the shape from these curves.
This requires registration, as mentioned earlier, which involves a fairly complex optimization
problem. The second task is to linearize the shape space to a Euclidean space, reduce the
dimension and then fit a classwise statistical model. The models we consider are based on
LDA and QDA. Finally, to classify a new unlabeled object, one has to register its outline to
each class and make an assignment based on a classification rule; we consider likelihood-
based classification. The cat, horse and rat shapes displayed in Figure 1 are a subset of the
animal dataset described in Section 4.

While our focus in this manuscript is on classification of elastic planar shapes represented
by their SRVFs, the proposed method can be applied in many other shape analysis settings, for
example, shapes of higher dimensional curves, landmark shapes, shapes of surfaces, skeletal
shapes, shapes represented by diffeomorphic transformations termed Large Deformation Dif-
feomorphic Metric Mapping (LDDMM) (Glaunès et al. (2008)), etc. In general, our approach
is applicable to multiclass classification problems for high-dimensional, non-Euclidean data.
However, after exhaustive simulations we have observed, empirically, that the proposed ap-
proach provides the largest gains in classification performance when nonlinear registration is
required during local linearization of the shape space, as in the elastic shape analysis frame-
work.
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1.2. Contributions. Our investigations show the need to modify the standard, single pro-
jection point-based linearization approach to classification of shapes. The main reason for this
is the arbitrariness in the choice of the tangent space where the full procedure is carried out.
This issue is exacerbated by the fact that, prior to classification, all shapes are first registered
to this point of projection, which has a significant impact on the chosen shape coordinates
in the tangent space and, as a result, classification performance. In other words, since the
lower-dimensional Euclidean coordinates of the shapes (after tPCA dimension reduction) are
intimately tied to the tangent space used to define them, the chosen point of projection can
have a major impact on classification. This is especially true when intra- and/or interclass
variability is large, making a single tangent space approximation unsuitable for statistical
analysis. In view of this, we list our main contributions:

• For multiclass shape classification we provide a heuristic that suggests different projec-
tion points for pairwise problems. We develop a method to combine the pairwise results
and compare its performance to a classifier based on a single projection point. The new
procedure has substantially better performance than the currently-used single projection
methods.

• For aggregating the pairwise problems, we first propose a one-shot method that chooses
the class with the highest likelihood (based on the LDA or QDA models). Additionally,
we define a recursive approach that drops the class with the lowest likelihood and then
recomputes all relevant quantities without this class present in the data. This procedure is
especially effective when there are several classes that differ greatly from most groups in
the data.

• Finally, we suggest an intermediate method that is also based on aggregation of pairwise
problems but only uses a single tangent space. This alternative procedure performs better
than the one-shot method in a single tangent space. As expected, it does not perform as well
as the new pairwise procedure described above. The main motivation for this intermediate
approach comes from the large computational cost of working with all pairwise tangent
spaces (this requires the computation of all pairwise means), when the number of classes
is large.

The rest of this paper is organized as follows. Section 2 briefly reviews the SRVF frame-
work for elastic shape analysis of planar curves and defines tools for computing all relevant
statistics. Section 3 begins by describing the currently used one-shot classification approach
in a single tangent space. It then defines the three novel procedures which rely on pairwise
statistics and dimension reduction to different degrees. Section 4 includes detailed empir-
ical studies of a popular plant leaf dataset as well as an animal dataset with very diverse
shapes. Section 5 provides a short discussion and lays out some directions for future work.
Supplementary Material A (Cho, Kurtek and MacEachern (2021a)) includes: (1) a toy one-
dimensional simulation study that motivates the use of pairwise procedures in classification,
(2) results of classification of data on spheres and the landmark shape space, (3) results of
classification using a nonelastic curve framework, (4) results of classification using classwise
LDA/QDA models with and without parallel transport, (5) detailed classification results for
the recursive method and (6) additional results based on k-nearest neighbors classification.

2. Elastic shape analysis preliminaries. We briefly review the elastic shape analy-
sis framework, based on the square-root velocity function representation, as detailed in
Srivastava and Klassen (2016).

2.1. Square-root velocity function shape space and distance. Let β : D →R
2 represent a

parameterized, planar curve. For an open curve D = [0,1], while for a closed curve D = S
1.
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We restrict our analysis to the set of absolutely continuous curves. The shape of a curve
is then invariant to translation, scaling, rotation and reparameterization. Two-dimensional
rotation matrices, O , are elements of the special orthogonal group SO(2) = {O ∈ R

2×2 |
OT O = OOT = I,det(O) = 1}, while reparameterization functions γ are elements of the
set of orientation preserving diffeomorphisms of D, denoted by �. Comparison of shapes of
different objects is fundamental to shape analysis. This task as well as subsequent statistical
tasks benefits from the definition of a distance between shapes. The L2 norm, given by ‖β1 −
β2‖ =

√∫
D |β1(t) − β2(t)|2 dt , where | · | denotes the Euclidean norm in R

2, seems a natural
choice; unfortunately, this distance is not parameterization invariant (Srivastava et al. (2011)).
This suggests the need for another distance on shapes.

Mio, Srivastava and Joshi (2007) defined a family of elastic Riemannian metrics that is
invariant to all of the aforementioned shape preserving transformations, including reparam-
eterization. These metrics are called elastic because they provide a natural interpretation of
shape deformations in terms of their bending and stretching/compression. However, despite
these nice mathematical properties, their practical use in shape analysis was limited due to
computational difficulties until Joshi et al. (2007) and Srivastava et al. (2011) introduced the
square-root velocity function (SRVF)

q(t) ≡
⎧⎨
⎩

β̇(t)/

√∣∣β̇(t)
∣∣ if

∣∣β̇(t)
∣∣ �= 0,

0 otherwise,

where β̇ is the derivative of β with respect to t . The SRVF simplifies the elastic metric to
the L

2 metric, thereby facilitating easy computation. If β is absolutely continuous, then its
SRVF q is an element of L2(D,R2), henceforth referred to simply as L2 (Robinson (2012)).
Further, one can uniquely recover the curve β from its SRVF q , up to a translation, via the
relation β(t) = ∫ t

0 q(s)|q(s)|ds, where t = 0 is the start point of the parameterization. For
the remainder of this paper, we focus on shape analysis of curves facilitated by the SRVF
transform.

The translation of a curve is automatically filtered out under the SRVF representation, as
it is based on the derivative of the curve. Restricting the set of curves to those that have
unit length results in a unit L2 norm constraint on the associated SRVFs. Thus, we define
the preshape space as S∞ = {q | ‖q‖2 = 1}, the unit sphere in L

2. Under the L
2 metric

the distance between q1, q2 ∈ S∞ is given by d(q1, q2) = cos−1(〈q1, q2〉), where 〈q1, q2〉 =∫
D q1(t)

T q2(t) dt .
Next, we unify the representation of all SRVFs that are within a rotation and/or re-

parameterization of each other. Noting that the SRVF of a reparameterized curve, β ◦ γ ,
is given by (q, γ ) = (q ◦ γ )

√
γ̇ , we define equivalence classes [q] = {O(q,γ ) | O ∈

SO(2), γ ∈ �} and deem all SRVFs within an equivalence class to have the same shape.
The resulting shape space, given by all such equivalence classes, is S = S∞/(SO(2) × �) =
{[q] | q ∈ S∞}. The distance between two shapes is defined as the distance between their
equivalence classes as

(2.1) dS
([q1], [q2]) = inf

O∈SO(2),γ∈�
cos−1(〈

q1,O(q2, γ )
〉)
.

In practice, shape analysis requires a computational implementation. Care with coding, rep-
resentation of the shape at interior stages of the computation and convergence criteria mini-
mizes numerical error while retaining good speed. For this work we have used standard Pro-
crustes analysis, solved using singular value decomposition (SVD; Section 5.7 in Srivastava
and Klassen (2016)) to find optimal rotations, and the “Dynamic Programming” algorithm of
Robinson (2012) to find optimal reparameterizations. To implement this approach for closed
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curves, they are cut at some point to create an open curve, and the shapes are analyzed as
open curves. Our implementation includes an exhaustive search over cut points (also called
seeds) on each shape. The optimal rotation and reparameterization (minimizers of equation
(2.1)) solve the registration problem. After registration one can construct a geodesic path
between two shapes by connecting them via a great circle on the preshape space S∞ (see
Sections 5.7.2 and 6.8 in Srivastava and Klassen (2016) for several examples).

2.2. Projection onto tangent space and dimension reduction. To facilitate classification
methods naturally designed for linear spaces, such as LDA or QDA, we use the exponential
map and its inverse to linearize the elastic shape space. Since the preshape space is a unit
sphere, the mathematical expressions for these mappings are analytic; we omit them here for
brevity. Most commonly, the tangent space chosen for statistical shape analysis is defined
at the sample Karcher mean shape (Grove and Karcher (1973)), which is defined using the
shape distance dS given in Equation (2.1) (for data q1, . . . , qn ∈ S∞),

(2.2) [q̄] = arg min[q]∈S

n∑
i=1

dS
([q], [qi])2 = arg min[q]∈S

n∑
i=1

inf
O∈SO(2),γ∈�

(
cos−1(〈

q,O(qi, γ )
〉))2

.

While this mean is an entire equivalence class, we simply select one element of it for subse-
quent analysis, that is, we choose some q̄ ∈ [q̄]; the specific q̄ that is chosen has no impact
on the subsequent analysis. The computation of this mean involves an optimization problem
which is solved using gradient descent (Kurtek et al. (2013), Dryden and Mardia (2016)).

Given a mean shape, we study variability within and across shape classes using tPCA
(Vaillant et al. (2004)). As a first step we project all of the data into the tangent space at
the mean using vi = exp−1

q̄ (q∗
i ) ∈ T[q̄](S), i = 1, . . . , n, where exp−1 denotes the inverse-

exponential map (Srivastava et al. (2011)), q∗
i = O∗(qi, γ

∗), and O∗ and γ ∗ are the rotation
and reparameterization of qi , respectively, that minimize dS([q̄], [qi]). In principle, there is
a sample covariance for the vectors vi in the infinite-dimensional tangent space. In prac-
tice, the curves are sampled using a finite number of points, say m. Thus, one can simply
form the observed tangent data matrix V ∈ R

n×2m (by stacking the x, y coordinates for each
vi into a vector of size 2m) and then compute the covariance matrix, Q ∈ R

2m×2m, using
Q = (1/(n − 1))V T V . For elastic shape data n 
 2m; LDA and QDA classification meth-
ods rely on covariance matrices, which are singular in this setting, necessitating dimension
reduction. While one can potentially apply any common statistical technique for dimension
reduction to the data matrix V , we use the tPCA approach (Vaillant et al. (2004), Kurtek et al.
(2012)). First, we use SVD to compute Q = U�UT , where U is an orthonormal matrix with
columns specifying the principal directions of shape variation, and � is a diagonal matrix
with nonnegative entries arranged in decreasing order specifying the principal component
(PC) variances. Selecting r < n, one has a lower-dimensional Euclidean representation of the
shapes in the tangent space as C ∈ R

n×r , with cij = viUj , i = 1, . . . , n, j = 1, . . . , r . These
PC data are used for tangent space classification of shapes with LDA or QDA.

3. Classification of shapes on tangent spaces. We describe four procedures for clas-
sification of shapes using LDA and QDA in tangent spaces. The first approach is in current
use and serves as a baseline. We also discuss practical considerations in the context of data
analysis. Throughout this section, we assume that the training data is balanced across classes.
The unbalanced case can be handled using reweighting when computing the sample mean
shape and by weighting the aggregated likelihoods. All projections are computed using the
inverse-exponential map which projects a shape into the tangent space at a projection point
along the corresponding geodesic path; in other words, the vector in tangent space from the
point of projection to a shape has the same length and direction as the geodesic path from
point of projection to shape in shape space.



AGGREGATED PAIRWISE CLASSIFICATION OF SHAPES 625

3.1. One shot classification on a single tangent space. In this baseline approach to clas-
sification (Pal et al. (2017), Kurtek et al. (2012)), we begin by computing the overall mean
shape q̄ and a PC coefficient representation of the shapes in the tangent space at q̄ , using train-
ing data pooled over all K classes. Since the linearized shape data often have large dimension
compared to the amount of available training data, we use tPCA for dimension reduction ar-
riving at r dimensions. Under the assumption of normality in this r-dimensional space, the
log-likelihood of a new observation x under QDA is given by

(3.1) lq̄ (x; μ̂k, �̂k) = −1

2
log |2π�̂k| − 1

2
(x − μ̂k)

T �̂−1
k (x − μ̂k),

where μ̂k and �̂k are the mean and covariance estimated using training data in the PC coef-
ficient space of class k. For LDA we use the pooled estimate of the r × r covariance matrix,
�̂P = 1

K

∑K
k=1 �̂k , in place of each �̂k . After computing lq̄ (x; μ̂k, �̂k) for each class, we

choose the class with the largest log-likelihood. In this method we use a single projection
point and a single PC space for dimension reduction; for brevity, we refer to this approach as
SS. Furthermore, we use a “one-shot” (OS) decision for classification.

3.2. Aggregated pairwise classification on single tangent space. In the multiclass case,
one can improve upon the SS-OS approach, especially when one class of shapes is very dif-
ferent from the others. The unusual class may be easy to identify, and yet, plays a significant
role in determining the lower-dimensional PC space. As a result, the estimated PCs may be
ineffective in discriminating between the other classes, leading to a higher than needed mis-
classification rate. This motivates us to introduce an approach based on PC decompositions
of all possible pairwise covariance matrices.

Under this approach, we find q̄ , the mean shape of the training data pooled over all K

classes. The shapes are then projected into the tangent space T[q̄](S) using the inverse-
exponential map. For each pair of classes, i < j , i = 1, . . . ,K , j = 1, . . . ,K , PCs are ex-
tracted from the covariance matrix computed using training data in classes i and j only.
All training data are then represented in terms of these PCs, and the pairwise log-likelihood
of a new observation x for class k (based on the LDA or QDA model), l

i,j
q̄ (x; μ̂i,j

k , �̂
i,j
k ),

is computed. Here, μ̂
i,j
k and �̂

i,j
k correspond to the mean and covariance of class k, esti-

mated using PC coefficients from the pairwise tPCA model constructed by classes i and j .
Thus, there exist M = (K

2

)
corresponding log-likelihoods for each class, also indexed by

i and j . The M log-likelihoods are aggregated by taking the mean l̄q̄ (x; μ̂i,j
k , �̂

i,j
k ) =

M−1 ∑
i<j l

i,j
q̄ (x; μ̂i,j

k , �̂
i,j
k ). Use of the geometric mean of the likelihoods (arithmetic mean

of the log-likelihoods) has a long history in Bayesian statistics and has been used for, for
example, combining expert opinion (Berger (2013)), combining partial Bayes factors (Berger
and Pericchi (1996)) and synthesizing different analyses (Yu, MacEachern and Peruggia
(2011)). The new observation is then assigned to the class with the maximum mean log-
likelihood (OS approach). In this method we use a single tangent space for projection and
pairwise PC spaces in this single tangent space for dimension reduction; for brevity we re-
fer to this approach as SP. In later sections we demonstrate that this approach can provide
significant improvements in classification over the SS-OS method.

3.3. Aggregated classification on pairwise tangent spaces. The projection from the non-
linear shape space to the linear tangent space distorts intershape distances and requires regis-
tration that involves the search for optimal rotations and reparameterizations. The amount of
distortion depends on multiple factors, including the point of projection and the dispersion of
the data. Pursuing the heuristics of pairwise comparisons by projection to the tangent space
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at the sample Karcher mean, we consider projections to all pairwise tangent spaces, followed
by aggregation.

Under this approach and for each pair of groups in the training data, i < j , we compute the
pairwise mean shape, q̄i,j , and determine the tangent space, T[q̄i,j ](S). We estimate PCs in
T[q̄i,j ](S) using the training data in classes i and j only. The data from all classes are projected
into each pairwise tangent space, indexed by i and j , and then projected into the PC subspace
built using the same pair of classes. Thus, as in the previous section, there are M tPCA-based
means and covariances for each class k, again indexed by the pair i and j to denote the two
classes used to build the tPCA model. This leads to the log-likelihood of a new observation
x (based on the LDA or QDA model), lq̄i,j

(x; μ̂i,j
k , �̂

i,j
k ), defined in each pairwise tangent

space. The multiple log-likelihoods are then combined as before using l̄q̄·,·(x; μ̂i,j
k , �̂

i,j
k ) =

M−1 ∑
i<j lq̄i,j

(x; μ̂i,j
k , �̂

i,j
k ). Here, we omit the superscript i, j on the log-likelihood l since

the projection point q̄i,j already includes this notation. The new observation is then assigned
to the class with the maximum average log-likelihood (OS approach). In this case we use
pairwise tangent spaces and pairwise PC spaces for dimension reduction; for brevity, we
refer to this approach as PP. In many cases this procedure further improves upon the SP-OS
method.

An alternative approach would be to build a model for each class on the tangent space
at its class mean and then compare the resulting log-likelihoods (Srivastava et al. (2006)).
However, each tangent space has its own coordinate system, and so the likelihoods from
these different spaces cannot be directly compared. In contrast, our approach builds a model
for each class in each tangent space, creating directly comparable log-likelihoods. These well-
defined log-likelihoods are then averaged for comparison. Another possibility is to parallel
transport representations from each tangent space to a common tangent space, defined at
the overall mean (see Section 9.8.2 in Srivastava and Klassen (2016)), such that all models
are defined with respect to a common coordinate system. The details of these two procedures,
along with the resulting classification performance for all datasets considered in Section 4, are
provided in Supplementary Material A (Cho, Kurtek and MacEachern ((2021a), Section 4)).

3.4. Aggregated pairwise classification with recursion. The distortion induced by a pro-
jection point far from a pair of classes can lead to a very small and numerically unstable
contribution to the aggregated log-likelihood. If severe enough, the classification rule can
be destabilized. The impact of these poor projection points (and PC spaces) can be limited
through use of a recursive procedure. We begin with the calculation of l̄q̄·,·(x; μ̂i,j

k , �̂
i,j
k ) for

each class k and new observation x. For the recursion the class with the smallest mean log-
likelihood is identified and dropped, leading to a similar problem with K − 1 classes. The
recursion continues with a succession of problems with fewer classes until a single class
remains.

As an example, suppose there are K classes. In the first stage there are M1 = (K
2

)
tan-

gent spaces defined at projection points {q̄i,j , i < j}. The mean log-likelihood for class

k is l̄q̄·,·(x; μ̂i,j
k , �̂

i,j
k ) = M−1

1
∑

i<j lq̄i,j
(x; μ̂i,j

k , �̂
i,j
k ). If l̄q̄·,·(x; μ̂i,j

k1
, �̂

i,j
k1

) (where k1 ∈
{1, . . . ,K}) is the smallest among all mean log-likelihoods, class k1 is dropped from the
comparison. Then, we reaggregate all of the log-likelihoods without projections associated
with class k1. In the second stage there are M2 = (K−1

2

)
projection points that do not include

class k1: {q̄i,j , i < j, i, j �= k1}. The new mean log-likelihood for class k and new observation

x is given by l̄q̄·,·(x; μ̂i,j
k , �̂

i,j
k ) = M−1

2
∑

i<j,i,j �=k1
lq̄i,j

(x; μ̂i,j
k , �̂

i,j
k ). If l̄q̄·,·(x; μ̂i,j

k2
, �̂

i,j
k2

) is
the smallest reaggregated log-likelihood among those of all k, except k1, class k2 is dropped
from the comparison. Again, we reaggregate the log-likelihoods without projections involv-
ing classes k1 and k2 and repeat this procedure. After repeating it K − 1 times, we obtain a
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FIG. 2. A diagram of the proposed shape classification methods.

unique class for the final classification decision. This recursive approach (REC) can be used
instead of the OS method described earlier for SP and PP. In general, REC does not provide
the same classification decision as OS.

3.5. Practical considerations. In Sections 3.2 and 3.3 we described two methods for
multiclass shape classification that use pairwise procedures for dimension reduction to dif-
ferent degrees. Furthermore, in Section 3.4 we proposed a recursive approach for aggregating
pairwise classification results. Figure 2 provides a flowchart of all of the approaches, starting
with the baseline method SS and progressing to increasingly pairwise procedures (SP and
PP). For SP and PP, the user has an additional choice of using the OS or REC decision for
classification.

In general, in terms of classification accuracy, PP outperforms SP which outperforms the
baseline SS. However, the three methods have different computational costs which must be
taken into consideration when choosing the best approach for a given multiclass shape clas-
sification problem. The main computational bottleneck is the search for the sample Karcher
mean which is performed using an iterative, gradient-based algorithm. The SS and SP ap-
proaches require only one such computation, albeit with a potentially large sample size, since
they rely on a single tangent space approximation. In contrast to SS, which uses a single
PC space for classification, SP estimates all pairwise PC spaces, making it computationally
more expensive. However, this increase in computational complexity is minimal. On the other
hand, PP requires

(K
2

)
computations of the sample Karcher mean, making it much more com-

putationally expensive, especially when K is large. Thus, there is a tradeoff between com-
putational cost and classification accuracy. In addition, for SP and PP the final classification
decision based on aggregated likelihoods can be made via the OS or REC approaches. The OS
method is simple and easy to interpret. But, if the training data contains a mix of very similar
and very diverse classes, then the REC procedure helps classification performance by elim-
inating the worst classes in a stepwise manner. Importantly, when pairwise log-likelihoods
are very similar, REC may remove the correct class from the relevant set, which can result in
worse performance than the OS method.

Finally, there are two additional choices in these classification procedures: (1) LDA vs.
QDA and (2) the dimensionality of the PC space. The first choice has been widely explored
in the past for various problems, and we do not discuss it here further. The second choice is
nontrivial, and there is no single prescription that applies across problems and datasets. In
general, we aim to achieve a low-dimensional, yet faithful, Euclidean representation of shape
data via PCs. We have found that the proposed approaches are robust to these two choices.
This is confirmed in Section 4 for real-data examples.

4. Empirical studies. We apply the proposed approaches to multiclass classification of
two real-shape datasets: plant leaves and animals. For the recursive approach we focus on
the first and last stages of the recursion. More detailed classification results that include in-
termediate stages are provided in Supplementary Material A (Cho, Kurtek and MacEachern
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((2021a), Section 5)). Source code for replication is available in Supplementary Material B
(Cho, Kurtek and MacEachern (2021b)). First, we consider a problem with a relatively small
number of classes by selecting only a few species from the leaf data. Then, we consider the
entire datasets of leaves and animals. For these two entire datasets we additionally compare
classification performance of the proposed procedures to two nonparametric distance-based
methods: (1) k-nearest neighbors and (2) nearest mean. Nearest neighbors classification is
based on geodesic shape distances, computed using equation (2.1), between a test case and
all training cases. To break ties for k-nearest neighbors when k > 1, we reduce the neigh-
borhood size stepwise from k to k − 1, k − 2, . . . ,1 (if necessary) until there are no ties
(Weinberger, Blitzer and Saul (2006)). Additional results of k-nearest neighbors with other
ways to break ties are in Supplementary Material A (Cho, Kurtek and MacEachern ((2021a),
Section 6)). The nearest mean classification was performed as follows. First, using training
data, we estimate a mean shape for each class using equation (2.2). Second, we compute the
shape distance from each test case to the shape mean for each class using equation (2.1).
Finally, the test case is assigned to the class giving the minimum distance. Supplementary
Material A (Cho, Kurtek and MacEachern ((2021a), Section 1)), includes an additional one-
dimensional toy simulation that motivates the use of pairwise procedures for classification.
We begin with a brief description of the two datasets.

4.1. Data description. We first work with the Flavia Plant Leaf dataset1  (Wu et al.
(2007)). The closed outlines used in our work were extracted from images of plants cap-
tured using a digital camera. The entire dataset consists of 1907 observations of plant leaves
split into 32 classes corresponding to the species of the plants. We note that this dataset does
not contain any landmark information in the form of the starting point on each leaf, thus re-
quiring the full search over rotations and reparameterizations (including an exhaustive search
over cut points) to compute optimal registrations. In case such landmark information is pro-
vided, it can be readily incorporated into the proposed framework via landmark-constrained
elastic shape analysis (Strait et al. (2017)). Le and Kume (2000) showed that growth of bi-
ological structures (rat skulls in particular) tends to follow geodesic paths in shape spaces.
This finding was corroborated by Hotz et al. (2010) for leaves. While we consider a different
problem of classification, this suggests that the shape of a leaf provides useful information
for differentiating between different leaf species. In Section 4.2 we use a small, carefully
selected subset of four leaf species in a semisynthetic simulation experiment to highlight the
benefits of the proposed classification approaches. Then, in Section 4.3 we report classifica-
tion performance on the entire dataset.

Bai, Liu and Tu (2009) provide shape data for animals whose outlines were segmented
from natural images. The entire dataset consists of 100 observations for 20 types of ani-
mals: bird, butterfly, cat, cow, crocodile, deer, dog, dolphin, duck, elephant, fish, flying bird,
chicken, horse, leopard, monkey, rabbit, mouse, spider, tortoise. These 20 animal types will
be used in Section 4.4 for classification. In Figure 3(a) we show a single example for each
animal class (in the same order as the above list). In Figure 3(b) we show a few examples of
cats, monkeys and spiders. We note that there is a lot of variation in pose within each class,
making the classification problem very difficult.

4.2. Semisynthetic simulation: Classification of a small subset of the leaf dataset. We
first consider classification of a small subset of leaves from the Flavia Plant Leaf dataset. To
highlight the benefits of the proposed methods, we have carefully selected three classes that
are difficult to distinguish (classes 1, 3 and 4 drawn in Figure 4(a)) in black, blue and green,

1http://flavia.sourceforge.net/

http://flavia.sourceforge.net/
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FIG. 3. (a) One sample from each animal class. (b) Examples of cats, monkeys and spiders.

respectively) and one outgroup that is easily distinguishable from the other three classes (class
2 drawn in Figure 4(a) in red). To assess classification performance, the dataset is randomly
split into a training set of 40 leaves from each class and a test set consisting of the remaining
leaves (23 in class 1, 16 in class 2, 20 in class 3 and 16 in class 4). The first two PCs for one
training dataset for all classes are plotted in the left panel of Figure 4(b). It is evident that
class 2 (red points) is very far from the other classes and is easily distinguishable using any
reasonable classification method, including LDA and QDA. However, classification among
the other three classes is much more challenging, as there is considerable overlap between
the classes. These observations can be easily confirmed using the plots in the right panel of
Figure 4(b).

Table 1 illustrates the impact of the projection point on the misclassification rate. We pro-
vide results for pairwise classification for classes 1, 3 and 4 only and note that classification
involving class 2 is always very good. The table reports total misclassification rates, averaged
over 25 random splits of the data, for 12 points of projection. We additionally average the
misclassification rates over the numbers of PCs (two through 10) used to define the lower-
dimensional space to provide a single performance summary. The candidate projection points
are q̄ (mean shape of all training samples across the four classes), q̄1, q̄2, q̄3, q̄4 (mean shape
of each individual class), q̄1,2, q̄1,3, q̄1,4, q̄2,3, q̄2,4, q̄3,4 (all pairwise mean shapes) and q̄1,3,4
(mean shape across classes 1, 3 and 4). The pairwise mean shape projection point results
are highlighted in bold, while projection points involving class 2 are underlined. The results
indicate that the pairwise mean shape projection points lead to better classification perfor-
mance. Furthermore, projection points, which include the outgroup in the computation of
the mean shape, perform poorly. The magnitude of the impact of the projection point on the
misclassification rate is striking and is consistent across the three pairwise problems.

Next, we apply the various procedures described in Section 3 to 25 random splits of the
data; the splits were constructed in the same way as described earlier. We consider both LDA

FIG. 4. (a) Sample leaf shapes from four plant species. Classes 1 (black), 3 (blue) and 4 (green) are similar.
Class 2 (red) is easily discernible. (b) Plots of the first two PCs in the tangent space at the mean of all four classes
(left) and at the mean of the three similar classes (right). Each point represents one leaf.
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TABLE 1
Total misclassification rates (%) of LDA and QDA averaged over 25 random splits of the data (four classes of

leaves shown in Figure 4). We consider various points of projection for the three pairwise problems for classes 1,
3 and 4. The pairwise mean shape projection point results are highlighted in bold. Projections involving the

outgroup are underlined

Class 1 vs. class 3 Class 1 vs. class 4 Class 3 vs. class 4

Projection QDA LDA Projection QDA LDA Projection QDA LDA

q̄1,4 1.73 1.70 q̄1,4 5.08 4.91 q̄3,4 4.93 4.47
q̄1 2.26 2.50 q̄1,3,4 6.64 6.22 q̄4 5.30 5.05
q̄1,3 2.75 3.12 q̄3 6.66 15.04 q̄1,4 5.47 6.63
q̄1,2 2.97 3.64 q̄1 7.11 6.95 q̄1 6.53 6.90
q̄4 2.99 10.51 q̄1,3 7.18 7.72 q̄3 6.88 6.75
q̄3 3.31 21.44 q̄3,4 7.23 11.70 q̄1,3,4 8.26 8.59
q̄3,4 3.73 15.62 q̄4 7.64 13.75 q̄1,3 8.83 10.05
q̄1,3,4 4.14 4.01 q̄ 7.93 8.15 q̄ 10.00 11.33
q̄2,4 4.54 15.31 q̄1,2 8.35 8.68 q̄2,3 12.09 11.22
q̄ 4.95 6.06 q̄2,4 10.14 22.46 q̄2,4 12.41 12.70
q̄2,3 7.05 17.57 q̄2,3 10.71 17.12 q̄1,2 13.11 16.52
q̄2 12.42 24.93 q̄2 18.27 26.66 q̄2 20.16 19.83

and QDA in PC spaces of dimension ranging from two to 20. Table 2 presents the total mis-
classification rates, averaged over 25 random splits of the data into training and test sets. As
a general trend the misclassification rate, when using LDA, decreases as the number of PCs
increases. When using QDA, the misclassification rate decreases as the number of PCs in-
creases from two to 10 and then increases slightly. These patterns show the interplay between
dimension reduction and the complexity of the model being fit. Overall, QDA performs bet-
ter than LDA, although LDA performs well for the PP approach with an OS decision for
classification (Pairwise Projections, Pairwise PCs and Stage 1). The standard approach SS-

TABLE 2
Total misclassification rates (%) of LDA and QDA for the four leaf species datatset, averaged over 25 random
splits of the data into training and test sets. The stages refer to the number of recursion steps as outlined in

Section 3.4

LDA QDA

Overall Pairwise Overall Pairwise
projection projections projection projections

Overall Pairwise Pairwise Overall Pairwise Pairwise
PC PCs PCs PC PCs PCs

PCs OS St.1 St.3 St.1 St.3 OS St.1 St.3 St.1 St.3

2 25.97 18.51 18.88 10.99 11.15 24.16 19.31 18.45 9.92 10.77
4 22.03 13.33 11.73 8.85 6.19 18.88 12.69 10.29 6.24 4.75
6 17.97 9.92 9.49 6.72 4.80 14.67 9.01 8.05 5.28 4.00
8 16.21 8.85 8.16 5.65 4.27 11.25 7.31 5.92 4.43 4.00

10 13.33 8.11 7.31 5.23 4.21 10.51 7.04 5.71 3.89 3.09
12 11.15 7.25 6.88 4.85 4.48 8.69 6.93 5.07 3.68 3.63
14 9.17 7.31 6.56 4.69 4.43 9.49 7.57 5.55 4.53 3.57
16 8.00 7.52 6.40 4.53 4.21 9.76 7.57 6.13 4.32 3.84
18 6.99 6.67 6.13 4.43 4.37 10.08 8.48 6.88 4.64 4.75
20 6.67 6.72 6.51 4.43 4.48 10.24 9.23 7.84 5.44 6.03



AGGREGATED PAIRWISE CLASSIFICATION OF SHAPES 631

OS (Overall Projection, Overall PC, One Shot) provides the poorest performance among the
methods.

Table 2 allows us to assess the value of various components of the procedures we have
described: choice of projection point (single or pairwise), choice of PC space (single or pair-
wise) and choice of decision for classification (one shot or recursive). The table shows that
the use of pairwise projection points is beneficial in classification based on both LDA and
QDA. The comparison of the One Shot columns to the Stage 1 columns shows the value of
selecting pairwise PC spaces rather than performing classification in a single PC space based
on all training data. Finally, the value of recursion over the one-shot approach is demonstrated
by the reduction in misclassification rate from Stage 1 to Stage 3. Supplementary Material A
(Cho, Kurtek and MacEachern ((2021a), Section 3)) reports the classification performance
of the proposed methods when a nonelastic shape analysis approach (SRVF representation
under arc-length parameterization) is used to define the LDA and QDA models. The results
reported there are directly comparable to the ones shown in Table 2, and it is clear that elastic
shape analysis provides superior classification performance.

4.3. Real data example: Classification of the entire leaf dataset. We now apply all of the
proposed procedures to the entire leaf dataset. Since the 32 species of leaves have various
shapes, that is, some classes are very similar while others are very different, we are again
interested in investigating the differences in misclassification rate across the various modeling
and final decision choices provided by the proposed methods. As in Section 4.2, we use 25
random splits of the data into training and test sets. We use 40 training samples from each
class and the remaining samples for testing. This results in a balanced training set but an
unbalanced test set. The total number of test cases across all classes is 627.

Table 3 shows the total misclassification rates for LDA and QDA, again averaged over the
25 random splits of the data into training and test sets. In general, the misclassification rates
are larger than those in Table 2, as expected. However, the proposed methods perform quite
well, with PP-OS in an eight-dimensional PC space providing the lowest misclassification

TABLE 3
Total misclassification rates (%) of LDA and QDA, for the entire leaf dataset of 32 species, averaged over 25

random splits of the data into training and test sets. The stages refer to the number of recursion steps as outlined
in Section 3.4

LDA QDA

Overall Pairwise Overall Pairwise
projection projections projection projections

Overall Pairwise Pairwise Overall Pairwise Pairwise
PC PCs PCs PC PCs PCs

PCs OS St.1 St.31 St.1 St.31 OS St.1 St.31 St.1 St.31

2 54.50 33.60 33.72 24.04 23.30 45.69 24.73 30.33 18.09 19.50
4 41.72 31.20 27.60 21.79 19.42 33.35 18.01 22.02 13.45 14.36
6 32.54 29.14 25.93 20.26 17.91 24.38 15.87 19.27 10.51 12.57
8 30.39 27.73 25.06 18.62 17.23 22.41 14.87 17.42 9.73 11.88

10 29.22 26.67 24.58 17.71 16.96 21.38 15.05 17.58 9.95 12.01
12 27.30 26.02 24.52 17.23 16.87 20.34 15.62 17.86 10.53 12.53
14 26.18 25.42 24.54 16.89 16.82 20.85 16.37 18.71 11.32 13.29
16 25.37 24.91 24.43 16.56 16.82 22.21 17.70 19.37 12.27 14.35
18 24.78 24.71 24.41 16.33 16.81 23.77 19.18 20.21 13.22 15.41
20 24.57 24.38 24.36 16.08 16.82 26.08 20.89 21.75 14.53 16.81
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TABLE 4
Total misclassification rate (%) of SS, SP-OS, PP-OS for LDA and QDA (number of PCs chosen to minimize

error), and k = 1,3,5,7-nearest neighbors and nearest mean classifiers for the entire leaf dataset of 32 species,
averaged over the identical 25 splits of the data into training and test sets in Table 3

SS SP-OS PP-OS Nearest neighbor Nearest
meanLDA QDA LDA QDA LDA QDA k = 1 k = 3 k = 5 k = 7

24.57 22.41 24.38 14.87 16.08 9.73 11.78 11.29 11.87 12.18 20.29

rate of only 9.73% based on the QDA model. We note that methods that use pairwise projec-
tion points and pairwise PC spaces perform better than their single projection counterparts.
The LDA misclassification rates decrease as the dimensionality of the PC spaces increases.
For QDA the misclassification rates decrease up to a point and then increase slightly. These
trends are the same as those observed in the previous section. Overall, QDA performs better
than LDA across all methods. We note that the full recursion does not always perform better
than the one-shot method in this case. For LDA it reduces the misclassification rate up to
around a 14-dimensional PC space. For QDA the one-shot method always performs better.
A careful examination of intermediate stages (see Supplementary Material A (Cho, Kurtek
and MacEachern ((2021a), Section 5)) suggests that the recursion may help up to a stage
where all outgroups are removed from the data. After that, the log-likelihoods exhibit greater
numerical stability and averaging across linearizations provides a modest benefit.

Table 4 compares the misclassification rates of PP-OS for LDA and QDA, and multiple
classifiers based on shape distance: the k = 1,3,5,7-nearest neighbors and nearest mean
classifiers. Even though PP-OS for LDA with 20 PCs shows larger misclassification rate than
all nearest neighbor methods, PP-OS for QDA with eight PCs has better performance. Both
PP-OS methods significantly outperform the nearest mean approach and the single projection
methods SS and SP-OS.

Upon closer examination there are three sets of classes of leaves that are most difficult to
distinguish via the proposed model-based shape classification approaches. They correspond
to plant species: (1) Anhui Barberry, Oleander and Ford Woodlotus, (2) Wintersweet and
Camphortree and (3) Japan Arrowwood and Sweet Osmanthus. A sample image of a leaf from
each class is presented in Supplementary Material A (Cho, Kurtek and MacEachern (2021a))
(Figures 5, 6 and 7 correspond to (1), (2) and (3), respectively). It is evident that, within
each set, the different classes of leaves tend to have very similar outer shapes. However, they
clearly differ in color and the internal branching structure of the veins. In fact, when biologists
manually classify plant leaves, they use all of the visual information available in the image
and are thus better able to distinguish between the leaf species. This suggests that a model-
based approach for classification that is able to integrate additional features of the imaged
leaves (beyond the shape of their outlines) will lead to further improvements in performance
and would more closely imitate the process used by biologists in this task.

4.4. Real-data example: Classification of the animal dataset. This last set of results con-
siders a dataset of 20 animals observed under very different poses, which presents some
additional challenges for shape classification. While the shapes of leaves within the same
class were very similar, within class variability for the animal shapes is much larger, due to
the poses in which the animals were imaged. We use 25 random splits of the data into training
and test sets of sizes 60 and 40, respectively. Thus, the total number of test cases across all
classes is 800.

Table 5 shows the total misclassification rates for this example, averaged over the 25 splits
of the data into training and test sets. The overall patterns are very similar to the leaf dataset
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TABLE 5
Total misclassification rates (%) of LDA and QDA, for the animal dataset, averaged over 25 random splits of the

data into training and test sets. The stages refer to the number of recursion steps as outlined in Section 3.4

LDA QDA

Overall Pairwise Overall Pairwise
projection projections projection projections

Overall Pairwise Pairwise Overall Pairwise Pairwise
PC PCs PCs PC PCs PCs

PCs OS St.1 St.19 St.1 St.19 OS St.1 St.19 St.1 St.19

12 62.99 61.52 59.54 45.67 53.49 54.58 48.77 49.05 34.40 41.60
14 61.17 60.59 58.90 44.50 52.75 52.95 47.68 48.07 33.28 41.14
16 60.51 59.85 58.20 43.41 51.87 51.67 47.10 47.45 32.68 40.48
18 59.85 59.22 57.47 42.24 51.14 50.64 46.53 46.38 32.39 40.21
20 59.08 58.40 56.58 41.37 50.08 50.49 46.21 46.13 32.31 40.49
22 58.17 57.69 56.29 40.55 49.35 50.58 46.06 46.27 32.40 40.84
24 58.14 57.07 55.95 39.82 48.97 50.63 46.47 46.41 32.84 41.58
26 57.49 56.54 55.69 39.16 48.63 50.85 46.87 46.82 33.53 42.32
28 56.96 56.15 55.43 38.61 48.37 51.40 47.34 47.38 34.48 43.74
30 56.47 55.83 55.28 37.95 47.98 51.85 48.12 47.88 35.57 44.82

example. However, the misclassification rates in this case are much worse. Overall, QDA
performs better than LDA, and the PP procedure leads to smaller misclassification rates than
the SP method. The baseline SS method is the worst, as before. The recursion helps only for
the SP method and hurts for the PP methods. We also note that many more PCs are required in
this example to achieve good classification performance, a result of larger variability within
and across classes.

Table 6 compares the misclassification rates of PP-OS for LDA and QDA, and the same
distance-based classifiers that were used for the entire leaf dataset. Here, both PP-OS meth-
ods for LDA with 30 PCs and QDA with 20 PCs show larger misclassification rates than
the nearest neighbors methods. However, the performance of the nearest neighbors methods
deteriorates as the number of nearest neighbors considered increases. When seven nearest
neighbors are used, the performance of our QDA-based classifier is comparable to the near-
est neighbors approach. This perhaps suggests that a local classifier, akin to a few nearest
neighbors, is better suited for this dataset due to large heterogeneity within the shape classes.
Both PP-OS procedures significantly outperform the global nearest mean method and the
single projection methods SS and SP-OS.

This example is very different from the leaf example, which presents a much more con-
trolled environment: the leaf images were all acquired in a fixed position. Thus, the animal
dataset poses a more difficult classification problem. The two examples present complemen-
tary assessments of the performance of the proposed classification methods.

TABLE 6
Total misclassification rate (%) of SS, SP-OS, PP-OS for LDA and QDA (number of PCs chosen to minimize
error), and k = 1,3,5,7-nearest neighbors and nearest mean classifiers for the animal dataset of 20 species,

averaged over the identical 25 splits of the data into training and test sets in Table 5

SS SP-OS PP-OS Nearest neighbor Nearest
meanLDA QDA LDA QDA LDA QDA k = 1 k = 3 k = 5 k = 7

56.47 50.49 55.83 46.21 37.95 32.31 25.35 25.01 25.80 26.44 52.92
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5. Discussion. An important step in elastic shape analysis is the move from the infinite
dimensional, curved space, where shapes naturally abide, to a finite dimensional linear space
that allows the use of a suite of standard statistical tools. In this article we have shown that
this linearization is not trivial and that the details of the linearization can have a major impact
on subsequent statistical inference. The linearization consists of two main components: a
projection point to determine a tangent space and dimension reduction by choice of PCs.
A key step in the linearization process is the registration of all shapes to the projection point.
This makes the choice of projection a key step for the success of subsequent analyses.

We propose aggregation as a mechanism to make use of multiple linearizations driven by
different projection points and PCs. Aggregation allows us to focus on the pairwise classifica-
tion problem where the existing literature provides a sound heuristic for the linearization. By
itself, the use of pairwise PCs followed by aggregation of likelihoods from statistical models
provides a substantial benefit with more flexibility, even compared to alternative nonparamet-
ric classification approaches.

Additionally, we note that the presence of an outgroup can harm the aggregation by con-
tributing linearizations that have little relevance for the classes to which an observation might
plausibly be assigned. While one could use alternative procedures to account for outgroups,
for example, based on voting principles, we propose a recursion that can be quickly computed
from the results of the aggregation. The recursion has proven successful for a problem with a
modest number of classes and a clear outgroup. For problems with a profusion of classes and
great within-class variation, the recursion harms performance.

The nearest neighbor approach performs much better than the single projection, pairwise
tPCA methods as well as the pairwise projection, pairwise tPCA LDA approach, especially
for the animal dataset. The nearest neighbors method is very local, particularly when the
classification decision relies on only a few neighbors, vs. the two proposed model-based
methods, which are more global. However, the performance of the nearest neighbor approach
deteriorates as more neighbors are considered in the classification decision. The locality of
the classification procedure seems to be much more important in the case of the animal dataset
than the leaf dataset, with the one nearest neighbor approach providing the best performance.
This matches intuition based on what we know about this dataset: the animal shapes were
extracted from natural images under many different poses. More global methods that either
consider more neighbors or define models that consider all of the poses would naturally be
expected to perform worse in this case.

In terms of computational cost, the most time consuming portion of our approach is reg-
istration, that is, the search for cut-point, optimal rotation and reparameterization for each
shape and target pair. Assume there are N training samples for each of K classes. For nearest
neighbors classifiers a test sample is registered to all NK training samples; for the pairwise
projection methods a test sample is registered to

(K
2

)
class means; for the single projection or

nearest mean procedures, a test sample is registered to K means. The proposed PP approach
rivals the nearest neighbors methods in terms of accuracy and is, in many settings, much
quicker. It is slower than the single projection and nearest mean methods, but it has much
better classification accuracy. We recommend the PP approach when good classification per-
formance is desired and N is large relative to K .

The proposed approaches are applicable in classification problems on general Riemannian
manifolds. However, we have observed empirically that the largest gains in classification per-
formance over competing methods are observed when linearization of the space involves non-
linear registration, such as in elastic shape analysis. Supplementary Material A (Cho, Kurtek
and MacEachern ((2021a), Section 2)) reports results of additional classification experiments
on high-dimensional spheres and the landmark shape space.

This work opens up several methodological and applied problems, several of which we are
in the process of examining. One is the choice of projection points for pairwise comparisons.
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A sensible alternative to the pairwise mean is the midpoint of the geodesic between the two
classwise mean shapes. Although not exactly the same, these two types of projection points
are typically close to one another. This will allow us to greatly reduce computational cost:
we only have to compute K mean shapes instead of

(K
2

)
. A second is whether there are more

effective ways to select the PCs for a given projection and pairwise classification problem.
A third is to delineate the circumstances under which the recursion is beneficial. A fourth is
whether the recursion can be modified to retain aggregation over a subset of linearizations.
Finally, we plan to explore related applied problems in biology. In particular, we will explore
relationships between shapes of plants and/or animals and various covariates of interest, such
as genomic signatures, environmental variables, etc. In future work we expect to consider
these and other problems.
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SUPPLEMENTARY MATERIAL

Supplement A: Supplement to “Aggregated pairwise classification of elastic planar
shapes” (DOI: 10.1214/21-AOAS1452SUPPA; .pdf). This supplement includes (1) a toy one-
dimensional simulation study that motivates the use of pairwise procedures in classification,
(2) results of classification of data on spheres and the landmark shape space, (3) results of
classification using a nonelastic curve framework, (4) results of classification using classwise
LDA/QDA models with and without parallel transport, (5) detailed classification results for
the recursive method, (6) additional results based on k-nearest neighbors classification, and
(7) additional figures for the leaf classification example in Section 4.3.

Supplement B: Source code for “Aggregated pairwise classification of elastic planar
shapes” (DOI: 10.1214/21-AOAS1452SUPPB; .zip). Matlab and R source code for the mod-
els described in this paper and data files.
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