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Abstract: The nonlinearity of activation functions used in deep learning models is crucial for the
success of predictive models. Several simple nonlinear functions, including Rectified Linear Unit
(ReLU) and Leaky-ReLU (L-ReLU) are commonly used in neural networks to impose the nonlinearity.
In practice, these functions remarkably enhance the model accuracy. However, there is limited
insight into the effects of nonlinearity in neural networks on their performance. Here, we investigate
the performance of neural network models as a function of nonlinearity using ReLU and L-ReLU
activation functions in the context of different model architectures and data domains. We use entropy
as a measurement of the randomness, to quantify the effects of nonlinearity in different architecture
shapes on the performance of neural networks. We show that the ReLU nonliearity is a better choice
for activation function mostly when the network has sufficient number of parameters. However,
we found that the image classification models with transfer learning seem to perform well with L-
ReLU in fully connected layers. We show that the entropy of hidden layer outputs in neural networks
can fairly represent the fluctuations in information loss as a function of nonlinearity. Furthermore,
we investigate the entropy profile of shallow neural networks as a way of representing their hidden
layer dynamics.

Keywords: neural networks; activation function; entropy; nonlinearity

1. Introduction

The great success of deep learning in applications is based on the clever idea of
constructing sufficiently large nonlinear function spaces throughout the composition of
layers of linear and simple nonlinear functions (named activation functions). Widely used
activation functions include the Sigmoidal function, Rectified Linear Unit (ReLU), and its
variants Leaky-ReLU (L-ReLU) and Exponential Linear Unit (ELU) [1-3]. Since it was
first introduced by Nair et al. [4], ReLU has become one of the most popular choices of
activation function for many deep learning applications [5,6]. The ReLU function is defined
as ReLU(x) = max(0,x), where x stands for the input. The simplistic ReLU function
greatly reduces the computational cost since ReLU(x) = 0 when x < 0. On the other
hand, it does cause an information loss in each layer, which could eventually lead to the
vanishing gradient problem during the model training [7]. L-ReLU was introduced by
Maas et al. [8] to overcome the disadvantage of ReLU and it has the form,

ax, x<0
L-ReLU(x) = @
x, x>0
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where « is the linearity factor (0 < a < 1.0). Note that the L-ReLU with « = 0 is the ReLU
function and it becomes the identity function when & = 1. In practice, the value of « is
kept closer to zero. However, there is no supporting theory to predict the ideal value of .
Instead, it is usually determined through trial-and-error observations. Similarly, selection
between ReLU and L-ReLU for a certain network is determined by prior experimental
knowledge. Usually, investigation of the information loss due to the use of activation
functions is not given a priority since the accuracy is used as the primary method of evalu-
ating the performance of many deep learning models. However, when it comes to shallow
networks, effects of activation functions may play an important role in understanding the
learning process and for the interpretation of results. Therefore, a study of experimental
evidence to enhance our understanding of the behavior of activation functions is necessary
in order to minimize the possible speculations. The amount of nonlinearity of a deep
network results from the composition of the layers of nonlinear functions. Therefore,
the impact of different activation functions on the final performance is likely linked to
the model architecture (width and the depth). In addition, as pointed out by D’Souza [9],
model performance also depends on the data type (for example, continuous, categorical,
calligraphic, or photographic).

Based on the considerations above, we take a as a measure of nonlinearity introduced
by an activation function and study the model performance for different choices, and in
conjunction to different network shapes and architecture, as illustrated in Figure 1, with ex-
amples chosen from a wide range of data domains. We use the entropy, a measurement of
randomness or disorder, for the estimation of information flow in shallow neural networks.
Entropy, H(x) of a random variable x is defined as,

n

H(x) = —Y_ P(x;)logP(x;) 2)

i=1

where, P(x;) represents the probability of i" outcome and # represents the total number
of distinct outcomes. Entropy can be calculated from the output of each hidden layer of a
neural network during the training. When the sample space for the hidden layer output
becomes larger, the randomness increases and therefore the entropy increases. If the output
of hidden layers become more ordered then the entropy must decrease. Note that the
entropy is always a positive quantity. The training process of a neural network can be
visualized as going from a random initial function state with larger entropy to a more
ordered function state with less entropy. Since the entropy can be calculated per each layer
separately, it can be used to track the layer dynamics during the training.
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Figure 1. Illustrations in (A—E) are the five model architecture shapes used in the analysis. For each
architecture shape, number of nodes per hidden layer was varied according to Table 1, in order to
change the model complexity.

2. Background and Objectives

Researchers have been thoroughly investigating the selection process of activation
functions for a given modeling task ever since the deep learning became practical with
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modern technology. As a result of empirical and theoretical advancements in the field,
there are multiple studies that propose the use of new activation functions [4,8] while
others discuss the effects and reliability of them in deep networks [10-12]. However,
ReLU still remains the most popular and effective activation function in many deep learning
models [11]. Rectifier activation is first discussed by Hahnloser et al. in 2000 with regard to
its biological motivations [13] and later in 2010 it is introduced as ReLU by Nair et al. [4].
In 2011, the successful use of the rectified activation in deep learning for large data sets
was demonstrated by Glorot et al. [10]. As a method that applies a variable non-linearity
into ReLU, the activation L-ReLU was discussed in parallel to the introduction of ReLU in
deep learning [8]. Nwankpa et al., compares the effects of activation functions with the
state-of-the-art research results and outline the trends and functionalities such as feature
detection capabilities associated with the activation functions [2]. However, there is lack
of insight into the effects of activation functions as an important hyper-parameter on the
performance of deep learning models.

Optimization of hyper-parameters of neural networks are often analyzed by Auto
Machine Learning Tools [14]. Hutter, E, et al. [15] introduced an ANOVA based approach
to understand the effects of hyper-parameters in deep learning. Probst, P, et al. [16] and
van Rijn, ].N., et al. [17] have presented a study on the importance of hyper-parameters
across different data sets and algorithms. They mainly focus on the commonly used
algorithms such as, support vector machines, random forests and Adaboost. An interesting
work done by Chen, B., et al. [18] describes a method of hyper parameter optimization in
neural networks using a network construction algorithm. Lee, A, et al. [19] explore the
significance of automated approaches to find best hyper-parameters for machine learning
workflows. However, in neural network models, the number of layers (depth) and the
number of nodes per layer (width) or in other words, the shape of the architecture has
been studied as the most important hyper-parameters [20]. In this study, we show that
the correct selection of most commonly used activation functions, ReLU and L-ReLU is as
important as the selection of the shape of the network architecture for optimal results.

The ReLU activation only allows to pass positive input and cuts-off the negative inputs.
This is shown to be problematic in the training of neural networks and often leads to dying
neurons [21]. In practice, possible empirical remedies to overcome this problem is either to
lower the learning rate or if possible, to reduce the depth of the network. However, L-ReLU
on the other hand becomes a handy alternative to ReLU in such situations which has been
discussed extensively by Maas et al. [8]. There are several recent studies done on the
information flow and information loss optimizations in neural networks [22,23] in which
authors discuss about the information loss due to the limitations in data sampling, and data
encoding. It is equally important to address the variations in information flow in neural
networks due to the nonlinearity in the network since the application of nonlinearity is an
essential tool in deep learning. Furthermore, discussions on the non-linearity in L-ReLU
are not widely available in literature compared to the studies based on ReLU. Because of
its flexibility, nonlinearity in L-ReLU can be adjusted to affect the information flow and
the model accuracy in shallow neural networks, and the effects of nonlinearity in neural
network models may depend on the model architecture, feature extraction techniques and
the type of input data.

In this study we provide our findings about the effects of nonlinearity in neural
networks, using widely used activation functions, ReLU and L-ReLU and give justifications
to the observations as an insight to the deep learning process. We empirically show that
the ReLU is a reliable activation function when there is sufficient number of trainable
parameters in the network. However, in the case of transfer learning, we show that
the L-ReLU improves the classification accuracy than ReLU when used in classification
layers. In addition to that, we investigate the effects of nonlinearity in L-ReLU for different
modeling approaches and data domains. We show that the information loss due to the
nonlinear activation can be interpreted using entropy. Finally, we show that the entropy of
the hidden layer outputs of a neural network has a connection to its optimization process.
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The entropy change during the training process helps to visualize the transformation of
function space from a disordered to a more ordered sate as the training progresses.

3. Results and Discussion

In the following sub-sections, first we discuss the effects of nonlinearity in the network
on the performance of shallow neural networks. We do this using different network archi-
tectures shown in Figure 1 and by training them using 20,000 MNIST-digits images [24] and
20,000 MNIST-fashion images [25] with a 33% validation split. Then, we compare the effects
of nonlinearity in the presence of different data domains using 60,000 MNIST-digits data,
60,000 MNIST-fashion data, 60,000 EMNIST-letters data [26] and simulated continuous
data of same sample size. Next, we address the importance of controlled nonlinearity in
the classification layers of neural networks when the transfer learning is used to extract
important features (bottleneck features) from image data. Finally, we show the entropy
estimation in the hidden layers of shallow neural networks using 60,000 MNIST-digits
images and 60,000 MNIST-fashion images with 33% validation split. There, we investigate
the variations in the entropy profile of shallow neural networks and its connection to the
nonlinearity and to the complexity of the network using different network architectures.

The construction of the deep learning models as well as the model training were done
using the deep learning tools (Scikit-learn, TensorFlow-keras and Pytorch) [27-29]. Refer
to our GitHub repository (GitHub:https://github.com/nalinda05kl/nonlinear_activations,
accessed on 20 December 2020) for detailed analysis codes used in this study. The com-
putations were conducted mainly using a computer resources allocation grant from the
Pittsburgh Super-Computing Center (PSC) [30].

3.1. Effects of Nonlinearity in Different Network Architectures

For this test, we use five model architecture shapes (Figure 1), each with three hidden
layers. ReLU or L-ReLU (with variable nonlinearity) were used as the activation function.
For the convenience, we will refer to the shapes of the network shown in Figure 1A-E
as Architecture A-E. Architecture A consists of a constant number of nodes per hidden
layer while in the other four architectures (Architecture B-E) the number of nodes varies
from layer to layer. In Architecture B and C, the ratio between the number of nodes in two
consecutive layers is constant while in Architecture D and E, the ratio between the nodes in
first two layers is the reciprocal of the ratio between the number of nodes in last two layers.
The complexity of each model architecture was varied by changing the number of nodes
per hidden layer according to the combinations shown in Table 1. We trained the models
for total of 20 epochs and present the maximum validation accuracy obtained during the
training process. We used stochastic gradient descent [31] with a learning rate of 0.1 as the
optimizer, and the categorical cross entropy [32] as the loss function.

Table 1. Different combinations of number of nodes used in three hidden layers of the five network
Architecture shapes A-E (Arch. A-E) presented in in Figure 1. Width of each model architecture shape
was varied by changing the number of nodes per layer. For each model architecture, the number of
nodes used is shown as, (111, 112, n13) and they represent the number of nodes in first, second and third
hidden layers, respectively.

Width Arch. A Arch. B Arch. C Arch. D Arch. E
width-1 (8,8,8) (8,16, 32) (16, 8, 4) (16, 8, 16) (8,16, 8)
width-2 (32,32,32) (32, 64, 128) (64, 32, 16) (64, 32, 64) (32, 64,32)
width-3 (256, 256, 256) (128, 256, 512) (512, 256, 128) (512, 256, 512) (256, 512, 256)

We explored the effect of the linearity factor, « on the model performance based on
the five architectures illustrated in Figure 1 with different number of trainable parameters.
Figure 2 shows the maximum validation accuracy for Architectures A-D as a function of
« for MNIST-digits images and MNIST-fashion images with the uncertainties estimated
by the standard error. Note that, in the error estimation, we were mainly concerned
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about the uncertainty arises due to the parameter initialization (initial conditions) of the
models. Therefore, the uncertainties were calculated by training the models 20 times
with randomized weight initialization in each run and, by taking the standard deviation
of results obtained in all runs. As shown in Figure 2, for the Architecture shapes A-D,
the model accuracy increases as the number of parameters is increasing for all values of «.
One interesting observation in Figure 2 is that, for both MNIST-digits and MNIST-fashion
data sets, L-ReLU was able to increase the validation accuracy only when the number
of parameters were relatively small (data points in black), regardless of the shape of the
model architecture and the data set used for the training. Based on these observations,
in Table 2, we show the optimal value for the liniarity factor, « for each model architecture
(Arch. A-E) discussed in this study (see Table 1 for the number of nodes used in each model
architecture). According to Table 2, it is clear that the optimized value for the linearity
factor decreases (approaches zero) as the width of the network increases. That means,
for networks with sufficiently large number of trainable parameters, ReLU is a better choice
for the activation function. A possible reason for L-ReLU being a better alternative to
ReLU for small networks could be that ReLU has suppress some essential information that
were preserved by L-ReLU (in a regularized fashion). When the network becomes wider,
the increase in the number of trainable parameters enlarges the feature representation
space so as to efficiently capture more essential features with ReLU than with L-ReLU.

Arch. shape: C Arch. shape: D

Arch. shape: B Arch. shape: E
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Figure 2. The maximum validation accuracy as a function of the linearity factor («) for models with five network architecture
shapes (Arch. shapes A-E) and three network widths (see Table 1). Models were trained on 20,000 MNIST-digits images
(upper panel) and 20,000 MNIST-fashion images (lower panel). For all the models used in this test, the number of nodes

used in each hidden layer is shown within the square brackets in each sub-figure in the order of number of nodes used in

first, second and third hidden layers, respectively.

Next, the effect of the shape of the network architecture on the model performance
was tested as a function of linearity factor, a (results are shown in Appendix A.1). Here
(in Figure Ala), the number of parameters were kept approximately constant (10° 4 1%)
while changing the shape of the model architecture (from A to E). We observe that there is
no effect of the shape of the model architecture on the accuracy for ReLU and for all the
values of « in L-ReLU. This observation reveals that the model performance is not highly
correlated with the shape of the network architecture in comparison to the correlation of
the model performance with the number of parameters. It seems that the most important
factor for model accuracy is the number of parameters rather than the shape of the model
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architecture. However, as seen in Figure Alb number nodes in the first layer must be
sufficient to capture the feature space otherwise the model suffer from under-fitting even
with larger number of trainable parameters.

Table 2. Optimal value of the linearity factor (x) at which the maximum validation accuracy was
achieved for neural network models tested using MNIST-digits and MNIST-fashion images. Width of
each model architecture shape was varied by changing the number of nodes per layer. See Table 1 for
the number of nodes per layer corresponding to the network widths used in each model.

Training Width Optimal Valve of the Linearity («) in the Network
Data Set per Layer Arch. A Arch. B Arch. C Arch. D Arch. E
MNIST- width-1 0.3 0.3 0.2 0.1 0.5
digits width-2 0.0 0.1 0.0 0.0 0.0
width-3 0.0 0.0 0.0 0.0 0.0
MNIST- width-1 0.4 0.3 0.1 0.1 0.5
fashion width-2 0.1 0.1 0.1 0.0 0.1
width-3 0.1 0.0 0.1 0.0 0.0

3.2. Effects of Nonlinearity for Different Data Domains

In Figure 3, we show the trends in validation loss as a function of linearity factor,
« in L-ReLU using two types of data sets: continuous data (left panel) and categorical
image data (right panel) by comparing results form six databases in total. In this test,
the shape of the model architecture and the number of nodes in each hidden layer of
the fully connected network were set to a fixed sequence as explained in Appendix A .4,
Tables A2 and A3. Three categorical data bases (MNIST-digits data, MNIST-fashion data
and EMNIST-letters data) each with 60,000 sample size were used to study and compare
the results. To interpret the effects of nonlinearity for continuous data with different
dimensions, results are presented for 3 continuous databases with 8, 16, and 24 features,
each with 60,000 sample size. Continuous data were simulated according to the following
model using a Gaussian noise with standard deviation of one.

N
f(x) = exp()_ anx,) + Gaussian Noise 3)

n=1

According to Figure 3, left panel, for the continuous data, the validation loss increases
significantly as a function of # and, we only show the results up to & = 0.6 because,
the training loss for the continuous data become unstable and rapidly increases when «
is greater than 0.6. Validation loss for regression data with 16 and 24 features reaches
an extremely large value at & = 1 (in the order of 10*). This demonstrates the need for
ReLU when training data consist of features nonlinearly related to the target variable
(see Equation (3)). Furthermore, in Figure 3 left panel, the model with & = 0.6 shows
much weaker performance on the data set with 24 features (in green) compared to results
obtained using the data set with eight features (in red). This observation shows the inability
of L-ReLU in capturing the nonlinear function space when the data becomes complex with
more input features.
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Figure 3. (left panel) Validation loss as a function of linearity factor («) for continuous data with
different dimensions: 8, 16 and 24 features (ft.). (right panel) Training and validation loss as a
function of linearity factor («) for categorical data (MNIST-digits, MNIST-fashion and EMNIST-letters
data sets). Note that, to test the effects of data domains, a neural network with a fixed architecture
shape was used in the modeling of all data sets shown in this figure. (see Appendix A.4, Tables A2
and AB3) for model details.

According to Figure 3, right panel, the dependence of validation loss on « for categori-
cal image data is much weaker compared to the continuous data and it does not blow-up
even at « = 1. This may be due to the nonlinearity in the softmax activation function
applied to the last layer of the model. That means, even at « = 1, the softmax activation in
the last layer preserves nonlinearity which prevents the validation loss from blowing up.
The ReLU function adds strong nonlinearity to the network in comparison to the L-ReLU
and enhances the independent learning in each hidden layer. This could be one possible
reason for why the validation loss at & = 0 happens to be the best value for both continuous
and categorical data sets. Another interesting observation in Figure 4, right panel is that the
dependence of loss on « for EMNIST-letters data is much stronger (green curve) compared
to the MNIST-digits and MNIST-fashion data and the model with & = 1.0 shows the worst
performance of all. Compared to number of classes in the MNIST-digits and MNIST-fashion
data (each has 10 classes), the EMNIST-letters data has more classes (26) and the results
suggest that the ReLU becomes most efficient when the number of classes in the database
is relatively large.

In Figure 4, we show the validation loss (with respect to the validation loss at
« = 0) as a function of & when transfer learning is used to extract important features
in image classifications. Transfer learning is very efficient when there is limited number of
images available to train a model. Small databases make the model-training quite difficult,
specially in image classifications. In such situations, pre-trained models can be used to
extract the important features (bottleneck features) from the images. A block with classifi-
cation layers must be built on top of the pre-trained model and it is trained to classify the
bottleneck features extracted from the pre-trained model. This classification block often
consists of fully connected layers and uses nonlinear activation functions. However, the use
of strong nonlinear functions in the classification layer could destroy the useful information
extracted using transfer learning. To investigate on this matter, we have studied the effects
of nonlinearity in the classification layers on the model performance when the transfer
learning is used.

First, we used three data sets: FOOD-11 [33], cifar10 [34] and Dog Breeds [35] and
extracted the bottleneck features using the pre-trained model VGG16 [36] (pre-trained
using ImageNet data [37]) and results are shown in Figure 4, left panel. It is clear that the
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L-ReLU performs better for all three data sets compared to ReLU. However, we observed
that, for both cifar10 and Dog Breeds data, classification layers with L-ReLU were not able
to fit to data when a = 1 and the increasing trend in validation loss is visible for Dog Breeds
data set after « = 0.6. In Figure 4, right panel, we show the validation loss (with respect to
the validation loss at « = 0) for Dog Breeds data using five pre-trained models [36,38—40].
For all five pre-trained models, we observe that the model performance improves as the «
is increased. However, both VGG-16 and VGG-19 models show week performance after
x = 0.6.

Due to the transfer learning, we can assume that, most of the important information
is already extracted into the bottleneck layer. In addition, the nonlinearity is already
applied to pre-trained models through nonlinear operations such as ReLU activation
function and max-pooling operations. Therefore, the use of a strong nonlinear activation
function (ReLU) to classify the bottleneck layer does not seem to be improving the accuracy.
Instead, there is a loss of important information caused by the application of ReLU in the
classification layers.

Above results suggest that the amount of information passed to the next layer by the
activation function has a significant effect on the model performance. We find that, it is
worth quantifying the level of information flow in the network and analyzing how it is
affected by the nonlinearity of activation functions. As a solution for that, in the next section,
we use entropy as a quantitative measurement for the information flow in shallow neural
networks to better understand the effects of the nonlinearity on their performance. We also
show that the entropy can represent the training dynamics in shallow neural networks.

1.15
(@) —e— Dog Breeds (VGG16) b) —e— Dog Breeds (VGG16)
—e— FOOD-11 (VGG16) —e— Dog Breeds (VGG19)
- —e— cifarl0 (VGG16) —e— Dog Breeds (InceptionV3)
? 1.10 1 —s— Dog Breeds (ResNet50)

—e— Dog Breeds (Xception)

1.05

1.00

0.95

(Validation Loss) / (Validation Loss at a

0.90

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 06 0.8
Linearity in L-RelU {a)

Figure 4. (a) Validation loss with respect to the validation loss at « = 0 as a function of linearity
factor () for Dog Breeds, FOOD-11 and cifar10 data sets modeled using VGG16 pre-trained model,
(b) validation loss with respect to the validation loss at &« = 0 as a function of linearity factor («) for
Dog Breeds data using VGG16, VGG19, InceptionV3, ResNet50 and Xception pre-trained models.
For each curve, width of the band shows the uncertainty due to different weight initialization in
classification layers.

3.3. Entropy Profile of Shallow Neural Networks

In this section we discuss the possibility of using the entropy as a measurement of
randomness to represent the information flow in the shallow neural networks. This study
is necessary since the use of activation functions and different model architectures affects
the information flow in neural networks, which ultimately could affect the performance
of the model. We have already shown that the use of different linearity factors affects the
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model performance in both regression and classification examples that were discussed in
this paper.

For this study, entropy estimation was performed for each training epoch, using the
output of each hidden layer of a shallow neural network with 5 hidden layers. Output of
each hidden layer was divided in to 100 equal sized bins and the resulting distribution was
used to calculate the entropy (Equation (2)). Figure 5 shows the entropy calculated in a
neural network with five hidden layers while changing the linearity factor from « = 0 to
«x = 0.4 for two databases: MNIST-digits and MNIST-fashion using 60,000 images from
each database with a 33% validation split. The number of nodes in hidden layers 1-5 of
the model architecture used for this analysis were 256, 128, 128, 128 and 32, respectively.
We used the Negative Log Likelihood Loss (NLLLoss) [41] as the loss function and Adam
optimizer [42] for the model optimization.

9
a=0.0 a=0.1 a=02 a=0.3 a=0.4
MNIST-digits % E S
8
% -
7 —— avg.
— HL1
— HL2
6 — HL3
<3 Z — HL4
—— HL5

Entropy (H(x))
w

10 \
MNIST-fashion ||N— |

S [
8 S
7
6 I —
5
44 r r r r r r r r r
0 20 0 20 0 20 0 20 0 20

Training Epochs

Figure 5. Entropy profile for the 5-layer neural network during the training process. Linearity factor
(x) in L-ReLU was changed from & = 0.0 to & = 0.4. Hidden layers 1-5 of the neural network consist
of nodes combinations: 256, 128, 128, 128 and 32, respectively. This test was done using two different
data sets, 60,000 MNIST-digits images (upper panel) and MNIST-fashion images (lower panel) with
33% validation split. Black curves show the average (avg.) entropy in the network.

As seen in Figure 5, for both MNIST-digits and MNIST-fashion data sets, the entropy
of each hidden layer in the network increases as the linearity factor («) is increasing.
When the value of « is increased, the negative values are allowed to flow through the
network. Therefore, the randomness in the hidden layer outputs becomes enhanced due
to the increase in the number of possible outcomes when compared to the a = 0 situation.
This observation suggest that the entropy can be used as a measure of randomness in
hidden layer outputs to visualize and quantify the information flow in neural networks.
In addition to this observation, we can also see that the entropy of most layers decrease
as the training progresses. This is due to the decrease in randomness of hidden layer
outputs as a result of parameter optimization. Since the network is initialized with random
parameters, the output of each hidden layer is expected to be highly random leading to
a relatively higher entropy at the beginning of the training. However, as the training
progresses, the model converges into a state where the composition function represented
by the neural network has hidden layer outputs that are more ordered and stabilized
leading to a lower entropy. In practice we use the learning curves as a evaluation of the
learning process of the whole network together. In conjunction with the learning curve,
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the entropy profile leads to a better understanding of the overall dynamics of the neural
network, as well as detailed analysis from a layer-by-layer perspective.

As the next step, we further investigate the entropy profile of shallow neural networks
to track the learning process during the model optimization as a function of model com-
plexity. Results are shown in Figures 6 and 7 for different model architectures trained using
60,000 MNIST-digits data (we also have used 60,000 MNIST-fashion data and obtained
similar results for the entropy profile as shown in Appendixes A.2 and A.3). The activation
function used in these models is the L-ReLU with a = 0.1. The complexity of the model is
changed by increasing the number of hidden layers from two to five (note that the number
of nodes per hidden layer is kept fixed in Figure 6). In Figure 6, the validation loss reaches
its minimum value at different epochs for different models. However, the model with two
hidden layers shows the weakest performance since its minimum validation loss is the
worst of all models tested. Interestingly, the corresponding average entropy of this network
is relatively greater when compared to the other networks.

7.8
7.6
=74 R b
=
72 Nota P anspman At
ETO —-—- avg. — HL3
o7
= — HL-1 — HL-4
568 — HL2 —— HL5
6.6
6.4 2 hidden layers 3 hidden layers 4 hidden layers 5 hidden layers
14 —e— training .
12 +— validation Model architecture shape - A
Nodes per hidden layer = 246
1.0
0 0.8
wn
=]
—10.6
0.4 | [
m!ﬂ i
02 M"ﬁ L Al 1
0.0 'y A ] & 5
] 50 100 0 50 100 o] 50 100 0 50 100

Training Epochs

Figure 6. First row of figures show the entropy profile of four different shallow neural networks.
Second row shows the corresponding training and validation losses. Number of hidden layes were
changed from two to five and each hidden layer (HL) consist of 246 nodes. Note that the black curves
in the first row of figures show the average (avg.) entropy of each model. These models were trained
using 60,000 MNIST-digits images with 33% validation split. NLLLoss [41] was used as the loss
function and the Adam optimizer [42] with learning rate 0.001 was used for the model optimization.
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Figure 7. First row of figures show the entropy profile of four different shallow neural networks.
Second row shows the corresponding training and validation losses. Number of hidden layers were
changed from two to five. The number of nodes in each hidden layer (HL) of these models are printed
in each sub-figure of second raw. Note that the black curves in the first row of figures show the
average (avg.) entropy of each model. These models were trained using 60,000 MNIST-digits images
with 33% validation split. NLLLoss [41] was used as the loss function and the Adam optimizer [42]
with learning rate 0.001 was used for the model optimization.

We further tested the entropy profile of shallow neural networks as shown in
Figure 7. Here, the shape of the network architecture we used is different than what
is used in Figure 6, where the number of nodes per hidden layer is changed as shown
in Figure 7, lower panel. On the contrary to the observations we have seen in Figure 6,
here we do not see higher average entropy for the networks with weak performance. In-
stead, the average entropy for all network architectures show similar values regardless of
their performance. Therefore, we do not observe a direct relationship between entropy and
the model performance. However, the variations of entropy in individual layers must be
studied thoroughly since the entropy of some layers (such as, hidden layer one and two of
5-hidden layer network in Figure 7) increases after few epochs of training time. In most
cases this effect arises when there is relatively a small number of nodes present in a certain
layer. Such a layer can be visualized as a histogram with few bins (less than needed) to
represent the data. In such situations, shape of the output distribution could be suppressed
and becomes more random. As a result, the entropy can become enhanced. Other than that,
we do not see a connection of the increasing entropy in those layers to known complications
in the training process such as the over-fitting or under-fitting. However, the increase in
entropy in some layers visualizes the effects of suppressed information.

There are several limitations and possible validations for this study that may be ad-
dressed as future directions. There are several Auto-ML packages [14] that can be used
in hyper-parameter optimization. A compassion of the results we discuss in this work
with the results from Auto-ML tools could become useful for further validation of the
observations we have. Although, the entropy was able to reflect the information distribu-
tion through the randomness in hidden layer outputs, other established measurements
like the Kullback-Leibler Divergence (KL-Divergence) [43,44] which is also known as the
Information Gain would show a similar picture of the information flow during the learning
process. However, it is a challenge to calculate KL-divergence using discrete hidden layer
outputs, specially in the case of image data, unless a function approximation is used to
represent the output distributions.
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4. Conclusions

We have extensively analysed the effects of the number of parameters, shape of the
model architecture and nonlinearity on the performance of deep learning models. We found
that the L-ReLU function is more effective than ReLU only when the number of parameters
is relatively small, according to the tests conducted using MNIST data using shallow neural
networks (all observations are summarized in Table 2). We show that, for shallow neural
networks, the shape of the model architecture is less important compared to the number
of trainable parameters, for the enhancement of the model performance, regardless of the
nonlinearity in the network. Then, we looked into different data domains (continuous,
categorical with or without transfer learning) as inputs to the networks and their effects
on the model performance under different nonlinearities in the network. Results show
that, for classification and regression examples that do not use transfer learning, strong
nonlinearity (values of « closer to zero) increases the performance of the model. However,
in the case of using transfer learning to extract bottleneck features, we found that the use
of L-ReLU in the final fully connected layers shows better accuracy than the use of a strong
nonlinear function like ReLU. Finally we introduced the entropy as a way of quantifying
the information flow in shallow neural networks. We observe that the average entropy
of shallow neural networks increases as the nonlinearity of the network is decreased.
Therefore, we suggest the entropy as a way of quantifying the information loss due to the
use of nonlinear activation functions specially for shallow neural networks. Furthermore,
we show that the entropy evolution of the hidden layer outputs can fairly represent the
transformation of composition function space from a disordered initial state to an ordered
final state during the training. However, we do not observe strong evidence linking the
model performance to the variations in the entropy profile of neural networks.
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Appendix A

Appendix A.1. Accuracy vs. Linearity Factor for Different Model Architectures with Number of
Parameters Fixed
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Figure A1l. (a) The validation accuracy for different model architectures as a function of linearity
factor (¢) while maintaining the number of parameters fixed (10° + 1%). (b) The average validation
accuracy as a function of linearity factor («) for the model architectures A, B and C for different number
of parameters using 10,000 images from MNIST-digits data set. Shape B was tested for different
widths of the first hidden layer while maintaining the number of parameters fixed (10> + 1%).

Appendix A.2. Entropy Profile of Model Architecture Shape A Trained Using
MNIST-Fashion Data
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Figure A2. First row of figures show the entropy profile of four different shallow neural networks.
Second row shows the corresponding training and validation losses. These models were trained
using 60,000 MNIST-fashion images with 33% validation split. NLLLoss [41] was used as the loss
function and the Adam optimizer [42] with learning rate 0.001 was used for the model optimization.
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Appendix A.3. Entropy Profile of Model Architecture Shape B Trained Using MNIST-
Fashion Data
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Figure A3. First row of figures show the entropy profile of four different shallow neural networks.
Second row shows the corresponding training and validation losses. These models were trained
using 60,000 MNIST-fashion images with 33% validation split. NLLLoss [41] was used as the loss
function and the Adam optimizer [42] with learning rate 0.001 was used for the model optimization.

Appendix A.4. Model Architectures Used for the Study of the Effects of Nonlinearity on the Model
Performance in the Presence of Transfer Learning and Different Data Domains

Table A1l shows the model architecture used in the tests performed using transfer
learning (results are shown in Figure 4). More details on the pre-trained models used in this
analysis (VGG16, VGG19, InceptionV3, Resnet50 and Xception) can be found in: [36,38—40].
Note that the input to the classification model shown in Table A1l is the bottleneck fea-
tures extracted from the pre-trained model followed by Global AveragePooling2D operation.
The resulting input shape to the classification layer is: 1 x 512 when the VGG16 was used
as the pre-trained model. Furthermore, note that for all transfer learning models used in
this analysis, (shown in Figure 4), the architecture of the classification layers is the same and
equivalent to the architecture shown in Table A1, except that the input dimension for each
model was changed according to the shape of the bottleneck layer of the corresponding
pre-trained model while output shape was changed according to the number of classes
in the data set. The detailed analysis code used in the extraction of bottleneck features
and the classification of the bottleneck features can be found in our github repository
(GitHub:https:/ /github.com /nalinda05kl/nonlinear_activations, accessed on 20 Decem-
ber 2020). Note that for cifarl0 and Dog Breeds data, learning rate was reduced to 0.01
since fast learning rates resulted in under-fitting.

Table Al. Model Architecture for FOOD-11 classification used in the test for the dependence of
model performance on data domain for different linearity factors («). Categorical Cross-entropy loss
was used for the loss estimation. Stochastic Gradient Descent (SGD) with learning rate = 0.1 was
used as the optimizer.

LAYER SHAPE (in, out) NUM. of PAR.
Layer-1 (512, 128) 65,664
Layer-2 (128, 512) 66,048
Layer-3 (512, 512) 262,656
Layer-4 (512, 128) 65,664

Output (128, 11) 1419
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Tables A2 and A3 show the model architecture shapes used in the study performed to
understand the effects of linearity in neural networks on their performance in the presence
of different data domains (results are shown in Figure 3).

Table A2. Model Architecture for the regression model for continuous data (simulated as in Equa-
tion (3)) used in the test for the dependence of model performance on data domain for different
linearity factors («) (Figure 3, left panel). Mean Squared Error (MSE) was used for the loss estimation.
Stochastic Gradient Descent (SGD) with learning rate = 0.005 was used as the optimizer.

LAYER SHAPE (in, out) NUM. of PAR.
Layer-1 (16, 128) 2176
Layer-2 (128, 512) 66,048
Layer-3 (512, 512) 262,656
Layer-4 (512, 128) 65,664
Output (128,1) 129

Table A3. Model Architecture for MNIST-digits, MNIST-fashion and EMNIST-letters classifications
used in the test for the dependence of model performance on data domain for different linearity
factors («) (Figure 3, right panel). Categorical Cross-entropy loss was used for the loss estimation.
Stochastic Gradient Descent (SGD) with learning rate = 0.1 was used as the optimizer.

LAYER SHAPE (in, out) NUM. of PAR.
Layer-1 (784, 128) 100,480
Layer-2 (128, 512) 66,048
Layer-3 (512, 512) 262,656
Layer-4 (512,128) 65,664
Output (128, 10) 1290

In Table A2, the input dimension for the first layer was changed according to the
number of features in the continuous data (8, 16 or 24). In Table A3, for EMNIST-letters
data, the output layer was changed to 26 nodes (for 26 classes in the data set) while for
MNIST-digits and MNIST-fashion data it was 10.
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