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Abstract— In a collaborative task and the inter-
action that accompanies it, the participants often
take on distinct roles, and dynamically switch the
roles as the task requires. A domestic assistive robot
thus needs to have similar capabilities. Using our
previously proposed Multimodal Interaction Manager
(MIM) framework, this paper investigates how role
switching for a robot can be implemented. It identifies
a set of primitive subtasks that encode common inter-
action patterns observed in our data corpus and that
can be used to easily construct complex task models.
It also describes an implementation on the NAO robot
that, together with our original work, demonstrates
that the robot can take on different roles. We provide
a detailed analysis of the performance of the system
and discuss the challenges that arise when switching
roles in human-robot interactions.

I. Introduction
There is a growing need for domestic robots that can

support the independent living of individuals who may
require some assistance in performing various activities
of daily living (ADLs). Many of the interactions that
would take place between the human and the robot
in these scenarios are inherently multimodal, involving
the production and the understanding of language and
physical actions from both participants. Such an assistive
robot must therefore be equipped with a multimodal
interaction manager that can process input from multiple
sensors and generate appropriate responses while helping
its human partner complete a particular task successfully.

Moreover, in a collaborative task, either participant
asks questions, gives instructions, or performs physical
actions at various points throughout the task depending
on factors such as ability, environment, and engagement.
For example, a pervasive kind of task that occurs during
many ADLs is what we call the Find task, which occurs
when people need objects that are not immediately
accessible and whose specific location may be unknown
to at least one of them; the partners will collaborate on
finding them and retrieving them. For example, when
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Fig. 1: Multimodal HRI.

two friends are cooking together in a kitchen, one person
may ask the partner to get them a specific tool; this
could result in following that request with an instruction
to look in a certain location, the partner requesting
further information about the object to find, or the
partner choosing to search a nearby location. A domestic
assistive robot participating in such collaborative tasks
should likewise be able to engagein these dialogues while
providing physical assistance in completing the task.

In our previous work [1], we proposed a framework
for multimodal human-robot interaction (HRI), and in
particular for a robot to participate in the Find task.
The development of this Multimodal Interaction Man-
ager (MIM) was based on a corpus of human-human
interactions between elderly individuals (elder role: ELD)
and nursing students (helper role: HEL) assisting in
ADLs [2], in which 32% of utterances were part of a
Find task. In these interactions, ELD would typically
provide instructions and information, while HEL would
ask questions and perform actions manipulating the
environment. We devised a new model, a Hierarchical
Bipartite Action-Transition Network (HBATN), that we
used to represent the task as an interconnected set of
networks that modeled both participants simultaneously,
providing a means for interpreting actions and planning
subsequent actions. The feasibility of an implementation
of our MIM in a robot (Baxter) was demonstrated
through a user study in which the robot, playing the
role of HEL, would interact with a human participant
playing the role of ELD and act in order to determine
and locate the target object.

In the general Find task, however, it is not necessarily
the case that only one participant gives instructions,
nor that only one participant seeks information and
clarification. We envision an assistive robot that is able
to assume different roles as needed throughout the task.
While many frameworks for assistive task-oriented robots
have been proposed, none directly address the challenges
of role-switching during multimodal interaction, which is



crucial to developing a fully collaborative robot. In this
work we demonstrate that our framework proposed in [1]
allows such role switching. We show that by studying
a scenario in which the roles are switched: the robot
is the information giver rather than seeker. To further
show the flexibility of our framework we also use a
different robot (NAO). The new implementation – taken
together with our previous implementation – shows that
our approach is platform-independent and allows the
robot to perform the required actions in either role. We
also present a refined HBATN that represents the Find
task in terms of primitive subtasks that are better suited
for learning and reuse in other collaborative tasks, as well
as for switching the roles during the task. We report
the results of a preliminary user study evaluating this
new implementation, and we discuss the insights this
study provides on the challenges brought and important
considerations called for by the role-switching in the
context of HRI.

II. Related Work

Domestic service robots require information from mul-
tiple modalities to maintain active interaction with a
human user during a collaborative task. Partners can
communicate through spoken utterances and/or physical
actions such as gestures or object manipulations. More-
over, such domestic robots need a planning and execution
framework for generating multimodal responses given
observations throughout the interaction.

In literature, the effect of adding human-like non-
verbal behaviors to robots on the overall interaction has
also been extensively studied. In particular, it was shown
that they can improve the user’s experience and promote
engagement [3]–[6]. However, these studies rarely involve
a multimodal task-oriented collaboration between a hu-
man and a robot in which the robot can autonomously
manipulate the environment. Therefore, the question of
how the robot should plan for and communicate during
a collaborative task remains largely unanswered.

From a task representation point of view, one common
approach is a hierarchical representation in which the
task is decomposed into smaller subtasks. An exam-
ple of this approach are Hierarchical Task Networks
(HTNs) [7], [8]. These methods are well suited for ex-
tracting and teaching the subtasks to a robot using
human demonstrations [9]–[11]. Further, [12] uses the
hierarchical task representation to extract policies for
navigating dialogic interactions.

Markov Decision Processes (MDPs) and Partially Ob-
servable MDPs (POMDPs)are two widely used methods
for robot planning in collaborative tasks [13]. Their
weakness is that they are computationally expensive [14],
[15] and may not be solvable for large observation or state
spaces [13]. Reinforcement learningis another alternative
which is extensively used for modeling dialogue systems
and extracting the dialogue policy [12], [16] when suffi-
cient training data is available.

Role switching for robots has been previously studied
in the multi-robot/multi-agent literature [17]–[20], where
it is necessary for the robot to autonomously choose one
of several possible roles on the team to best contribute
towards achieving a goal. Another domain where this
problem has been studied is collaborative manipulation,
where it is common to distinguish between a leader and a
follower behavior [21]–[23]. None of these works involves
language and turn-taking that are the focus of our work.

Role sensitivity has also been explored in collaborative
dialogues such as solving a problem together [24] or
connecting a caller to someone else [25]. These studies
analyzed human-human dialogues to investigate how
initiative switches during the conversation to bring both
participants to the goal. It was found that either partici-
pant can initiate the common grounding of information,
whether it is in the form of a question requesting informa-
tion or a statement that voluntarily offers information.
These studies reveal that the role that one plays in a
dialogue affects the types of utterances one produces.

This was also shown to be the case in our corpus of
Find tasks, in which the types of utterances greatly differ
between roles; These analyses suggest that developing
systems that attempt to recognize a human partner’s in-
tent or initiative in dialogue may benefit from considering
the role the partner is playing.

III. Multimodal Interaction Manager
Framework

We have previously proposed a framework for multi-
modal HRI in collaborative tasks [1]. The Multimodal
Interaction Manager (MIM) described therein contains
three main components: the Interpretation, Mediation,
and Execution Modules (Fig. 1). The Interpretation
Module processes the sensory input. The Mediation
Module, which includes the HBATN, is responsible for
planning the robot’s next action, which is then sent to
the Execution Module to actually perform the action.
This section presents a refined HBATN that further
abstracts our previous task representation and provides
even greater flexibility.

A. Primitive Subtasks
The structure of the HBATN was developed through

an analysis of the ELDERLY-AT-HOME corpus [2], a
corpus of human-human multimodal interaction. As a
result, the Find task was formulated as a set of subtasks
with the goal of identifying two main unknowns: O, the
target object, and L, the location of the object. The
four main subtasks – Det(OT ) (determining the desired
object type), Det(L) (determining a potential location
to check), Open(L) (opening the location), and Det(O)
(determining the actual object) – are each modeled as
Action-Transition Networks (AcTNets). An AcTNet is
a bipartite graph representing the states of both partici-
pants (ELD and HEL) and their possible multimodal ac-
tions, which are defined as vectors consisting of linguistic



Fig. 2: A sample human-human multimodal interaction
in Find task along with annotations.

features (the dialogue act (DA) [2] of the utterance and
object or location words) and physical features (pointing
gestures or haptic-ostensive (H-O) actions). The HBATN
encompassing these AcTNets then allows a robot to not
only infer the state of its partner, but also to plan its
next action accordingly.

An example of such an interaction is given in Fig.
2. A further analysis of the corpus and the previously
proposed HBATN revealed that each subtask can be
decomposed into finer subtasks, which we call primitive
subtasks. In particular, we found that Det(OT ) and
Det(L) both consist of establishing the object or location
(Estab), potentially followed by verification (Verify) or
follow-up questions specifying more information (Spec),
and that Det(O) consists of confirming the presence or
absence of the desired object (Finish) in the current
location or verifying a physical object with the partner.

Each of these primitive subtasks can then be repre-
sented as simpler AcTNets, as shown in Fig. 3. Note
that we adopt similar illustrative conventions in this
diagram as in [1]. Specifically, blue nodes represent the
seeker – the participant who is seeking information or
manipulating the environment (HEL in the corpus) –
while red nodes represent the giver – the participant who
is providing answers or giving instructions (ELD in the
corpus). Nodes with dotted lines are optional states; for
example, to initiate Estab(L), the seeker may ask the
giver where to look, or the giver may ask the seeker to
look in a specific location.

The arrows in Fig. 3 connecting subtasks and primitive
subtasks represent the general flow of the interaction.
For example, an object type has to be established before
verification or specification of the object type can occur
(connecting Estab(OT ) to Verify(OT ) and Spec(OT )),
and when it has been determined that a location does
not contain the target object, a new location must be
determined (connecting Det(O) back to Det(L)). Fur-
thermore, subtasks or primitive subtasks may be re-
peated in succession if, for example, the object type was
not properly established (e.g., the seeker did not hear
the giver’s answer), or a wrong location was verified, so
another location has to be verified.

A formal analysis showed that not every path in
the previous HBATN can be generated by the refined
HBATN. However, we found that the paths that could
not be reproduced were not meaningful in an interaction

during a collaborative task, so we argue that our refined
model is in fact superior. One advantage of representing
the task as a HBATN is that since each subtask is its own
AcTNet, at the end of each subtask, either participant
may initiate the next subtask. This means that the model
does not require strictly alternating turns throughout the
task and, more importantly, that there are clear points at
which roles may seamlessly switch. Another advantage of
the task decomposition is that the subtasks can be reused
as parts of other complex multimodal collaborative tasks
that require common grounding of some information.

B. Automatic Primitive Subtask Segmentation
One limitation of our HBATN and AcTNet approach

to task and subtask modeling is that the topologies
were derived from the data through manual inspection.
By introducing simpler, more primitive AcTNets, the
structures can be more easily learned. To this end, we
developed a classifier to determine, given a turn in an
interaction, which primitive subtask the participant is
in. Such a classifier not only helps a robot infer its
partner’s state in the task, it also provides a means
for automatically annotating a large set of multimodal
interaction data, which could then be used to learn the
structures of those subtask AcTNets.

To create the training data for this classifier, we
follow established practice in computational dialogue
processing, in which a portion of the corpus is annotated
by multiple annotators to establish the validity of the
annotation via metrics of inter-coder agreement. Two
annotators manually labeled the turns in 84 Find task
interactions from the ELDERLY-AT-HOME corpus (a
total of 1,101 moves) with one of our primitive subtasks.
To measure inter-coder agreement on assigning primitive
subtask labels, 9 interactions (127 total turns) were
independently annotated by both annotators prior to
the 84, and relatively high agreement was found using
Cohen’s kappa (κ = 0.7769). After some discussion on
labeling strategies, a second set of 10 trials with 168 total
turns was again independently annotated and shown to
have improved agreement (κ = 0.8010).

We extracted three main types of features from each
move: features from the previous move (its label, DA tag,
actor, and number of consecutive preceding moves with
the same label), the current move (its DA tag, actor,
number of tokens, turn number, 50-dimensional GloVe
word embeddings [26] averaged over the entire utterance,
and if any object words, location words, pointing ges-
tures, or H-O actions were used), and the state of the task
(whether or not the object type and location have been
determined). These task state features were extracted
heuristically using the history of DA tags, primitive sub-
task labels, and mentions of object and location words.
For example, if a previous turn uses the Instruct DA
tag with an object reference in the Estab(OT ) subtask,
then the object type has been determined, but if this
is followed by a turn using the Reply-n DA tag in the



Fig. 3: The hierarchical subtask model decomposed into multiple primitive subtasks – each primitive subtask is an
Action-Transition Network that simultaneously models both agents in a concise way.

CRF MLP LR
human-human data 85.3 88.9 88.5
human-robot data 87.6 60 61.1

TABLE I: Subtask classification accuracy of our three
classifiers on different datasets.

Verify(OT ) subtask, then the object type has not been
determined.

We then trained and tested three different classifiers
on the annotated corpus using 5-fold cross-validation:
logistic regression (LR), multi-layer perceptron (MLP),
and conditional random field (CRF). These results are
given in the first row of Table I. Because the results were
similar across the three classifiers, with LR and MLP
performing slightly better than CRF, we also evaluated
the classifiers on the human-robot interaction data col-
lected in our previous work [1]. For this, the classifiers
were trained on the full corpus, the same annotators
labeled the new interaction data (185 total turns) for
primitive subtasks, and the classifiers were tested on this
new labeled data. These results are given in the second
row of Table I. The observed decrease in performance for
LR and MLP may be attributable to imperfect speech-
to-text transcriptions in the human-robot data, resulting
in extracted features that do not reflect the actual move.
However, this did not affect the performance of CRF,
which may be due to its ability to better learn patterns
in the sequence of subtask labels within a trial.

Overall, the CRF results show the potential for au-
tomatically annotating multimodal interaction data for
our primitive subtasks, which could then be used to learn
the topologies of each subtask by extracting consecutive
sequences of moves belonging to the same subtask and
using well-established techniques for learning, for exam-
ple, Markov models. The trained CRF can also be used in
implementations of the MIM to help infer the state of the
human partner by comparing the observed human action
with all possible actions in the HBATN with preference
given to those in the predicted subtask.

Fig. 4: A snapshot of a trial in which NAO and a human
partner interact to find an object.

IV. Experimental Evaluation
In [1], we described an implementation of the MIM

to evaluate the efficacy of the HBATN. To investigate
the feasibility of switching roles, we again implemented
the MIM with the refined HBATN. We chose to use
the NAO robot to show the platform-independence of
our framework. We then ran a preliminary user study in
which participants, acting as the seeker, interacted with
NAO, acting as the giver, in the Find task.

A. Experimental Setup
NAO was placed on a table to be at around chest-level

with the participants. Two storage units, each with three
drawers, and a cabinet were placed in front of NAO with
handles facing towards the participants. These were the
possible locations in which the four target objects (two
balls and two cups of different colors) could be hidden. A
Kinect sensor was placed on the table, and a camera was
mounted off to the side. Participants stood facing NAO
and spoke into a hands-free microphone (see Fig. 4).

B. Implementation
To realize the full MIM, we implemented several com-

ponents to recognize and understand multimodal human
actions (the Interpretation Module) and generate robot
actions (the Execution Module, see Figure 5). We em-
ployed the Google Cloud Speech-to-Text API for speech
recognition. Pointing gesture recognition is accomplished
by using the skeleton-tracking feature of the Kinect –
thresholds on the yaw, pitch, and roll angles of the vector



Fig. 5: The subcomponents of the implemented modules
of our MIM framework.

from the participant’s right shoulder to their right hand
were set to identify if and to which of the three locations
the participant is pointing.

To recognize H-O actions, we classify each frame from
the camera as one of the H-O actions of interest: open,
touch, takeout, or no action. We fine-tuned MobileNet-
v2 [27] using 36 minutes of recorded and annotated
videos (over 21k frames) of three experimenters perform-
ing the various H-O actions (95% validation accuracy).
For object recognition, skeleton information from the
Kinect is used to create a bounding box around the
participant’s hand, and this image is sent to a fine-tuned
ResNet-50 [28] (96% validation accuracy) to predict
which, if any, of the objects of interest is being grasped.

The final component in the Interpretation Module,
Dialogue Processing & Modality Fusion, performs DA
and subtask classification and combines its results and
inputs into an action vector for the Mediation Module.
Subtask classification was performed using the CRF clas-
sifier described in Section III-B. We built a DA classifier
with the features described in [2] except the textual
features (e.g., part-of-speech tags, dependency parse tree
information), which were replaced with features from
BERT, a neural language model that has been shown to
produce state-of-the-art results on many NLP tasks [29].
Features were obtained by inputting the current and
previous utterances and taking the vector output of the
special classifier token used in BERT. This updated DA
classifier was validated on the ELDERLY-AT-HOME
corpus, resulting in an accuracy of 69%, comparable
to that reported in [2]. Speech generation and pointing
gestures in the Execution Module used NAO’s built-
in components. Utterances were formed using templates
that were created for each possible action vector in
the HBATN, and pointing gestures were performed by
having NAO move its arm to predefined positions.

C. User Study

A preliminary user study was carried out to evaluate
the performance of our HBATN when the robot acts
as the giver. Six participants were recruited for this
experiment. Each participant was asked to interact with
NAO to determine what object it would like (which was
randomly decided internally at the start of each trial) and
to help it find that object. Each participant performed 5
to 6 trials, resulting in 33 total trials.

D. Evaluation Procedure and Results
We measured the performance of each component of

the Interpretation Module by calculating overall accu-
racy. Speech recognizers are typically evaluated using the
word error rate (WER), which is essentially the word-
level edit distance between the recognized utterance and
the actual utterance, but we report the complementary
measure (the percentage of words correctly transcribed)
here for consistency, which we call the speech-to-text
(STT) accuracy.

To evaluate the quality of the interactions themselves,
we report the percentage of successful trials – trials
in which NAO acknowledged that the participant had
located the correct object – as well as the percentage of
human turns that resulted in a non-understanding [30].
We define two categories of non-understandings: hu-
man turns for which the robot’s response is to ask for
repetition, and human turns consisting of a question
or instruction for which the robot’s response does not
answer the question or follow the instruction. To further
investigate the components which may be contributing to
the occurrence of non-understandings, we also report the
percentage of non-understandings in which the various
components make mistakes, including the HBATN model
itself (i.e., if an action is not accounted for in the model).

The overall results of the user study are reported
in Table II, and the breakdown of non-understanding
results are given in Table III. We see that a majority
of the trials were successfully completed with about two-
thirds of all human requests being properly understood.
The vast majority of non-understandings occur with an
error in subtask classification. While the DA classifier
feeds directly into the subtask classifier, only about half
of the subtask classification errors in non-understandings
occur with DA classification errors.

V. Discussion
Overall, participants achieved a very high success

rate with NAO in locating the desired object. However,
we observed multiple instances of frustrated utterances
from the participant or unexpected responses from NAO
throughout the interactions despite the eventual com-
pletion. What are the main causes of these unexpected
responses, and how do the participants adapt to these
shortcomings to still complete the task? We investigate
these questions to shed light on the challenges that arise
when switching roles in HRIs.

The high co-occurrence rate of non-understandings
and subtask classification errors suggests that the sub-
task classifier was the greatest contributor to producing
these unexpected responses. Although the subtask classi-
fier performed with high accuracy on the Baxter data, it
could not achieve similar results in the NAO experiment.
This suggests that the change in role had a significant
impact on subtask classification accuracy. An analysis of
both types of HRIs revealed that when the robot acts
as the seeker, it would typically be the initiator of new



Avg. # Successful Non- STT DA H-O Pointing Subtask
Moves Trials Understandings Accuracy Accuracy Accuracy Accuracy Accuracy

19 84.8% 32.6% 84.8% 57% 83.1% 96% 49.3%

TABLE II: The primary results of our preliminary user study using our implemented MIM.
DA Speech H-O Pointing Subtask DA & Subtask Model

Failure Failure Failure Failure Failure Failure Failure
55.5% 43.4% 22.2% 2% 92.9% 51.5% 14.1%

TABLE III: Percentage of non-understandings in which errors in each component occur.

subtasks by asking questions to gather the information,
whereas when the robot acts as the giver, the human
would typically ask the questions. When the robot asks
questions, thereby choosing the subtask, the participant
is likely to respond appropriately, remaining in the same
subtask, which can be a strong indicator for the classifier
since the previous subtask label is one of the features.
However, when the human can change the current sub-
task, the classifier may be less able to predict the label
since there is more variation in what subtask will follow.

Another case in which it was difficult for the classifier
to detect the initiation of a new subtask is when the
participant would utter two sentences that encompass
two subtasks, such as “I don’t see it there. Where should
I look next?” This example can be decomposed into two
actions, one belonging to Finish(L) and the other to
Estab(L), and would be annotated as such in the corpus.
However, the speech recognizer cannot recognize sentence
boundaries, so this utterance is treated as one action that
is unlike others in the corpus, making it hard to classify.

The performance of the DA classifier was also unex-
pectedly lower than prior evaluations. While errors in the
DA classifier did not co-occur with non-understandings
in the user study as much as errors in the subtask clas-
sifier, the DA classifier does play a direct role in subtask
classification, as its predicted labels are features in the
subtask classifier, and the heuristic rules for extracting
some other features in the subtask classifier depend on
DA tags. Thus, the propagation of error from the DA
classifier may have contributed to non-understandings.

The classification accuracy of the DA classifier in this
experiment contrasts significantly with the accuracy of
those reported in [1], [2], despite being trained on the
same corpus. One possible reason for this discrepancy is
the use of BERT features over the linguistic features of
those reported classifiers. To investigate this possibility,
we ran the DA classifier used in our previous experiment
with Baxter, which uses the same linguistic features as
described in [2], on the data collected from the present
experiment. It was found that the previous classifier
performed at 61.6% accuracy on the NAO data, only
marginally better than the current classifier, which sug-
gests that the change in features is not the main cause.

A more likely explanation is again in the role switch
itself. In the Baxter experiment, the DA classifier tagged
ELD utterances, while in the NAO experiment, the clas-
sifier tags HEL utterances. The ELDERLY-AT-HOME

corpus was collected from 15 elderly participants, but
only two nursing student helpers; a classifier trained
on this data may then be able to account for greater
variation in ELD utterances at test time, but not in
HEL utterances. Moreover, the distribution of DA tags
in the corpus for each role reported in [2] shows a clear
imbalance, both between the roles and within the roles.

Another contributor to non-understandings is the
HBATN itself, which became apparent when the par-
ticipant would ask questions that NAO had not been
programmed to answer, such as “Can you see me?”.
These questions do not appear in the corpus, nor are
they encoded in any primitive subtask AcTNet. Since the
participant is the seeker, there is much more variation in
the questions that they can ask, many of which could not
be accounted for a priori.

Our user study provides important insight into the
challenges of switching roles in a robot performing a col-
laborative multimodal task with a human partner. While
our DA and subtask classifiers had high accuracy when
evaluated on our Baxter data, in which the participant
was the giver, their performances degraded significantly
when applied to the NAO experiment, in which the
participant was the seeker. This change in role brought
about a significant change in the human actions that
need to be recognized and responded to by the robot, in-
cluding subtask-initiating actions and actions combining
multiple DAs and subtasks. We also note that the trajec-
tories in these interactions may be a significant departure
from those in human-human interactions due to errors
in the system. Specifically, when a non-understanding
occurs between a human and a robot, the robot may
ask for repetition or provide an unexpected response,
which may lead to frustrating loops, if the human persists
in asking their question, or not, if the human ignores
the response and continues onward to complete the task
(both of which were observed in our user study). Between
two humans, however, when non-understandings occur,
unexpected responses are typically not simply ignored
and can typically be resolved within a few turns [30]. The
difference in frequency and resolution strategies of non-
understandings between two humans versus a human and
a robot creates a testing environment that is significantly
different from the training one. A major consideration
in building these collaborative robots then is the data
on which the different modules are trained – it is not
necessarily the case that human-human interaction data



will translate well into human-robot interactions.

VI. Conclusion
Building a robotic assistant that can perform col-

laborative multimodal tasks requires consideration of
the role of the robot. Participants in such tasks often
assume distinct roles that may switch at various points
throughout the interaction, and so a truly collaborative
robot must be equipped with the ability to perform the
actions expected of each role. We built upon our previous
framework for multimodal human-robot interactions and
showed that it can allow for these role switches. We
also showed that by implementing such a framework, we
can explore a largely unanswered question in the field
of human-robot interaction – particularly, how changing
roles impacts the dialogic interaction between the human
and the robot, as well as the components needed to
effectively understand the human in a new context.
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