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Speaker Attractor Network: Generalizing Speech

Separation to Unseen Numbers of Sources
Fei Jiang and Zhiyao Duan , Member, IEEE

Abstract—Most existing speech separation research focuses on
improving the separation performance under consistent source
number conditions between training and testing. In real-world
applications, however, the source number may be different from
that in training sets. In this letter, we address this problem by
thoroughly improving the deep attractor network in terms of the
network architecture and learning objectives so that it can well
generalize to separating an unseen number of sources. Experimen-
tal results show that, compared with existing models, the proposed
method significantly improves the separation performance when
generalizing to an unseen number of speakers, and can separate
up to five speakers even the model is only trained on two-speaker
mixtures.

Index Terms—Speech separation, unseen numbers of sources,
deep clustering, speaker attractor.

I. INTRODUCTION

S
PEECH separation is an important task in machine lis-

tening with a wide range of applications. Unlike speech

enhancement, which only aims to separate a target speaker’s

voice from the mixture, speech separation needs to separate

voices of multiple speakers at the same time. This leads to

two significant problems: the permutation problem [1] and the

output dimension mismatch problem. The permutation problem

refers to the permutation error of the mapping between separated

voices and speaker labels. Two effective approaches have been

proposed to address this problem: deep clustering (DC) [1] and

permutation invariant training (PIT) [2], [3]. In particular, PIT

has been widely adopted in a variety of state-of-the-art speech

separation models [4]–[16]. The output dimension mismatch

problem refers to the mismatch on the number of speakers

between training and inference, e.g., training on two-speaker

mixtures but testing on three-speaker mixtures or mixtures with

a varying number of speakers. The above-mentioned PIT-based

methods cannot directly deal with this problem due to their fixed

output dimension.
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Recently, two approaches have been proposed to address the

output dimension mismatch problem. One approach is to simply

assume a maximum number of sources in the mixture and always

output this number of sources during separation [3], [16]–[18].

If a mixture contains less sources than the preset maximum,

the model is trained to output either silence [3], [16], [17] or

the mixture itself [18] at the redundant output channels, which

can then be discarded by evaluating the energy level of the

outputs relative to the mixture. Clearly, the choice of this max-

imum number is critical: being too small limits the applicable

scenarios, while being too big may cause extra sources in the

separation result. Another approach is to extract speech in a

recursive manner [19]–[23], i.e., separating one speaker in each

iteration until no speech is left in the residual. In [21], it is shown

that this method, after being trained on both two-speaker and

three-speaker mixtures, is able to generalize to mixtures with

a higher number of sources. However, the iteration termination

criteria are not easy to set, and the separation performance de-

creases in later iterations [21], due to the increasing difficulty of

the speakers and the corruptions introduced in earlier iterations.

In addition to these two approaches, theoretically speaking,

the deep clustering framework also has the potential to tackle

the output dimension mismatch problem. However, all of the

previous DC-based models [1], [6], [7], [24], including the

deep attractor network (DANet) [25] and its variants [26]–[30],

only consider the performance of two-speaker or three-speaker

separation. On the one hand, no attempt has been made to

separate mixtures with more than three speakers. On the other

hand, the source number in the test set is always consistent with

that in the training set in the literature [6], [7], [25]–[30]. When

generalizing such DC-based models trained on two-speaker

mixtures to separating mixtures with three or more speakers,

the performance degrades significantly [1], [24].

In this letter, we propose a new speech separation model

named speaker attractor network (SANet) to improve the separa-

tion performance on mixtures with an unseen number of sources.

It can be viewed as a thoroughly improved version of DANet [25]

along several aspects. The key idea is to learn time-frequency

(T-F) embeddings that show clustering effects among speakers in

the same mixture and consistent positioning for the same speaker

across mixtures. Specifically, we propose to combine three train-

ing objectives under the DC framework: 1) good reconstruction

of sources, 2) compact distribution of T-F embeddings of each

speaker in a mixture, and 3) good speaker discrimination among

speaker attractors (i.e., average T-F embeddings for different

speakers) across mixtures. In addition, inspired by the two-stage

TasNet [15], we replace the magnitude spectrogram input in

the original DC and DANet framework with a pre-trained 1-d
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Fig. 1. The diagram of SANet. It adopts a two-stage training strategy: pre-
training the encoder-decoder and then solely training the embedding network.
Colored blocks have trainable parameters, while white blocks do not.

convolutional encoder-decoder that takes the raw waveform as

input, which significantly improves the overall separation per-

formance. Experimental results show that the proposed SANet

significantly improves the separation performance on mixtures

with an unseen number of sources over state-of-the-art methods,

including DC-based methods and recursive separation methods.

The main contributions of this letter are threefold. First,

to our best knowledge, this is the first work to improve the

generalization ability of DC framework in terms of separating

an unseen number of sources. Second, a new set of embedding

learning objectives is proposed for the DC framework. Third,

for the first time, the speech separation model is generalized to

cope with up to five sources even the model is only trained on

two-speaker mixtures, showing better generalization ability than

the state of the art (e.g., recursive separation method [21]).

II. SPEAKER ATTRACTOR NETWORK

As shown in Fig. 1, the proposed SANet consists of a pre-

trained encoder-decoder and an embedding network, followed

by clustering and mask estimation modules. The encoder trans-

forms the speech waveform into a latent space, which can be

viewed as a T-F representation. The embedding network then

takes the mixture T-F representation as input, and outputs em-

bedding vectors for each T-F unit. Then attractors of each source

are computed by mask-weighted average of the embeddings in

the training phase and approximated by k-means centroids of

the embeddings in the test phase. By comparing the similarity

between embeddings and attractors, masks for the sources can be

estimated. The masks are then multiplied with the mixture T-F

representation to compute the source T-F representations, which

are passed to the decoder to reconstruct the source waveforms.

It is noted that the encoder-decoder is frozen during the training

of the embedding network.

A. Speech Encoder-Decoder

We use a 1-d convolutional layer followed by a ReLU ac-

tivation function as the speech encoder in the time domain,

and a 1-d transposed convolutional layer without any nonlinear

activation as the decoder. The kernel size, stride, and number of

channels are 16, 8, 128, respectively. Compared to the magnitude

spectrogram domain, encoding and decoding in the time domain

avoids the phase reconstruction issue, and is adopted by many

recent source separation methods [8]–[15].

We first train this encoder-decoder as in [15]. Let x be the

additive mixture of C clean sources, s1, s2, . . . , sC , i.e., x =
∑C

i=1
si. The T-F representations of the mixture and the sources

calculated by the encoder are ex, e1, e2, . . . , eC ∈ R
TF , re-

spectively. Then the ideal mask mi ∈ R
TF for the i-th source

can be defined as

mi = ei �
C
∑

j=1

ej , (1)

where � denotes element-wise division. The estimated T-F rep-

resentation of the i-th source can be obtained by êi = mi � ex,

where � is element-wise multiplication. The reconstructed

source ŝi is finally obtained through decoding êi by the de-

coder. We adopt the scale-invariant signal-to-distortion ratio

(SI-SDR) [31] between the clean source s and the estimated

source ŝ as the training objective of this encoder-decoder.

B. Embedding Network

The embedding network takes the mixture T-F representation

ex as input, and outputs an embedding matrix V ∈ R
D×TF ,

where each column corresponds to each T-F unit of ex. We adopt

a temporal convolutional network (TCN) as the embedding

network in our model. Its configuration is the same as the TCN

used in Conv-TasNet [9], except that the last 1× 1 convolutional

layer is an embedding layer withD × TF output channels rather

than a mask regression layer with C × TF output channels. We

do not use any activation function in the embedding layer, and

we normalize the embeddings vi ∈ R
D to have unit norm, i.e.,

‖vi‖2 = 1. Note that this is different from DANet [25]–[30],

which applies a tanh activation to the embedding layer and the

embeddings are not normalized.

In the training phase, the attractor of the i-th source, lying on

the unit sphere in R
D, is computed as

ai =
V · (w �mi)

‖V · (w �mi)‖2
, (2)

where w = ex/‖ex‖1 is the weighting factor for each T-F unit,

and mi is the ideal mask obtained by Eq. (1). In the test

phase, the attractors are approximated by the spherical k-means

clustering [32] centers of the embeddings. With the attractors, we

then compute the similarities between embeddings and attractors

using cosine similarity as

di = V
T
ai ∈ R

TF , (3)

and the mask for the i-th source can be estimated by

m̂i = exp(αdi)�

C
∑

j=1

exp(αdj), (4)

where α is a scale factor empirically set to 10 to control the

hardness of the mask assignment. With the estimated masks we

can estimate the T-F representation of each source, and finally

reconstruct the source using the decoder.

Because the spherical k-means in our attractor estimation also

uses cosine similarity, it is consistent with the similarity mea-

sure for embedding assignment in Eq. (3). In contrast, DANet

uses dot product in embedding-attractor similarity calculation

but uses Euclidean distance for attractor calculation through
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k-means clustering, making the final embedding assignment

suboptimal [27]. Also note that the mask computation in Eq. (4)

is different from that in DANet, where either sigmoid function

or softmax without the scale factor is used to obtain the esti-

mated mask m̂i. We do not use the former because the cosine

similarities between T-F bins and non-target attractors in SANet

are all generally larger than 0. We do not use the latter because

di ∈ [−1, 1] in Eq. (3) would lead to a very limited mask range.

C. Model Training Objectives

An ideal embedding space of the deep clustering framework

should meet: embeddings of the same source are close while

embeddings of different sources are far apart. Both the deep

clustering loss and DANet are proposed for this purpose. How-

ever, this still cannot be guaranteed when the source number in a

mixture differs from that in training data. We propose to extend

the embedding learning objective to

L = Lrec + λ1Lspk + λ2Lcom, (5)

which consists of the reconstruction loss, the speaker loss and

the compactness loss, with λ1 and λ2 controlling the weights.

The loss terms are explained in the following.

1) Speech Reconstruction: Unlike DANet which optimizes

the reconstruction of the magnitude spectrogram, we directly

optimize the reconstruction of the source waveform. We use

the negative SI-SDR between estimated sources and the clean

sources as the reconstruction loss:

Lrec = −SI-SDR(ŝ, s). (6)

2) Speaker Discriminative Attractors: In most previous DC-

based models, the attractors or cluster centroids of different

speakers in a mixture are trained to be far apart. They are,

however, not speaker-discriminative across mixtures, as the

positioning of attractors of the same speaker is not consistent

across mixtures. This inconsistent positioning makes it diffi-

cult to generalize the speech separation model to an unseen

number of speakers. In [30], the attractors are trained to be

speaker-discriminative across mixtures for the first time, making

the generalization possible. However, cross-entropy loss is used

and the model is prone to overfitting to speakers in the training

set, and the model cannot generalize to an unseen number of

speakers. In this letter, we use metric learning instead: We

define two attractors of the same speaker in different mixtures

as a positive pair, and two attractors of different speakers as a

negative pair, and adopt the circle loss [33] defined as

Lspk = log
⎡

⎣1 +

Kp
∑

i=1

Kn
∑

j=1

exp(γ(αj
n(s

j
n −∆n)− αi

p(s
i
p −∆p)))

⎤

⎦ , (7)

where Kp and Kn are the number of positive pairs and nega-

tive pairs in one mini-batch, respectively, sp and sn are their

corresponding cosine similarity, and ∆n and ∆p are their cor-

responding margins, αj
p and αi

n are adaptive weighting factors

that vary with sp and sn, and γ is a scale factor. More details

can be found in [33].

3) Compact Embeddings: Only using Lrec and Lspk is not

sufficient for our model. The reconstruction loss Lrec is only

related to the estimated mask m̂, which is derived from Eq. (4),

based on the relative differences of embedding-attractor simi-

larities d1,d2, . . . ,dC . This relative similarity difference does

not necessarily lead to a compact distribution of embedding

vectors of the same speaker nor a robust estimate of attractors

during the test phase. The speaker lossLspk only ensures that the

centroids of the embeddings of different speakers are far apart,

but no constraints are imposed upon the variance of embeddings

of each speaker, i.e., embeddings of different speakers may

overlap. Therefore, compact embedding distributions for each

speaker is very important for ensuring its embeddings are close

to each other. To this end, we propose the following compactness

loss:

Lcom = −
TF
∑

j=1

wjm
j
kv

T
j ak, (8)

where wj is the same weight as in Eq. (2). mj
k is the

j-th T-F unit’s mask for the k-th speaker, where k =

argmaxi∈{1,2,...,C} |e
j
i |, i.e, the dominating speaker for the j-th

T-F unit. In other words, we force the T-F embedding to be

close to only the attractor of the dominant speaker instead of all

speakers, which is experimentally found to perform better.

III. EXPERIMENTS

A. Experimental Setup

The LibriMix [34], derived from the LibriSpeech corpus [35],

is used to evaluate the performance of SANet.1 It consists of

two main subsets, Libri2Mix and Libri3Mix, which are two-

speaker and three-speaker mixtures, respectively. Each of the

two subsets contains two training sets (train-100, train-

360), one validation set (dev), and one test set (test). It

also contains a Sparse3Mix dataset, a sparsely overlapping

versions of Libri3Mix test set, which is used to simulate more

realistic, conversation-like scenarios. We use the train-100

sets for training and the dev sets for validation in the fol-

lowing experiments. As for the test sets, we use the test

sets in Libri2Mix and Libri3Mix, and Sparse3Mix, Sparse4mix,

Sparse5mix. Sparse4mix and Sparse5mix are generated follow-

ing the same recipe of generating Sparse3Mix [34]. Regarding

overlap ratios, we find the definition used in [34] less intu-

itive, and propose to calculate it regarding different overlapping

source numbers as Ln/Ltotal, where Ln is the total length of

n-speaker overlapping clips in the mixture and Ltotal is the total

length of the mixture. With this definition, the average overlap

ratios of the three sparse LibriMix sets are: Sparse3Mix - 40%

(2-speaker) and 6% (3); Sparse4Mix - 22% (2), 24% (3), and

8% (4); Sparse5Mix - 18% (2), 13% (3), 17% (4), and 3% (5).

We select the 8 kHz min mode of all these data sets. The training

sets contain 251 different speakers in total, while the test sets

contain 40 unseen speakers.

The encoder-decoder is pre-trained as illustrated in

Section II-A. It is frozen while training the embedding network.

Both stages are trained on 2-second long segments. The embed-

ding dimension is 32. The learning rate is initialized to 0.001 and

then halved if no best validation model is found in 6 consecutive

1Code available at https://github.com/fjiang9/sanet
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TABLE I
SI-SDR IMPROVEMENT (dB) ON DIFFERENT TEST SETS. MODELS IN THE UPPER BLOCK ARE TRAINED ON 2-SPEAKER MIXTURES, WHILE THOSE IN THE LOWER

BLOCK ARE TRAINED ON 2- & 3-SPEAKER MIXTURES

epochs. The total number of training epochs is 200, and the

training is early stopped if no improvement on the validation set

is observed for 20 epochs.

B. Results

We compare the proposed SANet with two DC-based models,

DPCL [1] and DANet [25], and Conv-TasNet [9]. For a fair

comparison, we implement a light Conv-TasNet using the same

number of channels in the encoder-decoder as SANet. We also

build a baseline model named Conv-DANet using the same

similarity computation as the original DANet [25], but replace

its loss function with Lrec (Eq. (6)), encoder-decoder and em-

bedding network architecture as those in the proposed SANet, to

reduce the architectural effects in the comparison. In addition,

we further train two models, SANet (w/o Lspk) and SANet

(w/o Lcom), to perform an ablation study regarding the training

objectives of SANet. All of these models are trained solely on

the Libri2Mix. Weights between different loss functions are

tuned using the validation sets in Libri2Mix and Libri3Mix.

We assume the source number in the mixture is known during

testing. We evaluate the separation performance by the SI-SDR

improvement from the unprocessed mixture.

The separation results on different test sets are shown in the

top block of Table I. Several interesting observations can be

made. First, compared to the four baselines, the proposed SANet

achieves significantly better results on mixtures with three or

more (i.e., unseen numbers of) speakers, even though it slightly

underperforms Conv-DANet and Conv-TasNet on two-speaker

mixtures. This shows the superior power of generalization to

unseen numbers of speakers. In particular, the improvement

from the best Conv-DANet is 6.6 dB on average. A main reason

for this improvement is better discrimination of attractors of

different speakers. Fig. 2 visualizes the estimated attractors of

3000 Libri2Mix test mixtures in Conv-DANet and SANet using

t-SNE [36]. We can see that the estimated attractors of different

speakers in SANet are much better grouped.

Second, we can see that for SANet, without Lspk, the two-

speaker separation result is slightly better but the result on mix-

tures with unseen numbers of speakers degrades significantly.

Without Lcom, the model almost fails to separate mixtures in

the test phase. This supports our analyses in Section II-C, and

shows the effectiveness of combining the three training objec-

tives. Third, among the three baselines, Conv-DANet improves

Fig. 2. Estimated attractors (k-means centroids) of test mixtures visualized by
t-SNE. Each color represents a speaker. Left: Conv-DANet. Right: SANet.

significantly from DANet across all settings. This suggests the

effectiveness of the two-stage training strategy and network

architecture in our model.

We further compare SANet with one-and-rest permutation

invariant training (OR-PIT) [21], which is a state-of-the-art

recursive separation methodology that can be applied to any

separation models to generalize to separating unseen numbers

of speakers. We use the same Conv-TasNet mentioned before

as the separation network. Because OR-PIT needs to be trained

on both two-speaker and three-speaker mixtures, we also train

another SANet on two- and three-speaker mixtures. The sep-

aration results are shown in the lower block of Table I. Two

observations can be made: 1) Comparing with OR-PIT, the

proposed SANet can better generalize to separating unseen num-

bers of speakers, while maintaining comparable performance on

two- and three-speaker separation. 2) SANet also improves

0.6 dB from OR-PIT on Sparse3Mix, suggesting better ro-

bustness to instantaneous speaker number variations within a

mixture.

IV. CONCLUSION

We proposed a new speech separation model that can gener-

alize to separating mixtures with unseen numbers of speakers.

The proposed method thoroughly improves the deep attractor

network in terms of the network architecture and embedding

learning objectives, and it results in outstanding performance

compared to the state of the art when separating mixtures with

unseen numbers of speakers. As the source number in the mix-

ture is assumed to be known during the inference phase in this

letter, we leave the speaker counting under our framework for

future work. Future work also includes generalizing the model

to separating mixtures in noisy conditions.
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