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ABSTRACT

In many applications, smooth processes generate data that are recorded under a variety of observational
regimes, including dense sampling and sparse or fragmented observations that are often contaminated
with error. The statistical goal of registering and estimating the individual underlying functions from discrete
observations has thus far been mainly approached sequentially without formal uncertainty propagation, or
in an application-specific manner by pooling information across subjects. We propose a unified Bayesian
framework for simultaneous registration and estimation, which is flexible enough to accommodate infer-
ence on individual functions under general observational regimes. Our ability to do this relies on the
specification of strongly informative prior models over the amplitude component of function variability
using two strategies: a data-driven approach that defines an empirical basis for the amplitude subspace
based on training data, and a shape-restricted approach when the relative location and number of extrema
is well-understood. The proposed methods build on the elastic functional data analysis framework to
separately model amplitude and phase variability inherent in functional data. We emphasize theimportance
of uncertainty quantification and visualization of these two components as they provide complementary
information about the estimated functions. We validate the proposed framework using multiple simulation
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studies and real applications.

1. Introduction and Motivation

Functional data analysis (FDA) is an area of statistics in which
the primary objects of interest are more naturally understood
as functions rather than vectors (Ramsay and Silverman 2005;
Ferraty and Vieu 2006; Srivastava and Klassen 2016). This
perspective is advantageous in a wide range of application
domains including biology, medicine, environmental science
and engineering, where the underlying evolution of variables
of interest is often smooth. Though the goals of FDA, includ-
ing sample summarization and visualization, inference, and
prediction, are similar to those of multivariate statistics, they
are more challenging due to the inherent difficulty of recon-
ciling finite-dimensionality of observed data with the inher-
ent infinite-dimensionality of function spaces representing the
data space.

In particular, functional data objects are observed on a finite
grid over of an interval [a,b] C R, resulting in a variety of
possible observational regimes: (i) densely observed functional
data, wherein a large number of observations per function
is available; (ii) sparse functional data, comprised of a small
number of nonuniformly spaced observations per function;
(iii) fragmented functional data, where observations of each
function are unavailable over certain subsets of [a, b]. While
Scenario (i) is often assumed for modeling (Ramsay and Sil-
verman 2005; Srivastava and Klassen 2016), Scenarios (ii) and
(iii) are very common in biomedical and industrial applica-
tions. Additionally, in each of these scenarios, observations are

frequently measured with noise or error. Further complicating
matters is the fact that functional data often exhibit two latent
types of structural variability: amplitude variability, akin to
differences in magnitude within variables in the multivariate
setting, and phase or warping variability, related to differences
in the timing of amplitude features, conspicuously absent in
the multivariate setting. Failure to account for these sources
of variability in function estimation and modeling can result
in misleading summaries and biased inference (Marron et al.
2015).

Figure 1 illustrates such data (throughout this article and in
the figures, we transform the domain to the unit interval without
loss of generality). Panels (a) and (b) show fractional anisotropy
(FA) data, extracted from diffusion tensor-magnetic resonance
images (DT-MRIs), that are (a) fragmented early in the domain
and (b) densely observed. Panel (c) shows densely measured,
but noisy, growth velocity curves for a group of children, and
panel (d) shows both fragmented and sparse observations of
bone mineral density (BMD). These examples vary in the
amount of sparsity, the degree of fragmentation, and the amount
of noise.

Estimating the underlying functions, as well as their ampli-
tude and phase components, in such diverse observational
regimes is a challenging problem. While the problem has
been tackled for specific observational regimes, to the best
of our knowledge, it has not been studied under a unified
methodological framework. Such a framework should exploit
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Figure 1. (a) Fragmented and (b) densely observed functional data from fractional anisotropy (FA) measurements. (c) Noisy growth velocity functions. (d) Fragmented and

sparsely observed functions of bone mineral density (BMD).

the assumption that functional data share certain features, such
as number of modes or inflection points. For example, in panels
(a), (b), and (c) of Figure 1, the different functional observa-
tions contain similar numbers of modes, although their times
of occurrence vary (phase variation) relative to some common
state (template). The functions in panel (d) are generally known
to be increasing and have an inflection point whose location
varies across observations. Moreover, such a framework should
automatically provide a calibrated assessment of uncertainty,
and thus, quality of registration under different observational
regimes. We propose a Bayesian approach that satisfies these
desiderata for simultaneous estimation and registration of func-
tional data.

The survey of FDA approaches in Section 1.1 highlights
that existing methods frequently follow a sequence of estima-
tion steps, which perform the necessary tasks of (i) smoothing
(e.g., projecting data to a lower-dimensional function space),
(ii) registration of smoothed functions (separation of ampli-
tude and phase variability), and (iii) summarization, modeling
and inference. While conceptually straightforward, this pipeline
generally suffers from two drawbacks: difficulty in formally
propagating uncertainty between stages of estimation leading to
over-confidence in the results, and lack of flexibility under dif-
ferent observational regimes. We argue that both of these issues
can be resolved by a unified Bayesian inferential framework
that performs estimation, registration and inference simultane-
ously. Within this framework, data- or information-driven prior
choices are necessary to extract meaningful observation-level
information regardless of the collection protocol and/or issues
with data quality, which often occur in practice.

1.1. Related Work

Both estimation and registration are crucial components in
FDA. In most methods, the problems of estimation and reg-
istration are addressed separately, without formal uncertainty
propagation from the estimation to the registration stage. Past
methods that attempt to address this issue through a unified
approach are either too rigid, or are unable to accommodate
general observational regimes. Next, we review several different
methods for function estimation and/or registration that are
relevant to the proposed approach; for ease of exposition, we
separate our discussion into three parts: methods that primarily
focus on (i) estimation, (ii) registration, and (iii) joint estimation
and registration.

1.1.1. Estimation

In FDA, most approaches assume that the observations used
for statistical summarization, modelling and inference are finely
sampled and smooth (Ramsay and Silverman 2005). However,
in most real data scenarios this is not the case. The data comes in
the form of discrete observations, possibly sparse or fragmented,
and subject to measurement error. Consequently, a crucial step
in FDA is to estimate a functional form from the discrete obser-
vations while accounting for observation noise, which relies on
nonparametric function estimation. Namely, kernel smoothing
and basis expansion methods, combined with penalized least
squares, are extremely popular approaches for estimating under-
lying functions based on discrete observations (Wahba 1990;
Ramsay and Silverman 2005; Srivastava and Klassen 2016). The
primary challenge in these approaches is the selection of an
appropriate smoothing parameter, which is commonly done
through cross-validation. However, in high noise scenarios,
individual estimation of functions using these methods tends
to overlook population-level features, and fails to reflect the
uncertainty in the observations in subsequent analyses.

To address these common issues with kernel smoothing and
basis expansion approaches, methods have been developed to
simultaneously infer functions underlying the observations, as
well as population quantities of interest, for example, a pop-
ulation mean function. Functional mixed effects models have
been effective in modeling discrete observations with a fixed
mean function, random subject-specific functions, and point-
wise error (Shi, Weiss, and Taylor 1996; Rice and Wu 2001; Yang
et al. 2016). Descary and Panaretos (2019) modeled discrete,
noisy observations as the sum of a stochastic process represent-
ing smooth, large scale-variation, and an uncorrelated, zero-
mean stochastic process representing rough, small-scale varia-
tion. Inference in this setting enables joint covariance estimation
for the processes as well as estimation of smooth functions,
based on the discrete observations, through the Karhunen-
Loéve expansion using the covariance of the smooth process.
Shape-constrained estimation methods impose structure more
directly, by incorporating prior knowledge of population-level
features, for example, the number of peaks and valleys, to con-
strain the resulting shape of the estimated functions (Wheeler,
Dunson, and Herring 2017). Similar methods have also been
developed to estimate and model probability density functions
under shape constraints (Dasgupta, Pati, and Srivastava 2019,
2020).

Estimation of functions based on sparse and fragmented
observations, often arising in longitudinal studies, require



specific attention, because they violate the common assumption
that a fine or dense sampling of discrete observations is available
(Wang, Chiou, and Miiller 2016). Estimation of subject-specific
functions, along with the population mean and covariance, for
fragmented functional data was studied in Delaigle and Hall
(2016) and Kraus (2015). While these works implicitly assumed
a missing-at-random mechanism for the unobserved parts of
the function, recent work in Liebl (2019) performed estimation
under a missing-not-at-random assumption. The work of Rice
and Wu (2001) explicitly discusses fitting functional mixed
effects models to sparse data. Principal Analysis through Con-
ditional Expectation (PACE) (Yao, Miiller, and Wang 2005), a
framework for modeling sparse functional data, pools discrete
observations across all samples to estimate a mean function
and a covariance function; this enables individual function esti-
mation based on sparse observations via the Karhunen-Loéve
expansion.

1.1.2. Registration

Works that focus solely on function estimation tend to over-
look the distinction between phase and amplitude variability in
functional data. As a result, registration is often considered as
a sequential, unrelated step following estimation (Ramsay and
Silverman 2005). Popular methods for registration of smooth,
densely sampled functional data consist of landmark-, metric-,
and model-based procedures. Landmark registration relies on
the ability to specify landmarks, a set of points representing
important function features, for example, peaks and valleys,
and attempts to align these features (Kneip and Gasser 1992;
Ramsay and Silverman 2005). A major disadvantage of these
procedures is the need to select the landmark points, which
can be subjective, inaccurate or even intractable (Marron et al.
2015). There have been some recent efforts to automatically
identify, and quantify uncertainty in, mathematical landmarks
(Strait, Chkrebtii, and Kurtek 2019). On the other hand, metric-
based procedures formulate an optimality criterion, which is
then maximized/minimized to estimate amplitude and phase
components (Wang and Gasser 1997; Ramsay and Li 1998; Sri-
vastava et al. 2011). The choice of optimality criterion is crucial
and can drastically influence the registration result (Marron
et al. 2015; Srivastava and Klassen 2016). Model-based regis-
tration procedures can be viewed as extensions of metric-based
approaches where registration is determined through a formal
statistical model (Tang and Miiller 2008; Claeskens, Silverman,
and Slaets 2010). These procedures have an added benefit in
that they can be directly linked to common inferential tasks.
Lu, Herbei, and Kurtek (2017) proposed a model that pools
information from all available samples to estimate a common
template, while registering the observations to this template.
Kneip and Ramsay (2008) coupled registration with functional
principal component analysis (fPCA) that enables dimension
reduction.

1.1.3. Joint Estimation and Registration

Joint estimation and registration procedures have been devel-
oped to propagate uncertainty from the estimation stage to the
registration stage. Shape-invariant models (Lawton, Sylvestre,
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and Maggio 1972; Telesca and Inoue 2008; Fu and Heck-
man 2019) jointly estimate a population template function and
subject-specific scaling factors, translations and warpings, based
on discrete, noisy observations. While this approach does pro-
duce joint estimation and registration, while accounting for
diverse observational regimes, the model is extremely rigid, as
all estimated functions are required to have the same underlying
shape, that is, the amplitude components are only scaled and
translated versions of the template function. Shape-constrained
approaches relax this assumption. The work of Rakét, Sommer,
and Markussen (2014) attempts to modify functional mixed
effects models to address joint estimation and registration. In
this approach, only the population mean component of the
model is subject to warping, and assumes that all observations
are recorded on a common time grid.

1.2. Contributions and Organization

The issues raised in Section 1.1 may be addressed by simulta-
neously combining coherent uncertainty propagation between
estimation, registration and inference, enabled by prior spec-
ification for phase and amplitude components of individual
functions. In particular, we argue that an inferential frame-
work under a general observational regime must include an
automatic method to appropriately restrict the model space
(Rakét, Sommer, and Markussen 2014; Wheeler, Dunson, and
Herring 2017), based on either a physical understanding of the
underlying process or on previously observed data. Bayesian
inference is a natural framework for introducing such hard and
soft constraints through the choice of a prior distribution. We
focus on two automatic approaches for prior specification on
subject-specific amplitude components to carry out this restric-
tion:

1. When densely-observed training data is available (e.g., Fig-
ures 1(a) and (b)), a data-driven prior is constructed to
capture important modes of amplitude variation.

2. When knowledge on the data-generating mechanism is avail-
able, such as the distribution of peaks and valleys (e.g., Fig-
ures 1(c) and (d)), we define a prior that informs the shape
and smoothness by controlling the number of extrema.

We choose to model phase variation using a recently proposed
point process-based prior on warping functions, compatible
with the discrete nature of sparse and fragmented data (Bharath
and Kurtek 2020). We acknowledge that prior training data or
knowledge of extrema may not be available for all applications.
In the absence of this information, additional hierarchical layers
can be added to the proposed modelling framework to broaden
the applicability. This is left as future work and discussed in
Section 5.

While Bayesian models for functional data with phase varia-
tion have been considered under the sparse and dense observa-
tional regimes (e.g., Telesca and Inoue 2008; Zhou et al. 2014),
we are unaware of any work that deals with estimation for
fragmented functional data in the presence of phase variation.
Moreover, the proposed model for handling amplitude and
phase variation in the dense and sparse regimes adds flexibility
relative to current approaches, by allowing for subject-specific
templates rather than assuming a common shape template.
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The remainder of this article is organized as follows. Section 2
describes an approach for prior modeling of amplitude and
phase variability in densely observed functional data, which
is used to inform the Bayesian model described in Section 3.
We validate the proposed framework on simulated and real
data in Section 4, and close with a brief discussion and some
directions for future work in Section 5. The supplementary
materials include (i) an additional simulation for the shape-
restricted amplitude prior model, (ii) an additional real data
example that considers estimation of CD4 cell count functions
for HIV patients, (iii) an additional discussion of the BMD
modeling results presented in Section 4.2.4, (iv) the Markov
chain Monte Carlo (MCMC) algorithm used to sample from
the posterior distribution and other implementation details, (v)
MCMC diagnostics, and (vi) detailed sensitivity analyses with
respect to various modeling choices.

2. Phase-Amplitude Separation via EFDA

Functional samples from a population often share common
features, such as the number and relative location of peaks and
valleys. Differences in magnitude and location of these features
along the domain are commonly referred to as amplitude and
phase variability, respectively, as formalized in Ramsay and
Silverman (2005), Srivastava and Klassen (2016), and Marron
et al. (2015). It has been shown in multiple places (Srivastava
and Klassen 2016; Srivastava et al. 2011; Tucker, Wu, and Sri-
vastava 2013) that modeling functional data without appropri-
ately accounting for phase variability can result in inaccurate
descriptive statistics and biased or misleading inference. Decou-
pling these two sources of variation is known as registration or
alignment of functional data. For a sample of densely observed
functions, f; : [0,1] = R, i =1,...,k, aregistration procedure
yields corresponding amplitude functions f; : [0,1] — R and
phase functions y;. Their composition f; = fio y;, i = 1,...,k
reconstructs the original functions uniquely. A formal regis-
tration procedure must thus define a representation space of
phase (these can vary in flexibility from linear to diffeomorphic
transforms) and an appropriate optimality criterion.

To perform simultaneous estimation and registration, cou-
pled with informative shape restriction, we choose a warping
functional form and optimality criterion based on the elastic
functional data analysis (EFDA) framework of Srivastava et al.
(2011). Indeed, its ability to define amplitude purely in terms
of the shape of a function, that is, the number and (relative)
heights of peaks and valleys independent of their locations
on [0, 1], is consistent with our goal of semiparametric shape
restriction. Phase variability is modeled via smooth, monotone
transformations of [0,1]: " = {y : [0,1] — [0,1]]y(0) =
0,y(1) = 1,y > 0}, where y is the time derivative. Though
most other methods use the I.? metric as the optimality crite-
rion for registration, this choice suffers from major deficiencies
including the pinching effect (distorted amplitude) and asym-
metry in registration (ill-defined amplitude) (Marron et al. 2015;
Srivastava and Klassen 2016). This is because the L2 metric is
not invariant to simultaneous warping of functions, making its
use inconsistent with the goal of registration. Instead, EFDA
uses an extension of the Fisher-Rao Riemannian metric as a

foundation for registration and statistical modeling (Srivastava
et al. 2011); we omit its formal definition here for brevity. While
this choice has useful mathematical properties, including the
critical invariance to identical warping, it is difficult to use
directly. However, the simple transformation described below
reduces this metric to the standard L2 metric, facilitating sim-
plified computation.

Let / = {f : [0,1] — R |f is absolutely continuous} denote
the function space of interest. For any f € F, define its square-
root velocity function (SRVF) using the mapping

Q:F — L*([0,1,R), Q) = sign(f)\/ﬁ =q.

The space of SRVFs corresponding to F is denoted as Q.
Because the SRVF is invertible up to a translation, the original
function can be reconstructed from its SRVF using f(t) =
Q Yg.f(0) = f(0) + fot q(s)|q(s)|ds. The extended Fisher-
Rao (eFR) distance on F simplifies to the IL? distance on Q: the
eFR distance between two functions f;, f, € F is computed as

1/2
dentfif) = a1 — apll = [ i @) — qao2ar]

EFDA defines the amplitude of a function f as an equivalence
class [f] := {f oy | y € I'} under the equivalence relation f ~ g
if there exists a warping y € I' such that foy = g. Equivalently,
on the SRVF space Q we have [q] := {(¢q,y) |y € I'}, where
(¢ ¥) = (goy)/7 is the corresponding action of I" on Q under
the SRVF map f +— g. The set of equivalence classes forms a
partition of Q, and is referred to as the quotient space Q/ T,
thatis, @/ I' defines the amplitude space. Therefore, registration
under this framework requires the determination of an average
or mean equivalence class, and alignment of all functions to one
ofits elements. Letfj, . . ., fx denote a sample of densely observed
functions, and qy, . . ., gk their corresponding SRVFs. The sam-
ple mean equivalence class is taken to be the Karcher mean:
[ig] = argmin Zle d([ql,[q:])? = argmin Zle min||g —

[qleQ/T lqleQ/T ver
(gi» )11 To ensure identifiability, a representative element of
the mean equivalence class, ji; € [fi4], is chosen such that the
average of the optimal warpings of all functions to j, is the
identity warping y;4(t) = t. In addition to the mean amplitude
function, /i = Q™' (fi4,f(0)) where f(0) = L 3% | £:(0), this
registration procedure also yields (i) phase functions, y* =
argmin||ity — (g ¥)I, i = 1,...,k, (ii) registered SRVFs,
yell

@iy, i = 1,...,k, and (iii) amplitude functions, f‘, =
Q_l((% J/,*)’fz(o)), i=1,..., k.

fPCA is a decomposition of the total sample variation into
orthogonal modes of varijability. We propose to perform fPCA
on amplitudes to construct informative empirical priors over
this component of variation. Also called vertical fPCA, it was
first used within the EFDA framework by Tucker, Wu, and Sri-
vastava (2013) in the context of building generative models for
functional data. fPCA on the amplitude component corresponds
to an eigendecomposition of the sample covariance function
across the aligned SRVFs, @ = ﬁ Zle((qi, Y —

Ra) (@ y)O — fig(t)) = 321 Aedp(s)Pp(t) where
¢ b = 1,2,... are fPCs that form an orthogonal basis
for the space of aligned SRVFs. With this data-driven basis, a
finite representation of aligned SRVFs can be obtained through
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Figure 2. (a) Simulated data, (b) phase, and (c) amplitude functions. (d) Same as (a) with mean amplitude in bold. (e) First and (f) second principal modes of amplitude

variability.

truncation as (q;, y;") ~ fig + Zgzl E,-,Mf)b, where ¢, =
I8 @) — fg)Pp(s)ds &€ = (Gi1s....¢8) s a B-
dimensional Euclidean representation of (g;, y;*). Then, a gen-
erative model consists of (i) drawing a random coefficient vector
¢ ~ MVNg3(0, diag()tl,...,):B)), (ii) constructing a random
SRVF as q, = fiq + Zgzl ¢y, and (iii) computing the cor-
responding function f, = Q~!(gy, T), where T ~ N(f(0),£2)
is a random translation, and 2 is the sample variance of the
function starting points f1(0), . . . , fc(0). Thus, the resulting ran-
dom function f, is necessarily aligned to the mean amplitude
function fis.

To illustrate EFDA, we consider a sample of simulated func-
tions shown in Figure 2(a). The data are generated through the
composition of the following amplitude and phase functions: for
i=1,...,21landt € [0,1],

filt) = z1,; exp{—((t — .25)%/72)}

+ 23 exp{—((t —.75)%/72)}, and (1)
exp (a;t)—1 .
yity = ep-1 470 @
t otherwise,

where z; 5,21 i N(1,0.25%), and g; are equally spaced on
[—1, 1]. Such simulated functions are commonly used to assess
performance of models for functional data in the presence of
phase variation (Kneip and Ramsay 2008; Srivastava et al. 2011;
Tucker, Wu, and Srivastava 2013), and are used in simulation
experiments in this work throughout Section 4, and in Section
6 of the supplementary materials. The phase and amplitude
functions extracted via the eFR-based registration procedure are

shown in panels (b) and (c), respectively, with the amplitude
mean shown in bold in (d) on top of the original functions. The
first two principal modes of variability for the amplitude com-
ponent are given in panels (e) and (f), respectively. That is, we
plot Q' (fig+ki, > gy, T) forb € (1,2}, k € {=2,—1,0,1,2); T
is a small translation that is included for improved display. The
primary mode of variability captures differences in the height of
the right peak, while the second mode describes variability in
the left peak, and to a lesser extent, the relative heights of the left
and right peaks. The remaining modes of variability, which are
not displayed here, capture a negligible amount variability.

3. Model-Based Estimation and Registration

We summarize the notation used thus far and introduce nota-
tion for discretely observed functional observations, which
become key at the modeling and implementation stages. Let F
be the set of absolutely continuous functions f : [0,1] — R, Q
the corresponding SRVF space under the mapping f — Q(f) =

sign(f)/|f] := ¢, and T € R a scalar translation. The function

Q7 !: QxR — F takes in an SRVF and a translation, and
maps them to the corresponding point f in the function space
F. A warping function is denoted by y € I', where I' = {y :
[0,1] = [0,1]]y(0) = 0,y(1) = L,y > 0}.

A model for functional data can be defined either on the
original function space F or on the SRVF space Q. While
modeling phase variation through the usual warping action
f + f oy is simpler on F, the simple L? geometry of Q
makes dimension reduction through a (possibly data-driven)
basis expansion possible. We choose a marriage of the two
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options, and assume that functional observations are generated
under the model,

yi(t) = (fio ¥ (t) + (),
yi(t) = (Q71(gi, Ti) o yi) (1) + €i(t), (3)

where T; € R accounts for function translation, €; denotes the
error process, and the subscript i indexes each sample element
(e.g., subject). Thus, individual curves y; are viewed as perturba-
tions of a function f; := Q™ !(q;, T;) warped by y;. This allows us
to specify structured prior distributions on the amplitude compo-
nent based on a judicious choice of shape-defining basis functions,
while specifying a prior distribution on warping functions I that
is naturally compatible with possible fragmentation and sparsity.
This model is characterized by subject-specific amplitude (and
phase) components, in contrast to a common amplitude tem-
plate as done in Telesca and Inoue (2008) and Zhou et al. (2014).
We lety = (yl,...,ym)—r andt = (1 < < ty)!
denote a vector of noisy, discrete functional observations and
the corresponding time grid on which this data was observed,
respectively. Then, for a function f, f(t) = (f(t1),....f )’
is a vector of function evaluations on this same time
grid.

3.1. Likelihood Specification

We now formulate error model (3) for discretely observed func-
tions, as is typical in practice. The vector of observations of
fi, denoted by y;, is obtained from evaluations over a subject-
specific grid of time points t; = (tj; < -+ < t,-,ml.)T of an
appropriately translated (via T;) and warped (via y;) SRVF g¢;
specifying the overall shape, as

vi = (Q (g T)) o y) (1) + €i(ty),

This formulation allows general observational regimes, such as

i=1,...,n (4)

when t; is sparse or fragmented. Under the assumption €;(t;) nd
MVN,,, (0, al.zlmi) (in most cases, one can fix all al.z to a common
value), the likelihood for a single observation y; under our
model is given by

Yilgi» vi» Ty 07 ~ MVN,,, ((Q_l(CIi; T;) o yi) (L), Gizfmi) ,
i=1,...,n (5)

3.2. Prior Models for Translation, Phase, and Error
Variance

We first focus on model components whose probable values a-
priori may be assumed relatively similar between problems. We
assume that the translation parameters, T;, i = 1,...,#n, and
error variances, o7, i = 1,...,n are a-priori independent with
T; ~N(ur, %) and o} ~ Inverse-Gamma(cs, B, ). The choice
of hyperparameters 72, &, and B, is largely problem-specific.
In all applications, we use 7 = 0.

Defining a prior process on the set I" of warping functions is
more challenging due to its restricted functional form. Common
approaches in the literature model phase functions using basis
expansions with constrained coefficients (Telesca and Inoue
2008; Fu and Heckman 2019) or directly via the Riemannian

geometry of the group of warping functions (Lu, Herbei, and
Kurtek 2017). In contrast, we use a prior based on a piecewise
linear process proposed in Bharath and Kurtek (2020), consist-
ing of random phase increments p(y;) = (yi(t1),...,vi(tj) —
vi(ti-1),...,1— y,-(tmy ))—r over m,, successive time points t, =
Hh < - < z‘my)T on the input domain [0, 1]. The partition
size is a user-specified value m, < min m;, whose magnitude
1

provides a trade-off between model flexibility and computa-
tion time. For each i = 1,...,n, independently, the finite-
dimensional vector of phase increments follows a Dirichlet
distribution, p(y;)~Dirichlet(6, u), where u = (u(y), ..., ug —
UG-1)>-->1 — u(my)) and 0 =: u) < uq) < -+ < Uem,) < 1
is a vector of order statistics corresponding to a random sample
of size m,, from a uniform distribution on [0, 1], and 6, acts as
a precision parameter. This finite-dimensional model specifica-
tion is computationally convenient; furthermore, Bharath and
Kurtek (2020) show that it has desirable asymptotic properties
by relating it to a stochastic process with (measurably) increas-
ing sample paths as m, — oo.

In this prior specification, the choice of the order statis-
tics dictates where the prior process is centered. For example,
uniform order statistics result in a prior distribution over I"
centered at the identity warping y;4; order statistics from an
arbitrary distribution G on [0, 1] would result in the prior dis-
tribution over I being centered at G~!. We choose the uniform
order statistics to regularize the prior model toward the identity
warping. We evaluate the prior approximately by assigning the
random order statistics to a uniform spacing of the domain grid,
since the successive spacings in both cases are essentially of
order O(1/m,, ). The precision hyperparameter 6, controls the
spread of the prior around its mean G~: a small value results in
a diffuse-type prior, whereas a large value concentrates the prior
around G~!. When the observed data contains information
about the location of prominent function features, for example,
peaks and valleys, the posterior distribution is not very sensitive
to the choice of this parameter. On the other hand, when the
available data contains less information about the underlying
signal, a large 6, induces regularization of estimated phase to
the identity element. In other words, the choice of 8, is problem
specific and should in part depend on the observational regime,
that is, when the observed data is densely sampled, 0, can be
small, but when faced with sparse and/or highly fragmented
data, a considerable amount of regularization is required to
identify subject-specific model components; see Section 6 in the
supplementary materials for detailed sensitivity analyses. The
role of the parameter 6,, in this phase prior is detailed in Bharath
and Kurtek (2020).

3.3. Shape-informed Prior Models for Amplitude

Besides allowing direct interpretation of phase and amplitude
uncertainty, modeling underlying functions in model (4) via
the EFDA framework allow us to define the amplitude model
on the mathematically convenient SRVF representation space.
Choice of the prior model over the registered SRVFs, represent-
ing amplitude, is both problem-specific and has a potentially
strong impact on posterior inference under general observa-
tional regimes. We propose two semiautomatic approaches to



model prior information about amplitude in different data col-
lection scenarios. The first type is appropriate when, along with
data that is sparsely observed or fragmented, we also have access
to functional observations of different subjects from the same
population that are neither fragmented nor sparse; we refer to
this data as training and define an empirical prior model based
on statistics computed from this data. The second type of prior
is appropriate when information is available about the number
and relative locations of local extrema that underlie the func-
tional observations. Importantly in practice, this prior model
does not require the location of the extrema on the domain. We
will also explain how this second scenario has connections to
landmark registration (Kneip and Gasser 1992).

3.3.1. Empirical Amplitude Prior

When densely observed training data f, . . ., fx is available, we
can construct a shape-informed prior for the amplitude of n
new, partially observed functions on the subspace spanned by
the empirical basis constructed from the amplitudes of training
data SRVFs g1, . . ., gk. Elastic fPCA is carried out by first jointly
performing registration and computation of the Karcher mean
flg> and then decomposing the sample covariance of the ampli-
tude components of the training data to obtain eigenfunctions
{(51,, b = 1,...,B} and corresponding eigenvalues Ao b =
1,...,B. The basis functions ¢, represent amplitude variation
about the Karcher mean /i  so that the SRVFs g;, i = 1,...,n
in model (3) can be represented as

B
ai() = Lg(®) + Y cipdp(t), i=1,...,n (6)
i=b

Thus, a prior process over the amplitude component g; can
be defined through a prior distribution over the coeflicient
vector ¢;, such as ¢; ~ MVNg(03, diag():l, ... ,iB)). This prior
specification provides a data-driven way of imposing structure
on the amplitude model based on the training data. Note that the
training observations must be representative of the important
features of amplitudes in the population, and their number must
be sufficient to be able to estimate these. A similar approach was
recently used to model shapes of three-dimensional curves rep-
resenting fiber tracts extracted from diffusion tensor-magentic
resonance imaging (DT-MRI) (Zhang, Descoteaux, and Dunson
2019).
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The proposed prior model is illustrated in Figures 2 and 3
for a simulated training dataset. Figure 3(a) shows the sample
mean SRVF (black) and fPCA basis computed using the ampli-
tude functions in Figure 2(c). SRVF draws from the prior, and
corresponding amplitude functions obtained by the transforma-
tion Q~!, are shown in Figures 3(b) and (c), respectively. We
illustrate visually that these random functions are registered to
the amplitude functions in the training data, as required.

3.3.2. Shape-Restricted Amplitude Prior

When reliable information about the number and relative order-
ing of extrema of underlying functions is available, a prior on the
amplitude g; can be specified by choosing a set of basis func-
tions that reflects this information. In contrast to the empirical
amplitude prior, such a prior does not require training data. We
assume the following form for the SRVFs g;:

B
qi(t) = Zci,bUZ(t), i=1...,n
b=1

7)

The basis functions are defined as U, (t) = M(]—[{Ll(t —
ap))Up(t), b =1,..., B, where Uy are B-spline basis functions.
This basis system is based on a modification of the shape-
restricted B-splines developed by Wheeler, Dunson, and Her-
ring (2017). These bases relate to the derivative of the function
since amplitudes are defined on the SRVF space rather than
the original function space. This basis system forces the SRVFs
to be exactly zero at the change point locations «;,...,aH,
corresponding to extreme values at these locations in the cor-
responding amplitude functions. The constant M € {—1,1} is
application-specific and defines the order of extreme values.
Our use of this basis system differs from Wheeler, Dunson,
and Herring (2017) as our model accounts for phase variabil-
ity explicitly, that is, we treat the change points as constants
that determine the common locations of extreme values of the
underlying amplitude functions, unlike the original work where
the change points are also inferred. We use a diffuse exponential
prior model on the coefficient vector ¢; to ensure that each
basis coeflicient is positive; this, in turn, guarantees that all of
the amplitude functions have the same ordering of extrema.

Specifically, the prior model in this case is ¢;p nd Exp(B.),
with a large 8. For simplicity in implementation of this model,
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Figure 3. (a) Sample mean SRVF (black) and fPCA basis elements computed using the training data in Figure 2. (b) SRVF draws, and (c) corresponding amplitude functions
transformed under @7, generated from the proposed empirical amplitude prior model.
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the size of the discretization grid for the phase functions, m,,
is set equal to H, that is, the number of extrema. This ensures
that the derivative changes in the phase functions occur only
at the extrema. To provide maximum separation of extrema in
the estimated amplitude functions, we recommend choosing
the change points « as equally spaced over the entire domain.
In some settings, one can alternatively use the cross-sectional
average of previously observed data, akin to training data, to
approximately determine good values of «.

The shape-restricted amplitude prior model has a clear
connection to landmark-based registration (Kneip and Gasser
1992) in which one must first identify a set of common land-
marks on each function in a dataset. The landmarks either
correspond to mathematical features of the data, for example,
extrema, or application-specific, interpretable features. Given a
set of landmarks on each function, the functions are registered
to each other via a piecewise linear warping that aligns the land-
mark locations exactly. If only extrema are considered as land-
marks, then the change points in the shape-restricted ampli-
tude prior act as domain locations for landmark alignment. In
general, selecting appropriate landmarks can be challenging,
especially when the number of functions and/or landmarks
is large. The process of selecting nonmathematical landmarks
can also be highly subjective. Recently, Strait, Chkrebtii, and
Kurtek (2019) developed an automated approach for mathe-
matical landmark selection that alleviates the aforementioned
issues.

Figure 4 illustrates the shape-restricted amplitude prior and
the structure it enforces on the amplitude component in our
observation model. Panel (a) depicts the basis system that is
used to represent the SRVFs. Panels (b) and (c) show several
prior draws of SRVFs and corresponding amplitude functions,
respectively. The basis system is constrained to take zero values
at the change point locations. Combined with the appropriate
restrictions on M and the basis coefficients, this pattern propa-
gates to the generated SRVFs. Zeros of SRVFs map to extrema
of amplitude functions; the relative heights of the extrema are
flexible.

Both methods proposed here for informing the amplitude
model consist of constructing a set of meaningful basis ele-
ments, either empirically based on training data or from prior
shape information concerning the number and relative location

05 005 t{x

LLN °

N\

of extrema. The shape-restricted amplitude prior relies on the
practitioner to specify the number and pattern of extreme val-
ues, while the empirical amplitude prior achieves this auto-
matically, but requires training data. Another difference is that
functions in the amplitude space spanned by the empirical basis
are aligned with respect to the eFR metric, while elements of the
shape-restricted amplitude space are only registered based on
the extrema. In this sense, the empirical basis is far more infor-
mative than the shape-restricted basis as illustrated in Figures 3
and 4.

4. Simulations and Real Data Applications

In this section, we discuss several simulated and real data exam-
ples, which illustrate the performance of the proposed frame-
work. We compare our methodology to PACE, implemented via
a publicly available software package (Yao, Miiller, and Wang
2005; Tang and Miiller 2008). The PACE framework is the most
appropriate for comparison to our approach as it is able to
accommodate sparsity, pointwise noise, and phase and ampli-
tude variability in functional data. In brief, the PACE approach
uses three steps: (i) estimation of population parameters, such as
the mean and principal components, based on noisy and sparse
observations, (ii) estimation of fitted functional observations
on a common domain grid based on the parameter estimates
from (i) (Yao, Miiller, and Wang 2005), and (iii) registration
of the estimated functions via a penalized > metric criterion
(Tang and Miiller 2008). There are two versions of the pro-
cedure, one for observations recorded over a common grid of
domain points and one for observations recorded on different
grids. When observations are recorded on a common grid, the
PACE procedure begins with Steps (i)-(iii) (Step (iii) results
in the final phase functions). Then, the estimate from Step
(ii) is disregarded; instead, the phase functions are applied to
the original noisy observations followed again by Steps (i) and
(ii) to estimate the final amplitude functions. In this setting, a
single estimate of the original observations is generated through
composition of the final phase and amplitude estimates. On
the other hand, when observations are recorded on different
domain grids, following a first iteration through Steps (i)-(iii)
(Step (iii) here results in a first estimate of amplitude functions

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4
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Figure 4. (a) Shape-restricted spline basis. (b) SRVF draws, and (c) corresponding amplitude functions, generated from the proposed shape-restricted amplitude prior

model with H = 3, o = (0.25,0.5,0.75), M = —1.



and the final phase functions), Steps (i) and (ii) are applied again
to the registered estimated functions to extract a second estimate
of amplitude. Thus, one can actually obtain two different esti-
mates: the first through composition of the final phase functions
and the first estimate of amplitude functions (termed PACE
in results), and the second through composition of the final
phase functions and the second estimate of amplitude functions
(termed WPACE in results). All tuning parameters are set by
default in the package. In the simulation examples, we consider
three estimators of a sparsely observed or fragmented function f
from a posterior MCMC sample {(gU!, TV, U1y, j = 1,..., N}
after burn-in:

1. The plug-in estimator fplug-in = [% Z]Ii L Q71 (g", T[j])] o
N 1
[ﬁ Zj:l V[J]]-
2. The maximum a-posteriori (MAP) estimator fMAp =
Q1(g!?!, TP1y o y!Pl where p is the index with the largest

unnormalized log-posterior density.
3. The pointwise estimator

& 2 [ (@, T o 1],

f pointwise -

The performance of each estimator is compared with the PACE
and WPACE estimators.

4.1. Bayesian Model With Empirical Amplitude Prior

We begin the results section with a few examples that use the
empirical amplitude prior in the proposed framework to esti-
mate and register fragmented and sparse functions.

1.4 1.4
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4.1.1. Simulated Example 1: Fragmented Simulated
Functions

Figures 5(a) and (b) show simulated training data and a frag-
mented functional observation (black points) that we wish to
infer, respectively. Within our unified framework, we employ
an empirical amplitude prior with 6, = .1, m, = 8 and
B = 8, to infer the full underlying function. In this case, we
use a diffuse prior over the phase component by setting 6, to a
small value. Figure 5 shows posterior marginal samples over the
amplitude (c) and phase (d) components, and their composition
(e); the solid black line in each panel represents the pointwise
posterior mean. This display allows us to assess uncertainty in
the different components underlying the estimated function.
Additionally, in (e), we show the PACE and WPACE estimates in
red and blue, respectively, for comparison. All three approaches
provide reasonable estimates with a peak along the missing
portion of the function; this is in agreement with the training
data, and the estimated peaks across the three different methods
are in roughly similar regions of the domain.

A major advantage of the proposed approach over PACE and
WPACE is its ability to assess uncertainty in the estimated func-
tion. As evidenced by the credible bands, uncertainty is smaller
along the portion of the function where data was observed than
the portion that was not observed, both in terms of the height
and location of the missing peak.

To provide a quantitative comparison of our method with
PACE/WPACE, we simulated 100 missing portions of different
functions from the complete data in Figure 5(a). In each sim-
ulation, one function from the complete dataset was selected
at random and fragmented from t = 0 up to a random point
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Figure 5. (a) Simulated training data. (b) Fragmented simulated function with observations shown as black points. Posterior draws (transparent), pointwise mean (solid
black) and 95% credible interval (dashed) for the (c) amplitude and (d) phase components. () Composition of amplitude and phase, and PACE (red) and WPACE (blue)
estimates. (f) Boxplots of .2 distances between a true function and corresponding estimated function. Each boxplot corresponds to a different approach: (i) plug-in, (ii)
MAP and (iii) pointwise estimators based on posterior samples from the proposed Bayesian model, and (iv) PACE and (v) WPACE.
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on [0, 1] drawn from a Beta(25, 25) distribution; the remaining
functions were treated as training data. The observation set in
each simulation consisted of 20 evenly spaced points along the
nonfragmented part of the randomly selected function. As our
inferential approach is based on the posterior distribution over
unknown model components, we consider the three estimators
]A‘plug_in, fMAp, and j}poimwise described above. We compare our
performance to PACE/WPACE by computing the IL? distance
between the true function and the estimate. Boxplots of these
distances for each method are shown in Figure 5(f). The MAP
estimator appears to be comparable in performance to PACE
and WPACE. However, both the plug-in and pointwise esti-
mators outperform PACE and WPACE. The plug-in estimator
outperforms PACE and WPACE in 99% and 100% of the simu-
lations, respectively, while the pointwise estimator outperforms
both PACE and WPACE in 99% of the simulations. We remark
that the behavior of the MAP estimate can be sensitive to
estimation of the phase component. In the fragmented region,
where no values of the function are observed, the posterior
distribution is driven largely by the diffuse phase prior. Conse-
quently, the MAP estimate generally fits the data very well in the
nonfragmented region, but exhibits random warping around the
identity element of I' in the fragmented region; this results in
misalignment between the estimated and true functions in the
fragmented region, which is greatly penalized by the IL? distance
(Marron et al. 2015). That said, the estimated amplitude portion
of the MAP samples is very accurate and reflects the shape of
the true function in terms of the heights of the peaks and valley.

This observation suggests that one should use the plug-in and
pointwise estimators for the phase component in the presence
of significant fragmentation in the observed data.

4.1.2. Simulated Example 2: Sparse ECG Signals

The electrocardiogram (ECG) is an important diagnostic tool
for many conditions including myocardial infarction. It records
fluctuations in electrical potential of the heart muscle on the
body surface. Often, one studies the shape of PQRST complexes
extracted from a long ECG signal, which can be associated
with abnormal heart function (Kurtek et al. 2013). The letters
PQRST refer to the first peak (P wave), the shallow, deep valley
followed by the sharp second peak and another valley (QRS
complex), and finally the third peak (T wave). In this simulated
example, we study the performance of the proposed Bayesian
model in the context of PQRST complex estimation from sparse
observations. Figure 6 shows a set of training signals in (a) as
well as a sparse set of 10 evenly spaced data points extracted
from a known PQRST complex (not part of the training data) in
(b); such a setup allows us to again assess the performance of our
approach qualitatively and quantitatively. We employ an empir-
ical amplitude prior under the settings 6, = 100, m, = 8, and
B = 10. Here, due to the high level of sparsity in the observed
data, we use a phase prior that is tightly concentrated around
the identity element of I". We display marginal posterior samples
in Figure 6 for amplitude (c), phase (d) and their composition
(e), describing posterior uncertainty in the unknown PQRST
complex function. It turns out that the posterior distribution
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Figure 6. (a) ECG training data. (b) Sparsely observed ECG signal. Posterior draws (transparent), pointwise mean (solid black) and 95% credible interval (dashed) for the (c)
amplitude and (d) phase components. (€) Composition of amplitude and phase, and PACE (red) and WPACE (blue) estimates.
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Figure 7. (a) Boxplots of 1.2 distances between a true function and estimated function. Each boxplot corresponds to a different approach: (i) plug-in, (i) MAP and (iii)
pointwise estimators based on posterior samples from the proposed Bayesian model, and (iv) PACE and (v) WPACE. (b) Same as (a), but for the amplitude component only.
() The true function (black) and corresponding sparse observations (black points), and plug-in (magenta), MAP (green) and pointwise estimates (blue). (d) Same as (c), but

with PACE (red) and WPACE (orange) estimates.

in this case is bimodal, with two modes formed by the phase
functions. Thus, we display modewise summaries for the phase
sample in panel (d) and the composition of amplitude and phase
in (e). Again, the means are shown in bold black and the 95%
confidence bands as dashed lines. The two modes correspond
to two plausible locations of the QRS complex given the data.
Indeed, none of the sparse observations cover the sharp R peak
making its location difficult to estimate. Importantly, the struc-
ture of the estimated PQRST complex based on each mode of
the posterior distribution is valid. In contrast, the QRS complex
in the PACE and WPACE estimates is highly distorted.

As with the preceding example, we numerically assess esti-
mation performance of all methods. In this simulation, for each
of 100 iterations, we select a PQRST complex from the training
data at random, and artificially subsample it to 10 observations
chosen independently and uniformly along the domain; the
remaining PQRST complexes are treated as training data to
generate the empirical prior for the amplitude component. We
consider the same three posterior estimates as in the previous
section and compare them to the PACE and WPACE estimates.
Boxplots of the IL? distance from the true function to the five
different estimates are shown in Figure 7(a). It appears that all
methods show comparable performance.

Consensus amongst the different estimators occurs mainly
due to the fact that the L? distance criterion greatly penal-
izes misalignment between the true and estimated functions.
Consider the example visualized in Figures 7(c) and (d). The
three estimates in (c) are based on the proposed model, while
the two estimates in (d) correspond to PACE and WPACE.
The estimated functions in panel (c) are clearly better at cap-
turing the shape of the PQRST complex. Unfortunately, the
estimated phase results in a slight misalignment of the very
pronounced R peak, which carries a significant penalty based
on the I.? distance. This misalignment in the estimate is due
to a lack of observations along this important feature of the
PQRST complex. On the other hand, the PACE and WPACE
estimates in panel (d) are not at all successful at capturing the
true shape of the PQRST complex. To confirm this behavior,
we additionally display the IL? distances between the amplitude
components of the estimated PQRST complexes and the true
amplitude component. This is done by first optimally aligning
the estimates to the true PQRST complex using the eFR metric.
The corresponding boxplots are displayed in Figure 7(b). It is
clear that, with respect to this measure, the proposed model

recovers amplitude features much better than PACE or WPACE.
In fact, the plug-in estimate performs better than the PACE
and WPACE estimates in 90% and 96% of the 100 iterations,
respectively. Similarly, the MAP (pointwise) estimates perform
better than the PACE and WPACE estimates in 84% (84%) and
90% (93%) of the 100 iterations, respectively.

4.2. Bayesian Model With Shape-Restricted Amplitude
Prior

Next, we focus on examples where the proposed shape-
restricted amplitude prior is most appropriate to estimate func-
tions under considerable noise and sparsity.

4.2.1. Simulated Example 1: Functions With Low
Signal-to-Noise Ratio

We first consider simulated functional data that not only con-
tains phase and amplitude variability, but also low signal-to-
noise ratio. The data is shown in Figure 8(a). A shape-restricted
amplitude prior is appropriate in this setting since we know that
the underlying functions should have two peaks and a single
valley. We use the settings 6, = 10, m, = 3, B = 10, H =
3, @« = (0.25,0.5,0.75) and M = —1 in the model. Marginal
posterior means of the amplitude and phase components of the
unknown functions are shown in the first and second rows of
panel (c), respectively. In comparison, the amplitude and phase
components estimated by WPACE are given in (d). The WPACE
result appears unsatisfactory in two ways: (i) there are obvious
artifacts in the estimated amplitude functions, and (ii) the phase
component is underestimated, resulting in a fair amount of
phase variability that remains in the amplitude estimates. On the
other hand, the proposed model is able to appropriately account
for the pointwise noise. It results in estimated amplitude func-
tions that have correctly aligned peaks and valleys. Furthermore,
there is a common degree of smoothness provided by the shape-
restricted amplitude prior. In fact, the proposed model is able to
estimate the true error variance (red line) in the likelihood fairly
well (panel (b)).

4.2.2. Real Data Example 1: Berkeley Growth Velocity
Functions

To further illustrate the structure imposed by modeling ampli-

tude with the shape-restricted amplitude prior, we applied our
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Figure 8. (a) Simulated observations with high noise level. (b) Normalized histogram of posterior draws of the error variance o2, with the value used to generate the data
in red. (c) Posterior means of the amplitude (top) and phase (bottom) components estimated using the proposed Bayesian model with the shape-restricted amplitude

prior. (d) Estimated amplitude (top) and phase (bottom) using WPACE.

methods to the well-known Berkeley growth dataset (Ramsay
and Silverman 2005), in which the heights of children were
tracked over the course of their lives from one to 18 years of age.
We only use a subset of the data corresponding to 39 boys from
the original study, shown in the introduction in Figure 1(c). In
many cases, it is more natural to study the rate or velocity of
growth, that is, the derivative of height with respect to time, than
growth itself. This allows for better understanding of growth
patterns of the subjects wherein peaks in the velocity functions
correspond to growth spurts, with the last, largest peak being
the pubertal growth spurt. Consequently, we consider two dif-
ferent settings for our model; the first one allows for a single
pubertal growth spurt in the amplitude functions, H = 2, o =
(0.57,0.72), while the second one allows for an additional earlier
growth spurt, H = 4, o = (0.23,0.37,0.57,0.72). We also set
6, = 10and B = 20 in both models. In both cases, « was chosen
based on visual inspection of the cross-sectional average of the
data. Alternatively, one can specify « according to a uniform
spacing on the domain [0, 1].

The estimated amplitude and phase functions under the two
amplitude prior settings are visualized in Figures 9(a) and (b).
A comparison to the result generated by WPACE is given in
panel (c). As expected, the registration and level of smoothness
for the pubertal growth spurt is similar across panels (a) and
(b). The main difference between the two sets of amplitude
estimates is in the additional growth spurt estimated for some
of the subjects in (b). Contrasting these results to the WPACE
registration and estimation results shown in (c), the prepubertal
growth spurt is often smoothed-out, with the model failing to
properly align many of the subjects’ pubertal growth spurts. This
is especially surprising since the phase functions estimated by

WPACE are much less regular than those estimated using the
proposed model. Figure 10 shows detailed inferential results
for three individuals with and without the prepubertal growth
spurt. In panel (a), it appears that the subject has a fairly sig-
nificant prepubertal growth spurt. When the amplitude prior in
our model is restricted to allow for a single peak, the pattern of
observations around this growth spurt is treated as noise and
consequently it is missed in the resulting estimated function.
Additionally, posterior uncertainty in this region is relatively
large. In contrast, when the prior is relaxed to allow for an
additional growth spurt, we are able to nicely estimate both
the prepubertal and the pubertal growth spurts. In panel (b),
there appears to be a single large growth spurt. Both estimates
provided by our model appear to fit the data well. Finally, in (c),
it is unclear whether there is a small prepubertal growth spurt.
Again, both estimates provided by our model are reasonable.
This example suggests that fixing the amplitude hyperparameter
H a-priori can be limiting in practice and motivates future
work to jointly estimate H for different subjects. The WPACE
estimates are shown in each panel in red; the WPACE estimate
in (a) appears to severely oversmooth and underestimate the
pubertal growth spurt.

4.2.3. Real Data Example 2: Noisy FA Functions From DT-MRI
We consider estimation and registration of complete, but noisy,
fractional anisotropy functions obtained from diffusion tensor-
magnetic resonance imaging (DT-MRI). DT-MRI is a neu-
roimaging modality that traces the diffusion of water molecules
in the brain. A scan of a subject’s brain provides a 3 x 3
matrix at each voxel in the image that describes the constraints
of local motion of water molecules. This information is essential
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Figure 9. Posterior means of the amplitude (top) and phase (bottom) components based on the proposed model with the shape-restricted amplitude prior with (a) H = 2
and (b) H = 4. (c) Estimated amplitude (top) and phase (bottom) functions using WPACE.
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Figure 10. Posterior draws (transparent), mean (solid black), and credible interval (dashed) when H = 2 and (top) H = 4 (bottom), with a comparison to the WPACE fitted

function (red) for three different subjects.

to understanding white matter in the brain, which constitutes
areas made up of axons or tracts. Tracts connect neurons and
allow for the transmittance of electric signals from one area of
the brain to another, affecting overall brain function. Due to
anisotropic diffusion of water along tracts, they can be extracted

from the information contained in a DT-MRI, along with other
quantities of interest that describe the properties of a tract by
summarizing its degree of anisotropy.

Functional anisotropy (FA) measurements along tracts
provide a voxelwise summary of the eigenvalues, denoted
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Figure 11. (a) FA functions estimated based on fiber tracts corresponding to the callosum forceps major, which connects the left and right occipital lobes. (b) Posterior
mean amplitude functions. (c) Posterior mean phase functions. (d-g) Posterior draws (transparent), pointwise mean (solid black) and 95% credible interval (dashed) for the
phase component (top) and the composition of amplitude and phase (bottom). FA functions in (d) and (e) have a larger peak followed by a smaller peak, while FA functions

in (f) and (g) have a smaller peak followed by a larger peak.

by vi, vy, v3, of the diffusion matrices. At each voxel
in the image, FA is given by the scalar quantity FA =
\/g (”1_”)2"’”%‘2%22_(”3_”)2 , where i = W25V A Jarge FA
value indicates a large degree of anisotropy. For practitioners,
this summary of a DT-MRI provides a measurement of the
quality of neuronal connections between particular regions of
interest.

A major advantage of DT-MRI as a diagnostic tool is that it
is noninvasive. However, FA measurements based on DT-MRI
are subject to spurious values. The data that we consider here
are a subset of the combination antiretroviral therapy (cART)
dataset of HIV patients, which was collected in a local research
study at the University of Rochester. The focus of this study was
on assessing the neurodegeneration of HIV-infected subjects
during cART treatment. The diffusion MR sequence that was
used to acquire this data was 60 direction diffusion weighted
imaging with field map correction. The MR scanner used was
a 3T Siemens Tim Trio. Our data analysis involves FA functions
estimated from a single cluster of fiber tracts corresponding to
the callosum forceps major, which connects the left and right
occipital lobes. This bundle crosses the splenium of the corpus
callosum. For more details on this dataset and data processing

involved, see Zhu et al. (2013). The initial clustering was per-
formed using the methods described in Zhang et al. (2018).

In this case, we use the shape-restricted prior amplitude
model for estimation. Using visual inspection, we selected H =
3, M = —land o = (0.25,0.5,0.75). We also set 6, = 10.
The observed data is shown in Figure 11(a). It is clear that there
is considerable noise and misregistration in this data. The esti-
mated posterior mean amplitude functions (i.e., registered FA
functions) are shown in Figure 11(b). We discover an interesting
pattern; it appears that not all FA functions in this tract cluster
have the same pattern of extrema: evidently, from panel (b), we
note that some amplitude functions have a large left peak and
a small right peak, while the right peak is larger than the left
peak in other functions. The estimated posterior mean phase
functions are given in panel (c), where again we observe two
clusters.

Four detailed estimation results for amplitude and phase
are shown in panels (d)-(g). The top portion of each panel
shows the posterior samples of phase functions only (again, the
posterior mean is given by a solid black phase function), while
the bottom portion shows the composition of the posterior sam-
ples of amplitude and phase functions (the solid black function
corresponds to the posterior mean). Based on these results, it
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Figure 12. (a) FA functions estimated based on a subset of fiber tracts corresponding to the callosum forceps major, which connects the left and right occipital lobes.
Posterior mean amplitude estimates based on the shape-restricted amplitude prior model with H = 3, = (0.25,0.5,0.75), and (b) B = 10, (c) B = 15 and (d) B = 20. (e)

WPACE registration and estimation result.

appears that the two amplitude and phase clusters correspond
to each other, that is, the FA functions with a higher first peak
correspond to phase functions that fall below identity phase
while the FA functions with a higher second peak correspond
to phase functions that fall above identity phase. Thus, we are
able to simultaneously register the FA functions within this fiber
tract cluster and identify smaller subclusters. These subclusters
correspond to different geometry of the fiber tracts, encoded in
the different patterns of extrema in the FA functions. Overall,
we have found that roughly 76% of the FA functions in this fiber
tract have a larger left peak, while the remaining functions have
a larger second peak.

Next, we analyze an even smaller subset of the data, where
we identified only the FA functions with a larger first peak. This
dataset is displayed in Figure 12(a). In panels (b)-(d), we display
the posterior mean estimates of the amplitude component when
B =10, B = 15, and B = 20, respectively. We again use H = 3,
a = (0.25,0.5,0.75), and 6, = 10. It appears that when B = 10,
the estimates are very smooth. When B is increased to 15 or 20,
the posterior mean amplitude functions look very similar. We
compare our result to WPACE in panel (f). It is clear that the
functions are not registered well by the WPACE approach.

4.2.4. Real Data Example 3: Bone Mineral Density

We consider indirect X-ray measurements of BMD, associated
with skeletal health and diseases such as osteoporosis (Bachrach
et al. 1999). While osteoporosis affects individuals later in life,
bone development during adolescence through early adulthood
can be used to assess an individual’s risk for the disease. We focus
on a subset of the entire dataset corresponding to females aged
9-25 years that had their BMD measured during two, three or
four doctor appointments over the course of several years. Of
primary interest in the study was the mean difference in BMD
for four different ethnicities. Figure 13(a) shows the data where
the different ethnic groups are highlighted using different colors.
While this subset of the data has been used to classify individuals
in previous work (James and Hastie 2001; Delaigle and Hall
2013), our focus is on estimation of a mean BMD trajectory
for each group that accommodates phase variability. We restrict
our model by forcing all individuals within the same ethnic
group to have a common translation and a common strictly
increasing amplitude function (prior hyperparameters are set
toB =5 H = 0,and M = 1). We do allow for individual
phase variability with 6, = 100 and m, = 1, regularizing
the phase functions toward simple, small deviations from the
identity element. The composition of the amplitude and phase

Figure 13. (a) BMD measurements colored by ethnicity: Asian (blue), Black (red),
Hispanic (green) and Caucasian (magenta). (b) Posterior estimates of mean BMD
functions (solid lines), with 95% credible intervals (dashed lines), for the four ethnic
groups.

samples then corresponds to individual BMD trajectories, and
our interest is in their mean estimate and the associated poste-
rior uncertainty. Our assumption that the mean BMD function
is strictly increasing stems from the age range of the individuals
in the study, and enforces the principle that, on average, BMD
increases during this period.

The resulting groupwise mean BMD trajectory estimates,
with 95% credible intervals, are shown in Figure 13(b). The
results obtained via the proposed model visually corroborate the
major finding of the original study that the Black ethnic group
(red) has a significantly higher BMD than the other groups.
Structurally, the estimated mean function for the Asian group,
shown in blue, is also quite different from the others: there is alot
of fast BMD growth early followed by minimal growth later on
in life. The estimated mean BMD functions for the Caucasian
and Hispanic groups appear extremely similar. The original
study concluded that the Asian, Caucasian and Hispanic groups
have BMD patterns that are difficult to distinguish from one
another. Please see Section 3 of the supplementary materials for
additional discussion of this example.

5. Discussion and Future Work

We have presented a Bayesian framework for simultaneous
registration and estimation of functional observations that can
handle challenging observational regimes such as sparsity, frag-
mentation and low signal-to-noise ratio. The framework explic-
itly accounts for phase and amplitude variability, and imposes
amplitude restrictions in situations where different types of
prior information are available. Indeed, we show that the key to
inference under general observational regimes is the ability to
inform the prior on the underlying structure of amplitude. We
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demonstrate the performance of the proposed model on several
different simulated and real data examples to show the diverse
range of scenarios that can be analyzed. We also compare the
proposed method to a state-of-the-art competitor.

We have identified several directions for future work. First,
we acknowledge that the prior information required for the use
of this framework may not always be available. Consequently,
for both the empirical and shape-restricted amplitude prior
scenarios, we suggest additional modeling strategies that will
broaden the proposed framework. In the first case, we will
incorporate an additional hierarchical layer corresponding to
subspace estimation (via fPCA) for the amplitude subspace. This
will allow for direct propagation of uncertainty from the training
stage to the estimation stage. In the second case, we will treat the
number of local extrema allowed in the amplitude estimates H
as well as their ordering pattern M, as unknown quantities to be
estimated. This challenging extension of our model will allow
us to apply it in scenarios when knowledge about the patterns of
extrema is unavailable a-priori and enough data is available to
inform all these model components.

Second, we will extend the proposed framework to common
modeling tasks in FDA including clustering, classification and
functional regression. Importantly, the estimation, registration
and further modeling will be achieved via a single unified frame-
work.

Finally, we will extend the proposed model to other func-
tional data scenarios including shapes of higher-dimensional
curves, images and shapes of surfaces. We note that the proposed
model will have to undergo major reformulation for the case
of images and shapes of surfaces due to higher dimensionality
of the domain for registration (phase) of these functional data
objects (Jermyn, Kurtek, and Laga 2017).

Supplementary Materials

The Supplemental Materials include additional simulated and real data
examples, implementation details and diagnostics for the MCMC algorithm
used to sample from the posterior distribution, and detailed sensitivity
analyses for various modeling choices.
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