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Speaker Attractor Network: Generalizing Speech
Separation to Unseen Numbers of Sources

Fei Jiang

Abstract—Most existing speech separation research focuses on
improving the separation performance under consistent source
number conditions between training and testing. In real-world
applications, however, the source number may be different from
that in training sets. In this letter, we address this problem by
thoroughly improving the deep attractor network in terms of the
network architecture and learning objectives so that it can well
generalize to separating an unseen number of sources. Experimen-
tal results show that, compared with existing models, the proposed
method significantly improves the separation performance when
generalizing to an unseen number of speakers, and can separate
up to five speakers even the model is only trained on two-speaker
mixtures.

Index Terms—Speech separation, unseen numbers of sources,
deep clustering, speaker attractor.

1. INTRODUCTION

PEECH separation is an important task in machine lis-
S tening with a wide range of applications. Unlike speech
enhancement, which only aims to separate a target speaker’s
voice from the mixture, speech separation needs to separate
voices of multiple speakers at the same time. This leads to
two significant problems: the permutation problem [1] and the
output dimension mismatch problem. The permutation problem
refers to the permutation error of the mapping between separated
voices and speaker labels. Two effective approaches have been
proposed to address this problem: deep clustering (DC) [1] and
permutation invariant training (PIT) [2], [3]. In particular, PIT
has been widely adopted in a variety of state-of-the-art speech
separation models [4]-[16]. The output dimension mismatch
problem refers to the mismatch on the number of speakers
between training and inference, e.g., training on two-speaker
mixtures but testing on three-speaker mixtures or mixtures with
a varying number of speakers. The above-mentioned PIT-based
methods cannot directly deal with this problem due to their fixed
output dimension.
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Recently, two approaches have been proposed to address the
output dimension mismatch problem. One approach is to simply
assume a maximum number of sources in the mixture and always
output this number of sources during separation [3], [16]-[18].
If a mixture contains less sources than the preset maximum,
the model is trained to output either silence [3], [16], [17] or
the mixture itself [18] at the redundant output channels, which
can then be discarded by evaluating the energy level of the
outputs relative to the mixture. Clearly, the choice of this max-
imum number is critical: being too small limits the applicable
scenarios, while being too big may cause extra sources in the
separation result. Another approach is to extract speech in a
recursive manner [19]-[23], i.e., separating one speaker in each
iteration until no speech is left in the residual. In [21], it is shown
that this method, after being trained on both two-speaker and
three-speaker mixtures, is able to generalize to mixtures with
a higher number of sources. However, the iteration termination
criteria are not easy to set, and the separation performance de-
creases in later iterations [21], due to the increasing difficulty of
the speakers and the corruptions introduced in earlier iterations.

In addition to these two approaches, theoretically speaking,
the deep clustering framework also has the potential to tackle
the output dimension mismatch problem. However, all of the
previous DC-based models [1], [6], [7], [24], including the
deep attractor network (DANet) [25] and its variants [26]-[30],
only consider the performance of two-speaker or three-speaker
separation. On the one hand, no attempt has been made to
separate mixtures with more than three speakers. On the other
hand, the source number in the test set is always consistent with
that in the training set in the literature [6], [7], [25]-[30]. When
generalizing such DC-based models trained on two-speaker
mixtures to separating mixtures with three or more speakers,
the performance degrades significantly [1], [24].

In this letter, we propose a new speech separation model
named speaker attractor network (SANet) to improve the separa-
tion performance on mixtures with an unseen number of sources.
It can be viewed as a thoroughly improved version of DANet [25]
along several aspects. The key idea is to learn time-frequency
(T-F) embeddings that show clustering effects among speakers in
the same mixture and consistent positioning for the same speaker
across mixtures. Specifically, we propose to combine three train-
ing objectives under the DC framework: 1) good reconstruction
of sources, 2) compact distribution of T-F embeddings of each
speaker in a mixture, and 3) good speaker discrimination among
speaker attractors (i.e., average T-F embeddings for different
speakers) across mixtures. In addition, inspired by the two-stage
TasNet [15], we replace the magnitude spectrogram input in
the original DC and DANet framework with a pre-trained 1-d
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Fig. 1. The diagram of SANet. It adopts a two-stage training strategy: pre-
training the encoder-decoder and then solely training the embedding network.
Colored blocks have trainable parameters, while white blocks do not.

convolutional encoder-decoder that takes the raw waveform as
input, which significantly improves the overall separation per-
formance. Experimental results show that the proposed SANet
significantly improves the separation performance on mixtures
with an unseen number of sources over state-of-the-art methods,
including DC-based methods and recursive separation methods.

The main contributions of this letter are threefold. First,
to our best knowledge, this is the first work to improve the
generalization ability of DC framework in terms of separating
an unseen number of sources. Second, a new set of embedding
learning objectives is proposed for the DC framework. Third,
for the first time, the speech separation model is generalized to
cope with up to five sources even the model is only trained on
two-speaker mixtures, showing better generalization ability than
the state of the art (e.g., recursive separation method [21]).

II. SPEAKER ATTRACTOR NETWORK

As shown in Fig. 1, the proposed SANet consists of a pre-
trained encoder-decoder and an embedding network, followed
by clustering and mask estimation modules. The encoder trans-
forms the speech waveform into a latent space, which can be
viewed as a T-F representation. The embedding network then
takes the mixture T-F representation as input, and outputs em-
bedding vectors for each T-F unit. Then attractors of each source
are computed by mask-weighted average of the embeddings in
the training phase and approximated by k-means centroids of
the embeddings in the test phase. By comparing the similarity
between embeddings and attractors, masks for the sources can be
estimated. The masks are then multiplied with the mixture T-F
representation to compute the source T-F representations, which
are passed to the decoder to reconstruct the source waveforms.
It is noted that the encoder-decoder is frozen during the training
of the embedding network.

A. Speech Encoder-Decoder

We use a 1-d convolutional layer followed by a ReLLU ac-
tivation function as the speech encoder in the time domain,
and a 1-d transposed convolutional layer without any nonlinear
activation as the decoder. The kernel size, stride, and number of
channels are 16, 8, 128, respectively. Compared to the magnitude
spectrogram domain, encoding and decoding in the time domain
avoids the phase reconstruction issue, and is adopted by many
recent source separation methods [8]-[15].
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We first train this encoder-decoder as in [15]. Let x be the
additive mixture of C' clean sources, s1, Ss,...,Sc, i.e., T =
Eiczl s;. The T-F representations of the mixture and the sources
calculated by the encoder are e,, e, es,...,ec € RTF re-
spectively. Then the ideal mask m; € R”F" for the i-th source
can be defined as

C
mi=e 0 e e))

where © denotes element-wise division. The estimated T-F rep-
resentation of the i-th source can be obtained by ; = m; © e,,
where © is element-wise multiplication. The reconstructed
source S; is finally obtained through decoding é; by the de-
coder. We adopt the scale-invariant signal-to-distortion ratio
(SI-SDR) [31] between the clean source s and the estimated
source § as the training objective of this encoder-decoder.

B. Embedding Network

The embedding network takes the mixture T-F representation
e, as input, and outputs an embedding matrix V' € RP*TF
where each column corresponds to each T-F unit of e,.. We adopt
a temporal convolutional network (TCN) as the embedding
network in our model. Its configuration is the same as the TCN
used in Conv-TasNet [9], except that the last 1 x 1 convolutional
layer is an embedding layer with D x T'F output channels rather
than a mask regression layer with C' x T'F output channels. We
do not use any activation function in the embedding layer, and
we normalize the embeddings v; € R to have unit norm, i.e.,
|lvil]l2 = 1. Note that this is different from DANet [25]-[30],
which applies a tanh activation to the embedding layer and the
embeddings are not normalized.

In the training phase, the attractor of the ¢-th source, lying on
the unit sphere in R”, is computed as

V. (wom;)
IV - (w©my)2

a; = (2)
where w = e, /||e. |1 is the weighting factor for each T-F unit,
and m; is the ideal mask obtained by Eq. (1). In the test
phase, the attractors are approximated by the spherical k-means
clustering [32] centers of the embeddings. With the attractors, we
then compute the similarities between embeddings and attractors
using cosine similarity as

d;=V7"a; eR"F, 3)
and the mask for the i-th source can be estimated by
c
m; = exp(ad;) @ Z exp(ad;), 4)
j=1

where « is a scale factor empirically set to 10 to control the
hardness of the mask assignment. With the estimated masks we
can estimate the T-F representation of each source, and finally
reconstruct the source using the decoder.

Because the spherical k-means in our attractor estimation also
uses cosine similarity, it is consistent with the similarity mea-
sure for embedding assignment in Eq. (3). In contrast, DANet
uses dot product in embedding-attractor similarity calculation
but uses Euclidean distance for attractor calculation through
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k-means clustering, making the final embedding assignment
suboptimal [27]. Also note that the mask computation in Eq. (4)
is different from that in DANet, where either sigmoid function
or softmax without the scale factor is used to obtain the esti-
mated mask m;. We do not use the former because the cosine
similarities between T-F bins and non-target attractors in SANet
are all generally larger than 0. We do not use the latter because
d; € [—1,1] in Eq. (3) would lead to a very limited mask range.

C. Model Training Objectives

An ideal embedding space of the deep clustering framework
should meet: embeddings of the same source are close while
embeddings of different sources are far apart. Both the deep
clustering loss and DANet are proposed for this purpose. How-
ever, this still cannot be guaranteed when the source number in a
mixture differs from that in training data. We propose to extend
the embedding learning objective to

L= Erec + Alﬁspk + )¥2£coma (5)

which consists of the reconstruction loss, the speaker loss and
the compactness loss, with 11 and A5 controlling the weights.
The loss terms are explained in the following.

1) Speech Reconstruction: Unlike DANet which optimizes
the reconstruction of the magnitude spectrogram, we directly
optimize the reconstruction of the source waveform. We use
the negative SI-SDR between estimated sources and the clean
sources as the reconstruction loss:

Lrec = —SI-SDR(3, s). (6)

2) Speaker Discriminative Attractors: In most previous DC-
based models, the attractors or cluster centroids of different
speakers in a mixture are trained to be far apart. They are,
however, not speaker-discriminative across mixtures, as the
positioning of attractors of the same speaker is not consistent
across mixtures. This inconsistent positioning makes it diffi-
cult to generalize the speech separation model to an unseen
number of speakers. In [30], the attractors are trained to be
speaker-discriminative across mixtures for the first time, making
the generalization possible. However, cross-entropy loss is used
and the model is prone to overfitting to speakers in the training
set, and the model cannot generalize to an unseen number of
speakers. In this letter, we use metric learning instead: We
define two attractors of the same speaker in different mixtures
as a positive pair, and two attractors of different speakers as a
negative pair, and adopt the circle loss [33] defined as

['spk = log

Ky K,
1+ 33 exp(y(ad (s — Ag) —ai (st — A)) [ (D)

i=1 j=1

where K, and K, are the number of positive pairs and nega-
tive pairs in one mini-batch, respectively, s, and s,, are their
corresponding cosine similarity, and A,, and A, are their cor-
responding margins, ag; and o, are adaptive weighting factors
that vary with s, and s,,, and -y is a scale factor. More details
can be found in [33].

3) Compact Embeddings: Only using L. and Ly is not
sufficient for our model. The reconstruction loss L. is only
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related to the estimated mask 1, which is derived from Eq. (4),
based on the relative differences of embedding-attractor simi-
larities dq, ds, . . ., d¢. This relative similarity difference does
not necessarily lead to a compact distribution of embedding
vectors of the same speaker nor a robust estimate of attractors
during the test phase. The speaker loss L, only ensures that the
centroids of the embeddings of different speakers are far apart,
but no constraints are imposed upon the variance of embeddings
of each speaker, i.e., embeddings of different speakers may
overlap. Therefore, compact embedding distributions for each
speaker is very important for ensuring its embeddings are close
to each other. To this end, we propose the following compactness
loss:

TF
_ E g
Leom = — w;myv; ag, (8)

Jj=1

where w; is the same weight as in Eq. (2). mj, is the
j-th T-F unit’s mask for the k-th speaker, where k =
argmaX;c(1 o, . c} lel|, i.e, the dominating speaker for the j-th
T-F unit. In other words, we force the T-F embedding to be
close to only the attractor of the dominant speaker instead of all
speakers, which is experimentally found to perform better.

III. EXPERIMENTS

A. Experimental Setup

The LibriMix [34], derived from the LibriSpeech corpus [35],
is used to evaluate the performance of SANet.! It consists of
two main subsets, Libri2Mix and Libri3Mix, which are two-
speaker and three-speaker mixtures, respectively. Each of the
two subsets contains two training sets (train-100, train-
360), one validation set (dev), and one test set (test). It
also contains a Sparse3Mix dataset, a sparsely overlapping
versions of Libri3Mix test set, which is used to simulate more
realistic, conversation-like scenarios. We use the train-100
sets for training and the dev sets for validation in the fol-
lowing experiments. As for the test sets, we use the test
sets in Libri2Mix and Libri3Mix, and Sparse3Mix, Sparse4mix,
Sparse5Smix. Sparsedmix and SparseSmix are generated follow-
ing the same recipe of generating Sparse3Mix [34]. Regarding
overlap ratios, we find the definition used in [34] less intu-
itive, and propose to calculate it regarding different overlapping
source numbers as Ly, /L1, Where L,, is the total length of
n-speaker overlapping clips in the mixture and Ly is the total
length of the mixture. With this definition, the average overlap
ratios of the three sparse LibriMix sets are: Sparse3Mix - 40%
(2-speaker) and 6% (3); Sparse4dMix - 22% (2), 24% (3), and
8% (4); Sparse5SMix - 18% (2), 13% (3), 17% (4), and 3% (5).
We select the 8 kHz min mode of all these data sets. The training
sets contain 251 different speakers in total, while the test sets
contain 40 unseen speakers.

The encoder-decoder is pre-trained as illustrated in
Section II-A. It is frozen while training the embedding network.
Both stages are trained on 2-second long segments. The embed-
ding dimension is 32. The learning rate is initialized to 0.001 and
then halved if no best validation model is found in 6 consecutive

ICode available at https://github.com/fjiang9/sanet
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TABLE I
SI-SDR IMPROVEMENT (dB) ON DIFFERENT TEST SETS. MODELS IN THE UPPER BLOCK ARE TRAINED ON 2-SPEAKER MIXTURES, WHILE THOSE IN THE LOWER
BLOCK ARE TRAINED ON 2- & 3-SPEAKER MIXTURES

- Test Set Aver. on
Training Set Method
Libri2Mix Libri3Mix Sparse3Mix Sparse4Mix Sparse5SMix Unseen
DPCL [1] 8.8 1.1 2.6 0.2 -1.3 0.7
DANet [25] 8.4 2.0 3.4 2.0 1.2 2.2
g Conv-TasNet (Light) [9] 13.5 - - - - -
Libri2Mix Conv-DANet 12.4 3.4 4.6 24 1.6 3.0
SANet (Proposed) 12.0 7.3 12.6 10.1 8.2 9.6
SANet (W/o Lgpr) 12.8 4.0 7.0 4.9 3.8 49
SANet (w/o Lcom) 0.4 0.9 2.7 2.3 2.2 2.0
Libri2Mix Conv-TasNet-OR-PIT [21] 13.6 124 14.7 12.0 9.8 10.9
& Libri3Mix SANet (Proposed) 12.9 11.3 15.3 13.0 10.8 11.9

epochs. The total number of training epochs is 200, and the
training is early stopped if no improvement on the validation set
is observed for 20 epochs.

B. Results

‘We compare the proposed SANet with two DC-based models,
DPCL [1] and DANet [25], and Conv-TasNet [9]. For a fair
comparison, we implement a light Conv-TasNet using the same
number of channels in the encoder-decoder as SANet. We also
build a baseline model named Conv-DANet using the same
similarity computation as the original DANet [25], but replace
its loss function with £,... (Eq. (6)), encoder-decoder and em-
bedding network architecture as those in the proposed SANet, to
reduce the architectural effects in the comparison. In addition,
we further train two models, SANet (w/o Lgy,;) and SANet
(W/o Lcom), to perform an ablation study regarding the training
objectives of SANet. All of these models are trained solely on
the Libri2Mix. Weights between different loss functions are
tuned using the validation sets in Libri2Mix and Libri3Mix.
We assume the source number in the mixture is known during
testing. We evaluate the separation performance by the SI-SDR
improvement from the unprocessed mixture.

The separation results on different test sets are shown in the
top block of Table I. Several interesting observations can be
made. First, compared to the four baselines, the proposed SANet
achieves significantly better results on mixtures with three or
more (i.e., unseen numbers of) speakers, even though it slightly
underperforms Conv-DANet and Conv-TasNet on two-speaker
mixtures. This shows the superior power of generalization to
unseen numbers of speakers. In particular, the improvement
from the best Conv-DANet is 6.6 dB on average. A main reason
for this improvement is better discrimination of attractors of
different speakers. Fig. 2 visualizes the estimated attractors of
3000 Libri2Mix test mixtures in Conv-DANet and SANet using
t-SNE [36]. We can see that the estimated attractors of different
speakers in SANet are much better grouped.

Second, we can see that for SANet, without Ly, the two-
speaker separation result is slightly better but the result on mix-
tures with unseen numbers of speakers degrades significantly.
Without L., the model almost fails to separate mixtures in
the test phase. This supports our analyses in Section II-C, and
shows the effectiveness of combining the three training objec-
tives. Third, among the three baselines, Conv-DANet improves

Cege
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de

Fig.2. Estimated attractors (k-means centroids) of test mixtures visualized by
t-SNE. Each color represents a speaker. Left: Conv-DANet. Right: SANet.

significantly from DANet across all settings. This suggests the
effectiveness of the two-stage training strategy and network
architecture in our model.

We further compare SANet with one-and-rest permutation
invariant training (OR-PIT) [21], which is a state-of-the-art
recursive separation methodology that can be applied to any
separation models to generalize to separating unseen numbers
of speakers. We use the same Conv-TasNet mentioned before
as the separation network. Because OR-PIT needs to be trained
on both two-speaker and three-speaker mixtures, we also train
another SANet on two- and three-speaker mixtures. The sep-
aration results are shown in the lower block of Table I. Two
observations can be made: 1) Comparing with OR-PIT, the
proposed SANet can better generalize to separating unseen num-
bers of speakers, while maintaining comparable performance on
two- and three-speaker separation. 2) SANet also improves
0.6 dB from OR-PIT on Sparse3Mix, suggesting better ro-
bustness to instantaneous speaker number variations within a
mixture.

IV. CONCLUSION

We proposed a new speech separation model that can gener-
alize to separating mixtures with unseen numbers of speakers.
The proposed method thoroughly improves the deep attractor
network in terms of the network architecture and embedding
learning objectives, and it results in outstanding performance
compared to the state of the art when separating mixtures with
unseen numbers of speakers. As the source number in the mix-
ture is assumed to be known during the inference phase in this
letter, we leave the speaker counting under our framework for
future work. Future work also includes generalizing the model
to separating mixtures in noisy conditions.
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