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A Higher Order Unscented Transform\ast 

Deanna C. Easley\dagger and Tyrus Berry\dagger 

Abstract. We develop a new approach for estimating the expected values of nonlinear functions applied to
multivariate random variables with arbitrary distributions. Rather than assuming a particular dis-
tribution, we assume that we are only given the first four moments of the distribution. The goal is
to efficiently represent the distribution using a small number of quadrature nodes which are called
\sigma -points. What we mean by this is choosing nodes and weights in order to match the specified
moments of the distribution. The classical scaled unscented transform (SUT) matches the mean
and covariance of a distribution. In this paper, we introduce the higher order unscented transform
(HOUT), which also matches any given skewness and kurtosis tensors. It turns out that the key to
matching the higher moments is the tensor CANDECOMP/PARAFAC (CP) decomposition. While
the minimal CP decomposition is NP-complete, we present a practical algorithm for computing a
nonminimal CP decomposition and prove convergence in linear time. We then show how to combine
the CP decompositions of the moments in order to form the \sigma -points and weights of the HOUT. By
passing the \sigma -points through a nonlinear function and applying our quadrature rule we can estimate
the moments of the output distribution. We prove that the HOUT is exact on arbitrary polynomials
up to fourth order and derive error bounds in terms of the regularity of the function and the decay
of the probability. Finally, we numerically compare the HOUT to the SUT on nonlinear functions
applied to non-Gaussian random variables including an application to forecasting and uncertainty
quantification for chaotic dynamics.
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1. Introduction. A fundamental problem in uncertainty quantification is to approximate
the expectation of a function f : \BbbR d \rightarrow \BbbR applied to a random variable X sampled from a
probability measure dp on \BbbR d, namely

\BbbE [f(X)] =

\int 
f(x) dp.(1.1)

Even when the distribution is known this can be a challenging computation in high dimensions,
and the problem is often compounded by uncertain or incomplete knowledge of f and dp.
Moreover, in most problems of interest f has an extremely complex form. For example, f
may encapsulate the solution of a differential equation and the computation of some feature of
interest on the solution. So we may not be able to assume that f is known in an explicit form
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HIGHER ORDER UNSCENTED TRANSFORM 1095

but instead that f or an approximation to f is available only as a black-box computational
scheme which can take inputs x and produce outputs f(x). Similarly, the type of partial
knowledge of the probability measure can vary widely. We may have an explicit expression
for a density function p(x) = dp/dx (if it even exists), or we may only have some samples of
dp or estimates of some of the moments.

The method developed in this manuscript will assume that the first four moments of the
probability measure, dp, exist and can be accurately estimated. Our method will not use
any additional knowledge of the probability beyond these moments. Moreover, we will not
require any explicit knowledge of f , so our method is applicable if f is a black-box. In order
to derive error bounds we will require some regularity assumptions on f and additional decay
assumptions on the probability measure at infinity. While our error bounds depend on the
error of approximating f by a polynomial, our method does not require us to actually find
such an approximation and will only require evaluating f on a small number of test points.

The problem of approximating (1.1) can be approached as a problem of numerical quad-
rature (also known as cubature when x has dimensionality greater than one; we will use the
term quadrature for both). A quadrature is an approximation of the form

\BbbE [f(X)] \approx 
N\sum 
i=1

wif(xi),(1.2)

where xi are called nodes and wi are called weights. The goal is to find a small number
of nodes and weights that accurately represent the probability measure for a large space of
functions f \in \scrC . A common strategy in quadrature methods is to choose nodes and weights
so that the above approximation is actually an equality for all f in some finite dimensional
subspace \~\scrC \subset \scrC (such as a space of polynomials up to a fixed degree). For f outside of \~\scrC we
can then attempt to bound the error in the approximation (1.2) if we can control the error
between f and its projection into \~\scrC . When f is sufficiently smooth and dp is concentrated in
a small region, then it is reasonable to approximate f using the space of polynomials up to a
fixed degree. Under these assumptions, we can bound the error between f and a low degree
polynomial via interpolation error bounds.

Ensuring that (1.2) holds with equality for all polynomials up to degree k is equivalent to
satisfying the so-called moment equations,

mj1,...,jn = \BbbE 
\Bigl[ 
Xj1

1 Xj2
2 \cdot \cdot \cdot Xjn

n

\Bigr] 
=

N\sum 
i=1

wix
j1
1 xj22 \cdot \cdot \cdot xjnn(1.3)

for all j1+ j2+ \cdot \cdot \cdot + jn \leq k, since polynomials of the form xj11 , . . . xj
n

n form a basis of the space
of all polynomials of degree less than or equal to k. In other words we are asking that the
empirical moments of the nodes xi, weighted by discrete probabilities wi, exactly agree with
the true moments mj1,...,jn of the distribution. When k = 2 the moment equations specify that
weighted nodes must match the mean vector and covariance matrix of the true distribution,
and this is achieved with the so-called scaled unscented ensemble (SUT) [18] (see section 2.1
for an overview).

The quadrature approach is an alternative to stochastic quadrature methods such as Monte
Carlo quadrature which is commonly used in particle filtering. Stochastic quadratures use
random variables Xi to build quadrature rules such that
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1096 DEANNA C. EASLEY AND TYRUS BERRY

\BbbE [f(X)] \approx \BbbE 

\Biggl[ 
N\sum 
i=1

wif(Xi)

\Biggr] 
.(1.4)

However, the computed value
\sum N

i=1wif(Xi) will be stochastic. This means that in addition to
possible approximation error in (1.4), we also have an error due to the variance of the random
variable

\sum N
i=1wif(Xi). While it is often easier to design stochastic quadrature methods

where the approximation error in (1.4) is small or even zero, for many problems controlling
the variance error requires a large number of random variables Xi and hence a large number
of function evaluations. When f is very expensive to compute, it may be more efficient to use
a small deterministic ensemble and accept the quadrature error in (1.2) in order to avoid the
large ensemble size that would be required to control the variance in a stochastic quadrature.

The problem (1.1) is often part of a larger problem such as filtering [20], particle filter-
ing [32], adaptive filtering [4], smoothing [30], parameter estimation [33, 34, 11], and even
model-free filtering [12]. In all these applications it can be beneficial to have deterministic
approximation of (1.1) to improve the stability of the overall algorithm. For example, filters
built on random ensembles can fail catastrophically since they can generate realizations that
would normally have very low probability but lead to perverse behavior [13, 1]. Similarly, a
gradient-based optimization method for parameter estimation will need to carefully account
for any stochasticity in the objective function, so replacing a stochastic quadrature with a
deterministic quadrature can be desirable in certain applications.

The highly successful unscented Kalman filter (UKF) [20] is based on the SUT, as are
many of the other methods mentioned above. A closely related technique called cubature
Kalman filters (CKF) [2] follow a similar strategy and are typically designed to achieve a high
degree of exactness under a Gaussian assumption on the distribution. Another potentially
deterministic method would be quadrature based on sparse grids [15, 27]; however, designing
such a quadrature typically requires detailed knowledge of the probability distribution. Sim-
ilarly, polynomial chaos expansions [35, 25] require explicit knowledge of the function f and
the distribution. Our method is an alternative quadrature that only requires us to know the
first four moments of the distribution. Moreover, the nodes of our quadrature will be adapted
to the moments of the distribution. A potential future application of the method developed
here would be to a higher order UKF which tracks four moments, and this was one of the
inspirations behind this work. However, the current work only generalizes the forecast step of
the UKF to four moments, and generalizing the assimilation step of the UKF is a significant
remaining challenge.

In this paper, we develop a higher order unscented transform (HOUT) based on tensor
decomposition of the first four moments of a distribution. Whereas the UKF (and implic-
itly most CKFs) only requires the rank decomposition of the covariance matrix, the HOUT
requires the CANDECOMP/PARAFAC (CP) decomposition of higher order tensors such as
the skewness and kurtosis. The CP decomposition of a k-tensor is defined by vectors vi such
that

T =

p\sum 
i=1

v\otimes k
i ,(1.5)
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HIGHER ORDER UNSCENTED TRANSFORM 1097

i.e., the CP decomposition decomposes a tensor as the summation of rank-1 tensors, v\otimes k
i for

i = 1, . . . , p. The minimal value of p such that the above decomposition exists is called the
rank of T . For detailed definitions of tensors, tensor product (\otimes ), and tensor decomposition,
see section 2.2. For the sake of giving an overview, we assume these definitions for now. For
details on tensor product and CP decomposition see Definitions 2.6 and 2.8. For a more
detailed introduction to tensors we suggest [10, 24].

Ideally, we would like an exact CP decomposition (1.5) with the minimum possible number
of vectors; however, this turns out to be an NP-complete problem [9, 14]. Instead, we will
use an effective algorithm for obtaining an approximate CP decomposition up to an arbitrary
tolerance. The algorithm was originally suggested by [22], and it works by repeatedly sub-
tracting the best rank-1 approximation to a tensor until the norm of the residual is less than
any desired tolerance. Many methods have been developed based on this idea (see [8] and
citations therein) and in [7] it was proven to converge but without any convergence rate. In
section 3 we give the first proof that this algorithm converges linearly and we derive an up-
per bound on the convergence rate. While the approximate decomposition typically requires
many more vectors than the minimal CP decomposition, it avoids the NP-completeness of
that problem and gives us an effective algorithm.

In section 2 we briefly review the SUT and some tensor facts and notation including the
higher order power method (HOPM) [5] that we will use for finding tensor eigenvectors. Based
on the HOPM, we prove the convergence of the approximate CP decomposition algorithm in
section 3. This proof also requires some new inequalities relating the maximum eigenvalue
of a tensor to the entries of the tensor, and these inequalities are likely to be of independent
interest. In section 4 we introduce the HOUT, which generalizes the SUT in order to match
arbitrary skewness and kurtosis tensors. The HOUT gives a quadrature rule with degree of
exactness four that is applicable to arbitrary distributions. For a preview of the nodes of
the HOUT, see Figure 1, where we consider data sampled from two-dimensional distributions
with nontrivial skewness and kurtosis tensors. For each distribution we show the HOUT nodes
that are designed so that the first four moments computed with this small number of nodes
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Figure 1. The 4-moment \sigma -points of the HOUT we developed of (a) a quadramodal distribution, (b) a
skewed quadramodal distribution, and (c) a skewed bimodal distribution. The black points are the \sigma -points that
correspond to the mean, the green points are the \sigma -points corresponding to the covariance, the points in red
are the \sigma -points corresponding to the skewness, and the magenta points are the \sigma -points that correspond to the
kurtosis.D
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1098 DEANNA C. EASLEY AND TYRUS BERRY

match the true moments of the distribution up to the specified tolerance. In section 5 we
derive error bounds under appropriate regularity assumptions on f and decay assumptions
on the probability. Finally, we demonstrate the HOUT on various non-Gaussian multivariate
random variables on complex nonlinear transformations in section 6 and briefly conclude in
section 7.

2. Background. We start by reviewing the SUT in section 2.1 which has degree of ex-
actness two. We then briefly introduce our tensor notation in section 2.2 and tensor-vector
products and tensor norms in section 2.3. Finally, in section 2.4 we review tensor eigenvectors
and eigenvalues and the HOPM [5] for finding them.

2.1. Scaled unscented transform. The SUT was introduced by Julier and Uhlmann in
[18] and further developed in [21, 19, 16, 17, 20]. The fundamental goal of this paper is
to generalize their method to higher order moments. This work was started in [16], which
worked on matching the skewness, and below we show that CP decompositions are the key to
generalizing their approach.

The SUT uses the mean and covariance of a distribution to choose quadrature nodes and
weights such that the quadrature rule has degree of exactness 2. Degree of exactness k means
that a quadrature rule is exact for computing the expectation of polynomials up to degree
k. The fundamental insight of Julier and Uhlmann is that achieving degree of exactness 2 is
equivalent to matching the first two moments of the distribution. Moreover, they showed that
this can be efficiently accomplished using a matrix square root of the covariance matrix.

Definition 2.1 (ith column of the symmetric matrix square root of A). Let A be a d \times d
matrix. We define the ith column of the symmetric matrix square root of A, denoted

\surd 
Ai, by

d\sum 
i=1

\surd 
A

\otimes 2

i =
d\sum 

i=1

\surd 
Ai

\surd 
A

\top 
i = A.

The notation v\otimes k will be defined below. Note that the following definition can use any
matrix square root but we have found empirically that the unique symmetric matrix square
root has the best performance. The negative of any matrix square root is also a matrix square
root. The following definition perturbs the mean \mu by both a matrix square root and its
negative to create an ensemble of 2d+ 1 points.

Definition 2.2 (the scaled unscented transform [18]). Let dp be a probability measure with
mean \mu \in \BbbR d and the covariance C \in \BbbR d\times d. Then for some \beta \in \BbbR the \sigma -points are defined by

\sigma i =

\left\{     
\mu if i = 0,

\mu + \beta 
\surd 
Ci if i = 1, . . . , d,

\mu  - \beta 
\surd 
Ci - d if i = d+ 1, . . . , 2d

and the corresponding weights are defined by

wi =

\Biggl\{ 
1 - d

\beta 2 if i = 0,
1

2\beta 2 if i = 1, . . . , 2d.

We note that the choice of \beta can have a significant impact on the effectiveness of the
transform.D
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Remark 2.3. The absolute condition number of the SUT is bounded above by

2d\sum 
i=0

| wi| =
\bigm| \bigm| \bigm| \bigm| 1 - d

\beta 2

\bigm| \bigm| \bigm| \bigm| + d

\beta 2
.

If \beta \geq 
\surd 
d, then

\sum 2d
i=0 | wi| = 1. If \beta <

\surd 
d, then

\sum 2d
i=0 | wi| = 2d

\beta 2  - 1.

The following theorem says that the SUT matches the first two moments, \mu and C.

Theorem 2.4 (empirical mean and empirical covariance [18]). For an arbitrary \beta , we have

\mu = \BbbE [X] =
2d\sum 
i=0

wi\sigma i and C = \BbbE [(X  - \mu )(X  - \mu )\top ] =
2d\sum 
i=0

wi(\sigma i  - \mu )(\sigma i  - \mu )\top ,

and if q : \BbbR d \rightarrow \BbbR is a polynomial of degree at most 2, we have, \BbbE [q(X)] =
\sum 2d

i=0wiq(\sigma i).

We should note that if the distribution has zero skewness, such as a Gaussian distribution,
then the symmetry of the nodes yields degree of exactness 3, and in the specific case of a
Gaussian distribution the choice \beta =

\surd 
3 achieves degree of exactness 4 [18, 17, 20]. The

choice \beta =
\surd 
d is often called the unscented transform and sets w0 = 0 so that only 2d of the

\sigma -points are required. The ability of the SUT to match the first four moments of the Gaussian
distribution has led some to associate the SUT with a Gaussian assumption; however, this is
not required and degree of exactness 2 is achieved for arbitrary distributions. Our goal is to
generalize the unscented transform to higher moments, which are tensors.

2.2. Tensors. Tensors are essentially multidimensional matrices, which will be used to
conveniently express the notions of covariance, skewness, and kurtosis in a similar fashion.

Definition 2.5 (k-order tensor). For positive integers d and k, a tensor T belonging to \BbbR dk

is called a k-order tensor or simply a k-tensor.

In particular, a vector in \BbbR d can be viewed as a first order tensor and a d\times d matrix as a
second order tensor. Let x \in \BbbR d. We note that the outer product xx\top yields a d \times d matrix
whose ij-entry can be represented as

(xx\top )ij = xixj = (x\otimes x)ij = (x\otimes 2)ij .

We generalize this process of forming higher order tensors from vectors with the following
definition.

Definition 2.6 (kth-order tensor product). Let v \in \BbbR d and k be a positive integer. Then
the kth-order tensor product is a k-tensor denoted

v\otimes k = v \otimes v \otimes \cdot \cdot \cdot \otimes v\underbrace{}  \underbrace{}  
k \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}

,

and the elements are given by (v\otimes k)i1,...,ik = vi1 . . . vik .

Definition 2.6 immediately connects tensor products to the moments of a distribution since
we can represent the covariance as C = \BbbE [(X - \mu )\otimes 2] =

\int 
(x - \mu )\otimes 2 dp(x) so that the skewness

S and kurtosis K can be defined asD
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S =

\int 
(x - \mu )\otimes 3 dp(x), K =

\int 
(x - \mu )\otimes 4 dp(x),

so that, for example,

Sijk =

\int \bigl( 
(x - \mu )\otimes 3

\bigr) 
ijk

dp(x) =

\int 
(x - \mu )i(x - \mu )j(x - \mu )k dp(x).

The following definition generalizes the notion of a rank-1 matrix to tensors.

Definition 2.7 (rank-1 tensor). Let T \in \BbbR dk . Then T is called a rank-1 tensor if there exists
a v \in \BbbR d such that

v\otimes k = T.

For tensors that are not rank-1, one may seek to decompose the tensor as a sum of rank-1
tensors.

Definition 2.8 (CP decomposition). The vectors v1, . . . , vp form a CP decomposition of a
tensor T if

T =

p\sum 
\ell =1

v\otimes k
\ell 

and the minimum p for which such a decomposition exists is called the rank of the tensor T .

This notion of rank agrees with the classical notion of matrix rank in the case of second
order tensors but many of the properties of matrix rank do not generalize to higher order
tensors [24, 9, 14, 31, 23].

2.3. Tensor multiplication and tensor norms. In this section we introduce the necessary
definitions and notation along with some preliminary results that will be needed below. The
proofs of the lemmas along with a more detailed introduction to tensor multiplication can be
found in Appendix A (see also [24]).

Definition 2.9 (n-mode product of a tensor). The n-mode product of a k-order tensor

T \in \BbbR dk with a vector v \in \BbbR d, denoted by T \times n v, is defined elementwise as

(T \times n v)i1,...,in - 1,in+1,...,ik =
d\sum 

j=1

Ti1,...,in - 1,j,in+1,...,ikvj .

Note that T \times n v \in \BbbR dk - 1
, so the order of the resulting tensor is decreased by 1.

The above definition can also be generalized for tensor-matrix multiplication [24]. Finally
we note that the Frobenius norm for matrices can be generalized to tensors in the following
way.

Definition 2.10 (tensor Frobenius norm [24]). The Frobenius norm of a tensor T \in \BbbR dk is
the square root of the sum of the squares of all its elements,

\| T\| F =

\sqrt{}    d\sum 
i1=1

\cdot \cdot \cdot 
d\sum 

ik=1

Ti1,...,ik
2.
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Moments of a distribution have the special property in that they are symmetric in the
following sense.

Definition 2.11 (symmetric tensor). A tensor T \in \BbbR dk is symmetric if the tensor is invariant
to permutations of the indices, i.e.,

Ti1\cdot \cdot \cdot ik = Tp(i1\cdot \cdot \cdot ik)

for any permutation p.

Notice that if a tensor is symmetric, then the n-mode product is independent of the mode,
i.e., if T \in \BbbR dk is symmetric, then

T \times n v = T \times m v

for any 1 \leq n,m \leq k. The next lemma shows that the tensor Frobenius norm has a particularly
simple formula for rank-1 tensors.

Lemma 2.12. Let v \in \BbbR d and k be a positive integer. Then the tensor Frobenius norm of
the kth-order tensor product is the same as the Euclidean norm of v raised to the k, i.e.,

\| v\otimes k\| F = \| v\| k.

The proof of Lemma 2.12 is included in Appendix A.

2.4. Tensor eigenvectors and normalized power iteration. The key to our approximate
CP decomposition is rank-1 approximation that is based on tensor eigenvectors. These tensor
eigenvectors can be found with the HOPM which we review in this section.

Definition 2.13 (tensor eigenvectors and eigenvalues). Let T \in \BbbR dk be a symmetric tensor.
Then v \in \BbbR d is an eigenvector and \lambda \in \BbbR is the corresponding eigenvalue of T if

(((T \times 1 v)\times 1 v) \cdot \cdot \cdot \times 1 v) = \lambda v.

Note that since T is symmetric, the choice of n-mode product does not affect the definition
of a tensor eigenvector. The next lemma shows that an eigenvalue-eigenvector pair provides
a rank-1 approximation of a tensor in the Frobenius norm.

Lemma 2.14. Let T be a k-order symmetric tensor with dimension d, i.e., let T \in \BbbR dk and
v \in \BbbR d be a unit length eigenvector of T with eigenvalue \lambda \not = 0. Then

\| T  - \lambda v\otimes k\| 2F = \| T\| 2F  - \lambda 2

and \| T\| F \geq \lambda .

The proof of Lemma 2.14 can be found in Appendix A. It immediately follows from
Lemma 2.14 that the eigenvector with the largest eigenvalue will achieve the best rank-1
approximation among the eigenpairs. In fact, it has been shown that the eigenpair with the
largest eigenvalue achieves the best possible rank-1 approximation of the tensor [22, 6]. This
fact will form the basis for an effective algorithm for finding an approximate CP decomposition
in the next section.D
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1102 DEANNA C. EASLEY AND TYRUS BERRY

Finally, an effective algorithm for finding the eigenvector associated to the largest eigen-
value in absolute value is the HOPM, originally developed in [5] and further analyzed in [29, 6].
In the case of symmetric tensors the symmetric-HOPM has a simpler form that is very similar
to normalized power iteration but is not guaranteed to converge [22]. The HOPM algorithm

for a symmetric order-k tensor T \in \BbbR dk requires initialization with the left singular vector, u,
corresponding to the largest singular value of the unfolding (reshaping) of the tensor into a

d\times dk - 1 matrix. The HOPM then defines k sequences of vectors, v
(1)
0 , . . . , v

(k)
0 , by initializing

them all to be equal to u, v
(1)
0 = \cdot \cdot \cdot = v

(k)
0 = u, and inductively updating

w = T \times 1 v
(1)
j+1 \times 1 \cdot \cdot \cdot \times 1 v

(i - 1)
j+1 \times 1 v

(i+1)
j \times 1 \cdot \cdot \cdot \times 1 v

(k)
j ,(2.1)

v
(i)
j+1 =

w

| | w| | 

for each i = 1, . . . , k and then increments j. Note that in formula (2.1), the subscripts do
not represent the indices of the vector; they refer to the iteration, whereas in Algorithm 2.1
subscripts indicate vector indices.

Notice that the product that updates v
(i)
j+1 is the tensor T multiplied by the k  - 1 other

vectors, leaving out v
(i)
j . Also note that we use the already updated (j+1)-step vectors for the

first i - 1 products and the j-step vectors for the last k - i products. The HOPM is guaranteed

to converge to an eigenvector of T [29], and when T is symmetric all v
(1)
j , . . . , v

(k)
j converge

to the same eigenvector but may differ in sign for even order tensors. For completeness we
summarize the HOPM algorithm of [5] in Algorithm 2.1.

Algorithm 2.1 Higher order power method [5].

Inputs: A k-tensor T \in \BbbR dk

Outputs: Eigenvector v \in \BbbR d and eigenvalue \lambda such that T \times 1 v \times 1 \cdot \cdot \cdot \times 1 v = \lambda v

Reshape T into a d\times dk - 1 matrix and compute the leading left singular vector, v0
Initialize v(1) = v(2) = \cdot \cdot \cdot = v(k) = u, \lambda = Inf, and \lambda \mathrm{p}\mathrm{r}\mathrm{e}\mathrm{v} = 0
while | \lambda  - \lambda \mathrm{p}\mathrm{r}\mathrm{e}\mathrm{v}| > tol do

for \ell = 1, . . . , k do

Set v
(\ell )
s =

\sum d
i1,...,i\ell  - 1,i\ell +1,...,ik=1 Ti1,...,i\ell  - 1,s,i\ell +1,...,ikv

(1)
i1

\cdot \cdot \cdot v(\ell  - 1)
i\ell  - 1

v
(\ell +1)
i\ell +1

\cdot \cdot \cdot v(k)ik
Set vs =

vs
\| vs\| 

end for
Set \lambda \mathrm{p}\mathrm{r}\mathrm{e}\mathrm{v} = \lambda 

Set \lambda =
\sum d

i1,...,ik=1 Ti1,...,ikv
(1)
i1

\cdot \cdot \cdot v(1)ik
end while
Set v = v(1)

Return v, \lambda 

Unlike the case of matrices, for tensors of order greater than two the basins of attraction
for multiple distinct eigenvalues can have nonzero measure. It has been observed [6, 29, 22]
that initialization with the left singular vector, u, of the tensor unfolding typically leads toD
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HIGHER ORDER UNSCENTED TRANSFORM 1103

convergence to the eigenvector with the largest eigenvalue. The next section will rely on
the ability to find the eigenpair associated to the largest eigenvalue (in absolute value) so a
guaranteed way to find an initial condition in the basin of the largest eigenvalue is still an
important problem for future research.

3. Approximate CP decomposition. In this section we show how tensor eigenvectors can
be used to form an approximate CP decomposition up to an arbitrary level of precision. Of
course, this is not a method of finding the minimal CP decomposition, the computation of
which is NP-complete [9, 14]. Moreover, we do not even see an exact CP decomposition.
Instead, given an order-k tensor T , we seek a sequence of vectors v\ell and constants \lambda \ell such
that

\sum p
\ell =1 \lambda \ell v

\otimes k
\ell approximates T in the Frobenius norm up to an error that can be made

arbitrarily small by increasing p. In the next section we will show that this approximate CP
decomposition is a key component for generalizing the unscented ensemble to higher moments.

Our approach is motivated by a theorem of [22] which states that if v is the unit length
eigenvector of an order-k tensor T associated to the largest eigenvalue \lambda (in absolute value),
then \lambda v\otimes k is the best rank-1 approximation of T , namely

\| T  - \lambda v\otimes k\| 

is minimized over all possible \lambda , \| v\| = 1. It is well known that subtracting the best rank-
1 approximation does not produce an exact CP decomposition, and in fact may increase
tensor rank [31, 23]. However, it was suggested in [22] that repeatedly subtracting the rank-
1 approximations may result in an approximate CP decomposition. The following theorem
shows that this process converges subject to a certain tensor eigenvalue inequality that will
be shown in Lemma 3.2 below.

Theorem 3.1. Let T be a k-order symmetric tensor with size d, i.e., T \in \BbbR dk . Consider
the process of finding an approximate CP decomposition of T by starting from T0 = T and
setting T\ell +1 = T\ell  - \lambda \ell v

\otimes k
\ell where \lambda \ell is the largest eigenvalue in absolute value of T\ell and v\ell is

the associated eigenvector. Assume also that there exists a universal constant c \in (0, 1] such

that \lambda \ell \geq c| (T\ell )i1...ik | . Then \| T\ell \| F \rightarrow 0 and for r =
\sqrt{} 
1 - c2

dk
\in (0, 1)

\| T\ell +1\| F
\| T\ell \| F

\leq r and T =

p\sum 
\ell =1

\lambda \ell v
\otimes k
\ell +\scrO (rL)

for all L \in \BbbN .
Proof. First let \lambda maxabs be the largest eigenvalue in absolute value of a tensor T and assume

\lambda maxabs \geq c| Ti1...ik | for all i1, . . . , ik. We will show that there exists a constant c2 =
c

dk/2
\in (0, 1]

such that \lambda maxabs \geq c2\| T\| F . Since \lambda maxabs \geq c| Ti1...ik | , we have

\lambda 2
maxabs \geq c2T 2

i1...ik
,

which implies that

dk\lambda 2
maxabs \geq c2

\sum 
i1,...,ik

T 2
i1...ik

,
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1104 DEANNA C. EASLEY AND TYRUS BERRY

so we have dk/2\lambda maxabs \geq c
\sqrt{} \sum 

i1,...,ik
T 2
i1...ik

and

\lambda maxabs \geq 
c

dk/2
\| T\| F ,(3.1)

where we take c2 =
c

dk/2
\in (0, 1), since c \in (0, 1) and d \geq 1. By Lemma 2.14 applied to T\ell , we

have
\| T\ell +1\| F 2 = \| T\ell  - \lambda \ell v

\otimes k
\ell \| F

2
= \| T\ell \| F 2  - \lambda \ell 

2.

Since \lambda \ell is defined to be the largest eigenvalue of T\ell , (3.1) says that \lambda \ell \geq c2\| T\ell \| F where
c2 =

c
dk/2

so

\| T\ell +1\| F 2 \leq \| T\ell \| F 2  - c2
2\| T\ell \| F 2

\leq (1 - c2
2)\| T\ell \| F 2.

Thus, setting r =
\surd 
1 - c22 \in (0, 1) we have \| T\ell +1\| F \leq r\| T\ell \| F and \| T\ell +1\| F \leq r2\| T\ell  - 1\| F and

so forth and proceeding inductively we find,

\| T\ell +1\| F \leq r\ell +1\| T0\| F = r\ell +1\| T\| F .

Since 0 < r < 1, lim\ell \rightarrow \infty r\ell +1 = 0, so 0 \leq \| T\ell +1\| F \leq r\ell +1\| T\| F \rightarrow 0 implies \| T\ell +1\| \rightarrow 0 as
\ell \rightarrow \infty . Since this limit is 0, an upper bound on the rate of convergence of \| T\ell \| F is found by
considering

\| T\ell +1\| F
\| T\ell \| F

\leq r =

\sqrt{} 
1 - c2

dk
.

Theorem 3.1 gives an effective algorithm for finding approximate CP decompositions of
tensors; however, it requires an inequality of the form

\lambda maxabs \geq c| Ti1,...,ik | .(3.2)

The inequality (3.2) holds for symmetric matrices with c = 1, since if T \in \BbbR d2 is symmetric
it has an orthogonal eigendecomposition T = U\top \Lambda U so by the Cauchy--Schwarz inequality,

| Tij | = | \langle ui, \lambda juj\rangle | \leq | | ui| | | | \lambda juj | | = | \lambda j | \leq \lambda maxabs

and the identity matrix shows that c = 1 is the best possible constant for matrices. Of course,
this method of proof cannot be generalized to arbitrary tensors due to the lack of a similar
rank-1 eigendecomposition. Nevertheless, the next lemma shows that an inequality of the
form (3.2) does hold for all symmetric tensors of orders 3 and 4.

Lemma 3.2. If T is a symmetric 3-tensor, then

\lambda maxabs \geq 
2

3 + 4
\surd 
2 +

\surd 
3
| Tijk| .

If T is a symmetric 4-tensor, then

\lambda maxabs \geq 
6

323
| Tijk\ell | .D
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The proof of Lemma 3.2 is quite involved and can be found in the appendix. We conjec-
ture that such an inequality holds for symmetric tensors of any order, and we note that the
constants in Lemma 3.2 are not known to be sharp. For the purposes of this paper, we are
focused on matching the skewness and kurtosis of a distribution so we only need the approx-
imate CP decomposition for tensors up to order 4. In the next section we will show how to
use the approximate CP decomposition to build an ensemble that simultaneously matches the
mean, covariance, skewness, and kurtosis.

We summarize the approximate CP decomposition algorithm below.

Algorithm 3.1 Approximate CP decomposition.

Inputs: A k-tensor T \in \BbbR dk and a tolerance \tau .

Outputs: Vectors, v\ell , and signs, s\ell \in \{  - 1, 1\} such that

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| p\sum 
\ell =1

s\ell v
\otimes k
\ell  - T

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
F

\leq \tau .

Set \ell = 1
while | | T | | F > \tau do

Apply the HOPM (Algorithm 2.1) to find an eigenpair (v, \lambda ) of T .
Set s\ell = sign(\lambda ) (note that if k is odd we can always choose s\ell = 1)
Set v\ell = | \lambda | 1/kv
Set T = T  - s\ell v

\otimes k
\ell 

Set \ell = \ell + 1
end while

Return the set of all s\ell , v\ell 

Finally, we demonstrate this algorithm on a random 3-tensor and 4-tensor with d = 2 and
d = 10 in Figure 2. We note that in all cases the convergence is much faster than our theoretical
upper bound; however, for d = 10 we see that the ratio of residual norms approaches much
closer to our upper bound. Moreover, high dimensional tensors require a much larger number
of vectors to achieve a given tolerance with the approximate CP decomposition. So while our
approach provides an effective solution, it is likely that there is room for improvement, and
the HOUT introduced in the next section can use any method of CP decomposition.

4. Higher order unscented transform. The goal of the SUT is to generate a small ensem-
ble that exactly matches the mean and covariance of a distribution, thus forming a quadrature
rule that can be used to estimate the expected value of nonlinear functions. In this section
we define the HOUT which matches the first four moments of a distribution, thus providing a
quadrature rule with a higher degree of exactness. While we only describe the process explic-
itly for up to four moments, our method is based on the approximate tensor decomposition
from the previous section and should allow generalization to an arbitrary number of moments.

Suppose we are given the following moments of the distribution of a random variable: the
mean \mu \in \BbbR d, the covariance matrix C \in \BbbR d\times d, the skewness tensor S \in \BbbR d\times d\times d, and kurtosis
tensor K \in \BbbR d\times d\times d\times d. Let \tau be a parameter that specifies the tolerance of the approximate
CP decompositions and let S and K have the approximate CP decompositionsD
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Figure 2. (a)--(d) With d = 2 we demonstrate the approximate CP decomposition on a random 3-tensor
(a), (b) and 4-tensor (c), (d). The norm of the residual (a), (c) (blue) decays to numerical zero faster than the
theoretical upper bound, r\ell (red). The ratio of successive Frobenius norms (b), (d) (blue) is always less than
the derived upper bound, r (red). (e)--(h) We repeat the experiment with d = 10.

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| S  - 

J\sum 
i=1

\~vi
\otimes 3

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| 
F

\leq \tau /2,

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| K  - 

L\sum 
i=1

si \~ui
\otimes 4

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| 
F

\leq \tau /2,

where si \in \{  - 1, 1\} denote signs. Note that these approximate decompositions can be con-
structed by the algorithm described in Theorem 3.1 by moving the eigenvalues inside the
tensor power by the rule (cv)\otimes k = ckv\otimes k. Note that the signs si are required for the kurtosis
since constants come out of even order tensor powers as absolute values.

The key to forming an ensemble that matches all four moments simultaneously is carefully
balancing the interactions between the moments. For example, if we add new quadrature nodes
of the form \mu +\gamma \~vi in order to try to match the skewness, these nodes will influence the mean
of the ensemble. In order to balance these interactions we make the following definitions based
on the approximate CP decompositions of the skewness and kurtosis:

\~\mu =

J\sum 
i=1

\~vi, \^\mu =  - \gamma  - 2\~\mu , \~C =

L\sum 
i=1

si \~ui
\otimes 2, \^C = C  - 1

\delta 2
\~C,

where \^L =
\sum L

i=1 si and \beta , \gamma , \delta are arbitrary positive constants that will define the 4-moment
\sigma -points below. We note that C is assumed symmetric and positive definite since it is a
covariance matrix and \~C is symmetric by definition. In order to ensure that \^C is also positive
definite, let \lambda 

\~C
\mathrm{m}\mathrm{a}\mathrm{x} be the largest eigenvalue of \~C and let \lambda C

\mathrm{m}\mathrm{i}\mathrm{n} be the smallest eigenvalue of C;

then we require that \delta >

\sqrt{} 
\lambda \~C
\mathrm{m}\mathrm{a}\mathrm{x}

\lambda C
\mathrm{m}\mathrm{i}\mathrm{n}

which guarantees that \^C is positive definite. We note that

this choice can be overly conservative especially when C is close to rank deficient. In these
cases, it can be helpful to iteratively divide \delta by 2 as long as \^C remains positive definite.
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HIGHER ORDER UNSCENTED TRANSFORM 1107

These choices balance out the interactions between the moments and are the key to proving
Theorem 4.2 below. We are now ready to define the 4-moment \sigma -points.

Definition 4.1 (the 4-moment \sigma -points of the higher order unscented transform). Let \alpha , \beta ,
\gamma , \delta be positive real numbers; we define the 4-moment \sigma -points by

\sigma i =

\left\{                                         

\mu if i =  - 2,

\mu + \alpha \^\mu if i =  - 1,

\mu  - \alpha \^\mu if i = 0,

\mu + \beta 
\sqrt{} 

\^Ci if i = 1, . . . , d,

\mu  - \beta 
\sqrt{} 

\^Ci - d if i = d+ 1, . . . , 2d,

\mu + \gamma \~vi - 2d if i = 2d+ 1, . . . , 2d+ J,

\mu  - \gamma \~vi - 2d - J if i = 2d+ J + 1, . . . , 2d+ 2J,

\mu + \delta \~ui - 2d - 2J if i = 2d+ 2J + 1, . . . , 2d+ 2J + L,

\mu  - \delta \~ui - 2d - 2J - L if i = 2d+ 2J + L+ 1, . . . , N

and the corresponding weights by

wi =

\left\{                                   

1 - d\beta  - 2  - \^L\delta  - 4 if i =  - 2,

1
2\alpha 

 - 1 if i =  - 1,

 - 1
2\alpha 

 - 1 if i = 0,

1
2\beta 

 - 2 if i = 1, . . . , 2d,

1
2\gamma 

 - 3 if i = 2d+ 1, . . . , 2d+ J,

 - 1
2\gamma 

 - 3 if i = 2d+ J + 1, . . . , 2d+ 2J,

1
2\delta 

 - 4si - 2d - 2J if i = 2d+ 2J + 1, . . . , 2d+ 2J + L,

1
2\delta 

 - 4si - 2d - 2J - L if i = 2d+ 2J + L+ 1, . . . , N.

For convenience, denote N = 2(d+ J + L).

The next theorem shows that the 4-moment \sigma -points match the first two moments exactly
and match the skewness and kurtosis up to an error term that can be controlled below.

Theorem 4.2. Given the 4-moment \sigma -points associated with \mu , C, S, and K we have\sum N
i= - 2wi = 1 and

N\sum 
i= - 2

wi\sigma i = \mu ,

N\sum 
i= - 2

wi(\sigma i  - \mu )\otimes 2 = C,
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1108 DEANNA C. EASLEY AND TYRUS BERRY\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| 

N\sum 
i= - 2

wi(\sigma i  - \mu )\otimes 3  - S

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| 
F

\leq \tau /2 + \alpha 2
\bigm| \bigm| \bigm| \bigm| \^\mu \otimes 3

\bigm| \bigm| \bigm| \bigm| 
F
,

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| 

N\sum 
i= - 2

wi(\sigma i  - \mu )\otimes 4  - K

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| 
F

\leq \tau /2 + \beta 2
\bigm| \bigm| \bigm| \bigm| \=C\bigm| \bigm| \bigm| \bigm| 

F
,

where \=C =
\sum d

i=1

\sqrt{} 
\^C
\otimes 4

i .

The proof can be found in the appendix. Notice that the third and fourth moment
equations do not exactly match the skewness and kurtosis, respectively. Of course, we only
used an approximate CP decomposition to begin with, which accounts for the \tau term in the
error. Thus, the real goal is to bound the other error term by the same tolerance, \tau . The
following corollary shows how to control the error terms on the skewness and kurtosis.

Corollary 4.3. Let \tau be a specified tolerance for the absolute error of the skewness and

kurtosis and set \=C =
\sum d

i=1

\sqrt{} 
\^C
\otimes 4

i and \^\mu as in Theorem 4.2. If we choose parameters \alpha , \beta 
such that

\alpha <

\sqrt{} 
\tau 

2| | \^\mu \otimes 3| | F
and \beta <

\sqrt{} 
\tau 

2| | C| | F
,

then \bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| 

N\sum 
i= - 2

wi(\sigma i  - \mu )\otimes 3  - S

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| 
F

< \tau and

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| 

N\sum 
i= - 2

wi(\sigma i  - \mu )\otimes 4  - K

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| 
F

< \tau .

Proof. The inequality for \beta follows immediately from Theorem 4.2. Once \beta is chosen,
then we can define

| | \^\mu \otimes 3| | F =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \Bigl( \Bigl( 1 - d\beta  - 2  - \^L\delta  - 4
\Bigr) 
\mu  - \gamma  - 2\~\mu 

\Bigr) \otimes 3
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
F

and choosing \alpha <
\sqrt{} 

\tau 
2| | \^\mu \otimes 3| | F we have

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| 

N\sum 
i= - 2

wi(\sigma i  - \mu )\otimes 3  - S

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| 
F

\leq \tau /2 + \alpha 2| | \^\mu \otimes 3| | F < \tau 

as desired.

Corollary 4.3 could easily be reformulated to control relative error if desired, and taken
to the extreme we could make the quadrature rule exact up to numerical precision. As a
practical matter, this is not an effective strategy since it would result in a larger condition
number for the numerical quadrature as shown in the following remark.D
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Algorithm 4.1 Higher order unscented transform.

Inputs: A function f , tolerance \tau , and the mean, \mu , covariance, C, skewness, S, and
kurtosis, K, of a random variable X.
Outputs: Estimate of \BbbE [f(X)] with degree of exactness 4.

Compute the approximate CP decomposition
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| S  - 

\sum J
i=1 \~v

\otimes 3
i

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
F
\leq \tau /2

Compute the approximate CP decomposition
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| K  - 

\sum L
i=1 si\~u

\otimes 4
i

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
F
\leq \tau /2

Set \~C =
\sum L

i=1 si\~u
\otimes 2
i .

Compute the largest eigenvalue \lambda 
\~C
\mathrm{m}\mathrm{a}\mathrm{x} of \~C and the smallest eigenvalue \lambda C

\mathrm{m}\mathrm{i}\mathrm{n} of C

Choose \delta >

\sqrt{} 
\lambda \~C
\mathrm{m}\mathrm{a}\mathrm{x}

\lambda C
\mathrm{m}\mathrm{i}\mathrm{n}

(note that C is positive definite so \lambda C
\mathrm{m}\mathrm{i}\mathrm{n} > 0)

(Optional) While C  - \delta  - 2 \~C is positive definite, set \delta = \delta /2
Set \^C = C  - \delta  - 2 \~C
Compute the symmetric square root of \^C with columns

\sqrt{} 
\^Ci

Set \=C =
\sum d

i=1

\sqrt{} 
\^Ci

\otimes 4

Choose \beta <
\sqrt{} 

\tau 
2| | \=C| | F

and choose \gamma > 0 (default \gamma = J - 1/3)

Set \^L =
\sum L

i=1 si and \~\mu =
\sum J

i=1 \~vi and \^\mu = (1 - d\beta  - 2  - \^L\delta  - 4)\mu  - \gamma  - 2\~\mu 

Choose \alpha <
\sqrt{} 

\tau 
2| | \^\mu \otimes 3| | F

Define the 4-moment \sigma -points, \sigma i, and weights, wi, according to Definition 4.1

Output:
\sum N

i= - 2wif(\sigma i)

Remark 4.4. The absolute condition number of the HOUT is bounded above by
\sum N

i=0 | wi| .
Using the bounds from Corollary 4.3 we find

N\sum 
i=0

| wi| =
1

\alpha 
+

d

\beta 2
+

J

\gamma 3
+

L

\delta 4
>

\sqrt{} 
| | \=\mu \otimes 3| | F

\tau 
+

d| | \=C| | F
\tau 

+
J

\gamma 3
+

L

\delta 4
= \scrO (\tau  - 1),

which shows that the condition number has the potential to blow up as the tolerance is
decreased.

We summarize the HOUT algorithm in Algorithm 4.1 and we now turn to some numerical
experiments to demonstrate the HOUT.

5. Error analysis. The standard approach to error estimates for the SUT is based on a
Taylor's theorem approximation near the mean. These results can be immediately generalized
to the HOUT as in the following theorem (see the proof in Appendix D).

Theorem 5.1 (Taylor-type HOUT error bound). Let f \in C5(\BbbR d,\BbbR ) and let X \sim p be a
random variable with distribution p that has compact support. Then the error in estimating
\BbbE [f(X)] using the 4-moment \sigma -points of the HOUT and corresponding weights has the upper
boundD
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1110 DEANNA C. EASLEY AND TYRUS BERRY\bigm| \bigm| \bigm| \bigm| \bigm| \BbbE [f(X)] - 
m\sum 
i=1

wif(\sigma i)

\bigm| \bigm| \bigm| \bigm| \bigm| \leq | | D5f | | \infty 
d5

120

\Bigl( 
| | M5,abs| | \mathrm{m}\mathrm{a}\mathrm{x} + | | \~M5,abs| | \mathrm{m}\mathrm{a}\mathrm{x}

\Bigr) 
,

where the | | D5f | | \infty is taken on the support of the measure and M5,abs, \~M5,abs are the absolute
fifth moments of p and the quadrature, respectively (see Appendix D for details).

While the assumption of compact support is not strictly necessary, one must make some
assumption on the decay of the probability measure in order to control the error. Moreover,
the Taylor's theorem approach does not allow less regular functions f or take advantage of
additional regularity that may be present in f . Thus we take a more general approach based
on the methods of polynomial approximation [3, 28].

The benefit of our ability to match four moments to arbitrary precision is that it allows
us to apply the standard approach for quadrature error analysis based on polynomial ap-
proximation. In this section, we develop error bounds in the context of a quadrature that
matches n moments. Since the HOUT matches four moments, the bounds developed in this
section apply to the HOUT with n = 4. Of course, this immediately requires an assumption
on the probability measure dp that the first n-moments exist. However, we will not require
the existence of a density or any regularity assumptions on the measure.

The polynomials 1, x, (x  - \mu )\otimes 2, . . . , (x  - \mu )\otimes n form a basis for the space of degree n
polynomials in the components of x \in \BbbR d, denoted \Pi d

n. Since expectations are linear, a
quadrature which is exact on these basis polynomials will be exact for all polynomials of
degree less than or equal to n, namely, \BbbE [q] =

\sum m
i=1wiq(\sigma i) for any q \in \Pi d

n. Of course, the
quadrature may only be accurate up to a threshold and in finite precision arithmetic it cannot
be exact. Moreover, the moments that the quadrature is matching may only be estimates of
the true moments. To understand the propagation of such errors, we write the polynomial
q(x) =

\sum n
s=0

\sum d
j1,...,js=1 aj1\cdot \cdot \cdot js(x - \mu )\otimes s

j1\cdot \cdot \cdot js in the basis of moments. Note that

E\mathrm{m}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s} \equiv 

\bigm| \bigm| \bigm| \bigm| \bigm| \BbbE [q] - 
m\sum 
i=1

wiq(\sigma i)

\bigm| \bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
n\sum 

s=0

d\sum 
j1,...,js=1

aj1\cdot \cdot \cdot js

\Biggl( 
\BbbE [(x - \mu )\otimes s

j1\cdot \cdot \cdot js ] - 
m\sum 
i=1

wi(\sigma i  - \mu )\otimes s
j1\cdot \cdot \cdot js

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq c(q)

n\sum 
s=0

| | Ms  - \~Ms| | \mathrm{m}\mathrm{a}\mathrm{x},

where c(q) is a constant depending only on the polynomial q and Ms = \BbbE [(x - \mu )\otimes s] are the
true moments and \~Ms =

\sum m
i=1wi(\sigma i  - \mu )\otimes s are the moments matched by the algorithm.

Whenever we approximate a function f by a polynomial q \in \Pi d
n, we should expect un-

bounded errors as the inputs approach infinity. Thus, in order to control the error on \BbbE [f ] by
polynomial approximation, we need to split the domain into the interior and exterior of a ball
\BbbB r(\mu ) of radius r centered on \mu . Outside the ball we define the error by

E\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e} \equiv 
\int 
\BbbR d\cap \BbbB r(\mu )c

| f  - q| dp,
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and bounding this error requires assuming that the probability measure decays sufficiently fast
to control the error between f and q. Inside the ball we define the polynomial approximation
error by

E\mathrm{i}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e} \equiv | | f  - q| | \infty = sup
x\in \BbbB r(\mu )

| f(x) - q(x)| 

and bounding this error will require an appropriate regularity assumption on f .
By combining these error terms, we can control the error of a quadrature formula on any

function f by any polynomial q of degree n, namely,

E\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{l} \equiv 

\bigm| \bigm| \bigm| \bigm| \bigm| \BbbE [f ] - 
m\sum 
i=1

wif(\sigma i)

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq | \BbbE [f ] - \BbbE [q]| + E\mathrm{m}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s} +

\bigm| \bigm| \bigm| \bigm| \bigm| 
m\sum 
i=1

wiq(\sigma i) - 
m\sum 
i=1

wif(\sigma i)

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq E\mathrm{m}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s} +

\int 
\BbbR d

| f  - q| dp+
m\sum 
i=1

wi| f(\sigma i) - q(\sigma i)| 

\leq E\mathrm{m}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s} +

\int 
\BbbR d\cap \BbbB r(\mu )c

| f  - q| dp+
\int 
\BbbB r(\mu )

| | f  - q| | \infty dp+

m\sum 
i=1

wi| | f  - q| | \infty 

\leq E\mathrm{m}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s} + E\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e} + 2E\mathrm{i}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e},

where we assume that r is sufficiently large that \sigma i \in \BbbB r(\mu ) for all i = 1, . . . ,m. Notice that
the three error terms all depend on the choice of the polynomial q, and since the inequality
holds for all q \in \Pi d

n we can write\bigm| \bigm| \bigm| \bigm| \bigm| \BbbE [f ] - 
m\sum 
i=1

wif(\sigma i)

\bigm| \bigm| \bigm| \bigm| \bigm| \leq inf
q\in \Pi d

n

\{ E\mathrm{m}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s} + E\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e} + 2E\mathrm{i}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}\} .

From this general framework, many potential results can be derived depending on the local-
ization of the probability measure and the regularity of f . If we assume that the moments are
exactly approximated, then one such result would be the following theorem.

Theorem 5.2 (general HOUT error bound). Let f \in Ck(\BbbR d,\BbbR ) be bounded in absolute
value by a polynomial, | f(x)| \leq a+ b| | x| | t. Let x be a random variable with probability density

p(x) < ce - \alpha | | x - \mu | | \beta for some \alpha , \beta > 0 and all | | x - \mu | | > r0. Let Q(f) \equiv 
\sum m

i=1wif(\sigma i) be exact
on the first n moments of p. For any radius r \geq r0 such that \sigma i \in \BbbB r(\mu ) we have

| \BbbE [f ] - Q(f)| \leq c1

\Bigl( r
n

\Bigr) k\left(  | | Dkf | | \infty 
n

+
\sum 
| \gamma | =k

sup
| x - y| < 1

n

| Dk
\gamma f(x) - Dk

\gamma f(y)| 

\right)  +c2nr
t+n+d - \beta e - \alpha r\beta ,

where c1 depends on k, d and c2 depends on a, b, \alpha , \beta .

The proof of Theorem 5.2 is included in Appendix D and follows from upper bounds on
the error of the multivariate polynomial of best approximation found in [3, 28] together with
bounds on the integrals of polynomials multiplied by an exponential.D
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1112 DEANNA C. EASLEY AND TYRUS BERRY

Of course, the HOUT currently has only been derived for n = 4; however, we chose to
derive the general error bounds to show how matching more moments can potentially improve
the estimation in the future.

6. Numerical experiments. We first compare the HOUT and SUT on various polynomials
applied to a two-dimensional input distribution. In order to generate a non-Gaussian input
distribution, we start by generating an ensemble of 105 standard Gaussian random variables,
Z \in \BbbR 2, and then transforming them by a map X = AZ + B(Z \odot Z \odot sign(Z)) where A,B
are random 2\times 2 matrices with entries chosen from a Gaussian distribution with mean 0 and
standard deviation 1/10 and \odot is componentwise multiplication. The resulting ensemble is
shown in Figure 3(a) along with the HOUT (red dots) and SUT (green dots) ensembles.

The SUT has the free parameter \beta but the HOUT requires a certain inequality for \beta 
and instead the HOUT has \gamma as a free parameter. In order to explore the effect of these
parameters on the SUT and HOUT, we considered a random quadratic polynomial f : \BbbR 2 \rightarrow \BbbR .
In Figure 3 we show the error of the HOUT and SUT estimates of the mean \BbbE [f(X)] and
variance \BbbE [(f(X)  - \BbbE [f(X)])2] as a function of \beta for the SUT and \gamma for the HOUT. Notice
that since f is a quadratic polynomial, the mean is also a quadratic polynomial, whereas the
variance is a quartic polynomial. Since the SUT has degree of exactness two, it is exact on
the mean but not on the variance. The HOUT has degree of exactness four and is exact on
both up to the specified tolerance (10 - 5 in these experiments). Reducing the tolerance below
this point led to increased error, most likely due to the conditioning of the HOUT quadrature
rule.

Using the same two-dimensional distribution, X, we passed it through several polynomial
functions of the form f(x) = ax+ bcxn for n = 2, 3, 4, 5 where a and b are made random 1\times 2
vectors. To show the influence of the strength of the nonlinearity, we sweep through different
values of c. In Figure 4 we compare the HOUT and SUT for estimating the mean and variance
of the output of each of these polynomials. As expected, the HOUT is exact for the means
up to n = 4 and for the variances up to n = 2 due to having degree of exactness four. For
higher degree polynomials, the HOUT has comparable or better performance. Whenever the

(a)

0 1 2 3 4 5

,

10
-17

10
-16

10
-15

10
-14

E
rr

o
r 

in
 m

e
a
n

HOUT

SUT

(b)

0 1 2 3 4 5

,

10
-6

10
-4

10
-2

10
0

E
rr

o
r 

in
 v

a
ri
a
n
c
e

HOUT

SUT

(c)

Figure 3. (a) Comparison between the HOUT (red dots) and the SUT ensemble (green dots) on a non-
Gaussian distribution. Note that the SUT uses 5 \sigma -points while the HOUT uses 69 \sigma -points. (b), (c) Estimating
the output mean and covariance for various values of \beta in the SUT and various values of \gamma in the HOUT.D
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Figure 4. Comparison between the HOUT and the SUT when estimating the mean (top row), variance
(second row), skewness (third row), and kurtosis (bottom row) with different polynomials. Notice that the SUT
has degree of exactness two, while the HOUT has degree of exactness four.

nonlinearity is not too strong, such as when c is small and/or the power n is small, the HOUT
has a big advantage. However, for some strong nonlinearities when c and the power n is large
then the HOUT and SUT may have similar performance.

Of course, the HOUT and SUT are intended for use beyond polynomial functions. In
fact, the most common application is for forecasting dynamical systems. Next, we consider
the problem of forecasting the chaotic Lorenz-63 dynamical system [26]. We integrate the
Lorenz-63 system with a Runge--Kutta order 4 method and a time step \tau = 0.1. In order toD
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Figure 5. Comparison between the HOUT and the SUT when estimating the mean \BbbE [f(X)] (top row) and
higher moments of the Lorenz-63 model at various forecast horizons. In (a) we show the Lorenz-63 attractor
(black) along with an example initial ensemble (blue) and forecast ensemble (red) used to compute the true
statistics. In (b), (c) we show the initial and forecast ensembles (blue) together with the HOUT (red) and SUT
(green) ensembles. Results in (d)--(g) show the forecast accuracy versus the forecast steps and are geometrically
averaged over 500 different initial conditions on the attractor.

generate a non-Gaussian initial state, we start by choosing a random point on the attractor
and adding a small amount of Gaussian noise. We then run the ensemble forward N1 = 5 steps
and we consider this the initial state; see Figures 5(a) (blue) and 5(b) (blue). We compute the
statistics of the initial state using the ensemble shown and use these statistics to generate the
HOUT and SUT as shown in Figure 5(b). All three ensembles are then integrated forward in
time N2 additional steps and the true forecast statistics from the large ensemble are compared
to the HOUT and SUT estimates. An example is shown in Figure 5(c) with N2 = 15.

We then repeat this experiment 500 times with different randomly selected initial states on
the attractor and we compute the geometric average of the error between the HOUT estimate
and the true statistics at each forecast time, shown in Figures 5(d)--(g) (blue). Similarly, we
compute the geometric average of the error between the SUT estimate and the true statistics
(red) at each forecast time, shown in Figures 5(d)--(g) (red). We note that the HOUT provides
improved estimates of the first four moments up to at least four forecast steps, which is 0.4
model time units. In particular, the mean forecast is improved by an order of magnitude in
this forecast range.

7. Conclusions and future directions. The SUT is a highly efficient and successful strat-
egy for uncertainty quantification with many applications. As computational resources ex-
pand, there is a growing demand for larger ensembles that are similarly well designed. At theD
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HIGHER ORDER UNSCENTED TRANSFORM 1115

same time, complex systems demand better uncertainty quantification such as skewness and
kurtosis to capture fat-tails. The HOUT generalizes the SUT to efficiently leverage additional
computation resources to meet the growing uncertainty quantification demand. There are
several promising directions of future research that we expect to result from this work.

First, there are many applications, such as Kalman filtering and smoothing for nonlinear
systems, that use the SUT to track the mean and covariance of hidden variables based on
noisy observations. If these filters and smoothers can be generalized to track four moments,
they could be integrated with the HOUT to achieve better stability and accuracy along with
additional uncertainty quantification. Moreover, these methods are often difficult to analyze
theoretically due to the lack of a natural limit. This compares to the relative ease of theoretical
analysis of particle filters where one may consider the infinite particle (Monte Carlo) limit. The
HOUT opens up the possibility that generalized Kalman-based approaches may be analyzed in
the limit of infinitely many moments; in a sense this is a kind of spectral solver convergence.
Of course, as the number of moments increases, the size of the ensemble required and the
computational complexity will also increase. While we only explicitly derive the 4-moment
version of the HOUT, the methods used should allow generalization to match an arbitrary
number of moments. Such a convergence result would finally allow moment-based methods
to be compared to particle filters, where one can show convergence as the number of particles
goes to infinity.

A second promising direction for future research concerns deriving error bounds for the
SUT and HOUT. Current error bounds for the SUT are based on Taylor expansion [18,
21, 19], and a similar analysis could be carried out for the HOUT. However, this analysis
requires decay of the moments and a highly localized input density; moreover it is not the
natural method of analyzing quadrature error. A more natural approach would be based
on multivariate polynomial approximation error bounds, which would be analogous to the
univariate quadrature error bound analysis.

Finally, a more efficient CP decomposition can immediately improve the efficiency of the
HOUT. Similarly, improved/sharp bounds on the relationship between tensor eigenvalues and
their entries could improve understanding of the convergence rate as a function of dimension
and tensor order.

Appendix A. Tensor multiplication and proofs of Lemmas 2.12 and 2.14. To discuss
how tensor multiplication works, let us first look at the simplest case where we multiply a
2-tensor with a 1-tensor. Recall that for a matrix A \in \BbbR d\times d and v \in \BbbR d, the matrix-vector
multiplication Av is given by (Av)i =

\sum d
j=1Aijvj so we define two natural tensor-vector

products

(A\times 1 v)i =

d\sum 
j=1

Ajivj = (A\top v)i and (A\times 2 v)i =

d\sum 
j=1

Aijvj = (Av)i.

Analogously, for a 3-tensor S \in \BbbR d\times d\times d and a vector v \in \BbbR d, the tensor-vector multiplication
is carried out as follows, each case resulting in a d\times d matrix:

(S \times 1 v)ik =
d\sum 

j=1

Sjikvj , (S \times 2 v)ik =
d\sum 

j=1

Sijkvj , (S \times 3 v)ik =
d\sum 

j=1

Sikjvj .
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1116 DEANNA C. EASLEY AND TYRUS BERRY

For example, if S \in \BbbR 3\times 3\times 3 and v \in \BbbR 3 such that

S =

S111 S121 S131

S211 S221 S231

S311 S321 S331

\right]   
\left[   

S112 S122 S132

S212 S222 S232

S312 S322 S332

\right]   
\left[   

S113 S123 S133

S213 S223 S233

S313 S323 S333

\right]   
\left[   

,

then

S \times 1 v =

\left[  S111v1 + S211v2 + S311v3 S112v1 + S212v2 + S312v3 S113v1 + S213v2 + S313v3
S121v1 + S221v2 + S321v3 S122v1 + S222v2 + S322v3 S123v1 + S223v2 + S323v3
S131v1 + S231v2 + S331v3 S132v1 + S232v2 + S332v3 S133v1 + S233v2 + S333v3

\right]  .

Generalizing this to arbitrary order tensors yields Definition 2.9.
We now turn to the proof of Lemma 2.12.

Proof. By the definition of the tensor Frobenius norm,

\| v\otimes k\| 2F =
d\sum 

i1=1

\cdot \cdot \cdot 
d\sum 

ik=1

[(v\otimes k)i1,...,ik ]
2

and since (v\otimes k)i1...ik = vi1vi2 \cdot \cdot \cdot vik , we have \| v\otimes k\| 2F =
\sum d

i1=1 \cdot \cdot \cdot 
\sum d

ik=1 v
2
i1
\cdot \cdot \cdot v2ik , so

\| v\otimes k\| 2F =

d\sum 
i1=1

v2i1

d\sum 
i2=1

v2i2 \cdot \cdot \cdot 
d\sum 

ik=1

v2ik = \| v\| 2\| v\| 2 \cdot \cdot \cdot \| v\| 2\underbrace{}  \underbrace{}  
k \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}

by definition of \| v\| so

\| v\otimes k\| F = \| v\| k.

Finally, we include the proof of Lemma 2.14.

Proof. We first wish to show that \| T  - \lambda v\otimes k\| 2F = \| T\| 2F  - \lambda 2.

\| T  - \lambda v\otimes k\| 2F =
d\sum 

i1=1

\cdot \cdot \cdot 
d\sum 

ik=1

[(T  - \lambda v\otimes k)i1,...,ik ]
2 =

d\sum 
i1=1

\cdot \cdot \cdot 
d\sum 

ik=1

[Ti1,...,ik  - \lambda (v\otimes k)i1,...,ik ]
2

=
d\sum 

i1=1

\cdot \cdot \cdot 
d\sum 

ik=1

(T 2
i1,...,ik

 - 2\lambda Ti1,...,ikvi1vi2 \cdot \cdot \cdot vik + \lambda 2v2i1v
2
i2 \cdot \cdot \cdot v

2
ik
)

= \| T\| 2F  - 2\lambda 

d\sum 
i=1

vi(T \times 2 v \times 3 v \times 4 \cdot \cdot \cdot \times k v)i + \lambda 2\| v\otimes k\| F .
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Since \| v\| = 1 and by Lemma 2.12, \| v\otimes k\| F = 1, hence

\| T  - \lambda v\otimes k\| 2F = \| T\| 2F  - 2\lambda \langle v, \lambda v\rangle + \lambda 2 = \| T\| 2F  - 2\lambda 2\| v\| 22 + \lambda 2 = \| T\| 2F  - \lambda 2.

Since \| T  - \lambda v\otimes k\| F \geq 0, \| T\| 2F  - \lambda 2\geq 0 so \| T\| 2F \geq \lambda 2 and taking square roots, \| T\| F \geq | \lambda | .

Appendix B. Proof of Lemma 3.2.

Proof. First note that for 3-tensors, if \lambda is an eigenvalue then (T \times 1 v) \times 1 v = \lambda v so
(T \times 1 ( - v))\times 1 ( - v) =  - \lambda ( - v) so  - \lambda is also an eigenvalue. Therefore for 3-tensors, \lambda max =
\lambda maxabs, and in fact this is true for any odd order tensor.

Next, by the symmetry of the matrix 3-tensor T\sum 
i,j,k

Tijkvivjvk =
n\sum 

i=1

Tiiiv
3
i + 3

n\sum 
i=1

\sum 
k \not =i

Tiikv
2
i vk +

n\sum 
i=1

\sum 
j \not =i

\sum 
k \not =i,j

Tijkvivjvk.

Let us fix s = 1, . . . , n and let (vs)i = sign(Tsss) \delta is. Then \| vs\| = 1 so

\lambda max = max
\| v\| =1

\sum 
i,j,k

Tijkvivjvk \geq 
\sum 
i,j,k

Tijk(vs)i(vs)j(vs)k

= (sign(Tsss))
3
\sum 
i,j,k

Tijk\delta is\delta js\delta ks = sign(Tsss)
\sum 
i,j,k

Tijk\delta is\delta js\delta ks

= sign(Tsss)Tsss = | Tsss| .

Thus, in this case we have \lambda max \geq | Tsss| for all s = 1, . . . , n. Next, fix s, t \in \{ 1, . . . , n\} and let

(ws,t)i = sign(Tstt)
\delta is + \delta it\surd 

2
.

Then \| ws,t\| = 1 and so

\lambda max \geq 
\sum 
i,j,k

Tijk(ws,t)i(ws,t)j(ws,t)k =

\biggl( 
sign(Tstt)\surd 

2

\biggr) 3

(Tsss + Tttt + 3Tsst + 3Tstt)

and therefore

2 3/2\lambda max \geq sign(Tstt)(Tsss + Tttt + 3Tsst + 3Tstt).(B.1)

Now let

( \~ws,t)i = sign(Tstt)
\delta is  - \delta it\surd 

2

so we have

\lambda max \geq 
\sum 
i,j,k

Tijk( \~ws,t)i( \~ws,t)j( \~ws,t)k =

\biggl( 
sign(Tstt)\surd 

2

\biggr) 3

(Tsss  - Tttt  - 3Tsst + 3Tstt)

and

2 3/2\lambda max \geq sign(Tstt)(Tsss  - Tttt  - 3Tsst + 3Tstt).(B.2)D
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1118 DEANNA C. EASLEY AND TYRUS BERRY

Adding (B.1) and (B.2), we get

2(2 3/2\lambda max) \geq sign(Tstt)(2Tsss + 6Tstt),

2 3/2\lambda max \geq sign(Tstt)(Tsss + 3Tstt).

Recall that \lambda max \geq | Tsss| \geq  - sign(Tstt)Tsss, so

2 3/2\lambda max + \lambda max \geq sign(Tstt)(Tsss + 3Tstt  - Tsss),

(2 3/2 + 1)\lambda max \geq 3 sign(Tstt)Tstt.

Therefore

\lambda max \geq 3

2 3/2 + 1
| Tstt| .

Last, fix s, t, u \in \{ 1, . . . , n\} and let

(ws,t,u)i = sign(Tstu)
\delta is + \delta it + \delta iu\surd 

3
.

Then \| ws,t,u\| = 1 and so

\lambda max \geq 
\sum 
i,j,k

Tijk(ws,t,u)i(ws,t,u)j(ws,t,u)k =

\biggl( 
sign(Tstu)\surd 

3

\biggr) 3

(Tsss + Tttt + Tuuu + 3Tsst

+3Tstt + 3Tssu + 3Tttu + 3Tsuu + 3Ttuu + 6Tstu).

Note that since \lambda max is greater than or equal to  - sign(Tstu)Tsss, - sign(Tstu)Tttt, and
 - sign(Tstu)Tuuu we can factor out sign(Tstu) so that\Bigl( 

3 3/2 + 3
\Bigr) 
\lambda max \geq 3 sign(Tstu)(Tsst + Tstt + Tssu + Tttu + Tsuu + Ttuu + 2Tstu).

Now note that (2 3/2 + 1)\lambda max \geq 3| Tstt| \geq  - 3 sign(Tstu)Tstt, which implies

(2 3/2 + 1)\lambda max \geq  - 3 sign(Tstu)Tssu,

(2 3/2 + 1)\lambda max \geq  - 3 sign(Tstu)Tttu,

(2 3/2 + 1)\lambda max \geq  - 3 sign(Tstu)Tsuu,

(2 3/2 + 1)\lambda max \geq  - 3 sign(Tstu)Ttuu,

and together these imply\Bigl( 
3 3/2 + 3 + 6(2 3/2 + 1)

\Bigr) 
\lambda max \geq 6 sign(Tstu)Tstu,\Bigl( 

3 + 4
\surd 
2 +

\surd 
3
\Bigr) 
\lambda max \geq 2| Tstu| ,

\lambda max \geq 2

3 + 4
\surd 
2 +

\surd 
3
| Tstu| .D
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HIGHER ORDER UNSCENTED TRANSFORM 1119

Comparing the lower bounds found in the above three cases, we see that the conclusion holds
if we set

c =
2

3 + 4
\surd 
2 +

\surd 
3
.

This completes the proof for 3-tensors. Next we follow a similar strategy for 4-tensors.
By the symmetry of the 4-tensor T , we have\sum 
i,j,k,\ell 

Tijk\ell vivjvkv\ell =

n\sum 
i=1

Tiiiiv
4
i + 6

n\sum 
i=1

\sum 
j \not =i

Tiijjv
2
i v

2
j + 4

n\sum 
i=1

\sum 
j \not =i

Tiiijv
3
i vj

+12

n\sum 
i=1

\sum 
j \not =i

\sum 
k \not =i,j

Tiijkv
2
i vjvk + 24

n\sum 
i=1

\sum 
j \not =i

\sum 
k \not =i,j

\sum 
\ell \not =i,j,k

Tijk\ell vivjvkv\ell .

We wish to show that for some constant c \in (0, 1],

\lambda maxabs \geq c| Tijk\ell | for all i, j, k, \ell \in \{ 1, 2, . . . , n\} .

We are going to carry out the proof in five steps by looking at the following cases:
1. i = j = k = \ell .
2. i = j \not = k = \ell .
3. i = j = k \not = \ell .
4. i = j distinct from k, \ell and k \not = \ell .
5. i, j, k, \ell all distinct.
1. Let us fix s = 1, . . . , n and let (vs)i = \delta is. Then \| vs\| = 1 so

\lambda max = max
\| v\| =1

\sum 
i,j,k,\ell 

Tijk\ell vivjvkv\ell \geq 
\sum 
i,j,k,\ell 

Tijk\ell (vs)i(vs)j(vs)k(vs)\ell = Tssss,

\lambda min = min
\| v\| =1

\sum 
i,j,k,\ell 

Tijk\ell vivjvkv\ell \leq 
\sum 
i,j,k,\ell 

Tijk\ell (vs)i(vs)j(vs)k(vs)\ell = Tssss.

Thus  - \lambda min \geq  - Tssss. Therefore, for all s = 1, . . . , n, we have

\lambda maxabs = max\{ | \lambda max| , | \lambda min| \} \geq \lambda max \geq Tssss,

\lambda maxabs = max\{ | \lambda max| , | \lambda min| \} \geq  - \lambda min \geq  - Tssss.

Thus
\lambda maxabs \geq | Tssss| for each s = 1, . . . , n.

2. Next, fix s, t \in \{ 1, . . . , n\} and let

(ws,t)i =
\delta is + \delta it\surd 

2
.

Then \| ws,t\| = 1 and so

\lambda max \geq 
\sum 
i,j,k,\ell 

Tijk\ell (ws,t)i(ws,t)j(ws,t)k(ws,t)\ell 

=

\biggl( 
1\surd 
2

\biggr) 4\biggl( 
Tssss + Ttttt +

\biggl( 
4

2

\biggr) 
Tsstt +

\biggl( 
4

1

\biggr) 
Tssst +

\biggl( 
4

1

\biggr) 
Tsttt

\biggr) 
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1120 DEANNA C. EASLEY AND TYRUS BERRY

Hence

4\lambda max \geq Tssss + Ttttt + 6Tsstt + 4Tssst + 4Tsttt.(B.3)

Now let

( \~ws,t)i =
\delta is  - \delta it\surd 

2
.

Then

\lambda max \geq 
\sum 
i,j,k,\ell 

Tijk\ell ( \~ws,t)i( \~ws,t)j( \~ws,t)k( \~ws,t)\ell 

=

\biggl( 
1\surd 
2

\biggr) 4\biggl( 
Tssss + Ttttt +

\biggl( 
4

2

\biggr) 
Tsstt  - 

\biggl( 
4

1

\biggr) 
Tssst  - 

\biggl( 
4

1

\biggr) 
Tsttt

\biggr) 
.

Thus

4\lambda max \geq Tssss + Ttttt + 6Tsstt  - 4Tssst  - 4Tsttt.(B.4)

Adding inequalities (B.3) and (B.4), and dividing by 2, we obtain

4\lambda max \geq Tssss + Ttttt + 6Tsstt.(B.5)

Since  - \lambda min is no smaller than both  - Tssss and  - Ttttt, subtracting 2\lambda min from (B.5)
gives us

6\lambda maxabs \geq 4\lambda max  - 2\lambda min \geq 6Tsstt.(B.6)

Therefore

\lambda maxabs \geq Tsstt.(B.7)

Arguing similarly, we can show that

4\lambda min \leq Tssss + Ttttt + 6Tsstt.(B.8)

Since  - \lambda max is no larger than both  - Tssss and  - Ttttt, subtracting 2\lambda max from (B.8)
yields

4\lambda min  - 2\lambda max \leq 6Tsstt.(B.9)

Thus

6\lambda maxabs \geq 2\lambda max  - 4\lambda min \geq  - 6Tsstt.

Hence \lambda maxabs \geq  - Tsstt. Using this and (B.7), we obtain

\lambda maxabs \geq | Tsstt| .D
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3. Next, fix distinct s, t \in \{ 1, . . . , n\} and let

(ws,t)i =
\delta is  - 2\delta it\surd 

3
.

Then \| ws,t\| = 1 and so

\lambda max \geq 
\sum 
i,j,k,\ell 

Tijk\ell (ws,t)i(ws,t)j(ws,t)k(ws,t)\ell 

=

\biggl( 
1\surd 
3

\biggr) 4

(Tssss + 16Ttttt + 24Tsstt  - 8Tssst  - 32Tsttt) .

Hence

9\lambda max \geq Tssss + 16Ttttt + 24Tsstt  - 8Tssst  - 32Tsttt.(B.10)

Adding inequalities (B.3) multiplied by 8 and (B.10), we get

41\lambda max \geq 9Tssss + 24Ttttt + 72Tsstt + 24Tssst.(B.11)

Since  - \lambda min is no smaller than both  - Tssss and  - Ttttt,

 - 33\lambda min \geq  - 9Tssss  - 24Ttttt.(B.12)

Moreover, by (B.9),

\lambda max  - 2\lambda min \geq  - 3Tsstt.(B.13)

Thus, by (B.13) and using (B.11) and (B.12), we have

65\lambda max  - 81\lambda min = 41\lambda max  - 33\lambda min + 24(\lambda max  - 2\lambda min)

\geq 9Tssss + 24Ttttt + 72Tsstt + 24Tssst

 - 9Tssss  - 24Ttttt  - 72Tsstt

= 24Tssst.

Thus

146\lambda maxabs \geq 65\lambda max  - 81\lambda min \geq 24Tssst.(B.14)

Similarly, we can show that

65\lambda min  - 81\lambda max \leq 24Tssst.

Thus

146\lambda maxabs \geq 81\lambda max  - 65\lambda min \geq  - 24Tssst.(B.15)

Therefore, by (B.14) and (B.15), we obtain

\lambda maxabs \geq 
12

73
| Tssst| .D
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4. Next, fix distinct s, t, u \in \{ 1, . . . , n\} and let

(ws,t,u)i =
\delta is + \delta it + \delta iu\surd 

3
.

Then \| ws,t,u\| = 1 and so

\lambda max \geq 
\sum 
i,j,k,\ell 

Tijk\ell (ws,t,u)i(ws,t,u)j(ws,t,u)k(ws,t,u)\ell 

=

\biggl( 
1\surd 
3

\biggr) 4

(Tssss + Ttttt + Tuuuu + 12Tsstu + 12Tsttu + 12Tstuu + 6Tsstt

+6Tssuu + 6Tttuu + 4Tssst + 4Tsssu + 4Tsttt + 4Tsuuu + 4Ttuuu + 4Tuttt).

Thus,

9\lambda max \geq Tssss + Ttttt + Tuuuu + 12Tsstu + 12Tsttu + 12Tstuu(B.16)

+6Tsstt + 6Tssuu + 6Tttuu + 4Tssst + 4Tsssu + 4Tsttt

+4Tsuuu + 4Ttuuu + 4Tuttt.

Now let

( \~ws,t,u)i =
\delta is  - \delta it  - \delta iu\surd 

3
.

Then

\lambda max \geq 
\sum 
i,j,k,\ell 

Tijk\ell ( \~ws,t,u)i( \~ws,t,u)j( \~ws,t,u)k( \~ws,t,u)\ell 

=

\biggl( 
1\surd 
3

\biggr) 4

(Tssss + Ttttt + Tuuuu + 12Tsstu  - 12Tsttu  - 12Tstuu + 6Tsstt

+6Tssuu + 6Tttuu  - 4Tssst  - 4Tsssu  - 4Tsttt  - 4Tsuuu + 4Ttuuu + 4Tuttt).

Thus,

9\lambda max \geq Tssss + Ttttt + Tuuuu + 12Tsstu  - 12Tsttu  - 12Tstuu(B.17)

+6Tsstt + 6Tssuu + 6Tttuu  - 4Tssst  - 4Tsssu  - 4Tsttt

 - 4Tsuuu + 4Ttuuu + 4Tuttt.

Adding inequalities (B.16) and (B.17), we get

18\lambda max \geq 2(Tssss + Ttttt + Tuuuu) + 24Tsstu(B.18)

+12(Tsstt + Tssuu + Tttuu) + 8(Ttuuu + Tuttt).

Recall from (B.15) that

81\lambda max  - 65\lambda min \geq  - 24Tssst.(B.19)D
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HIGHER ORDER UNSCENTED TRANSFORM 1123

Applying twice this estimate to the indices t and u after dividing both sides by 3, we
obtain

54\lambda max  - 
130

3
\lambda min \geq  - 8(Ttuuu + Tuttt).(B.20)

Since  - \lambda min is no smaller than  - Tssss,  - Ttttt, and  - Tuuuu, using (B.13) and (B.20),
inequality (B.18) yields

18\lambda max  - 6\lambda min + 12\lambda max  - 24\lambda min + 54\lambda max  - 
130

3
\lambda min

\geq 2(Tssss + Ttttt + Tuuuu) + 24Tsstu + 12(Tsstt + Tssuu + Tttuu)

+8(Ttuuu + Tuttt) - 2(Tssss + Ttttt + Tuuuu)

 - 12(Tsstt + Tssuu + Tttuu) - 8(Ttuuu + Tuttt).

Hence

84\lambda max  - 
220

3
\lambda min \geq 24Tsstu.

Multiplying by 3, we obtain

472\lambda maxabs \geq 252\lambda max  - 220\lambda min \geq 72Tsstu.

Following the same argument, we can show that

252\lambda min  - 220\lambda max \leq 72Tsstu.

Thus

472\lambda maxabs \geq 220\lambda max  - 252\lambda min \geq  - 72Tsstu.(B.21)

Therefore

\lambda maxabs \geq 
9

59
| Tsstu| .

5. Next, fix distinct s, t, u, v \in \{ 1, . . . , n\} and let

(ws,t,u,v)i =
\delta is + \delta it + \delta iu + \delta iv

2
.

Then \| ws,t,u,v\| = 1 and so

\lambda max \geq 
\sum 
i,j,k,\ell 

Tijk\ell (ws,t,u,v)i(ws,t,u,v)j(ws,t,u,v)k(ws,t,u,v)\ell 

=

\biggl( 
1

2

\biggr) 4

(Tssss + Ttttt + Tuuuu + Tvvvv

+6(Tsstt + Tssuu + Tssvv + Tttuu + Tttvv + Tuuvv)

+ 12(Tsstu + Tsstv + Tssuv + Tttsu + Tttsv + Tttuv

+Tuust + Tuusv + Tuutv + Tvvst + Tvvsu + Tvvtu)

+ 4(Tssst + Tsssu + Tsssv + Tttts + Ttttu + Ttttv

+Tuuus + Tuuut + Tuuuv + Tvvvs + Tvvvt + Tvvvu)

+ 24Tstuv.D
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1124 DEANNA C. EASLEY AND TYRUS BERRY

Thus,

16\lambda max \geq Tssss + Ttttt + Tuuuu + Tvvvv

+6(Tsstt + Tssuu + Tssvv + Tttuu + Tttvv + Tuuvv)

+ 12(Tsstu + Tsstv + Tssuv + Tttsu + Tttsv + Tttuv

+Tuust + Tuusv + Tuutv + Tvvst + Tvvsu + Tvvtu)

+ 4(Tssst + Tsssu + Tsssv + Tttts + Ttttu + Ttttv

+Tuuus + Tuuut + Tuuuv + Tvvvs + Tvvvt + Tvvvu)

+ 24Tstuv.

Since  - \lambda min is no smaller than the quantities  - Tssss,  - Ttttt,  - Tuuuu, and  - Tvvvv, by
(B.13) applied to the pairs of indices \{ s, t\} , \{ s, u\} , \{ s, v\} , \{ t, u\} , \{ t, v\} , and \{ u, v\} ,
and, in addition, using (B.19) and (B.21), we have

16\lambda max - 4\lambda min+12\lambda max - 24\lambda min+440\lambda max - 504\lambda min+162\lambda max - 130\lambda min\geq 24Tstuv,

which reduces to

630\lambda max  - 662\lambda min \geq 24Tstuv.

Hence
1292\lambda maxabs \geq 630\lambda max  - 662\lambda min \geq 24Tstuv.

Similarly, we can show that

630\lambda min  - 662\lambda max \leq 24Tstuv.

Thus
1292\lambda maxabs \geq 662\lambda max  - 630\lambda min \geq  - 24Tstuv.

Therefore, simplifying, we obtain

\lambda maxabs \geq 
6

323
| Tstuv| .

Comparing the lower bounds found in the above three cases, we see that the conclusion
holds if we set

c =
6

323
.

Appendix C. Proof of Theorem 4.2.

Proof. We first we wish to show that the first moment equation matches our mean. We
begin by splitting the sum

N\sum 
i= - 2

wi\sigma i =
0\sum 

i= - 2

wi\sigma i +
2d\sum 
i=1

wi\sigma i +
2d+2J\sum 
i=2d+1

wi\sigma i +
N\sum 

i=2d+2J+1

wi\sigma i.
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HIGHER ORDER UNSCENTED TRANSFORM 1125

Using the expressions defining the 4-moment \sigma -points \sigma i and the corresponding weights wi,
we have

N\sum 
i= - 2

wi\sigma i = (1 - d\beta  - 2  - \^L\delta  - 4)\mu +
1

2\alpha 
(\mu + \alpha \^\mu ) - 1

2\alpha 
(\mu  - \alpha \^\mu )

+
d\sum 

i=1

1

2\beta 2

\bigl( 
\mu + \beta 

\sqrt{} 
\^Ci

\bigr) 
+

2d\sum 
j=d+1

1

2\beta 2

\bigl( 
\mu  - \beta 

\sqrt{} 
\^Ci - d

\bigr) 
+

2d+J\sum 
i=2d+1

1

2\gamma 3
\bigl( 
\mu + \gamma \~vi - 2d

\bigr) 
+

2d+2J\sum 
j=2d+J+1

 - 1

2\gamma 3
\bigl( 
\mu  - \gamma \~vi - 2d - J

\bigr) 
+

2d+2J+L\sum 
i=2d+2J+1

1

2\delta 4
si - 2d - 2J

\bigl( 
\mu + \delta \~ui - 2d - 2J

\bigr) 
+

N\sum 
j=2d+2J+L+1

1

2\delta 4
si - 2d - 2J - L

\bigl( 
\mu  - \delta \~ui - 2d - 2J - L),

and regrouping like terms, we obtain

N\sum 
i= - 2

wi\sigma i = (1 - d\beta  - 2  - \^L\delta  - 4)\mu + \^\mu +
d\sum 

i=1

1

2\beta 2

\bigl( 
2\mu + \beta 

\sqrt{} 
\^Ci  - \beta 

\sqrt{} 
\^Ci

\bigr) 
+

J\sum 
i=1

\biggl( 
1

2\gamma 3
\bigl( 
\mu + \gamma \~vi

\bigr) 
 - 1

2\gamma 3
\bigl( 
\mu  - \gamma \~vi

\bigr) \biggr) 
+

L\sum 
i=1

1

2\delta 4
si
\bigl( 
2\mu + \delta \~ui  - \delta \~ui

\bigr) 
= (1 - d\beta  - 2  - \^L\delta  - 4)\mu + \^\mu +

d\sum 
i=1

\mu 

\beta 2
+

J\sum 
i=1

\~vi
\gamma 2

+
L\sum 
i=1

si\mu 

\delta 4

= (1 - d\beta  - 2  - \^L\delta  - 4)\mu + \^\mu + d\beta  - 2\mu + \gamma  - 2
J\sum 

i=1

\~vi + \delta  - 4\mu 
L\sum 
i=1

si

= \mu + \^\mu + \gamma  - 2\~\mu 

= \mu 

using the definition \^\mu =  - \gamma  - 2\~\mu for the last equality.
To look at the other moment equations, let's first observe that for n = 2, 3, 4,

N\sum 
i= - 2

wi(\sigma i  - \mu )\otimes n =

0\sum 
i= - 1

wi(\sigma i  - \mu )\otimes n +

2d\sum 
i=1

wi(\sigma i  - \mu )\otimes n

+
2d+2J\sum 
i=2d+1

wi(\sigma i  - \mu )\otimes n +
N\sum 

i=2d+2J+1

wi(\sigma i  - \mu )\otimes n.
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1126 DEANNA C. EASLEY AND TYRUS BERRY

Notice that since the first \sigma -point \sigma  - 2 is \mu , the term w - 2(\sigma  - 2  - \mu )\otimes n = 0. By the definition
of \sigma -points and corresponding weights,

N\sum 
i= - 2

wi(\sigma i  - \mu )\otimes n =
\alpha n - 1

2

\bigl( 
\^\mu \otimes n  - ( - \^\mu )\otimes n

\bigr) 
+

\beta n - 2

2

\left(  d\sum 
i=1

\bigl( \sqrt{} 
\^Ci

\bigr) \otimes n
+

2d\sum 
j=d+1

\bigl( 
 - 
\sqrt{} 

\^Ci - d

\bigr) \otimes n

\right)  
+
\gamma n - 3

2

\left(  2d+J\sum 
i=2d+1

\bigl( 
\~vi - 2d

\bigr) \otimes n  - 
2d+2J\sum 

j=2d+J+1

\bigl( 
 - \~vi - 2d - J

\bigr) \otimes n

\right)  
+
\delta n - 4

2

2d+2J+L\sum 
i=2d+2J+1

si - 2d - 2J

\bigl( 
\~ui - 2d - 2J

\bigr) \otimes n

+
\delta n - 4

2

N\sum 
j=2d+2J+L+1

si - 2d - 2J - L

\bigl( 
 - \~ui - 2d - 2J - L

\bigr) \otimes n
,

where we used the property (av)\otimes n = anv\otimes n, where a is any real number and v is a vector.
When n is even, we have

N\sum 
i= - 2

wi(\sigma i  - \mu )\otimes n = \beta n - 2
d\sum 

i=1

\bigl( \sqrt{} 
\^Ci

\bigr) \otimes n
+ \delta n - 4

L\sum 
i=1

si
\bigl( 
\~ui
\bigr) \otimes n

,(C.1)

and when n is odd, we obtain

N\sum 
i= - 2

wi(\sigma i  - \mu )\otimes n = \alpha n - 1\^\mu \otimes n + \gamma n - 3
J\sum 

i=1

\bigl( 
\~vi
\bigr) \otimes n

.(C.2)

Now we wish to show that the second moment equation matches our covariance. By (C.1),
setting n = 2 we have

N\sum 
i= - 2

wi(\sigma i  - \mu )\otimes 2 =

d\sum 
i=1

\sqrt{} 
\^C
\otimes 2

i + \delta  - 2
L\sum 
i=1

si\~u
\otimes 2
i = \^C + \delta  - 2 \~C,

and applying the definition of \^C = C  - \delta  - 2 \~C we have

N\sum 
i= - 2

wi(\sigma i  - \mu )\otimes 2 = C,

as desired. Next, observe that by (C.2) and the definition of S,

N\sum 
j=0

wi(\sigma i  - \mu )\otimes 3 = \alpha 2\^\mu \otimes 3 +

J\sum 
i=1

\~v\otimes 3
i ,

and since we assume that | | 
\sum J

i=1 \~v
\otimes 3
i  - S| | F \leq \tau 

2 , by the triangle inequality we haveD
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HIGHER ORDER UNSCENTED TRANSFORM 1127\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
N\sum 
j=0

wi(\sigma i  - \mu )\otimes 3  - S

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
F

\leq \tau 

2
+ \alpha 2| | \^\mu \otimes 3| | F

as desired. Last, we wish to show that the fourth moment equation matches our kurtosis. By
(C.1) and the definition of K, we have

N\sum 
i= - 2

wi(\sigma i  - \mu )\otimes 4 = \beta 2
d\sum 

i=1

\sqrt{} 
\^C
\otimes 4

i +

L\sum 
i=1

si\~u
\otimes 4
i

= \beta 2 \=C +

L\sum 
i=1

si\~u
\otimes 4
i ,

and since we assume that | | 
\sum L

i=1 si\~u
\otimes 4
i  - K| | F \leq \tau 

2 , by the triangle inequality we have

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
N\sum 
j=0

wi(\sigma i  - \mu )\otimes 4  - K

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
F

\leq \tau 

2
+ \beta 2| | \=C| | F ,

which completes the proof.

Appendix D. Proofs of Theorems 5.1 and 5.2. We first prove Theorem 5.1.

Proof. Suppose f \in C5(\BbbR d,\BbbR ). Now we wish to find the error bound where \BbbE [f(x)] with
x \sim p is the truth and

\sum m
i=1wif(\sigma i) is our estimate where m is the number of \sigma -points (nodes)

in the quadrature. By Taylor's theorem with remainder we can expand f centered at \mu as

f(x) = f(\mu ) +\nabla f(\mu )(x - \mu ) +
1

2

d\sum 
j,k=1

Hf(\mu )jk(x - \mu )j(x - \mu )k

+
1

6

d\sum 
j,k,l=1

D3f(\mu )jkl(x - \mu )j(x - \mu )k(x - \mu )l

+
1

24

d\sum 
j,k,l,r=1

D4f(\mu )jklr(x - \mu )j(x - \mu )k(x - \mu )l(x - \mu )r

+
1

120

d\sum 
j,k,l,r,s=1

D5f(\mu \ast )jklrs(x - \mu )j(x - \mu )k(x - \mu )l(x - \mu )r(x - \mu )s,

where \mu \ast \in B\| x - \mu \| (\mu ) (i.e., \| \mu \ast  - \mu \| < \| x - \mu \| ), and Dkf(x)j1\cdot \cdot \cdot jk \equiv \partial kf
\partial xjk

\cdot \cdot \cdot \partial xj1
(x). Thus

D
ow

nl
oa

de
d 

08
/3

0/
21

 to
 1

29
.1

74
.2

40
.2

13
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

1128 DEANNA C. EASLEY AND TYRUS BERRY

\BbbE [f(x)] =
\int 
\BbbR d

f(x)p(x) dx

= f(\mu )

\int 
\BbbR d

p(x) dx+\nabla f(\mu )

\int 
\BbbR d

(x - \mu )p(x) dx+
1

2

d\sum 
j,k=1

Hf(\mu )jk

\int 
\BbbR d

(x - \mu )j(x - \mu )kp(x) dx

+
1

6

d\sum 
j,k,l=1

D3f(\mu )jkl

\int 
\BbbR d

(x - \mu )j(x - \mu )k(x - \mu )lp(x) dx

+
1

24

d\sum 
j,k,l,r=1

D4f(\mu )jklr

\int 
\BbbR d

(x - \mu )j(x - \mu )k(x - \mu )l(x - \mu )rp(x) dx

+
1

120

d\sum 
j,k,l,r,s=1

\int 
\BbbR d

D5f(\mu \ast 
x)jklrs(x - \mu )j(x - \mu )k(x - \mu )l(x - \mu )r(x - \mu )sp(x) dx

= f(\mu ) +
1

2

d\sum 
j,k=1

Hf(\mu )jkCjk +
1

6

d\sum 
j,k,l=1

D3f(\mu )jklSjkl +
1

24

d\sum 
j,k,l,r=1

D4f(\mu )jklrKjklr

+
1

120

d\sum 
j,k,l,r,s=1

\int 
\BbbR d

D5f(\mu \ast 
x)jklrs(x - \mu )j(x - \mu )k(x - \mu )l(x - \mu )r(x - \mu )sp(x) dx,

where the subscript on \mu \ast 
x denotes the implicit dependence on x of the remainder in Taylor's

theorem. Since the quadrature exactly matches the first four moments we have

1 =
m\sum 
i=1

wi,

\mu =
m\sum 
i=1

wi\sigma i,

Cjk =
m\sum 
i=1

wi(\sigma i  - \mu )j(\sigma i  - \mu )k,

Sjkl =
m\sum 
i=1

wi(\sigma i  - \mu )j(\sigma i  - \mu )k(\sigma i  - \mu )l,

Kjklr =
m\sum 
i=1

wi(\sigma i  - \mu )j(\sigma i  - \mu )k(\sigma i  - \mu )l(\sigma i  - \mu )r.

So applying Taylor's theorem inside the quadrature formula yields

m\sum 
i=1

wif(\sigma i) =

m\sum 
i=1

wi

\biggl( 
f(\mu ) +\nabla f(\mu )(\sigma i  - \mu ) +

1

2

d\sum 
j,k=1

Hf(\mu )jk(\sigma i  - \mu )j(\sigma i  - \mu )k

+
1

6

d\sum 
j,k,l=1

D3f(\mu )jkl(\sigma i  - \mu )j(\sigma i  - \mu )k(\sigma i  - \mu )l

+
1

24

d\sum 
j,k,l,r=1

D4f(\mu )jklr(\sigma i  - \mu )j(\sigma i  - \mu )k(\sigma i  - \mu )l(\sigma i  - \mu )r
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+
1

120

d\sum 
j,k,l,r,s=1

D5f(\mu \ast )jklrs(x - \mu )j(x - \mu )k(x - \mu )l(x - \mu )r(x - \mu )s

\biggr) 

= f(\mu ) +
1

2

d\sum 
j,k=1

Hf(\mu )jkCjk +
1

6

d\sum 
j,k,l=1

D3f(\mu )jklSjkl +
1

24

d\sum 
j,k,l,r=1

D4f(\mu )jklrKjklr

+
1

120

d\sum 
j,k,l,r,s=1

\Biggl( 
m\sum 
i=1

D5f(\mu \ast 
\sigma i
)jklrswi(\sigma i  - \mu )j(\sigma i  - \mu )k(\sigma i  - \mu )l(\sigma i  - \mu )r(\sigma i  - \mu )s

\Biggr) 
.

Notice that the first four terms of the true expectation and the quadrature formula agree.
Since the first four terms cancel, the error becomes\bigm| \bigm| \bigm| \bigm| \bigm| \BbbE [f(x)] - 

m\sum 
i=1

wif(\sigma i)

\bigm| \bigm| \bigm| \bigm| \bigm| 
=

1

120

\bigm| \bigm| \bigm| \bigm| \bigm| 
d\sum 

j,k,l,r,s=1

\int 
\BbbR d

D5f(\mu \ast 
x)jklrs(x - \mu )\otimes 5

jklrs dp - 
m\sum 
i=1

D5f(\mu \ast 
\sigma i
)jklrswi(\sigma i  - \mu )\otimes 5

jklrs

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 1

120

d\sum 
j,k,l,r,s=1

\int 
\BbbR d

\bigm| \bigm| \bigm| D5f(\mu \ast 
x)jklrs(x - \mu )\otimes 5

jklrs

\bigm| \bigm| \bigm| dp+ m\sum 
i=1

\bigm| \bigm| \bigm| D5f(\mu \ast 
\sigma i
)jklrswi(\sigma i  - \mu )\otimes 5

jklrs

\bigm| \bigm| \bigm| 
\leq | | D5f | | \infty 

120

d\sum 
j,k,l,r,s=1

\int 
\BbbR d

\bigm| \bigm| \bigm| (x - \mu )\otimes 5
jklrs

\bigm| \bigm| \bigm| dp+ m\sum 
i=1

\bigm| \bigm| \bigm| wi(\sigma i  - \mu )\otimes 5
jklrs

\bigm| \bigm| \bigm| 
\leq | | D5f | | \infty 

d5

120

\Bigl( 
| | M5,abs| | \mathrm{m}\mathrm{a}\mathrm{x} + | | \~M5,abs| | \mathrm{m}\mathrm{a}\mathrm{x}

\Bigr) 
.

We next turn to the proof of Theorem 5.2.

Proof. Recall that the total quadrature error is bounded above by the sum of the error
due to the moments, E\mathrm{m}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}, the error inside the ball, E\mathrm{i}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}, and the error outside, E\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}.
Since we assume that the quadrature exactly matches the first nmoments, we have E\mathrm{m}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s} =
0. Next, combining the bound on f and the exponential decay bound on the density we have

E\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e} =

\int 
\BbbB r(\mu )c

| f  - q| dp \leq 
\int 
\BbbB r(\mu )c

(a+ b| | x - \mu | | t + b2| | x - \mu | | n)ce - \alpha | | x - \mu | | \beta dx

= \omega d

\int \infty 

r
(asd - 1 + bst+d - 1 + b2s

n+d - 1)ce - \alpha s\beta ds

\leq c\omega d

\int \infty 

r
asd - \beta s\beta  - 1e - \alpha s\beta + bst+d - \beta s\beta  - 1e - \alpha s\beta + b2s

n+d - \beta s\beta  - 1e - \alpha s\beta ds

= (c3r
d - \beta + c4r

t+d - \beta + c5r
n+d - \beta )e - \alpha r\beta 

+ c\omega d

\int \infty 

r
a1s

d - \beta  - 1e - \alpha s\beta + b3s
t+d - \beta  - 1e - \alpha s\beta + b4s

n+d - \beta  - 1e - \alpha s\beta ds.

The above integration by parts can be repeated until d  - \beta , t + d  - \beta , n + d  - \beta are all less
than \beta  - 1; then the integrands are bounded above by s\beta  - 1e - \alpha s\beta which is integrable exactly.D
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These integrations by parts pick up polynomial terms multiplied by e - \alpha r\beta , all of which are
bounded by rt+n+d - \beta e - \alpha r\beta . Since there are fewer than n such terms, we have

E\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e} \leq c2nr
t+n+d - \beta e - \alpha r\beta .

Finally, we turn to the error of polynomial approximation inside \BbbB r(\mu ). Defining \~f(x) =
f(rx + \mu ) on the unit ball, we can apply Theorem 3.4 of [28], which says there exists a
polynomial \~q such that

| | \~f  - q| | \infty ,\BbbB 1(0) \leq 
c1
nk

\left(  | | Dk \~f | | \infty 
n

+
\sum 
| \gamma | =k

sup
| x - y| <1/n

| Dk
\gamma 
\~f(x) - Dk

\gamma 
\~f(y)| 

\right)  .

By the chain rule we have | Dk \~f | = rk| Dkf | so that

| | f  - q| | \infty \leq c1

\Bigl( r
n

\Bigr) k\left(  | | Dkf | | \infty 
n

+
\sum 
| \gamma | =k

sup
| x - y| <1/n

| Dk
\gamma f(x) - Dk

\gamma f(y)| 

\right)  ,

where q(x) = \~q((x - \mu )/r).
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