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Interphase regions in polymer nanocomposite materials are difficult to characterize due to their nano-scale di-
mensions. Electrostatic force microscopy (EFM) provides a pathway to local dielectric property measurements,
but extracting local dielectric permittivity in complex interphase geometries from EFM measurements remains a
challenge. We demonstrate the efficacy of machine learning (ML) models to extract interphase permittivity using
a data set of synthetic EFM force gradient scans generated by finite element simulations. We show that both

support vector regression (SVR) and random forest (RF) algorithms are able to ‘invert’ the force gradient scan to
predict the permittivity with high accuracy. Feature reduction by principal component analysis (PCA) improves
the model’s performance and reveals force gradient contrast to be the most important feature in permittivity
detection. We find that these ML models perform better than analytical approaches by capturing significant
geometric complexity of EFM measurements.

1. Introduction

Nanoscale fillers dispersed in a polymer matrix can substantially
enhance mechanical, thermal and dielectric properties of polymer
nanocomposites materials, resulting in their potential widespread use in
energy storage and conversion, biomedical, electronics, automotive,
packaging and coating applications [1-7]. This enhancement in prop-
erties depends critically on the properties and volume of the interphase
[8]: a nanosized region surrounding the filler with properties different
from both the particle and the matrix. As the size of the filler decreases,
the effective interphase region can dominate the properties of polymer
nanocomposites. However, the nanometer-scale of the interphase falls
below the spatial resolution of many experimental measurement tech-
niques making quantitative characterization of interphase properties a
challenge.

A key potential application of polymer nanocomposites is for high-
voltage insulation and capacitive energy storage, which is determined
by dielectric permittivity and breakdown strength. Fillers can increase
the effective dielectric permittivity without compromising, or in some
cases even enhancing, the high breakdown strength of the matrix [9].
However, the effective bulk permittivity does not follow the rule of
mixtures and depends on the modified dielectric response from the
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interphase region. For example, the nanofiller surface can restrict mo-
tion of polymer chains reducing the effective permittivity [10]. Conse-
quently, rational design of polymer nanocomposites for dielectric
applications requires accurate experimental measurement of the inter-
phase dielectric properties.

Electrostatic Force Microscopy (EFM) is a promising approach for
measuring local dielectric properties [11,12]. A member of the Atomic
Force Microscopy (AFM) family of techniques, EFM uses a potential
applied between a conductive tip and an underlying substrate to mea-
sure changes in electric force due to the local dielectric environment.
EFM can provide sub-pico newton resolution and high lateral sensitivity
[13], but requires careful analysis to extract dielectric properties from
the measured forces gradients.

Quantifying local dielectric constants using EFM is difficult primarily
because the measured signal depends on the geometric parameters of the
tip and on the dielectric variation within an extended region of the
sample in a convolved fashion. This necessitates a theoretical model that
precisely captures the electrostatic interaction between the tip and the
sample with specified geometric and dielectric variation parameters.
The complexity of the geometry precludes general analytical solutions,
and previous studies have relied on several approximations [14-17]. For
example, Fumagalli et al. 2007 [17] presented an analytical model to
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Fig. 1. Schematic of interaction of EFM tip with a
nanoparticle-interphase assembly inside a polymer
matrix with all the parameters. As the tip scans across
the particle, change in local capacitance leads to
changing force experienced by the probe which can
be used to estimate interphase permittivity. Particle
depth (D) and interphase thickness (T) are also un-
known in the setup. Variation in particle depth leads
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to two different configurations: (a) both interphase
and particle are buried within the matrix, and (b) the
top of the substrate cuts the interphase with the
limiting case (D = 0) shown where it touches the top
of the particle.

quantify the permittivity of a dielectric thin film with a truncated sphere
cone tip model. They further used this analytical approach to measure
the effective permittivity of a core-shell like structure [13], which has
since been adopted for quantifying the interphase permittivity [18,19].

However, the use of a thin-film analytical model to approximate a
core-shell interphase geometry is only valid under special circum-
stances, such as when the interphase is exposed to the surface and the
particle size is much larger than the tip radius. Further, the thickness of
the interphase region and depth of the nanoparticle from the material
surface strongly impact the EFM signal and are required inputs to such
analytical models, but are unknown in the experimental setup. These
complications make it difficult to rigorously quantify interphase
dielectric properties from analytical EFM modeling.

The key challenge in EFM modeling for extracting interphase
dielectric response is the large number of parameters (geometry,
dielectric variation) and measurements (2D arrays of force gradients).
Machine Learning (ML) algorithms have been highly successful for
recognizing patterns and fitting models, especially in large and complex
data sets. In particular, techniques such as Support Vector Machines,
Decision Trees and Artificial Neural Networks work readily with high
dimensional data [20-23], where analytic approaches are limited.
Consequently, these approaches could be valuable in extracting
maximal information from EFM measurements, but they have not yet
been explored for interphase dielectric measurements.

In this article, we demonstrate the potential of ML techniques to
extract dielectric permittivity of interphase regions in polymer nano-
composite materials using “synthetic EFM measurements” generated
using finite-element simulations of spherical nanoparticles with annular
interphase regions in a polymer matrix. We first investigate a two-
unknown case where particle depth and interphase dielectric constant
are unknown, but the interphase thickness is assumed to be known. We
show that from a modest database of 200 finite-element simulations, ML
models can predict interphase permittivity with a typical accuracy of
0.24 (mean absolute error). We then investigate a case where interphase
thickness is also assumed unknown and demonstrate that the models
continue to achieve an impressive accuracy of 0.45 for the extracted
interphase permittivity. We use principal component analysis to identify
the most important features used by the ML models such as the force
gradient contrast, and to filter out spurious features and noise to
improve the performance of the models.

2. Methods

Fig. 1 schematically illustrates the working principle of EFM for local
dielectric measurements. An external AC and DC voltage is applied to a
metallic tip mounted on a cantilever, forming a local capacitor, that is
then raster-scanned across the sample. The varying capacitance as the
tip moves changes the force on the probe, altering the amplitude,

Table 1

Parameter values and ranges used to generate force gradient scan from finite
element simulations. ¢; and D were varied to generate the dataset for two un-
knowns case, while ¢;, T and D were varied in three-unknowns case.

Parameter Symbol  Two unknown Three unknown
values values

Lift height H 8 nm, 12 nm 8 nm, 12 nm

Polymer substrate T, 200 nm (fixed) 200 nm(fixed)
thickness

Matrix permittivity €m 2.5 (fixed) 2.5 nm(fixed)

Nanoparticle radius r 50 nm (fixed) 50 nm (fixed)

Nanoparticle permittivity & 10 (fixed) 10 (fixed)

Interphase thickness T 20 nm (fixed) 5-20 nm (variable)

Interphase permittivity € 1-10 (variable) 1-10 nm(variable)

Particle depth D 0-50 nm (variable) 0-50 nm (variable)

frequency and vibration phase of the oscillating cantilever. The exper-
imentally measured phase of the second harmonic in the cantilever
oscillation,

Ap(Rw) = %sz (€8]
is proportional to the force gradient df/dz,which in turn depends on the
local capacitance and permittivity profile [24]. Q is the quality factor of
the cantilever oscillator and k is its effective spring constant. In the
present work, we focus on finite element simulations of the force
gradient, and its inversion to extract the local interphase permittivity.

Table 1 shows all geometric and dielectric parameters required for
calculating force gradient in a finite element simulation of the tip sample
interaction. We use a truncated cone with a rounded spherical tip to
model the probe, and assume spherical nanoparticles surrounded by a
concentric interphase shell of unknown permittivity and potentially
unknown thickness. The dielectric constant of the polymer matrix and
nanoparticle are typically known experimentally, so we hold them fixed
across all simulations. However, the extent of the interphase region
(interphase thickness) and its dielectric constant depend on the inter-
action of the matrix with the nanoparticle and the type of nanoparticle
surface modification. Additionally, the nanoparticle-interphase assem-
bly can be buried anywhere inside the matrix, and its depth from the
surface is not experimentally known a priori. Consequently, the depth,
interphase permittivity and interphase thickness are treated as experi-
mental unknowns that are varied to generate the dataset for the ML
models.

2.1. Data generation and finite element simulation details

Fig. 2 summarizes our procedure for generating each point in the
dataset. We use COMSOL Multiphysics to perform finite element
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Fig. 2. Procedure for generating the force gradient dataset for the machine learning model. We sampled unknown parameters in a range and generated force curves
at two different lift heights. Force gradient scans were produced by numerical differentiation of these force scans. This force gradient dataset was used by ML model

to predict unknown parameters.
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Fig. 3. Sampled distribution of two unknown parameters ¢; and D to get higher
density of points with low ¢; and D (particle closer to the surface).

simulations and generate a force scan for several sets of parameters
within the ranges shown in Table 1. Specifically, we use the AC/DC
(Electrostatics) module to solve Poisson’s equation for the electrostatic
potential in the tip-sample system and integrate the Maxwell stress
tensor around the tip to calculate the electrostatic force [25]. As the
system is axially symmetric along the z-axis, our force scan is parame-
trized by a single variable x, the horizontal distance of the tip from the
top of the particle. We use 21 x-points spaced logarithmically from 1 to
1000 nm in order to better sample the interphase and transition region
(rather than the polymer matrix far from the particle). We generate these
force scans at lifts height of 8 and 12 nm, applied Gaussian smoothing to
reduce noise from meshing changes, and use a finite difference deriva-
tive to calculate the force gradient (df/dz) at a lift height of 10 nm. The
resulting array of force gradients (at 21 x values) serve as the features for
ML modeling, while the ‘unknown’ variables that are varied in the
dataset serve as the targets.

2.2. Unknown parameter sampling

We sample the unknown parameters (targets for subsequent ML
modeling): interphase permittivity, particle depth and interphase
thickness, in the ranges specified in Table 1. We uniformly sample 1/¢ in
[0.1, 1] to get interphase permittivity values in the range of 1 to 10. We
sample particle depth in an exponential distribution with scale param-
eter 15 nm with an upper cutoff of 50 nm. The bias in sampling inter-
phase permittivity and depth focuses more data points in the training
and test sets in the regions where where these parameters that are most
likely to be encountered in experiment. Extrinsic interphases typically
exhibit lower dielectric constant than the matrix, and the experimental
sensitivity decreases dramatically when the particle is buried deeper
within the matrix. Consequently, the higher density of points in the
dataset for lower permittivity and particle depths (Fig. 3) facilitates
more accurate predictions in the experimentally detectable space with a
limited dataset size.

A total of 200 such parameter combinations form the data set
(test+training) for the first analysis below using two unknowns: the
particle depth and interphase permittivity. The interphase thickness is
held fixed at 20 nm. In the second analysis below, we additionally let the
interphase thickness vary uniformly between 5 and 20 nm for a total of
three unknowns and 190 sampled parameter combinations (Fig. 4).

3. Machine learning models and validation

We use Support Vector Regression (SVR) and Random Forests (RF) as
implemented in the Python scikit-learn library [28] to build inverse
models that extract interphase properties from the force gradient scans.
SVR is a kernel-based supervised-learning approach that maps the
original data into a high dimensional space and then fits a hyper plane
close to as many points as possible [26]. RF is a supervised learning
technique based on ensembles of decision trees [27], each of which
makes predictions based on decision rules. Both methods exhibit many
unique advantages for solving the nonlinear and high-dimensional
problems inherent in this study. We use Principal Component Analysis
(PCA) to select the most important features as a data preprocessor to
these models that reduces redundancy and noise in the input features.

We use 6-fold shuffle-split cross validation to evaluate the perfor-
mance of different regressors. Specifically, we randomly split the data
set into an 84% training and 16% test set six times, and evaluate the
average correlation score (CV) and mean absolute error (MAE) for each
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Fig. 4. Sampled distribution of (a) ¢; and T, and (b) particle depth, for three-unknown parameter case.

Table 2

Performance of regressors for interphase permittivity and particle depth pre-
dictions for the two-unknown parameters case. RF(IP) represents random forest
regressor with original features for interphase permittivity detection and PCA +
SVR(D) represents support vector regressor with 3-PCA components for particle
depth detection. Other notations follow the same format.

Model CV score (%) MAE (train) MAE (shuffled) MAE (test)
RF(IP) 94.7 0.13 6.25 0.25
SVR(IP) 94.5 0.15 8.21 0.24

PCA + RF(IP) 94.0 0.11 3.90 0.27

PCA + SVR(IP) 93.4 0.24 8.25 0.26

PCA + RF(D) 54.6 1.61 nm 32.4 nm 3.55 nm
SVR(D) 59.5 3.06 nm 32.6 nm 3.30 nm

target. We further test for over-fitting by target shuffling i.e. randomly
permuting only the target array, which wipes out all correlations.
Evaluating a model built on the shuffled data with the same hyper-
parameters as the original model provides a point of comparison for the
MAE. Finally, we test our model’s performance on an independent test
set of 30 data points for the two-unknowns case and 34 data points for
the three-unknowns case. Additionally, the RF regressor provides
feature-importance attributes to quantify the relative importance of
each feature for the prediction of each target value. We optimize all
model hyperparameters systematically using a grid search.

4. Results and discussion
4.1. Two unknown parameters

Table 2 and Fig. 5 show the accuracy of RF and SVR for predicting
interphase permittivity and particle depth, when only these two exper-
imental parameters are treated as unknown. Both models perform well
for permittivity predictions with high CV ~ 0.94 and low MAE (test) ~
0.25, and somewhat less so for particle depth predictions with CV~ 0.55
and MAE (test)~ 3.6 nm. Note that MAE of the target shuffled models is
consistently around 10 times higher than that of the actual model for
permittivity, indicating that it is not overfit. Similarly, the MAEs on the
separate test set are slightly higher compared to the training set, but still
significantly smaller than the shuffled models, confirming that the
model is not over-fit.

We use principal component analysis (PCA) to remove redundant
features and noise from the data. The first three principal components
(Fig. 6a) capture more than 95% of the variance in the feature data and
using them alone improves performance of the regressors. The first
component represents the general shape of the force gradient difference
from the bulk, varying monotonically from atop the particle (x = 0) to
zero far away. It predominantly measures the force gradient contrast:
the difference between the force gradient value atop the particle and the
pure polymer matrix. Fig. 6b indeed shows that the first PCA component
correlates linearly with the calculated force gradient contrast for each
data point. This feature alone captures 90% of the variance in the data
and is the most important feature for permittivity prediction, as also
shown by the feature importance attribute chart of random forest re-
gressor in Fig. 10a.

While the first feature captures the force gradient at the top of the
particle, the second and third principal components capture the change
in force gradient when the tip approaches the interphase-matrix tran-
sition region. These components have complicated linear dependence on
the scan points around this transition zone and are difficult to identify
intuitively. The second PCA feature is more important than the force
contrast gradient for particle depth prediction as shown by the feature
importance plot (Fig. 10b). Thus, proper identification of particle depth
not only requires force gradient contrast between matrix and particle
but also how and where the force gradient curve changes as it transitions
from interphase to matrix. Overall, this complexity of the particle depth
effect on the force gradient scan lowers the accuracy of its prediction.

Force gradient contrast, which we find above to be the most
important feature for permittivity prediction of a nanosized object
buried in a matrix, has been used previously in analytical approaches.
For example, [19] fits an analytical equation for the force gradient based
on an approximate model for probe-sample capacitance,

R(1— sinH)

2+ h/e, @

C = 2rmegRin <1 +

to extract the permittivity of an exposed object (particle or interphase)
at a known depth that can be determined from the height scan of the
force microscope.

Fig. 7 shows that the interphase permittivity indeed correlates
strongly with the force gradient contrast (first PCA feature), but there is
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Fig. 5. Predicted versus actual interphase permittivity for (a) support vector and (b) random forest regressors with PCA for the two unknown parameters case. Both
regressors predict permittivity with high accuracy in the given range. (c) Target shuffled plot for Random forest with PCA has the baseline prediction with much
higher MAE compared to the original model. (d) Models or extracting depth information from the force gradient scans exhibit lower CV compared to those for

permittivity extraction.

a large spread corresponding to variation in particle depth. Conse-
quently, when we apply the analytical approach to the more general
situation of buried nanoparticles, we find a much larger MAE of 1.42 in
the extracted permittivity. Using numerical simulations of the force
gradient contrast (first PCA feature) brings the MAE down to 0.64, while
the addition of second and third PCA components further reduces the
MAE to 0.27 in the permittivity. (See Table 3.) This indicates that even
though the force gradient is the most important feature, changes in the
shape of the curve around the interface-matrix assembly are also
important and cannot be neglected for accurate permittivity prediction.
Additionally, Fig. 8. shows that using the three most important PCA
features reduces outliers compared to directly using the full force curves.

4.2. Three unknown parameters

Table 4 compares the accuracy of the models when the interphase
thickness is assumed to also be unknown, for a total of three unknowns.
As expected, addition of a third unknown parameter lowers the perfor-
mance for all the models. For this more complex dataset, SVR with all
features works the best with an impressive MAE of ~0.45. For RF re-
gressors, we observe large outliers in permittivity predictions with the
original features (Fig. 9). Fortunately, using PCA with three components
dramatically improves the performance of the model and eliminates
these outliers. Reduced features, with a high variance each, make de-
cision trees splitting at each node more efficient, thereby improving the
model’s performance.

Force gradient contrast is still the most important feature for the
prediction, as shown in Fig. 10a, but its relative importance decreases
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Fig. 7. Variation of interphase permittivity with the first PCA feature (force gradient contrast) for the two unknown parameters case. The observed spread in the data
is predominantly due to variation in particle depth at the same permittivity value, and necessitates the inclusion of additional PCA features for accurate predictions.

Table 3

Performance of analytical model and RF regressors with varying numbers of PCA features: the ML model with a single PCA feature improves substantially
on the analytical model, and additional PCA features further reduce MAE in the predictions.

Model Error in prediction (MAE)
Analytical 1.42
PCA-1 + RF(IP) 0.64
PCA-2 + RF(IP) 0.34
PCA-3 + RF(IP) 0.27
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Fig. 8. Predicted versus actual interphase permittivity for Random forest regressor (a) without PCA and (b) with PCA. The outliers in (a) are eliminated by using 3

principal components leading to a higher CV score and lower MAE.

Table 4

Performance of various models for interphase permittivity, particle depth and
interphase width predictions for the three-unknown parameters case. Most re-
gressors predict interphase permittivity with high correlation score. Predictions
for particle depth - PCA + RF(D), PCA + SVR(D) and interphase thickness - PCA
+ RF(T) have low CV score because of their complicated co-dependence.

Model CV score(%) MAE (train) MAE (shuffled)) MAE (test)
RF(IP) 78.3 0.60 8.61 0.68
SVR(IP) 88.4 0.43 9.40 0.45

PCA + RF(IP) 87.5 0.46 417 0.50

PCA + SVR(IP) 85.2 0.45 9.39 0.67

PCA + SVR(D) 43.3 4.41 nm 31.70 nm 5.30 nm
PCA + RF(D) 33.6 2.21 nm 25.82 nm 4.56 nm
PCA + RF(T) 129 3.71 nm 14.21 nm 4.81 nm

relative to the two-unknown parameters case. This is because of a wider
spread and more outliers in the functional dependence of the force
gradient contrast with interphase permittivity. We identify these outliers
as points with low interphase thickness buried deep inside the matrix,
for which the permittivity of the matrix, rather than the interphase,
dominates the local capacitance (Fig. 9). Thus, the force gradient
contrast is very small for these outliers. These outliers expectedly
hamper the performance of 1-component PCA with Random Forest,
resulting in permittivity errors as large as 6. Addition of the second and
third principal components improves the performance drastically on
these outliers with the largest error in permittivity prediction of 1.6.
Thus, if the interphase thickness is also unknown, using only the force
gradient contrast can lead to higher errors in interphase permittivity
prediction, necessitating the use of additional features.

The accuracy of these models for particle depth prediction decreases
further with three unknowns, primarily because the new unknown,
interphase thickness, produces a similar effect on the force gradient as
the particle depth. Fig. 10b shows that the second and third PCA features
are more important for the prediction of both the interphase thickness
and particle depth. This complicated and correlated dependence of these
parameters makes it harder for the machine learning model to make
accurate predictions for both. Fortunately, these ML models are still able
to extract interphase permittivity reliably, despite being unable to

determine the depth and interphase thickness, which would be impos-
sible to do with analytical modeling alone.

5. Conclusion

We show that machine learning approaches can be valuable in
extracting interphase permittivity from simulated EFM force gradient
measurements of polymer nanocomposite materials. Feature reduction
by principal component analysis improved prediction accuracy and
showed that force gradient contrast is the most important feature in
permittivity detection. However, using only the force gradient contrast
can lead to large errors, especially when interphase thickness and par-
ticle depth are unknown and other features becomes important. Overall,
these models capture significant complexity in the EFM measurements
of this system beyond what is possible with previous analytical ap-
proaches. In particular, they make it possible to account for unknown
experimental parameters such as interphase thickness and particle depth
from the force gradient data alone.

Having established the promise of ML modeling for analyzing EFM
measurements using synthetic data from finite element simulations,
ongoing work in our group applies this methodology to experimental
force scans to quantify interphase permittivity in new nanocomposite
materials. Additionally, while we focussed here on specialized small
data sets with a few (two or three) unknown parameters, future work
could build and utilize a large dataset that reliably samples a high-
dimensional space of several unknowns. This could facilitate general-
purpose EFM analysis of polymer nanocomposites with varying parti-
cle sizes and permittivities of both the particle and the polymer matrix.

Data availability
All data and analysis code for the results presented above are

included in the supplementary information, along with additional de-
tails of the COMSOL simulations used for generating the data.
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Fig. 10. Feature importance of the three PCA components for unknown target predictions using random forest regressor. Force gradient contrast (feature 1) is the
most important feature for interphase permittivity detection while features 2 and 3 are more important for particle depth and interphase detection.
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