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Using simulation to accelerate autonomous experimentation:
A case study using mechanics

Aldair E. Gongora,1 Kelsey L. Snapp,1 Emily Whiting,2 Patrick Riley,3 Kristofer G. Reyes,4,* Elise F. Morgan,1,5,6,*

and Keith A. Brown1,6,7,8,*

SUMMARY

Autonomous experimentation (AE) accelerates research by combining automation
andmachine learning to perform experiments intelligently and rapidly in a sequen-
tial fashion. While AE systems are most needed to study properties that cannot be
predicted analytically or computationally, even imperfect predictions can in princi-
ple be useful. Here, we investigate whether imperfect data from simulation can
accelerateAEusing a case studyon themechanics of additivelymanufactured struc-
tures. Initially, we study resilience, a property that is well-predicted by finite
element analysis (FEA), and find that FEA can be used to build a Bayesian prior
and experimental data can be integrated using discrepancy modeling to reduce
the number of needed experiments ten-fold. Next, we study toughness, a property
notwell-predictedbyFEAandfind that FEA can still improve learningby transform-
ing experimental data and guiding experiment selection. These results highlight
multiple ways that simulation can improve AE through transfer learning.

INTRODUCTION

Designing materials and structures with optimized properties is a paramount goal of materials science and

engineering (Wegst et al., 2015; Yeo et al., 2018). For instance, successes in the study of architected mate-

rials have shown that modifying the geometry of lattice-like structures is a powerful method for tuning me-

chanical properties. Key to the exploration of such intricate structures are advances in high-performance

computing and simulation methods, namely finite element analysis (FEA), that have enabled the computa-

tion of many facets of mechanical performance (Bar-Sinai et al., 2020; Gao et al., 2003; Kochmann and Ber-

toldi, 2017). By combining FEA with optimization algorithms, approaches such as topology optimization

(Barthelat and Mirkhalaf, 2013; Boddeti et al., 2018; Chen et al., 2018; Jin et al., 2020; Sigmund and Maute,

2013) have led to discovery of intriguing hierarchical structures and composites.

While simulation is powerful, it cannot predict all aspects of mechanical performance, necessitating phys-

ical experiments. Mechanics is one of many fields in which experiments can present a bottleneck to prog-

ress, a challenge that has motivated the development of autonomous experimentation (AE) systems in

numerous fields such as biology (Bryant et al., 2004; King et al., 2009), materials science (MacLeod et al.,

2020; Nikolaev et al., 2016; Noack et al., 2019), chemistry (Bédard et al., 2018; Burger et al., 2020; Epps

et al., 2020; Porwol et al., 2020), and mechanics (Gongora et al., 2020) to efficiently explore vast and

multi-dimensional parameter spaces without human intervention. Ultimately, AE accelerates research by

utilizing automation to perform experiments rapidly and using machine learning to select experiments

that yield best progress toward the chosen goal. As such, many AE-related advances have involved

improved automation (Coley et al., 2019; Li et al., 2018; Nikolaev et al., 2014; Ren et al., 2018; Sun et al.,

2019) or algorithms (Wang et al., 2015). Improving collection of experimental data has been critical in

this effort, because the premise that simulation is imperfect has led the community to largely proceed in

an experimentally data-driven fashion. While this premise is not incorrect, simulation can still in principle

provide value for experimental campaigns. A remaining open question, whose answer likely depends

upon the relationship between simulation and experiment, is how best to incorporate simulation into AE.

Here, we test the hypothesis that incorporating knowledge from simulation with AE can accelerate the pace

of research in the context of mechanics (Figure 1). To explore this concept, we use a robotic system both to

3D-print components and to test them in uniaxial compression (Gongora et al., 2020). When combined with

a Bayesian optimization (BO) algorithm to iteratively select experiments that will maximize a performance
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metric such as component toughness, this system is termed a ‘‘Bayesian experimental autonomous

researcher’’ (BEAR). To understand how FEA can improve the operation of the BEAR, we first compare

FEA predictions to experimental measurements and determine that while resilience is well predicted by

FEA, toughness is not. We then explore the use of the BEAR to optimize resilience by using discrepancy

modeling and FEA in the belief model. We evaluate this approach by conducting experimental campaigns

and find that, as compared to BO with an uninformative prior, using FEA in this fashion can reduce by a

factor of �10 the number of experiments necessary to find high-performing structures. Finally, we study

BEAR campaigns to optimize toughness using a custom method in which the belief model is built on

FEA-transformed data and the decision policy is FEA-informed. We find that these FEA-informed experi-

mental learning campaigns resulted in�15% higher performing structures compared to campaigns using a

traditional BO approach. For the evolving field of AE and data-driven research more broadly, this work

shows the potential for capitalizing on additional information sources such as simulation to accelerate

the pace of research and enable the exploration of more complex parameter spaces.

RESULTS AND DISCUSSION

Comparison of simulated and measured mechanical properties of parametric structures

In order to determine the degree to which FEA could predict the mechanical behavior of additively man-

ufactured structures, we evaluated a ‘‘crossed barrel’’ family of components that leverage our previously

reported dataset (Gongora et al., 2020). In the previously reported data set, the ‘‘crossed barrel’’ family

of components is parametrized by n hollow columns with outer radius r and thickness t that are twisted

with an angle q. Thus, the four-dimensional parameter space considered in this work is defined by x =

ðn;q;r; tÞ. In a typical experiment, a component was printed out of polylactic acid (PLA) filament and tested

in uniaxial, quasi-static compression (Figure 2A). This experiment allowed direct computation of two impor-

tant metrics of energy absorbed by a component during compression, namely toughness U and resilience

UE. Resilience is defined as the energy stored during the elastic portion of the compressive curve while

toughness is defined as the energy absorbed during the entirety of the compression (elastic and failure).

Optimizing the former is important for realizing structural components that accommodate a variety of

working conditions without damage while optimizing the latter is critical for realizing structures that are

safe during catastrophic events. From the design of the ‘‘crossed barrel’’ structure used for 3D printing,

a mesh generated from hexahedral elements (Figures S1 and S2) can be used in FEA to predict resilience
~UE by simulating a uniaxial quasi-static compression test (Figure 2B).
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Figure 1. Incorporating finite element analysis (FEA) into a Bayesian experimental autonomous researcher

(BEAR) to study the mechanical behavior of additively manufactured components
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Figure 2. Exploration of resilience and toughness of parametric structures

(A) Force F vs. displacement D for a crossed barrel structure measured using quasi-static compression. Resilience UE and

toughness U are computed as areas under the F-D curve as shown.

(B) F vs. D. computed using finite element analysis (FEA) along with simulated resilience ~UE found as the area under the F-

D curve.

(C) Photographs of a series of crossed barrel structures that vary in their twist angle q.

(D) UE and ~UE vs. q for a series of crossed barrels including those depicted in (C). While this plot highlights the

dependence of resilience on q as a single parameter, it is worth emphasizing that we are exploring a four-dimensional

parameter space. Points denote mean with error bars denoting standard deviation.

(E) ~UE vs. UE for 600 crossed barrels selected in a grid across the entire four-dimensional parameter space. Agreement

between the quantities is evident based upon the root mean square error (RMSE).

(F) U vs. q for a series of crossed barrels including those depicted in (C). Points denote mean with error bars denoting

standard deviation.

(G) ~UE vs. U for 600 crossed barrels selected in a grid across the entire four-dimensional parameter space. These

properties are found to be uncorrelated.
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To assess the prediction capabilities of FEA, experimental measurements and FEA predictions were ob-

tained for a series of components that varied based upon a single parameter, namely the twist angle q (Fig-

ure 2C). The root mean squared error (RMSE) between UE and ~UE for the series of components was 0.1801 J

(Figure 2D). Perhaps more importantly, the FEA predictions reasonably captured the general trends pre-

sent in the experimental measurements. Not only did UE and ~UE exhibit similar dependencies on q but

they also showed excellent agreement with each other for 600 distinct designs spread across the four-

dimensional parameter space, exhibiting RMSE = 0.132 J and a mean squared percentage error of

3.12% (Figure 2E).

Toughness could not be computed due to the need for painstaking management of self-contacts and

development of advanced material models (Li et al., 2017; Qiao et al., 2008; Zhu et al., 2010) which limit

the throughput of computation. While one could expect that FEA predictions of resilience could provide

some value as resilience contributes to toughness by definition (i.e. Figure 2A), examining U for this class of

structures shows that U and ~UE are not similar in magnitude (Figure 2F). This difference is rooted in me-

chanics with the energy absorbed during plastic deformation not being directly correlated with that stored

during elastic deformation. However, there are some structures for whichUzUE , namely those that exceed

the force threshold and therefore never enter the plastic regime during the working range (i.e. those for

which q%15�). Nevertheless, the disagreement between these quantities manifests across the entire

parameter space with ~UE not being correlated with U (R2 = 0:0133) (Figure 2G). It should be noted that

the lack of correlation between UE and U is likely a general property of lattice-based structures as these

feature a vast diversity of behaviors that only begin once the structure enters the plastic regime.

Optimizing resilience with an FEA-informed BEAR

In this work, we employed BO due to its popularity and previously reported success as an active learning

strategy for optimization. Additionally, active learning approaches, such as BO, have been previously re-

ported to outperform one factor at a time (OFAT) and design of experiment (DoEs) approaches (Braham

et al., 2020). In particular, OFAT can be slow and inefficient in high-dimensional parameter spaces since

a single variable is varied at a time. Further, OFAT is highly sensitive to the initial selection of variables

and does not rapidly capture potential correlations between input variables. While DoE approaches

address some of the aforementioned shortcomings of OFAT, they depend on an initial round of experi-

ments being conducted before analysis can proceed (Bowden et al., 2019). Additionally, DoE approaches

are unable to efficiently capture highly non-linear parameter spaces and when applied iteratively tend to be

generally exploitative (Cao et al., 2018). Active learning approaches, such as BO, improve upon OFAT and

DoE by using all available experiments to build belief models that can capture complex and highly non-

linear parameter spaces. Moreover, active learning approaches enable the iterative selection of subse-

quent experiments using decision policies that can determine and exploit correlations between input vari-

ables, and they can be customized to favor exploration, exploitation, or balance these two goals (Lookman

et al., 2019; Rohr et al., 2020).

Given that FEA can reasonably predict resilience, learning or optimizing experimental resilience can be consid-

ered a classic transfer learning process (Pan and Yang, 2010). Specifically, bothUEðxÞ and ~UEðxÞ are definedover

the same parameter space – namely the four-dimensional space corresponding to the parametric family of

structures given by x = ðn; q; r; tÞ. To define ~UEðxÞ over the parameter space, we built a surrogate model

from FEA predictions selected on a grid (Figures S3 and S4A). Since ~UEðxÞ represents an approximation for

UEðxÞ, the optimization problem can be addressed using relational knowledge transfer, an approach in induc-

tive transfer learning. Specifically, we define a discrepancy model dEðxÞ=UEðxÞ � ~UEðxÞ to represent the differ-

ence between FEA and experiment. This approach differs from BO with an uninformative prior in that, rather

than selecting experiments based upon a beliefmodel ofUE that is a Gaussian process regression (GPR) against

experimental measurements of UE , the discrepancy model approach uses a GPR trained on dE = UE � ~UE. In

other words, the FEA-informed approach makes ~UE the Bayesian prior for the belief model.

In order to evaluate the incorporation of FEA into a BEAR through discrepancy modeling (Figure 3A), we

performed a series of simulated learning campaigns based upon an expected improvement (EI) decision

policy using either the uninformative prior or the FEA-informed approach. The EI decision policy was

selected due to its widespread application in the BO community as an improvement-based decision policy

that seeks to select subsequent experiments based on the likelihood of exceeding previous observations.

Since the simulated learning campaigns are in silico, we may evaluate the performance P of these
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approaches using P = 1 to indicate that the campaign found the optimum design, or the x that corre-

sponded to the largestUE in the data set. Campaigns using the FEA-informed approach achieved amedian

performance MdðPÞ= 1 in only two experiments, whereas campaigns using an uninformative prior only

achievedMdðPÞR0:90 after 13 experiments (Figure 3B). To further assess these approaches, we computed

the probability Ps of achieving PR0:90 where Ps = 1 would indicate that all simulated campaigns had

achieved P R0:90. Campaigns using an FEA-informed approach achieved Ps R 0.99 after six experiments,

while those using an uninformative prior only achieved Ps = 0:80 after 32 experiments (Figure 3C). These re-

sults clearly predict that a good prior from simulation will substantially accelerate an experimental

campaign.
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Figure 3. Combining AE and simulation to optimize resilience

(A) Scheme showing how FEA was incorporated into the BEAR to find the design x with the maximum UE. The process

begins with a random design x0.

(B) Simulated performance P at experiment number i for a simulated learning campaign.

(C) Probability of achieving P R 0.90 at a given i.

(D) Sequence of UE measured during six experimental learning campaigns. Points denote mean with error bars denoting

standard deviation. The horizontal line indicates the maximum value measuring on a grid of 600 points.

(E) UE measured at the optimum predicted for each of the six campaigns after i experiments. Each value represents the

average of five identically prepared samples with the error bars denoting their standard deviation.
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To estimate how sensitive the improvement was to the accuracy of the FEA predictions, we first repeated

the FEA computations while varying E and sy to determine the degree to which these input material prop-

erties influenced ~UE . Interestingly, ~UE is more than twice as sensitive to errors in sy than errors in E; with

overestimations of sy increasing ~UE and overestimations of E decreasing ~UE (Figures S5A and S5B). To

determine the degree to which such errors would affect a learning campaign, we performed a series of

simulated learning campaigns in which the FEA results were multiplied by a factor 4FE = 0.50, 0.90, 0.95,

1.05, 1.1, and 1.5. Variations in the FEA results that were �10% (which correspond to a �7% error in sy

or a �28% error in E), had a minimal effect on convergence (Figures S5C and S5D). Larger errors, however,

had a more substantial impact on convergence with the interesting result that overestimations in FEA re-

sults were more damaging to learning than underestimations (Figures S5E and S5F). We hypothesize that

this asymmetry is due to the goal of the algorithm being to maximize resilience.

Guided by these simulated learning campaigns, we performed six independent experimental learning

campaigns to further assess the incorporation of FEA into a BEAR through discrepancy modeling (Table

1). Three campaigns used an FEA-informed approach, and three used an uninformative prior. Each

campaign was given an experimental budget of 30 experiments. By comparing the average UE for each

approach as a function of experiment number, the FEA-informed approach on average outperformed

the uninformative-prior approach (Figure 3D). Additionally, the average resilience using the FEA-informed

approach was mostly larger, after one experiment, than the mean of the predicted maximum resilience of

1:61 G0:17 J from a GPR surrogate model trained on resilience measurements at 600 distinct design loca-

tions specified in a grid search (‘‘Grid’’).

It is key to note that BO campaigns with EI attempt to balance both exploration and exploitation, and thus

not all subsequent experiments will yield an increase in the experimental response. While the sequence of

experimental responses can provide some insight into performance, it is imperative to assess performance

by evaluating the experimental response of the predicted optimum design of the belief model after i ex-

periments. To do this, we carried out five repeated experiments at the predicted optimum designs of each

of the experimental campaigns after three, 10, and 30 experiments (Figure 3E). After three experiments, the

FEA-informed approach outperformed the uninformative-prior approach by �71% and the Grid result by

�12%. After 10 experiments, the performance of the uninformative prior approach increased but was still

�28% less than the performance of the FEA-informed approach. After 30 experiments, the performance of

the uninformative prior approach and the FEA-informed approach were not statistically different ðp =

0:39Þ, while both approaches outperformed Grid by �10%. Additionally, the performance of the FEA-

informed approach after 30 experiments was not statistically different than the performance of the FEA-

informed approach after 10 experiments based on a multiple comparison analysis comparing each

campaign (p > 0.05). Ultimately, the FEA-informed approach reduced the number of experiments neces-

sary to find a high-performing design by 10-fold relative to the uninformative prior approach and by

600-fold relative to Grid. Notably, campaigns based upon the uninformative prior approach found better

designs in 30 experiments than resulted from the 1800 experiments used as part of the Grid. The observed

60-fold reduction in number of experiments recapitulates our previously reported acceleration of BO rela-

tive to grid searching when optimizing toughness (Gongora et al., 2020).

Optimizing toughness with an FEA-informed BEAR

While ~UE was clearly useful in optimizing UE , its lack of correlation with U makes its utility in a toughness

optimization framework substantially less clear. Indeed, we performed simulated campaigns exploring

Table 1. Mean and standard deviation of resilience after 3 experiments for both the uninformative-prior approach

(not FEA-informed) and the FEA-informed approach

Approach Mean UE (J) SD (J)

Not FEA-informed 1.05 0.10

1.05 0.12

1.06 0.08

FEA-informed 1.72 0.19

1.89 0.07

1.79 0.14
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the simplest extension of the resilience studies by building a Bayesian prior with ~UE and using discrepancy

modeling to find the inelastic component of toughness (i.e. U - UE). Unfortunately, simulation suggested

that this type of knowledge transfer would not provide any acceleration, indicating that more creative ap-

proaches to using FEA are needed. One such approach is motivated by how tough structures are used in

practice. Specifically, tough components are often accompanied by a force threshold to allow them to

absorb energy before transmitting dangerous reactive forces to other elements in a system. With this force

criterion in mind, the FEA-predicted yield force ~Fy (Figure S4B) becomes a very useful factor as it can differ-

entiate between structures whose design allows them to plastically deform during failure and those that are

too strong for the imposed force threshold. For our data set, while a low ~Fy did not guarantee high perfor-

mance, structures with high ~Fy were all low-performing (Figure 4A). To leverage this realization, we con-

structed a logistic function PFðxÞ trained using ~Fy that biases the system away from regions of parameter

space that are too strong, thus shrinking parameter space by �9% (Figure 4B). Specifically, PF was built us-

ing ~Fy computed for 1188 designs selected on a grid, where PF = 1 indicated that ~Fy would not exceed the

force threshold and PF = 0 indicated that it would. The transition between 0 and 1 was given a width of 15%,

a number chosen to match the median coefficient of variation of U. Subsequently, PF was incorporated into

the decision policy by selecting the next experiment by finding argmaxðEIðxÞ ,PFðxÞÞ (Gelbart et al., 2014).

This approach effectively filters the parameter space by removing designs that are predicted to be low-

performing.

In parallel, we explored a way to reduce the effective size of parameter space by using simulation data to

transform experimental data into a format that featured greater correlations in parameter space. Specif-

ically, we defined an effective length LðxÞ = UðxÞ=~FyðxÞ that represents how much compression would

be required at constant ~Fy to produce the same toughness as the experimentally determined value U. A

belief model of L was built using a GPR, and then this model was combined with ~Fy to form the input to

the decision policy (Figure 4B).

In order to estimate whether these approaches—one that uses an FEA-informed decision policy and one

that uses a belief model build on FEA-transformed experimental data—would reduce the number of exper-

iments needed to explore the parameter space, we hypothesized that examining the correlation lengths of

GPRs trained on these datasets would provide insight. In particular, longer correlation lengths would indi-

cate that each data point is providing information relevant to larger regions in parameter space. To explore

this systematically, we divided the total volume of parameter space by the product of these correlation

lengths to approximate how many experiments would be needed to explore space (Figure 4C). As ex-

pected, shrinking the parameter space by �9% based on PF commensurately reduced the number of

needed experiments. Strikingly, learning L rather than U was predicted to produce a four-fold reduction
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in the number of needed experiments. We hypothesize that this reduction could be explained by the phys-

ical processes at play. Specifically, since toughness is both a product of the strength of the component and

its ductility, factoring out a representation of its strength could remove one source of variability, allowing

experiment to focus on learning one quantity – ductility – more directly.

We next evaluated the incorporation of these two approaches, termed together as an ‘‘FEA-informed

approach,’’ into a BEAR (Figure 5A). We performed a series of simulated learning campaigns using the

uninformative-prior approach and the FEA-informed approach to optimize U defined over the
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(A) Strategy for incorporating FEA into the BEAR through a belief model built on FEA-transformed data and an FEA-

informed decision policy.

(B) Simulated performance P at experiment number i for a simulated learning campaign to estimate toughness.

(C) Probability Ps of achieving P R 0.90 at a given i.

(D) Sequence of U measured during six experimental learning campaigns. Points denote mean with error bars denoting

standard deviation.

(E) U measured at the optimum predicted for each of the six campaigns after i experiments. Each value represents the

median of five identically prepared samples with the error bars denoting their total range.
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four-dimensional parameter space x = ðn;q; r; tÞ. Campaigns using the FEA-informed approach achieved

MdðPÞR 0:95 after 19 experiments, outperforming campaigns using an uninformative prior which

achieved a MdðPÞR 0:95 after 66 experiments (Figure 5B). Interestingly, the interquartile range of the

FEA-informed campaigns was notably reduced after 36 experiments. Additionally, the FEA-informed

approach achieved Mdð PÞ= 1 after 87 experiments while the uninformed prior approach plateaued at

MdðPÞ= 0:96 after 80 experiments. The campaigns based upon the FEA-informed approach reached

Ps R0:85 after 50 experiments and an average Ps >0:90 after 60 experiments, outperforming campaigns us-

ing an uninformative prior which only achieved Ps R0:58 after 60 experiments and Ps = 0:79 at 100 experi-

ments (Figure 5C). From these simulated campaigns, we concluded that the FEA-informed approach

should substantially accelerate optimization of toughness relative to the uninformative-prior approach.

It is worth noting that the experimental burden of the FEA methodology used herein is extremely low. The

only input from experiment that is needed is a characterization of the materials. While we performed ma-

terials characterization by printing and evaluating cylindrical test coupons, for many relevant materials,

high quality tabulated values exist. Further, the general method we developed to convert standard triangle

language files appropriate for additive manufacturing to hexahedral meshes for FEA can be used for any

general structure beyond the crossed barrel family. Thus, FEA for the simulation of resilience has a low bar-

rier to entry and, with the continued growth of high performance computing resources, is likely to be an

increasingly efficient path to gaining mechanical insight.

Based on the results of the simulated campaigns, six independent experimental campaigns were conduct-

ed to optimize toughness, each with an experimental budget of 60 experiments (Table 2). Three experi-

mental campaigns used an uninformative prior and the remaining three used the FEA-informed approach.

In contrast to what was observed for resilience (Figure 3D), the progression of the experimental response

during each campaign was not a clear indicator of progress (Figure 5D), further emphasizing that a cam-

paign’s performance must be evaluated by assessing the predicted optimum design of the campaign.

To directly evaluate these predicted optima, we carried out five repeated experiments on each predicted

optimum after 20 and 60 experiments (Figure 5E). Here, the median and the range are plotted due to the

large differences in toughness that arose for designs near the boundary of the imposed force threshold.

While the acceleration observed for a particular campaign does in part depend on the location in param-

eter space of the first randomly selected experiment and the set of experimental responses observed for

that particular campaign, the reduction in experiments observed in the experimental campaigns is

comparable to reduction in experiments suggested by the simulated campaigns. In both simulated and

experimental campaigns, the FEA-informed approach is superior to the uninformative-prior approach sug-

gesting that, more generally, an optimization campaign benefits from the incorporation of FEA in the

learning structure.

To compare the performance of the approaches and accounting for the large range in performance for a

given design, we computed the probability that a component designed by the FEA-informed approach

would be tougher than a component designed by the uninformative prior approach (Figures S6A and

S6B). Based on this metric, after 20 experiments, campaigns based on the FEA-informed approach had

a 54% chance of producing tougher components that the uninformative-prior approach, which shows

the two approaches are effectively equal at this stage. However, after 60 experiments, campaigns based

on the FEA-informed approach had a 73% chance of producing tougher components than those produced

by campaigns using an uninformative prior. Notably, after 20 experiments, the only campaign that identi-

fied a tougher component than the 35:4G1:5 J mean experimental response of the optimum found using

the 600 measurements in a grid (Gongora et al., 2020) was a campaign based on the FEA-informed

approach. Interestingly, after 60 experiments, four experimental campaigns, two with uninformative-prior

approach and two with the FEA-informed approach, outperformed Grid, with the top performer being the

FEA-informed approach outperforming Grid by�15%. Notably, the top performer discovered by this FEA-

informed campaign was tougher than any we had previously identified in any experimental campaign. Ul-

timately, the FEA-informed approach outperformed the uninformative-prior approach by increasing the

probability of finding a high-performing design after 60 experiments and reduced the number of experi-

ments necessary to find a high-performing structure by 30-fold relative to Grid while increasing the perfor-

mance by �15%.
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Conclusion

In this work, we used a case study in mechanics to explore several ways in which simulation data can be

inserted into AE and evaluated the degree to which each accelerates research. Two mechanical properties

were used: one, resilience, that can be robustly simulated; and one, toughness, that cannot. We found that

when a good simulator exists for the property of interest, AE campaigns can be significantly accelerated

using simulation knowledge as a Bayesian prior. This was demonstrated for the case of resilience, where

a �10-fold reduction in the number of experiments was observed when FEA was incorporated in the belief

model via discrepancy modeling versus a traditional BO approach. For toughness, in contrast, we devel-

oped a custom method for incorporating simulation in a BEAR by using FEA data to transform the space

where belief modeling occurs and by using simulation to guide the decision policy. This custom method

resulted in a�73% chance of outperforming a traditional BO approach with a�15% increase in component

toughness. While the custom method developed in this work utilized ~Fy in the AE system, FEA generally

presents a valuable addition to the active learning component of an AE system, which is often viewed as

purely data-driven. By capitalizing on the ability of FEA to predict certain properties of a system such as

stresses and strains under varying loading or boundary conditions, myriad mechanical insights can be ex-

tracted and incorporated in the decision policy or the belief model to further accelerate the research pro-

cess. Collectively, the principles described herein show how knowledge transfer from a simulator to an AE

systemmay increase the pace of research not only in mechanics but also in other domains such as the phys-

ical sciences where simulation is ubiquitous but imperfect.

Limitations of the study

The incorporation of simulation into AE in this work was explored using a BEAR in the context of mechanics

where FEA was used to predict mechanical properties. To further explore the principles of knowledge

transfer from simulation to AE, future studies need to focus on exploring the applicability and utility of

these methods in other domains such as chemistry, biology, and materials science where simulation can

be accessible.
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Materials availability
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Data and code availability
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METHODS

All methods can be found in the accompanying transparent methods supplemental file.

Table 2. Median and range of toughness after 60 experiments for both the uninformative-prior approach (not FEA-

informed) and the FEA-informed approach

Approach Median U (J) Range (J)

Not FEA-informed 40.53 7.66

35.91 16.25

33.64 10.81

FEA-informed 50.70 13.18

45.78 6.37

32.92 20.60
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Supplemental Information 

 

Transparent Methods: 

 

Fabrication and Experimental Testing of Crossed Barrel Structures: 

A crossed barrel structure with design parameters 𝑥 𝑛, 𝜃, 𝑟, 𝑡 , where 𝑛 is the number 
of struts, 𝜃 is the angular displacement of the strut, 𝑟 is the outer strut radius, and 𝑡 is the thickness 
of the strut, was converted to a standard triangle language (STL) file using OpenSCAD. Using 
Slic3r, the generated STL file was converted to g-code and uploaded for fabrication to the 
MakerGear M3 FDM printers using OctoPrint. The crossed barrel structures were printed using 
polylactic acid (PLA) filament. The diameter of the printer nozzle was 0.35 mm and the diameter 
of the PLA filament was 1.75 mm. The nozzle temperature was 215 °C, and the printer bed 
temperature was set to 75 °C for all layers after the first, which was printed with a 85°C bed 
temperature. The structures were retrieved when the bed temperature was below 40 °C, and then 
tested using uniaxial quasi-static compression on a universal testing machine (5965, Instron Inc.) 
at a speed of 3 mm/min with a force threshold of 4.8 kN. Toughness 𝑈 was measured as the area 
under the force 𝐹-displacement 𝐷 curve. The 𝐹-𝐷 curve was truncated if, after an initial 
displacement of 2 mm, the force was below 50 N. The height of the crossed barrel was 23 mm, 
and the outer and inner radius of the top disk was 13 and 8 mm, respectively. The fabrication 
process and testing protocol described up to this point was based upon our prior work (Gongora et 
al., 2020). Resilience 𝑈  of the crossed barrel structure was measured as the area under the 𝐹-𝐷 
up to the yield force, which was calculated from the 0.2% offset yield stress. When the yield force 
of the crossed barrel structure was larger than the force threshold, 𝑈  was measured as the area 
under the entire 𝐹-𝐷 curve.  

 

Finite-Element Analysis (FEA) of Crossed Barrel Structures:  

To predict the resilience 𝑈  and the yield force 𝐹  of the crossed barrel structures, 
simulations of uniaxial quasi-static compression were performed with the finite element analysis 
(FEA) software package ABAQUS/Standard on the full-size model. The generated STL structure 
of a crossed barrel structure with design parameters 𝑥 𝑛, 𝜃, 𝑟, 𝑡  was converted to a binary 
voxelized volume representation with voxels of length 0.25 mm where each voxel was then 
converted to an 8-node hexahedral finite element (C3D8 brick element) (Figure S1). The element 
size was selected to balance computational time and accuracy. To capture the response of PLA in 
FEA, an isotropic elastic, perfectly-plastic material model was used with Young’s modulus 𝐸
1.66 GPa, yield strength 𝜎 56.62 MPa, and Poisson’s ratio 𝜈 = 0.36. The 𝐸 and 𝜎  of PLA 
used in the simulation were determined from stress 𝜎-strain  curves from uniaxial quasi-static 
compression tests of cylindrical samples of 8 mm diameter and 16 mm height, where 𝐸 was 
measured from the slope of the 𝜎-  curve and 𝜎  was measured as the stress at the 0.2% offset 
strain (Figure S2 A). Based on 12 compression tests on identically prepared samples (Figure S2 
B), the mean measurements of 𝐸 and 𝜎  were used in FEA where the coefficient of variation (CV) 
of 𝐸 and 𝜎  was 8.9% and 10.5%, respectively (Figure S2 C). To increase the throughput of 
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simulations, the simulations were conducted using a custom MATLAB script that automated the 
aforementioned meshing and analysis and ran on Boston University’s shared computing cluster 
(SCC). To capture FEA predictions throughout parameter space, we built a surrogate model using 
Gaussian process regression trained using FEA calculations selected on a grid (Figure S3). The 
surrogate model for resilience had a root mean squared error (RMSE) of 0.0242 J and mean 
squared percentage error (MSPE) of 0.07% (Figure S4 A). The trained surrogate model for yield 
force had a RMSE of 0.0382 kN and MSPE of 0.02% (Figure S4 B). 

 

Bayesian Optimization Formulation:  

In the Bayesian optimization (BO) framework, we used a Gaussian process (GP) to build 

a belief model ℬ 𝐺𝑃 𝜇 𝑥 ,𝜎 𝑥  with mean 𝜇 𝑥  and variance 𝜎 𝑥  from 𝑖 experimental 

observations 𝑥 : ,𝑦 :  to model the property of interest in the design space 𝑥 𝑛,𝜃, 𝑟, 𝑡 . In 
particular, 

𝜎 𝑥 Σ 𝑥, 𝑥 Σ 𝑥, 𝑥 : Σ 𝑥 : , 𝑥 : 𝜆 𝐼 Σ 𝑥 : , 𝑥 ,   (1) 

where 𝜆 defines the homoscedastic noise and 𝐼  is the identity matrix. The covariance kernel 
Σ 𝑥, 𝑥′  was a squared exponential, specifically,   

Σ 𝑥, 𝑥′ 𝛼 exp ∑  .       (2) 

The kernel was parametrized by 𝑑 1 parameters (specifically 𝛼 and 𝛽 , the latter of which 
comprises 𝑑 values) where the design space dimensionality 𝑑 4. The parameters of the kernel 
and the noise were optimized using maximum likelihood estimation after every subsequent 
experiment. Additionally, the hyperparameters were bounded to be greater than or less than their 
initialization values by at most a factor of 100 to avoid extremal hyperparameters or over-fitting. 

 Learning was performed using experimental resilience 𝑈 , experimental toughness 𝑈, 
FEA-calculated resilience 𝑈 𝑥 , and FEA-calculated yield force 𝐹 𝑥 . In the case of using an 
FEA-prior approach to optimize 𝑈 , we defined a discrepancy model 𝛿 𝑥  𝑈 𝑥 𝑈 𝑥  to 
explicitly learn the difference between experiment and FEA. In the case of using an FEA-informed 

approach to optimize 𝑈, we defined an effective length 𝐿 𝑥  to conceptually separate 

effects from strength and ductility. In campaigns that were not informed by FEA, a zero-mean 
prior was used. For optimizing toughness, we defined a logistic function P  to filter parameter 
space. Specifically, P   1 indicated that 𝐹 𝑥  would not exceed the force threshold 𝐹 4.8 kN 
and P   0 indicated that 𝐹 𝑥  would exceed 𝐹 .  Additionally, a transition region with a width 
of 15%, a number based on the coefficient of variation (CV) of 𝑈, was defined to account for 
structures with 𝐹 𝑥  near 𝐹 . The logistic regression function was built from FEA and the force 
threshold as, 

  P 𝑥
 

,        (3) 

 with 𝑘 6.396 to produce a 15% width. 
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 Experimental campaigns began with an experiment that was selected uniformly at random 
in parameter space. Subsequent experiments were selected based upon an expected improvement 
(EI) decision policy. Specifically, after 𝑖 experiments, the mean and variance of the belief model 
were calculated based on Table S1 and Equation (1), respectively. The decision policy used for 
each campaign is given in Table S1.  

 

Table S1. Mean and decision policy used in each of the experimental and simulated 
campaigns, related to Figures 3 and 5.  

Campaign Mean 𝝁𝒊 𝒙  Decision policy 𝒙𝒊 𝟏 

FEA-informed 
resilience 

𝑈 𝑥 Σ 𝑥, 𝑥 : Σ 𝑥 : , 𝑥 : 𝜆 𝐼 𝑈 𝑥 :  𝑈 𝑥 :  𝑎𝑟𝑔𝑚𝑎𝑥 𝐸𝐼 𝑥 |ℬ  

Resilience 
without FEA 

Σ 𝑥, 𝑥 : Σ 𝑥 : , 𝑥 : 𝜆 𝐼 𝑈 𝑥 :  𝑎𝑟𝑔𝑚𝑎𝑥 𝐸𝐼 𝑥 |ℬ  

FEA-informed 
toughness 

𝐹 𝑥  ∗ Σ 𝑥, 𝑥 : Σ 𝑥 : , 𝑥 : 𝜆 𝐼  
𝑈 𝑥 :

𝐹 𝑥 :
 

𝑎𝑟𝑔𝑚𝑎𝑥 𝐸𝐼 𝑥 ⋅ 𝑃 𝑥  |ℬ  

 

Toughness 
without FEA 

Σ 𝑥, 𝑥 : Σ 𝑥 : , 𝑥 : 𝜆 𝐼 𝑈 𝑥 :  𝑎𝑟𝑔𝑚𝑎𝑥 𝐸𝐼 𝑥 |ℬ  

 

 Simulated learning campaigns were conducted to assess the performance 𝑃 of the various 
approaches to optimize 𝑈  or 𝑈. The experimental observations used in the simulations were 
drawn from a dataset 𝑦  comprised of the mean 𝑈  or 𝑈 for 600 distinct designs where each of 
the 600 designs was fabricated and tested in triplicate for a total of 1,800 experiments. To test a 
given combination of learning approach and campaign goal, a total of 100 independent simulated 
learning campaigns were conducted where the initial experiment for each simulated campaign was 
selected uniformly at random from the dataset. In the simulated learning campaigns, the 
subsequent experiments were selected from 𝑦  using EI as described in Table S1. The 
performance of a given campaign after 𝑖 experiments was given by its predicted optimum 𝑥∗ and 

was defined as 𝑃
∗

. Zero-mean Gaussian noise was also added to the experimental 

observations with SD equal to the median SD of the dataset, 0.09 J for 𝑈  and 1.66 J for 𝑈. Based 
on the 𝑃 of 100 independent simulations, the probability of success as a function of 𝑖 was calculated 

as P
∑ ,  

 where 𝜙 𝑃 , 1 if 𝑃 , 0.90 and 𝜙 𝑃 ,  0 otherwise. These 

simulations were conducted in MATLAB using the Statistics and Machine Learning Toolbox.  

 To evaluate the degree to which the FEA simulation would deviate if the material 
properties were set to incorrect values, we predicted resilience 𝑈  with varying 𝐸 and 𝜎 . 
Specifically, we increased and decreased 𝐸 by 5%, 10%, and 50%, while keeping 𝜎  constant. 
Additionally, we repeated this process for 𝜎  while keeping 𝐸 constant. From this study, we found 
that both properties linearly affected 𝑈  with a 1% increase in 𝐸 resulting in a 0.36% decrease in 
𝑈  and a 1% increase in 𝜎  resulting in a 1.36% increase in 𝑈 . To investigate the performance of 
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the FEA-informed approach in the presence of variable input parameters that affect the FEA 
predictions, we conducted simulating learning campaigns in which FEA predictions were 
multiplied by a factor 𝜙  = 0.50, 0.90, 0.95, 1.05, 1.1, and 1.5 (Figure S5). The range of 𝜙  
was selected to reflect the variability introduced when incorrect material properties are employed 
that would skew the FEA predictions underestimating or overestimating the experimental 
resilience 𝑈 . From these simulations, we observed that within 10% (𝜙  = 0.90, 0.95, 1.05, and 
1.1), the performance 𝑃 of the FEA-informed approach varied slightly from the FEA-informed 
approach used in the study (𝜙  = 1). For 𝜙  = 0.5, a small deviation was observed in 𝑃 while 
for 𝜙  = 0.90 a large deviation was observed in 𝑃. In totality, these results support that while 
variable material properties can affect FEA predictions, the FEA-informed approach still 
outperforms the uninformed-prior approach even when very inaccurate material properties are 
used. 

 Six independent experimental campaigns were conducted using the BEAR for 𝑈  or 𝑈 with 
three campaigns using the uninformative-prior approach and three campaigns using an FEA-based 
approach, namely the FEA-prior for 𝑈  and the FEA-informed approach for 𝑈. The first 
experiment was selected uniformly at random, and the campaigns ran for the corresponding 
allotted experiment budget without a human in the loop. In the formulation of the decision policy, 
subsequent experiments were selected from a uniformly random, finite number of candidate 
designs drawn from parameter space. In the uninformed-prior approach for optimizing 𝑈  and 𝑈, 
the predicted optimum after 𝑖 experiments was selected as 𝑥∗ argmax 𝜇 𝑥  . In the FEA-prior 
approach to optimize  𝑈 , the optimum structure also selected as 𝑥∗ argmax 𝜇 𝑥  . In the 
FEA-informed approach to optimize 𝑈, the predicted optimum structure at 𝑖 experiments was 
selected as 𝑥∗ 𝑎𝑟𝑔𝑚𝑎𝑥 𝜇 𝑥 .  , where 𝑥 .  was the subset of designs in parameter 
space 𝑃 0.90. This was done to account for areas in parameter space near the force threshold, 
where there is a sharp decrease in 𝑈. The probability of an FEA-informed structure outperforming 
the uninformative approach was computed by calculating the difference between the FEA 
evaluation measurement and the uninformative-prior measurement and assigning 1 if the 
difference was positive and 0 otherwise. The probability was then computed for each structure, 
and the average probability was calculated (Figure S6 A and B). 
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Supplemental Information: 

 

 

Figure S1: The standard triangle language (STL) file of each crossed barrel structure was 
first converted to a voxelized representation and then the individual voxels were converted 
to 8-node hexahedral finite-elements, related to Figure 2.   
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Figure S2: Material properties of polylactic acid (PLA), related to Figure 2. 

A. Stress 𝝈-strain 𝜺 curve showing uniaxial compression testing of a cylindrical specimen 
that was 8 mm in diameter and 16 mm tall. This curve was used to determine Young’s 
modulus 𝑬 and yield strength 𝝈𝒚.  

B. Measurements of 𝑬 and 𝝈𝒚 obtained from the compression tests of 12 cylindrical 
specimens.  

C. From the measurements of 𝑬 and 𝝈𝒚 , the mean (height of the bar) and standard deviation 
(error bars) were determined. The individual measurements are shown as grey ticks. 
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Figure S3:  Markers indicate the 1,188 design locations sampled by grid-search to obtain 
finite-element analysis (FEA) predictions from which to build a surrogate model using 
gaussian process regression, related to Figures 3 and 5.  
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Figure S4: Parity plots of surrogate model predictions versus FEA observations from grid-
search, related to Figures 3 and 5.  

A. Surrogate model predictions of resilience 𝑼𝑬 vs. FEA observations from grid-search 
𝑼𝐄,𝐠𝐫𝐢𝐝.  

B. Surrogate model predictions of yield force 𝑭𝒚 vs. FEA observations from grid-search 
𝑭𝐲,𝐠𝐫𝐢𝐝.  
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Figure S5: Performance of simulated learning campaigns for resilience 𝑼𝑬 with varying 
finite element analysis (FEA) prediction quality, related to Figure 3.  

A. FEA predicted resilience 𝑼𝑬 vs. Young’s modulus 𝑬 where 𝑼𝑬𝟎 is the FEA prediction 
using the experimentally determined Young’s modulus 𝑬𝟎 and yield strength 𝝈𝒚𝟎. 

B. 𝑼𝑬 vs. yield strength 𝝈𝒚. 
C. Simulated performance 𝑷 at experiment number i for a simulated learning campaign to 

optimize resilience using FEA predictions varied with multiplication factor 𝝓𝑭𝑬 where 
𝝓𝑭𝑬 𝟎 corresponds to the uninformative prior approach, 𝝓𝑭𝑬 𝟏 corresponds to the 
FEA-informed approach used in the study, and 𝝓𝑭𝑬 = 0.95, 0.9, and 0.5 correspond to 
decreasing the FEA predictions.  

D. Probability Ps of achieving 𝑷  0.90 at a given i for 𝝓𝑭𝑬 = 0, 0.5, 0.9, 0.95, and 1.  
E. 𝑷 at i for a simulated learning campaign to optimize resilience using FEA predictions 

varied with 𝝓𝑭𝑬 where 𝝓𝑭𝑬 = 1.05, 1.1, and 1.5 correspond to increasing the FEA 
predictions.  

F. Ps of achieving 𝑷  0.90 at a given i for 𝝓𝑭𝑬 = 0, 1, 1.05, 1.1, and 1.5.  
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Figure S6: Experimentally determined probability that an FEA-informed campaign will 
identify a design with higher toughness 𝑼 than that identified by an uninformative-prior 
campaign after 𝒊 𝟐𝟎 experiments (A) and 𝒊 𝟔𝟎 experiments (B), related to Figure 5.  
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